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Accurate calibration of the flexural spring constant of microcantilevers is crucial for sensing devices,

microactuators, and atomic force microscopy (AFM). Existing methods rely on precise knowledge of

cantilever geometry, make significant simplifications, or require potentially damaging contact with

the sample. Here, we develop a simple equation to calculate the flexural spring constants of

arbitrarily shaped cantilevers in fluid. Our approach, verified here with AFM, only requires the

measurement of two resonance frequencies of the cantilever in air and in a liquid, with no need for

additional input or knowledge about the system. We validate the method with cantilevers of different

shapes and compare its predictions with existing models. We also show how the method’s accuracy

can be considerably improved, especially in more viscous liquids, if the effective width of the

cantilever is known. Significantly, the developed equations can be extended to calculate the spring

constants of the cantilever’s higher eigenmodes. VC 2018 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5009071

Microcantilevers constitute the backbone of a wide range

of technologies, from actuators in MEMS1 to sensors2 and

lab-on chip technology,3 and for atomic force microscopy

(AFM).4 Microcantilever-based measurements of forces with

pico-Newton resolution and of displacements down to the

Ångstr€om level are now commonplace. Most applications rely

on small relative displacements or bending of the lever, which

can generally be modelled by a linear spring with a single

flexural spring constant, kf. Precise knowledge of kf is hence

key to achieving accurate and reproducible results, and con-

siderable efforts have been dedicated to the modelling of

cantilevers’ motion5 and to the development of calibration

procedures.6 The task is, however, highly challenging because

accurate predictions require precise knowledge of the cantile-

ver’s geometrical and physical characteristics, something far

from trivial, given manufacturing variability at that scale.

Additionally, no single model works for all cantilever geome-

tries, let alone unusual and arbitrary shapes, unless consider-

able simplifications are made.7 To add to this complexity, the

dynamical properties of cantilevers on which most models

rely strongly depend on the viscoelastic properties of the

immediate environment.

In the field of AFM, the need for accurate kf characteri-

zation is a central issue, given the use of microcantilevers to

measure minute molecular8–10 or interfacial forces,11–13

often close to the thermal limit. It also feeds into the problem

of force-reconstruction, where the spatial landscape of a

force potential is calculated from dynamical measurements

with a vibrating cantilever.14–19 Perhaps unsurprisingly,

many AFM-based methods have been proposed to estimate

kf based on the dynamic motion of the cantilever, typically

measured by a laser focused near the cantilever’s free

extremity.6,20–30 To date, the most common methods are the

so-called thermal noise method21,31,32 and the Sader

method18,22,23,30,33—a comprehensive review of most of the

methods available can be found in Ref. 6.

The thermal noise method is derived from equipartition

theory and requires knowledge of the frequency-dependent

response of the cantilever to thermal fluctuations in the sur-

rounding environment [i.e., the thermal spectrum, see Fig.

1(a)].21,32 If the inverse optical lever sensitivity (invOLS) of

the cantilever-laser system is known, fitting of the thermal

spectrum can be used to find kf for any resonant mode of the

cantilever. The method’s accuracy depends on mechanical

noises and white noise from the environment. The result is

also highly sensitive to the choice of interval used to fit the

relevant portion of the thermal spectrum. Significantly, the

measurement of the invOLS usually requires bending the

cantilever on a hard substrate, a procedure that can damage

or permanently alter the measuring tip. This can, in principle,

be avoided by calibrating the invOLS after an experiment, at

the cost of uncertainties in the forces applied to the sample

of interest.

The Sader method, developed by John E. Sader,18,22,23,30,33

is also based on the thermal spectrum of the cantilever but relies

on a more sophisticated fitting procedure that takes into account

the fundamental resonance frequency of the cantilever, its

quality (Q) factor, geometrical shape, and hydrodynamic

function. The method works for cantilevers with rectangular or

V-shaped geometries22 [see Fig. 1(b)]. It can be adapted to other

shapes but requires the input of cantilever-dependent parameters

that are not readily measurable.22

Both the thermal noise and Sader methods have become

benchmarks in the field; they can be implemented in air or

liquid environments but often lead to different results due to

strongly enhanced—and often tip-sample-separation depen-

dent—damping in fluid environments. Prediction errors can

become significant in highly viscous environments, partly
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due to difficulties in accurately measuring a quality factor.

Moreover, for cantilevers with non-standard geometry [Fig.

1(b)], the Sader method requires further adjustments.22

Here, we propose a method for calibrating the flexural

stiffness of cantilevers with arbitrary shapes in viscous flu-

ids. Our approach requires only knowledge of the cantile-

ver’s length and its first two resonant frequencies in air and

liquid. There is no dependence on the cantilever’s quality

factor, no need for invOLS calibration, and results in air or

viscous liquids are comparable or more accurate than with

the existing methods. If the effective width of the cantilever

is known, we show that the accuracy of the predictions can

be further improved over established methods with the

knowledge of only first resonance frequencies of the cantile-

ver in air or desired liquid.

Our method begins from the dynamic motion of the cantile-

ver based on the Euler-Bernoulli partial differential equation34

EI
@4

@x4
W x; tð Þ þ qcbh

@2

@t2
W x; tð Þ ¼ Fexc þ Fh; (1)

where E is the cantilever’s Young’s modulus, I is its rotary

inertia, qc is the cantilever density, and b and h are the width

and thickness of the cantilever, respectively. Wðx; tÞ is the

time-dependent displacement of the cantilever, Fexc is the

excitation force, and Fh is the hydrodynamic force which can

be described by a separate added mass and damping stiffness.

Considering the added mass and damping stiffness per unit

length of the cantilever34–36 and assuming a hydrodynamic

function characterized by two real (a1 and a2) and two imagi-

nary (b1 and b2) regression coefficients,35,37,38 we can relate

the angular resonance frequencies of the microcantilever in

air, xan, and in an arbitrary fluid, xfn;
39 for any given mode n:

x2
fn

pa1qfb

4qch
þ 1

� �
þ x3=2

fn

pa2
ffiffiffiffiffiffiffi
gqf

p

2qch

� �
¼ x2

an; (2)

where qf and g are the density and the viscosity of the fluid,

respectively.

The hydrodynamic coefficients ai and bi are independent

of the cantilever characteristics or the medium in which it

operates, have been evaluated elsewhere, and can be

assumed to be constant for different cantilevers.35,37,38 After

measuring two resonance frequencies of the cantilever in

both air and a liquid environment from the thermal spectrum

[Fig. 1(a)], the areal mass density, qch, and width, b, can be

obtained from Eq. (2)

cqch ¼
pa2

ffiffiffiffiffiffiffi
qfg
p

2

x3=2
f1 x3=2

f2

ffiffiffiffiffiffiffi
xf2
p � ffiffiffiffiffiffiffi

xf1
p� �

x2
a1 � x2

f1

� �
x2

f2 � x2
a2 � x2

f2

� �
x2

f1

; (3)

FIG. 1. Calculation of the flexural

spring constants from cantilever dynam-

ics. (a) Thermal spectrum recorded with

a V-shaped cantilever immersed in

water. The first two resonance peaks are

highlighted and the corresponding

modes of oscillation. Simple harmonic

oscillator model fits are shown for the

first and second modes as red and blue

dashes, respectively. (b) Examples of

differently shaped cantilevers and the

relevant dimensions used in theoretical

models. The upper three types are inves-

tigated in this study. The lower cantile-

ver exemplifies a shape that would

represent a challenge for traditional

methods. (c) Flexural spring constant, kf,

predicted by Eq. (6), the Sader method,

and the thermal method for a beam and

V-shaped cantilever in air and water.

Nominal manufacturer’s values are

highlighted with dashed lines. In general,

Eq. (6) produces results consistent with

the manufacturer’s values and those

measured via the thermal method. In the

case of the beam, Eq. (6) appears to give

more robust results than the Sader model

in both air and water. (d) Flexural spring

constants predicted by the various mod-

els for an arrow-shaped cantilever. Here,

there is no good agreement between the

(poorly defined) nominal stiffness and

any model, but Eq. (6) again agrees well

with the thermal method. The red gradi-

ent here reflects the manufacturer’s

broad nominal stiffness range (kf � 6 N/

m typical, with 1.5 N/m< kf< 20.0 N/

m). Calculated errors for Eq. (6) are

smaller than the data markers.
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(4)

Here, the carat denotes a calculated value and the indices a
and f refer to the eigenfrequencies of the cantilever in air

and in a fluid, respectively. The flexural spring constant, kfn,

of each mode of the cantilever is related to the effective

mass of that mode, mn, through the relation kfn ¼ mnx2
an;

40

and the effective mass can be found from the actual mass,

mc, or the cantilever’s geometrical parameters by40

mn ¼
1

4
mc ¼

1

4
qchbL; (5)

where L represents the cantilever length. By combining Eqs.

(3)–(5), we obtain the following expression for the cantile-

ver’s first mode spring constant

kf1 ¼
1

4
cqchbbLx2

a1: (6)

Figure 1(c) compares kf1 predictions obtained from Eq. (6),

the thermal and Sader methods for the beam (RC800 PSA,

Olympus), and V-shaped (TR400 PB, Olympus) cantilevers,

in air and in water. For the beam cantilever, Sader’s equation

(1) in Ref. 22 is used, and for the V-shaped cantilever, we

use the adapted equation (8) in the same paper. In each case,

the cantilever’s nominal values are shown as dashed lines for

reference. The predictions obtained from Eq. (6) broadly

agree with the thermal method and are as accurate as the

Sader method in most cases if the nominal value is taken as a

reference point. We note that there is no independent mea-

surement of cantilever stiffness here—even manufacturer’s

values are typically given with large uncertainties —and so,

there is no formal measure of accuracy for our model. The

proximity of the thermal method and nominal values does

imply that our results are accurate. However, unlike the ther-

mal method, Eq. (6) does not require invOLS calibration

with the potentially damaging tip-sample contact. The Sader

method is closer to both the nominal value and the thermal

method than Eq. (6) for the V-shaped cantilever. However,

we note that the equation used here required two hydrody-

namic coefficients (a1 and a2) specially developed for

V-shaped cantilevers and, as such, is not applicable to arbi-

trary cantilevers. Further validation of our model for cantile-

vers of different geometries and stiffness is shown in Table

SI of the supplementary material.

For arrow-shaped cantilevers (Arrow UHF AuD,

Nanoworld), the parallel beam approximation developed by

Sader cannot be easily adapted, and so, we make use of Eq.

(1) in Ref. 22. We again find an excellent agreement between

Eq. (6) and the thermal method [less than 7%, see Fig. 1(d)],

demonstrating the validity of the approach. The broad range

of nominal values, indicated by the red gradient in Fig. 1(d),

is a result of the complex geometry of the arrow cantilever

used (see Fig. S1 in the supplementary material). This sug-

gests significant variability in the manufacturing and further

emphasises the need for accurate calibration methods that

are not based on nominal values.

There is however one caveat to Eq. (6): the viscosity of

the environment in which the cantilever operates. Most mod-

els that use dynamical measurements to find a value for kf

tend to fail when the measurements are conducted in highly

viscous environments, and Eq. (6) is no exception. The

results presented in Fig. 1 are based on measurements con-

ducted in a relatively low viscosity environment—air and

pure water. However, when working in more viscous liquids

and especially with softer cantilevers, the quality of the pre-

dictions progressively decreases (Fig. 2). This is a problem

for applications such as viscometry or biosensing39 where

microcantilevers are used in non-Newtonian bodily fluids.

To overcome this issue, we developed a more accurate equa-

tion for predicting kf . This comes at the cost of an extra

parameter needed as an input: the width b of the cantilever

or an effective width for non-rectangular cantilevers. If b is

known, the areal mass density of the cantilever cqch becomes

cqch ¼
x2

f1pa1qfbþ 2x3=2
f1 pa2

ffiffiffiffiffiffiffi
qfg
p

4 x2
a1 � x2

f1

� � ; (7)

which, using Eq. (5), yields the following expression for kf1:

kf1 ¼
x2

f1pa1qfbþ 2x3=2
f1 pa2

ffiffiffiffiffiffiffi
qfg
p

16 x2
a1 � x2

f1

� � bLx2
a1: (8)

Significantly, Eq. (8) does not depend on the Q factor of the

cantilever, making it less sensitive to the difficulties in measur-

ing Q accurately in viscous environments. We also note that

Eq. (8) only requires the frequency of the first resonance of

the cantilever, another advantage in viscous media. We tested

Eq. (8) in five fluids of varying viscosity: ultrapure water, iso-

propanol, acetone, butanol, decane, and hexanol (Sigma-

Aldrich, Dorset, UK, purity>99%). The measurements were

conducted with a rectangular cantilever (Olympus RC800 PSA)

FIG. 2. Assessment of the impact of the surrounding fluid’s viscosity on the

predicted spring constant of a beam cantilever. The thermal method is rea-

sonably constant with viscosity as expected but deviates from the nominal

manufacturer’s value (dashed line) of 0.39 N/m. In contrast, both Eq. (6) and

the Sader method vary, decreasing as the viscosity increases. Equation (8)

performs much better, returning a more stable value for kf that is consistent

with the thermal method and has reduced errors at all but the highest

viscosities.
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and compared with predictions from Eq. (6), Sader, and the

thermal method; the results can be seen in Fig. 2.

The results show that the stiffness as calculated via Eq.

(8) is less sensitive to viscosity than the other methods,

whereas Eq. (6) fails dramatically, with around 70% varia-

tion. The Sader method’s results decrease with viscosity and

are offset from both the thermal method and nominal values.

This reflects the dependence of the method on the Q-factor,

which tends to vary dramatically with the fluid viscosity.

Together, these results validate Eq. (8) and show that it pro-

vides the most reliable model for calculating kf, particularly

when operating in highly viscous environments.

In this paper, we propose an approach to determine the

spring constant of a cantilever based solely on the measure-

ment of its two first eigenfrequencies. The method does not

require any knowledge about cantilever characteristics, mak-

ing it particularly useful for calibration of systems where

accurate determination of the geometry or shape is not possi-

ble. Significantly, comparison with existing popular methods

shows that our approach provides similar or better results.

We show that if the width of the cantilever is known, the

quality of the prediction can be further improved, especially

in viscous fluids where other methods tend to fail. Our equa-

tions can also be extended to determine spring constants of

higher eigenmodes of vibrating cantilevers, a key to multi-

modal measurements including in the fast growing field of

multifrequency AFM.41,42

See supplementary material for a list of the measured

parameters used in Fig. 1, additional measurements with differ-

ent cantilevers in viscous liquids, and a detailed description of

the experimental methodology, including error calculations.
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