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 6 

It is becoming increasingly clear that a substantial reservoir of carbon exists in the 7 

unsaturated zone of aquifers, though the total size of this reservoir on a global scale 8 

remains unquantified. Here we provide the first broad estimate of the amount of 9 

carbon dioxide gas found in this terrestrial reservoir. We calculate that between 2 and 10 

53 PgC exists as gaseous CO2 in aquifers worldwide, generated by the slow microbial 11 

oxidation of organic particles transported into aquifers by percolating groundwater. 12 

Importantly, this carbon reservoir is in the form of CO2 gas, and is therefore 13 

transferable to the Earth’s atmosphere without any phase change. On a coarse scale, 14 

water table depths are partially controlled by local sea level; sea level lowering 15 

therefore allows slow carbon sequestration into the reservoir and sea level increases 16 

force rapid CO2 outgassing from this reservoir. High-resolution cave air pCO2 data 17 

demonstrate that sea level variability does affect CO2 outgassing rates from the 18 

unsaturated zone, and that the CO2 outgassing due to sea level rise currently occurs 19 

on daily (tidal) timescales. We suggest that global mean water table depth must 20 

modulate the global unsaturated zone volume and the size of this carbon reservoir, 21 

potentially affecting atmospheric CO2 on geological timescales. 22 
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1. Introduction 24 

The presence of a reservoir of carbon within the unsaturated zone of karst aquifers is now 25 

well-established (e.g., Mattey et al., 2016; Noronha et al., 2015). Calculations based on 26 
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groundwater geochemistry have long suggested that groundwater may equilibrate with air 27 

that has pCO2 substantially higher than soil air pCO2, implying a deeper source (Atkinson, 28 

1977). This early research concluded that microbial oxidation of mechanically transported 29 

organic material within aquifer permeability generates CO2 within the unsaturated zone of 30 

karst aquifers (Atkinson, 1977; Wood, 1985). This air reservoir, termed ‘ground air’, is 31 

characterised by very high CO2 concentrations. Recent studies from cave sites (e.g., Baldini 32 

et al., 2006; Bourges et al., 2001; Whitaker et al., 2010) have shown that cave air pCO2 33 

values generally increase in smaller or more sheltered passages, with values sometimes 34 

considerably higher than local soil pCO2, suggesting the presence of ground air. However, 35 

direct measurements of borehole air confirm that a reservoir of extremely high pCO2 air 36 

exists within the unsaturated zone of aquifers in a variety of different lithologies (Benavente 37 

et al., 2010; Hendry et al., 1993; Hendry and Wassenaar, 2005), not just karstic aquifers. For 38 

example, research on the gas content of siliciclastic deposits of the Ogalla aquifer in south 39 

Texas concluded that aerobic microbes oxidized organic carbon transported to intergranular 40 

porosity by recharge water, producing CO2 (Wood and Petraitis, 1984). Furthermore, 41 

radiocarbon measurements support the concept that this CO2 is derived from the decay of 42 

old carbon that was probably transported into the aquifer (Bergel et al., 2017; Lechleitner et 43 

al., 2016; Noronha et al., 2015; Wood et al., 2014), rather than CO2 produced in the soil 44 

zone and then diffused downward. Considered together, existing geochemical evidence 45 

suggests the presence of a substantial carbon dioxide reservoir at depth that has largely 46 

escaped quantification. Access issues have meant that this reservoir is most easily identified 47 

in cavernous and karstified environments, but ground air is found in any lithology with even 48 

small-scale permeability.    49 

 50 

Here we use new laboratory and field data combined with published estimates of mean 51 

global depth to groundwater (Fan et al., 2013; Serrano-Ortiz et al., 2010) to estimate the size 52 

of the global ground air carbon reservoir.  A strong link between sea level and CO2 53 

outgassing from this reservoir is observed in a new cave air pCO2 dataset, which implies that 54 
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vertical groundwater shifts associated with local sea level push ground air out of the 55 

subsurface during a rising tide and pull atmospheric air into the subsurface during a falling 56 

tide (i.e., that the water table acts as a piston). We suggest that eustatic sea level increases 57 

on geological timescales potentially also forced CO2 out of the ground air reservoir and into 58 

the atmospheric reservoir, potentially accounting for a portion of the observed atmospheric 59 

CO2 increase.  60 

 61 

 62 

2. Methods 63 

 64 

2.1. Quantifying the global ground air reservoir 65 

To constrain the global ground air CO2 reservoir we estimated: i) mean ground air pCO2, ii) 66 

mean global depth to groundwater, iii) mean global net (primary and secondary) permeability 67 

of the unsaturated zone, and iv) global land surface area (Table 1). Considerable variability 68 

exists in all these parameters, and we therefore necessarily report a broad range of ground 69 

air carbon reservoir sizes. We believe that the true value lies within this range, and future 70 

studies should focus on better constraining the variables defining this range. 71 

 72 

The current global unsaturated zone volume was estimated here using published exposed 73 

land area and the Global Mean Water Table Depth (GMWTD: the mean distance from the 74 

surface to the water table over all points on land) values; the minimum GMWTD (26 m) was 75 

calculated using data presented in Fan et al. (2013) and the maximum (100 m) uses the 76 

value reported in Serrano-Ortiz et al. (2010)). The land area estimate does not account for 77 

ice cover because of substantial uncertainties in both the amount and distribution of 78 

subglacial carbon.  Bedrock permeability values range considerably (Freeze and Cherry, 79 

1979). We use a conservative mean global value of 10%, consistent with previous estimates 80 

(Serrano-Ortiz et al., 2010). This includes both primary and secondary permeability, and 81 

accounts for decreasing permeability with depth (Williams, 2008). Ground air pCO2 values 82 
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were assumed to range from 12,000 ppmv to 70,000 ppmv based on the results of the 83 

laboratory and field experiments conducted here and published data (see Supplementary 84 

Content). The minimum value is probably very conservative, but given the substantial 85 

uncertainties involved in this first estimate of the global ground air carbon reservoir size we 86 

feel that the broad range of estimates is justified.  87 

 88 

2.2. Cave air pCO2 monitoring 89 

Cave air pCO2 measurements were made in Conch Bar Caves, Middle Caicos, Turks and 90 

Caicos Islands (21°49′34″N, 71°47′28″W) to gauge the response of ground air to local sea 91 

level fluctuations. The cave is a flank margin cave, developed in Cretaceous and Tertiary 92 

aged carbonate platform sediments. The cave has numerous entrances, is well ventilated, 93 

and has a number of saltwater pools fed by direct connections to the sea (Supplementary 94 

Figure 3) (Smart et al., 1992). 95 

 96 

The pCO2 logger was placed in a small cave chamber with good airflow 180 meters from the 97 

nearest entrance, 20 meters below the surface, and two meters above mean sea level 98 

(Supplementary Figure 3). The majority of the chamber floor was flooded during high tide, 99 

except for a few isolated ‘islands’ of bedrock or secondary calcite (< four meters in diameter) 100 

that remained above sea level. The pCO2 logger was placed on one of these, and was 101 

always at least one meter above the water level in the chamber. Cave air pCO2 was 102 

measured automatically every three hours for 318 days from April 17, 2011, to February 28, 103 

2012, using a calibrated Vaisala GMP343 infrared carbon dioxide probe connected to a 104 

Vaisala MI70 indicator (±7 ppmv) (Ridley et al., 2015). Data were corrected for barometric 105 

pressure (also measured on site, using a Barotroll barometric pressure logger) using the 106 

method outlined in Spötl et al. (2005). Spectral analysis of the pCO2 dataset was conducted 107 

using PAST software (Hammer et al., 2001).  108 

 109 

2.3. Beach transect CO2 measurements 110 
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Measurements of ground air in the unsaturated zone were made at five sandy beaches 111 

across the UK (July-September 2013). Each site was divided into three zones (intertidal, 112 

high beach, and dune) and measurements were taken within each.  Measurements were 113 

made across transects orthogonal to the shoreline, crossing all three zones at each of the 114 

five beach sites. At each location, a calibrated Vaisala GMP343 combination CO2 and 115 

temperature probe (uncertainties of ±0.04% for CO2 and ±0.05°C for temperature) was 116 

buried to a depth of one meter (or to just above the water table if the water table was 117 

shallower than one meter). CO2 values stabilised at all sites within 100 minutes. The 118 

intertidal zone represents an area where the ground air CO2 signature is ‘reset’ to 119 

atmospheric values once the tide recedes from the zone and atmospheric air is drawn into 120 

the subsurface by the dropping sea level. The sea occasionally affects the high beach zone 121 

environment during storms and unusually high tides, but not on daily timescales. The dune 122 

zone was not submerged in the recent past, and is overlain by typical halophytic vegetation 123 

and by a thin (< 5 cm), immature soil zone consisting almost exclusively of an O-horizon 124 

directly above the quartz sand substrate.  The dune zone provides a contrast to the other 125 

two zones due to the presence of soil organic material, and because there would have been 126 

sufficient time for the organic material to infiltrate the sand substrate and oxidise. The dunes 127 

thereby provide an environment where ground air in the unsaturated zone is reasonably 128 

accessible. Time-series monitoring was conducted in the dune environment of Camber 129 

Sands and Greatstone Beaches, Kent, UK, where data was logged automatically every 15 130 

minutes over several days.     131 

 132 

3. Results and Discussion 133 

 134 

3.1. Existing evidence for ‘ground air’ 135 

The evidence for air within the vadose zone with substantially elevated CO2 (and methane) 136 

concentrations is now strong. Laboratory mesocosm experiments (Hendry et al., 1993; 137 



6 

 

Hendry et al., 2001), new field data, and previously published data (e.g., Atkinson, 1977; 138 

Batiot-Guilhe et al., 2007; Denis et al., 2005; James, 1977; Mattey et al., 2016; Serrano-Ortiz 139 

et al., 2010; Wood and Petraitis, 1984) collectively indicate that a substantial CO2 pool exists 140 

in the unsaturated zone of aquifers worldwide. Previous researchers have even suggested 141 

that the majority of cave air CO2 is sourced from a deep biogenic source (Breecker et al., 142 

2012), rather than the soil. We have compiled a representative collection of published 143 

measurements of unsaturated zone air pCO2 and δ13C (based on 14 different sites from 144 

different environments), which strongly suggest variable mixing between two end member 145 

pools of CO2: one with low pCO2 and high δ13C and a second with substantially elevated 146 

pCO2 and low (but locally variable) δ13C values. The first pool is clearly the Earth’s 147 

atmosphere, whereas the second represents a reservoir with pCO2 that is up to two orders 148 

of magnitude higher than typical soil air pCO2 (Murthy et al., 2003) (Figure 1). Because most 149 

of these elevated measurements are from regions with no known magmatic or hydrocarbon 150 

related CO2, this strongly supports previous studies concluding that high CO2 ground air 151 

exists in the unsaturated zone. Furthermore, if the second reservoir were simply soil air, 152 

mixing would reflect the photosynthetic pathway of the vegetation overlying the various sites 153 

(e.g., between -22 and -25‰ VPDB for C3 vegetation and between -10 and -15 VPDB for C4 154 

vegetation). However, average mixing lines indicate that the CO2 reservoir typically has a 155 

δ13C of between -17 and -19‰ VPDB (although some individual sites clearly do reflect 156 

modern overlying vegetation, such as Obir Cave), suggesting that soil is not the main source 157 

of the CO2. Possible sources for CO2 found at depth in non-geothermal areas include: 158 

diffusion from the soil zone, microbial oxidation of organic material at depth (either material 159 

transported downward from the soil or carbon deposited with the rock), or degassing during 160 

calcite precipitation at the surface of the water table. The observed carbon isotope ratios 161 

may reflect mixing of organic material filtered by the aquifer over thousands of years, thereby 162 

integrating the δ13C signal of a variety of vegetation, sometimes averaging C3 and C4 163 

vegetation signatures. This is strongly supported by radiocarbon evidence from stalagmites 164 

and cave air suggesting the contribution of substantial amounts of very old carbon, and that 165 
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soil carbon is often not the direct source of cave air pCO2 (Noronha et al., 2015). The recent 166 

use of oxidative ratios of subsurface gases provides more strong support for the concept that 167 

the carbon in both caves and the vadose zone is at least centuries old (Bergel et al., 2017). 168 

Furthermore, studies on dissolved organic carbon within an aquitard demonstrate that C 169 

within connate pore water is approximately 15,000 years old (Hendry and Wassenaar, 170 

2005). The high (compared to C3 vegetation) 13C values typical of ground air may also 171 

reflect carbonate equilibrium chemical reactions involving both bedrock dissolution and 172 

calcite precipitation at the water table. Mattey et al. (2016) provide a comprehensive review 173 

of ground air in karstic environments  and how advective and diffusive mixing of CO2 derived 174 

from different sources, including soil air, occurs. 175 

 176 

The natural environments with the highest ground air pCO2  values are: i)  inaccessible 177 

small-scale permeability within bedrock and ii) deep, unventilated cave and mine passages, 178 

which are inaccessible without breathing apparatus due to the high pCO2 levels (known 179 

colloquially as ‘bad’ or ‘foul’ air amongst cavers (Smith, 1999)). Cave air pCO2 180 

measurements made in more accessible sections of caves reflect, almost without exception, 181 

a mixture of ground air with substantial amounts of outside (atmospheric) air and have pCO2 182 

values low enough to permit exploration of the passage. In one of the few examples from a 183 

poorly ventilated passage (in Lascaux Cave, France), Peyraube et al. (2013) measured 184 

pCO2 values over 70,000 ppmv. Additionally, a growing number of borehole pCO2 185 

measurements (Affek et al., 1998; Benavente et al., 2010; Peyraube et al., 2013; Vadillo et 186 

al., 2010) with maximum values approaching 70,000 ppmv also indicate that ground air is 187 

present. It is intriguing that almost no measurements of ground air considerably above 188 

70,000 ppmv exist. The reasons underlying this observation are unclear, but may reflect a 189 

reduction in metabolic rate of aerobic bacteria (and associated organic matter oxidation rate) 190 

once ground air oxygen levels drop below 14% (equivalent to the conversion of 70,000 ppmv 191 

O2 gas to CO2 gas from the presumed initial pO2 value of 210,000 ppmv (21%, the 192 

concentration in the Earth’s atmosphere)). 193 
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 194 

Available data suggest that ground air pCO2 values are greatest near the capillary fringe and 195 

decrease upward towards the soil zone (Wood et al., 2014). This is due to enhanced CO2 196 

generation near the water table but also to dissolution and downward transport of CO2 by 197 

percolation waters (Affek et al., 1998; Walvoord et al., 2005; Wood et al., 2014). Calcite 198 

precipitation at the water table could also partially account for the high concentrations 199 

adjacent to the water table, but mass balance considerations suggest that microbial 200 

oxidation of organic matter is a larger source (Walvoord et al., 2005). At some borehole 201 

sites, it is clear that high permeability, even without the presence of cavernous porosity, 202 

creates conditions favouring rapid air exchange between the surface and subsurface, and 203 

the residence time of vadose zone air is measurable in years to decades (Thorstenson et al., 204 

1998). In these cases, such as at Yucca Mountain, Nevada, ground air pCO2 values are 205 

moderated by exchange with the atmosphere, with very low values, typically ranging from 206 

900 to 6,000 ppmv according to local permeability and depth (Thorstenson et al., 1998). This 207 

illustrates that ground air pCO2 varies substantially both geographically and vertically. A 208 

number of different variables, including bedrock permeability, moisture content, rock type 209 

and organic content, local climate, and vegetation cover all affect ground air pCO2 values. 210 

The maximum measured values for ground air pCO2 used here (70,000 ppmv) are therefore 211 

likely substantially higher than mean values of the global unsaturated zone reservoir. 212 

Conversely, the minimum values (12,000 ppmv, derived from our lab and field data (see 213 

Supplementary Content)) are lower than most direct ground air pCO2 measurements, and 214 

therefore are likely to underestimate the global mean.   215 

 216 

3.2. Estimating the ground air reservoir size 217 

Serrano-Ortiz et al. (2010) estimated the CO2 contained in karstic regions, but did not 218 

consider non-karstic areas. However, no reason exists why only karst regions should host 219 

ground air and, as discussed previously, unsaturated zone pCO2 measurements in other 220 

environments support ground air as a global phenomenon. We therefore suggest that 221 
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elevated pCO2 exists throughout the unsaturated zone globally, but that direct 222 

measurements are lacking due to the absence of accessible cave passage in non-limestone 223 

lithologies. In fact, non-karstic aquifers may actually have higher mean ground air pCO2 224 

values due to a reduced capacity for ventilation due to the absence of large passages 225 

(Covington, 2016). The presence of aerobic bacteria in the deep subsurface is currently not 226 

well constrained, but a number of studies now illustrate that aerobic bacteria are found in 227 

some of the harshest and least hospitable environments on the planet, including in ocean 228 

sediment at depth in the most nutrient-poor regions of the Pacific Ocean (D'Hondt et al., 229 

2015), within caves (e.g., Tomova et al., 2013), and in bedrock (Personne et al., 2004). 230 

Specifically, studies on boreholes demonstrate that aerobic bacteria exist throughout 231 

subsurface and that their concentrations do not seem to decrease with depth (Hicks and 232 

Fredrickson, 1989). The current consensus appears to favour a model where the biosphere 233 

in the deep subsurface is both diverse and active (Fredrickson and Balkwill, 2006; McMahon 234 

and Parnell, 2014; Rempfert et al., 2017), so the presence at depth of microbes capable of 235 

oxidising organic matter is not surprising.  236 

 237 

Using the estimated ranges in parameters affecting global unsaturated zone volume and 238 

ground air pCO2 (Table 1), we estimate between 2 and 53 petagrams of carbon (PgC) are 239 

stored as ground air within the unsaturated zone of aquifers globally. This range is 240 

consistent with values of 2.0 PgC calculated by Serrano-Ortiz et al. (2010) calculated for just 241 

karst regions (representing ~15% of land area) using lower values of pCO2 measured in 242 

caves (20,000 ppmv). This range is also consistent with the calculations suggesting 10-100 243 

PgC exists in the deep biosphere as microbes (between 2 and 19% of the Earth’s total 244 

biomass) (McMahon and Parnell, 2014; Whitman et al., 1998). Ground air CO2 therefore 245 

represents a terrestrial C pool containing between 0.24 and 6.4% of the current atmospheric 246 

C content (830 PgC) (Le Quere et al., 2015). The calculation is most sensitive to the 247 

GMWTD, and simply changing the value from the Serrano-Ortiz et al. (2010) value (0.1 km) 248 

to the Fan et al. (2013) value (0.026 km) reduces the maximum ground air reservoir value 249 
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from 53 PgC to 14 PgC. The lower estimate of GMWTD of Fan et al. (2013) is more 250 

comprehensive, and consequently it is likely that the total ground air reservoir is on the lower 251 

end of the range reported here. Critically however, unlike many other non-atmospheric 252 

carbon reservoirs, ground air C exists as gaseous CO2, and does not require a phase 253 

change prior to entering the atmospheric pool. For example, carbon stored in the deep 254 

marine reservoir has a mean residence time of ~100,000 years, while carbon in limestone 255 

has a residence time of ~100 million years. Carbon within the biosphere is more mobile 256 

(mean residence time of living terrestrial biosphere = ~20 years), but with the exception of 257 

fires is not instantaneous. Consequently, variability in unsaturated zone reservoir magnitude 258 

could affect atmospheric CO2 concentrations and ultimately global climate extremely quickly. 259 

Any major rise in sea level would necessarily be accompanied by ground air outgassing that 260 

reflects the rapidity of the sea level change. 261 

 262 

 263 

3.3. Correlations between cave air pCO2 and sea level 264 

Evidence that even small tidal sea level fluctuations push high-pCO2 air out of the 265 

unsaturated zone ground air reservoir and into cave passage is derived from new high-266 

resolution pCO2 time-series data from Conch Bar Caves (Turks and Caicos Islands) 267 

proximal to the Atlantic Ocean (Figure 3). Importantly, cave air pCO2 increases with 268 

increasing local sea level, indicating that CO2 is forced up from the bedrock permeability 269 

rather than down from the soil. The outgassing signature is remarkably clear despite the 270 

cave system having multiple entrances and an active ventilation system (Figure S3). The 271 

results are striking, with cave air pCO2 tracking sea level, illustrating the ground air CO2 272 

‘piston effect’ well. Spectral analysis of both the Conch Bar Cave pCO2 record and the tide 273 

gauge-derived sea level record illustrate in-phase 12- and 24-hour cycles (Figure 3), 274 

reflecting lunar tidal forces. 275 

  276 
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These observations have implications on longer timescales. GMSL reductions associated 277 

with low sea levels on geologic timescales (e.g., Ice Ages or glaciations) expose new land 278 

while simultaneously increasing GMWTD, thereby increasing the unsaturated zone volume. 279 

In most situations with unconfined aquifers, sea level acts as the local base level, and shifts 280 

in base level control the elevation of the water table further inland in accordance with the 281 

Dupuit equation (Fetter, 1994; Hiscock, 2005). In unconfined aquifers, basic hydrological 282 

principles dictate that water must flow from high hydraulic head to low hydraulic head; an 283 

increase in sea level is therefore propagated inland until it eventually affects the entire 284 

aquifer. Evidence does exist for sea level-induced water table lowering during periods when 285 

sea level was substantially lower. For example, substantial cave development ~100m lower 286 

than the modern water table in Florida may reflect local water table responding linearly to 287 

sea level rise during the last glacial termination (Wilson, 1988). In fact, cave development 288 

within the Floridan aquifer may reflect mixing of the fresh water table with high pCO2 ground 289 

air during the LGM (Gulley et al., 2013). Abundant evidence for a lower water table during 290 

glacial conditions exists throughout coastal regions globally (e.g., Bard et al., 2002; Moseley 291 

et al., 2013). The simple assumption of unconfined flow is not directly applicable to some 292 

groundwater basins with complex geological structural controls (such as the Basin and 293 

Range province of North America), but is relevant in many cases. We further acknowledge 294 

that shifts in climate and regional recharge conditions on long timescales also impact the 295 

depth to the water table locally, but globally these shifts would tend to cancel each other out 296 

(i.e., shifting rainfall patterns will raise the water table in one area while lowering it in 297 

another).     298 

 299 

 Downward percolating water will transport organic matter into the newly exposed volume of 300 

rock (or sediment) where oxidation produces CO2. In this manner, sequestration of 301 

atmospheric CO2 will occur with sea level falls. On the other hand, sea level increases will 302 

cause flooding of land, reduced GMWTD, and a smaller ground air carbon reservoir (during 303 

low-ice volume intervals of Earth history). During transitions from high to low ice volume 304 



12 

 

intervals, some CO2 gas will necessarily transfer from the unsaturated zone into the 305 

atmosphere. Interestingly, the identification of this terrestrial carbon reservoir is consistent 306 

with recent results suggesting increased storage of carbon during the Last Glacial (~21,000 307 

years before present) in an previously unidentified inert terrestrial pool (Ciais et al., 2012), 308 

which was apparently released into the atmosphere during deglaciation.   309 

 310 

 311 

5. Conclusions 312 

Here we calculate that between 2 and 53 PgC exist in a terrestrial carbon reservoir located 313 

in the unsaturated zone of aquifers worldwide. This range is consistent with previous 314 

estimates of carbon dioxide content of karst aquifers alone and with estimates of microbial 315 

biomass within all aquifers. We agree with the recently expressed perspective (Bergel et al., 316 

2017) that the increasingly clear presence of a ‘ground air’ reservoir may require a re-317 

evaluation of the classic models of carbon dioxide formation within karst aquifers. 318 

Additionally, we propose that this reservoir is not restricted to karst aquifers, but is instead 319 

commonplace in all lithologies with any appreciable permeability. This global ‘ground air’ 320 

carbon reservoir is the second largest store of CO2 gas on the planet, but remains largely 321 

unappreciated due to difficulties with access. 322 

 323 

Assuming that the PCO2 of ground air is (on average) temporally constant, the largest 324 

control on the carbon amount stored is the volume of the unsaturated zone. Variability in 325 

ground air carbon reservoir size represents a potential control on global atmospheric pCO2 326 

and consequently temperature. A new cave air PCO2 dataset from a coastal cave illustrates 327 

that sea level is a fundamental control on the outgassing of CO2 from the ground air 328 

reservoir. Changes in eustatic sea level will therefore directly influence the unsaturated zone 329 

volume and hence the global ground air reservoir, potentially affecting the amount of CO2 330 

contained within the Earth’s atmosphere and, consequently, climate. It is worth noting that 331 

this mechanism may also have contributed to more pronounced climate shifts during 332 
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geological intervals when continental shelves were larger, or expansive shallow seas were 333 

present, such as the late Neoproterozoic or the Ordovician. In these cases, a moderate sea 334 

level drop would have exposed considerable amounts of land, possibly resulting in 335 

considerable carbon storage in the unsaturated zone followed by substantial release of CO2 336 

during sea level rises.    337 

 338 
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Figure Captions: 501 

Figure 1: Keeling plot of published CO2 measurements (in % atm) from the 502 

unsaturated zone and outside atmosphere. Cave air, soil air, atmospheric air, well air, 503 

and borehole air pCO2 data from selected sites from around the world (Batiot-Guilhe et al., 504 

2007; Benavente et al., 2011; Bourges et al., 2001; Breecker et al., 2012; Denis et al., 2005; 505 

Frisia et al., 2011; Kowalczk and Froelich, 2010; Mattey et al., 2010; Peyraube et al., 2012; 506 

Peyraube et al., 2013; Riechelmann et al., 2011; Spötl et al., 2005; Tremaine et al., 2011). 507 

Sites were chosen to illustrate ground air CO2 in different environments, and are not 508 

comprehensive. Measurements from sites currently overlain by C4 vegetation are 509 

represented by triangles and those overlain by C3 vegetation by circles. Atmospheric values 510 

are for Mauna Loa Observatory (Keeling et al., 2001) (dark blue stars) and published values 511 

above some cave sites (light blue stars).  512 

 513 

Figure 2: Carbon dioxide concentrations along transects perpendicular to the coast at 514 

five beach locations in the UK. Measurements of ground air in the unsaturated zones at 515 

five sandy beaches across the UK taken at different times between July-September 2013. 516 

Measurements were made across transects orthogonal to the shoreline, using a calibrated 517 

Vaisala GMP343 combination CO2 and temperature probe buried to a depth of one meter (or 518 

to just above the water table if the water table was shallower than one meter). Two transects 519 

were conducted at Camber Sands on different days; these are labelled A and B respectively.  520 

 521 

Figure 3: Cave air record at Conch Bar Cave, Turks and Caicos Islands, compared 522 

with tide data. (a) Cave air pCO2 was measured from April 17, 2011, to February 28, 2012. 523 

One representative week (8-14 August 2011) of the cave air pCO2 record is shown here, 524 

along with sea level data from the nearest tide gauge (Virginia Key, Florida, USA; 950 km to 525 

the NW). The time difference between the tide at Virginia Key and that measured live (no 526 
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logged data available) at Sandy Point, Turks and Caicos Islands, is less than one hour.  (b) 527 

Spectral analysis of the full 318-day datasets (inset) illustrates the presence of statistically 528 

significant (at 90% confidence) 12-hour and 24-hour cycles within both the cave air pCO2 529 

and sea level datasets.  530 

 531 

Table 1: Parameters used to estimate ground air carbon stores. The range of values 532 

used represents the uncertainty in the measurements. Land area values and global mean 533 

water table depth have varied over geological time; estimates are presented for the periods 534 

considered in this study.  535 


