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Abstract (200 words) 

 

Soil-based construction materials are of interest as structural building materials due to their 

green credentials, as well as being present in many historical structures. For effective 

conservation of the latter, and to motivate greater uptake for new construction, understanding of 

the mechanical and hydraulic properties of these materials is in need of improvement. Earthen 

construction materials can be considered to be manufactured unsaturated soils, and advances 

in understanding can be made by considering them from a geotechnical point of view. This 

paper presents initial results from a major programme of testing, seeking improved properties 

for earthen construction materials, where unusual organic compounds have been employed as 

stabilisers. Two gums (guar and xanthan) used as stabilisers for a soil mixture are shown to 

have significant effects on certain mechanical properties, some of which can be explained, and 

other aspects which are in need of further investigation. 
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Introduction 

Earthen construction refers to the use of subsoil materials to create structural members, such as 

walls, and is distinguished from other forms of construction that use soils (e.g. earth dams) by 

the difference in environment, i.e. large surfaces open to the weather and consequently low 

water content. Techniques are both unit-based (e.g. adobe and compressed earth blocks) and 

in-situ (e.g. rammed earth, pisé and cob). These methods of construction have been used by 

man for thousands of years and are coming under scrutiny for modern construction as they 

could offer low carbon and low embodied energy alternatives to construction using cement-

based products or fired masonry (Jaquin & Augarde, 2012). It is only in the last decade, 

however, that these materials have been correctly identified as geotechnical in nature, i.e. 

where frictional strength is key and unsaturated soil mechanics concepts are useful (Jaquin et 

al., 2009; Gallipoli et al., 2014, 2017; Beckett et al., 2017). A key barrier to wider adoption of 

these materials for modern construction, especially in temperate zones such as northern 

Europe, is their poorly understood mechanical properties. Modern earthen materials often use 

stabilisers such as cement to provide bonding, but this clashes with their green credentials and 

alternative stabilisers are therefore keenly sought.  

 

Biopolymers are naturally occurring polymers, typically from plant sources, which have been 

previously used as viscosifiers (Plank, 2004). Recently, researchers have explored the 

possibility of using biopolymers as soil stabilisers, and it has been reported that, when added to 

soil biopolymers have reduced soil permeability (Bouazza et al., 2009; Aminpour & O’Kelly, 

2015), increased shear strength (Cabalar & Canakci, 2011; Chang et al., 2015), improved 

compressibility (Latifi et al., 2016) and enhanced durability (Qureshi et al., 2017).  Biopolymer 

stabilisation changes soils properties by the formation through hydration of “hydrogels”. On 

drying, the water molecules tend to escape from polymer chains leading to the formation of 

complexes of linked polymer chains. In addition, during drying, the hydrogels transform from 

what is termed a “rubbery” to a “glassy” state (Eichler et al., 1997; Ayeldeen et al., 2016). When 

mixed in soil, the hydrogels form bonds between soil particles and free water through hydrogen 

and/or ionic bonding depending on the intrinsic properties of the biopolymer used 

(Chudzikowski, 1971; Katzbauer, 1998). From the findings in these previous works, it is clear 
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that biopolymers may have potential as stabilisers in soil-based construction materials, 

providing additional shear strength and stiffness, without the carbon footprint of a cement 

stabiliser. Indeed the production of xanthan gum actually consumes CO2 (Chang et al., 2016). 

This paper presents initial results from a campaign of laboratory testing assessing the 

mechanical properties of biopolymer-treated materials, and speculates on potential 

explanations. 

 

2. Experimental Programme 

A base soil mixture comprising 20% Kaolin, 70% sharp sand and 10% gravel by mass (denoted 

2-7-1) was chosen as it complies with the requirements for earthen construction materials given 

in previous publications (Olivier & Mesbah, 1987; Houben & Guillaud, 1994; Venkatarama 

Reddy & Jagadish, 1995; Beckett & Augarde, 2012) and is a combination widely investigated. 

Atterberg limits and compaction characteristics (using the 2.5kg Proctor test) obtained in 

accordance with British Standards (BS 1377-2, 1990; BS 1377-4, 1990) for the unamended soil 

mixture are given in Table 1. Commercially available guar gum and xanthan gum were chosen 

as biopolymer stabilisers in this study due to their availability and good stability properties with 

respect to temperature and pH variations (Mudgil et al., 2011). As indicated in literature when 

added within a range of 3.0%, the biopolymer treated soil has comparable performance with 

10% cement treated soil (Chang et al., 2015; Qureshi et al., 2017), hence the biopolymer 

content in study was added in range of 0.5 to 3.0% by mass of the dry unamended sample. 

 

Cylindrical specimens (38mm diameter by 76mm height) were tested in unconfined 

compression (UC), and “bowtie” specimens were tested in tension using the procedure outlined 

in Stirling et al. (2015). All the ingredients (the base soil mix and biopolymer) were dry mixed 

initially and then water equivalent to OWC was added. During preparation of treated samples, it 

was necessary to add additional water above the OWC in order to make the soil mix workable. 

The amount of additional water required varied with respect to the biopolymer used and can be 

explained by the different chemical compositions of the gums as discussed in (Torres et al., 

2012) wherein the polymer chains in guar have a lower water absorption capacity than in 

xanthan, and therefore need more water to hydrate and hence achieve a workable soil mix. The 
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amounts of additional water needed for both biopolymers are given in Table 2. All the samples 

were statically compacted to achieve the initial dry density of 19.62 kN/m
3 
having a porosity of 

16.98% and pore void volume of 14.63 cm
3
. However, due to the addition of biopolymer there 

was slight variation in the initial dry densities achieved and corresponding porosity and pore 

space volume values.  Following preparation, samples were left to cure by drying to the 

laboratory atmosphere (relative humidity of 50% and temperature of 21
0
C) and were then tested 

after 7 and 28 days. Finally, water content and total suction (using a WP4C Potentiometer) were 

measured on portions of the remains. For comparison, identical tests were carried out on 

samples of the unamended soil after 7 days of air curing and on samples stabilised with 8.0% 

cement by mass after 7 and 28 days of air curing. Similarly to biopolymer-stabilised samples, air 

curing took place inside the laboratory atmosphere. 

 

3. Results and Discussion 

Axial stress/strain plots recorded during the UC tests are shown in Figure 1. The differences in 

stiffness at low axial strains are due to sample bedding in and the key conclusions should be 

drawn from the results > 0.5% strain. After 7 days of curing, for both guar and xanthan treated 

specimens, there is an appreciable difference in the > 0.5% stiffness between different 

concentrations, with higher concentrations leading to higher stiffness. At 28 days curing, 

however, these differences are no longer evident. These variations of the stiffness provide 

evidence of the change of state of the hydrogel products formed by the biopolymers, which is 

discussed in more detail below.  

 

UC peak strength is plotted against % stabiliser in Figure 2 for both biopolymers, where it can 

be seen that an addition of 2% guar provides soil with compressive strength higher than the 

cement-stabilised sample: approximately 30% higher after 7 days and 35% after 28 days. After 

7 days, xanthan at 1.5% produces approximately the same strength as the cement stabilised 

specimen and, at 2%, the strength becomes approximately 50% higher than the cement 

stabilised specimens. However, xanthan specimens tested at 28 days showed reductions in 

strength compared to the 7 day specimens. For the range of percentage stabiliser additions, 

both plots show increasing strength, with no optimum treatment concentration reached within 
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the range tested, although all treated samples improve on the unamended soil. Given the 

variation in strength behaviour between stabiliser concentrations and curing periods discussed 

above the primary mechanisms controlling strength would appear to be different to that driving 

stiffness. 

 

Tensile test results are shown in Figure 3 indicating a clear relationship between stabiliser 

concentration and tensile strength. The error bars show the greater variation for these tests 

which can be explained by the different modes of failure. Tensile strength will be critically 

affected by the presence and nature of microcracking which will vary between samples and be 

difficult to predict or control. Shear failure in the UC tests show much less scatter as the 

resistance to failure is more distributed over a surface.  Unlike the UC results, the tensile 

strength of the guar samples reduces over time whereas the xanthan samples increase over 

time. At 7 days, all concentrations of biopolymer lead to higher tensile strengths than 

unamended soil, but lower than for the cement treated soil. At 28 days, the strength of the 2% 

xanthan gum treated soil exceeds the cement treated soil by 38%. Differences in the relative 

performances of cement and biopolymer treated samples when tested in tension, as opposed to 

compression, suggest that the stabilising mechanisms through which compressive and tensile 

resistance is mobilised within the specimens are different. 

 

As noted in Jaquin et al. (2009), a significant component of the strength of unstabilised soil-

based construction materials can be linked to the suction present due to the very low in-situ 

water contents and presence of fine soil fractions.  Zhao (2014) and Cao et al., (2017) using 

Tempe cell measured soil water characteristic curves (SWCCs) for poorly graded sand initially 

saturated with water and biopolymer solutions. It was noted higher matric suction was needed to 

desaturate sand treated with xanthan solution at 2g/L concentration, indicating that addition of 

biopolymer will have an effect on suction of treated soil (Fig 4). In addition, Chang et al (2015b) 

note that the strength of the biopolymer stabilised soil is dependent on water content, although 

that point is not relevant to this study where the end application is a material dried to the 

environmental equilibrium. It is therefore instructive to measure suction for the materials tested 

here to try to understand the effect of biopolymer addition on suction and potentially strength. 
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Figure 5 shows suction and water content data recorded immediately after UC strength testing. 

Some observations are as follows: 

· All biopolymer treated samples exhibit higher suctions than the unamended and cement 

treated specimens indicating a contribution from osmotic suction from biopolymer 

products (indeed suctions are evident in samples of plain hydrated biopolymer 

confirming this). The effect is not dependent on % stabiliser at 28 days but at 7 days 

there is a variation indicating that as the hydrogels change state, their contribution to 

suction varies. 

· At 28 days, the water content of guar gum treated samples was higher than 7 days, 

while for xanthan treated samples it was lesser. This variation may be due to their 

interaction with surrounding atmosphere. As noted by Kocherbitov et al., (2010), the 

vapour sorption/diffusion of a biopolymer is dependent on its state, temperature and 

humidity. Hence, by end of 28 days, guar gum stabilises through water absorption from 

atmosphere, while xanthan gum, uses as much free water as it needs, with the 

remainder of the water evaporating. 

· At 7 days, the suction measured in the unamended samples corresponds to the value 

calculated using Kelvin’s equation, given the average RH and temperature in the 

laboratory. For the amended samples, however, suction equilibrates at a higher level, 

between 125 and 135 MPa, further confirming osmotic suction contributions from the 

presence of the biopolymer products. 

· Water contents increase with % stabiliser throughout which is linked to the additional 

water required to achieve workable mixes   

· After 7 days, high suctions are linked to low water contents for both gums indicating a 

more significant contribution to suction from pore water than at 28 days.  

When the suction results are reviewed in parallel with the UC strength data (Figure 2) clear 

conflicts are evident. For the guar samples, suctions are seen to reduce between 7 and 28 

days, while UC strengths increase. Equally, for the xanthan samples, suctions increase while 

UC strengths decrease. Changes in UC strength must therefore be explained through additional 

mechanisms besides suction induced capillary bonding. Conversely, suction changes shown in 

Figure 5 correspond well with changes in tensile strength of the biopolymer treated soils in that 
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decreases in suction of guar gum samples after 28 days correspond to lower strengths, and 

increases in suction in xanthan gum samples correspond to higher strengths. The higher 

suctions and strengths of the biopolymer treated specimens compared to the untreated 

specimens suggest that the strength gains are caused by a combination of suction (mainly 

osmotic) and hydrogel bonding. The nature of the bonding of these hydrogels with soil particles 

depends on the biopolymer type.  

 

Guar gum, being a neutrally charged polysaccharide with large hydroxyl groups (Chudzikowski, 

1971), forms a network of hydrogels between soil particles and free water via hydrogen bonds 

(Chen et al., 2013). At 7 days, these hydrogels (predominantly being in rubbery state) may 

contribute to matric suction and hence the stabiliser content contributes to the measured suction 

(Figure 5). Thereby, the combination of suction and hydrogels contribute to the observed higher 

compressive strength of the soil. Tensile strength is also believed to be driven by a combination 

of suction and hydrogel bonding. However, as hydrogels are more elastic and weaker than 

cement bonds in tension, the tensile strengths are lower than the cement treated specimens. 

Once the hydrogels transform to a glassy state, the suctions tend to reduce and reach constant 

values irrespective of stabiliser content (Fig. 5).  However, the increase in compressive strength 

and stiffness may be attributed to the network of hydrogels now in a glassy state connecting the 

soil particles. Being a weaker chemical bond, the hydrogen bonds may not contribute to tensile 

strength with aging.  

 

Xanthan gum is an anionic polysaccharide (Katzbauer, 1998; Garcıa-Ochoa et al., 2000) and 

the gum may interact with cations of the clay portion of the soil mix to form chemically stronger 

ionic bonds in addition to hydrogen bonds (Chang et al., 2015a). This combination of ionic and 

hydrogen bonds will result in better aggregation of the soil particles (Chen et al., 2013). Similar 

to guar gum, at 7 days, the combination of suction and hydrogel bonding contributes to both 

compressive and tensile behaviour of xanthan treated soils. Whilst there is a slight decrease in 

compressive strength at 28 days, ionic bonding and transformation of hydrogels is reflected in 

higher suction which in turn results in higher stiffness (Fig. 1) and increases in tensile strength 

with time for xanthan treated soils.  
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4. Conclusions 

The initial results presented here appear to show that significant improvements to the 

mechanical properties of soil-based construction materials can be obtained using guar and 

xanthan gum biopolymers as stabilisers. General trends are explained and areas of 

contradiction highlighted. Additional investigation is ongoing, to determine the nature of the 

bonding in the treated soils. 
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Figure 1: Stress-strain behaviour in UC tests (for each % stabiliser only one test among three 
replicates is shown): (a) guar gum, 7 days, (b) guar gum, 28 days, (c) xanthan gum, 7 days, (d) 
xanthan gum, 28 days 
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Figure 2: UC test results (average values of peak strength based on three replicates), (a) guar 

gum, (b) xanthan gum. 

 
 

 
Figure 3. Tensile test results (average values of tensile strength based on three replicates), (a) 

guar gum, (b) xanthan gum. 

 



 

14 
 

 
Figure 4. Changes in suction due to polymer treatment. (after Zhao, 2014) 
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Figure 5. Suction and water content values at ends of UC tests (a) guar gum, (b) xanthan gum. 
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Table 1:  Physical properties of the unstabilised soil mixture used in this study 

Soil Clay 

(%) 

Silt 

(%) 

Sand 
(%) 

Gravel 

(%) 

Liquid Limit 

(%) 

Plastic 
Limit (%) 

OWC 

(%) 

gd,max 

(kN/m
3
) 

2-7-1 16 04 70 10 36.2 18.4 9.8 19.62 

 

 

 

Table 2 : Amount of additional water needed for different biopolymer contents 

Sl.No 
Biopolymer 

content 

Additional water added above OWC (%) 

guar gum xanthan gum 

1 0.50 0.50 0.25 

2 1.00 1.00 0.50 

3 1.50 1.50 0.75 

4 2.00 2.00 1.00 

5 3.00 3.00 1.50 

  

 

View publication statsView publication stats


