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ABSTRACT  15 

Igneous sills and dykes that intrude pervasively into prospective sedimentary basins are a common 16 

occurrence in volcanic rifted margins, impacting the petroleum system and causing geological and 17 

technical drilling challenges during hydrocarbon exploration.  The Faroe-Shetland Basin (FSB), NE 18 

Atlantic Margin, has been the focus of exploration for over 45 years, with many wells penetrating 19 

igneous intrusions.  Utilising 29 FSB wells with 251 intrusions and 3D seismic data, this study presents 20 

new insights into the impacts that igneous intrusions have on hydrocarbon exploration.  Examination 21 

of cores reveals that there can be up to 35% additional igneous rock in individual wells compared to 22 

estimates using seismic or petrophysical data alone, leading to potential underestimation of the igneous 23 

component in a basin.  Furthermore, analysis of petrophysical data shows that within the FSB there 24 

are evolved intrusions such as diorite and rhyolite in addition to the commonly encountered basaltic 25 

intrusions.  These evolved intrusions are difficult to recognise in seismic and petrophysical data and 26 

have historically been misidentified on seismic as exploration targets. Drilling data acquired through 27 

intrusions provide valuable insight into the problems exploration wells can encounter, often 28 

unexpectedly, many of which can be detrimental to safe drilling practice and result in prolonged non-29 

productive time.  30 
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INTRODUCTION 33 

 34 
Igneous intrusions within petroliferous sedimentary basins have been the focus of recent research due 35 

to the importance of understanding how intrusions affect hydrocarbon exploration and the impact 36 

they have on the petroleum system such as reduced reservoir quality and source rock maturation 37 

(Holford et al., 2013; Muirhead et at., 2017, Rateau et al., 2013; Schofield et al., 2015; Senger et al., 38 

2017).  Analysis of exploration wells and 3D seismic data acquired by the petroleum industry has 39 

resulted in a greater understanding of igneous intrusions in the subsurface (Smallwood & Maresh, 2002; 40 

Thomson and Hutton, 2004; Planke et al., 2005; Hansen and Cartwright, 2006; Schofield et al. 2012a; 41 

Schofield et al., 2015).  Specifically, 3D seismic data has resulted in a better understanding of the 42 

morphologies, emplacement mechanisms and interconnectivity of intrusions in rifted margin 43 

sedimentary basins (Gibb & Kanaris-Sotiriou, 1988; Bell & Butcher, 2002; Thomson & Schofield, 2008; 44 

Schofield et al. 2015).   Although previous work addresses the scientific applications such as intrusion 45 

morphologies and emplacement mechanisms, the significance of the research in relation to 46 

hydrocarbon exploration is often overlooked.  Seismic data has provided valuable insights into magma 47 

plumbing systems, though such data typically only resolve intrusions 40 m in thickness and thus the 48 

role of thinner/smaller intrusions is less well understood.  Furthermore, most 3D seismic data is 49 

acquired in sedimentary basins where magmatism is predominantly basaltic. Hence there is less 50 

knowledge about the seismic expression of evolved intrusions such as rhyolitic or dioritic 51 

compositions.  Proper characterisation of the variable intrusion compositions and the prediction of 52 

the amount of missed igneous material in the subsurface is essential, as failure to understand this can 53 

result in important drilling implications, including poor hole condition, low rates of penetration and 54 

non-productive time. 55 

This study addresses the implications igneous intrusions have for hydrocarbon exploration in 56 

the FSB and Atlantic Margin, expanding on recent work by Schofield et al, (2015).  Notably, we detail 57 

the importance of understanding how drilling operations can be affected by igneous intrusions within 58 

the subsurface. Specifically, this paper will address three main elements. Firstly, how data bias and 59 

resolution limits result in fewer intrusions being identified.  Secondly, how identification of 60 



evolved/felsic igneous rocks within the subsurface present a challenge for seismic imaging and 61 

petrophysical characterisation.  Finally, the drilling complications resulting from penetrating intrusions 62 

highlights how they directly impact drilling operations, potentially incurring safety and environmental 63 

risks in addition to costly downtime.  It should be noted that as the offshore exploration and drilling 64 

industry utilises substantial forms of terminology and abbreviations, we have included a table to allow 65 

for appropriate terminology descriptions and clarity (Table 3, supplementary material). 66 

Despite the analysis focusing on the FSB, the themes and ideas explored in this paper are 67 

applicable to igneous hosted sedimentary basins worldwide and may help mitigate the risk of similar 68 

issues presented in this study occurring during future exploration.   69 

 70 

 GEOLOGICAL HISTORY 71 

The Faroe-Shetland Basin (FSB) is located between the Shetland and Faroe Islands on the NE Atlantic 72 

Margin (Fig. 1).  The basin can be sub divided into a series of SW-NE trending sub-basins and is 73 

contiguous with the Møre Basin to the north-east and the Rockall Trough to the south-west (Hitchen 74 

& Ritchie, 1987).  The sub-basins consist of Jurassic to Recent sediments bound by basement highs 75 

comprised of Precambrian crystalline rocks (Lamers & Carmichael, 1999).  The FSB has undergone 76 

several stages of rifting between the Devonian and Paleocene, followed by Late Paleocene and Mid-77 

Miocene inversion (Smallwood & Maresh, 2002; Sorensen, 2003; Ritchie et al., 2011).  The multiple-78 

rifting events are thought to be influenced by a pre-existing NE-SW structural grain inherited from the 79 

Caledonian orogeny (Kimbell et al., 2005)  The main structure of the basin is further complicated by 80 

transfer lineaments which run perpendicular to the main SW-NE trend of the basin (Ellis et al., 2009; 81 

Moy & Imber 2009; Schofield & Jolley, 2013) (Fig. 1).  There is considerable debate regarding the nature 82 

and origin of these lineaments (Moy and Imber, 2009), although most research agrees that they have 83 

played a part in influencing sediment deposition and could have acted as conduits for upwelling magma 84 

(Jolley et al., 2005; Archer et al., 2005; Ritchie et al., 2011).   85 

 86 

 87 



 88 

  89 



Figure 1: a) Structural elements map of the Faroe-Shetland Basin, with mapped sill extent. b) Outline 90 

of 3D seismic coverage and wells penetrating intrusions used in this study.  Figure adapted from Ellis 91 

et al., 2009, Schofield et al., 2015 Mudge, 2014. 92 

The FSB, along with the NE Atlantic Margin, underwent considerable igneous activity during 93 

the Late Paleocene as a result of the impinging proto-Icelandic plume and the eventual continental 94 

break-up between Greenland and Northwest Europe (White & Mckenzie, 1989).  This igneous activity 95 

caused eruption of thick extrusive basaltic sequences and the emplacement of a pervasive suite of sills 96 

and dykes, the majority of which are of basaltic composition and intrude mainly into the Cretaceous 97 

sediments (Gibb & Kanaris-Sotriou, 1998, Bell & Butcher, 2002, Thomson & Schofield, 2008, Schofield 98 

et al., 2015, Schofield et al. 2017).  The intrusions, collectively termed the Faroe-Shetland Sill Complex 99 

(FSSC), are found throughout the FSB with their areal extent following the SW-NE basin trend, 100 

extending northwards into the Møre basin and south into the Rockall Trough (Ritchie et al., 2011) (Fig. 101 

1).  The intrusions are thought to have been emplaced between 55-53 Ma (Ritchie & Hitchen, 1996; 102 

Passey & Hitchen, 2011) although this has been questioned by recent work that suggests older phases 103 

of intrusions ranging from 61-58 Ma based on onlapping relationships onto forced folds (Schofield et 104 

al., 2015).  Forced folds are caused by the jack up of the overburden by intrusions during emplacement 105 

(Trude et al., 2003). 106 

 107 

DATA AND METHODOLGY 108 
 109 
The data used within this study consists of the Faroe-Shetland PGS MegaSurvey Plus 3D seismic dataset 110 

(Fig. 1), which covers an area of 24,000 km2.  The data has undergone substantial reprocessing leading 111 

to clear imaging of the FSSC (Schofield et al. 2015).  The well data includes all the released exploration 112 

and appraisal wells drilled in the FSB, which were analysed to identify igneous intrusions. Of this 113 

dataset, 29 wells encountered intrusions, the locations of which are highlighted in Fig. 1b.   For these 114 

wells, all wireline data (e.g. p-wave compressional velocity, gamma ray), composite logs, drilling data 115 

(e.g. rate of penetration, weight on bit) and available core was synthesised and interpreted.   116 

 117 



IDENTIFICATION OF INTRUSIONS IN THE SUBSURFACE:  SCALE AND DATA 118 

BIAS 119 

Identification of Intrusions in Seismic and Seismic Resolution 120 

 121 
The majority of igneous intrusions seismically imaged in the FSSC have a basaltic composition 122 

(informed by geochemistry from cored intrusions Gibb & Kanaris-Sotriou, 1998) and are easily 123 

identifiable as bright, high amplitude reflectors that are laterally discontinuous and crosscut 124 

stratigraphy (Bell & Butcher, 2002; Smallwood & Maresh, 2002, Schofield et al., 2015) (Fig. 2a).  The 125 

high amplitude nature of the basaltic intrusions results from their high acoustic impedance relative to 126 

the surrounding host rock sediments (Fig. 2b), which is a product of their high density (2.8-3.0 g/cm3) 127 

and sonic velocities (5.5-6.6 km/s) (Bell & Butcher, 2002; Smallwood & Maresh, 2002).  128 

  Schofield et al, (2015) & (2017) discusses the issues regarding the vertical resolution of seismic 129 

data and how, depending on the seismic tuning thickness, intrusions may be poorly resolved or not 130 

resolved at all, leading to a potential underestimation of intrusive volume within the Atlantic Margin 131 

Basins.  Schofield et al, (2015) shows that for the Cretaceous succession in the FSB, where the majority 132 

of the intrusions of the FSSC are hosted, the vertical resolution ranges from 54m at the top 133 

Cretaceous to 81m at the base of the Cretaceous with detectability ranging from 26m to 40m. 134 

Identification of Intrusions in Wireline and Wireline Resolution 135 

Basic (basaltic) igneous intrusions have a characteristic wireline response making them distinguishable 136 

relative to the host sediments (Bell & Butcher, 2002: Smallwood & Maresh, 2002) (Fig. 2b). Although, 137 

identification of basic igneous intrusions is usually relatively simple from wireline log responses, it is 138 

important to understand the petrophysical properties of basalt which lead to this response; this is 139 

particularly important when understanding and contrasting the wireline response of other igneous 140 

rock types (e.g. acidic/evolved) within the subsurface.  141 

Basic magma is abundant in minerals such as olivine and pyroxene, which have  p-wave 142 

compressional velocities of 8420m/s and 7200 m/s respectively (Mavko et al., 2009; Rider & Kennedy, 143 

2011). This leads to basic igneous intrusions having high compressional p-wave sonic velocities that 144 

are much higher than surrounding sediments and are typically within the range of 5.5-6.6 km/s (which 145 



converts to 55-45µs/ft which is the conventional unit of measurement for UK continental shelf wells) 146 

(Fig. 2b).  Shear wave sonic velocities for igneous intrusions are also much higher than surrounding 147 

sediments and are typically within the range 2.4-3.4 km/s (Fig. 2b). Due to the typical uniform 148 

distribution of minerals through relatively thin igneous intrusions, the sonic wireline response is 149 

generally ‘blocky’ showing little to no variation through an intrusion (see Fig. 2b)   150 

In addition to possessing high seismic velocities, olivine and pyroxene also possess high relative 151 

bulk densities of 3.31 g/cm³ (olivine) and 3.3 g/cm³ (pyroxene) (Mavko et al., 2009; Rider & Kennedy, 152 

2011), resulting in basic igneous intrusions typically exhibiting bulk densities between 2.8-3.0 g/cm3 153 

with a ‘blocky’ wireline response which is easily distinguishable from the background host rock 154 

sediments (Fig. 2b). 155 

The neutron response for basaltic igneous intrusions is typically lower than the surrounding 156 

host rock sediments with values in the range of 0.08-0.1pu (Fig. 2b).  The neutron log essentially 157 

measures the hydrogen content of a formation and will generally be low for a crystalline igneous rock 158 

as there is often limited pore space to host water (Rider & Kennedy, 2011).  The neutron-density 159 

separation for basaltic igneous intrusions is typically a positive separation (neutron to left, density to 160 

the right) which is a larger positive separation than for shale sediments (Fig. 2b).   161 

As basaltic magma generally contain few radioactive minerals (e.g. Potassium, Thorium and 162 

Uranium) the typical gamma response for basaltic intrusions is very low, in the range of 9-30 API.  163 

Basaltic intrusions are significantly more electrically resistive than the surrounding host rock 164 

sediments (shales), as they have low porosity and permeability and contain little or no water compared 165 

with host rock sediments.  The resistivity log for basaltic intrusions commonly shows wrap-around 166 

(when measured values exceed the upper range on the scale) due to the resistivity being so high.  The 167 

resistivity log response is less blocky compared to the sonic density and gamma logs with a more 168 

serrated response (Fig. 2b).  For some intrusions, the resistivity log can be chaotic and fluctuate 169 

significantly over a short distance which often reflects fracturing within the intrusions.    170 

The caliper log measures the internal diameter of the borehole and therefore condition of the 171 

hole (Smallwood & Maresh, 2002).  Due to the mechanically resistive and competent nature of 172 



intrusions, the caliper log typically remains uniform through intrusions in the FSB although if the 173 

intrusions are thin and fractured, they are more likely to collapse into the wellbore causing deviations 174 

in the caliper log. 175 

 Although gamma ray logs record a sharp change when an intrusion is encountered, resistivity, 176 

p-wave sonic and neutron-density logs show a gradual variation (Fig. 2b). Commonly this creates a bell 177 

shaped wireline response caused by the values ramping up or down in the host rock sediments directly 178 

above and below the intrusive contact (Fig. 2b).   This ramping up of the values in the host rock prior 179 

to encountering the intrusion is interpreted as representing the contact metamorphosed or hornfels 180 

zone.  This zone is where the host rock sediments have been altered by heating from the intrusions 181 

resulting in differing petrophysical characteristics compared to the unaltered host rock sediments 182 

(Smallwood & Maresh, 2002).  183 

Despite wireline logs (e.g. Gamma, Neutron Porosity, Resistivity) often showing distinct log 184 

motifs upon recording igneous intrusions, wireline tools have limitations in terms of the vertical 185 

thickness of beds and bed properties the tools can actually resolve.  186 

Table 1 lists the various wireline logs and their average vertical resolution, although this figure 187 

can vary depending on factors such as logging speed and formation properties.  Over non-reservoir 188 

intervals which are of less commercial interest, logging speeds will be faster, and often with a reduced 189 

suite of tools, which can lead to reduced ability to distinguish individual bed boundaries.  However, at 190 

best, intrusions which are <1m thick are unlikely to be distinguished using the common logging tools.  191 

Modern downhole well tools such as borehole imaging logs have a much greater vertical resolution (2 192 

mm); however, due to cost, these are typically reserved for reservoir sections and are often not run 193 

across the full drilled section.   194 

 195 

Logs Definition 

Response in Basaltic 

Intrusions 

Vertical Resolution 



Gamma 

Measures the 

radioactivity of the 

formations 

Sharp drop (9-30 API) 60-90cm 

Resistivity 

Measures the 

resistivity of the 

formations 

High blocky response but 

can also be serrated with 

big fluctuations (250- 

1000 ohm.m).  

Induction tools: 

100cm 

Neutron Density 

Measures a 

formations water 

content 

Lower than surrounding 

sediments and blocky 

response (0.08-0.1pu) 

40-60cm 

Bulk Density 

Measures the 

overall density of 

the rock 

Higher than surrounding 

sediments and blocky 

response (2.8-3.0 g/cm3) 

40-60cm 

Sonic 

Formations interval 

transit time 

Acoustically faster than 

surround sediments, 

blocky response (5.5-

6.6km/s) 

60cm 

Caliper 

Measures the 

diameter of the 

well bore  

Consistent but fractures 

can cause deviations 

N/A 

 196 

Table 1:  General petrophysical response for different logging tools (Rider & Kennedy, 2011).  197 
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 223 

Figure 2: a) Typical seismic response of basaltic intrusions in the FSSC. Intrusion is 47m thick. b) 224 

Characteristic petrophysical response of basaltic intrusions. c) Core of thin basaltic intrusions into 225 
Cretaceous shales from the 205/10-2B well, core image courtesy of BGS offshore database (BGS 226 
2017).  Seismic data courtesy of PGS (PGS FSB MegaSurvey Plus). 227 



Identification of Intrusions in Core & Cuttings  228 

Well cuttings are a product of the drilling process and are small pieces (<0.5-10 mm) of rock that are 229 

broken away by the drill bit during the drilling process, are analysed at the rig site and are given a 230 

geological description (Cook et al., 2012).  Cuttings are ideally sampled every 10ft, but this may depend 231 

on the well design and drilling performance, although often sample rate increases when the well 232 

reaches the prognosed reservoir interval (Millet et al., 2016).   Cuttings from sub-aerially erupted 233 

extrusive basalt are generally weathered and altered due to subareal exposure, and are also more 234 

likely to contain vesicles and glassy material (Millet et al., 2014).  In contrast, cuttings from intrusives 235 

are generally coarser grained, possess fewer vesicles and have a ‘fresh’ unweathered appearance (Millet 236 

et al., 2014).  237 

 If core is acquired during drilling, it is possible to categorically define that an intrusion has been 238 

encountered.  Visually, intrusions can be identified in the core data as they differ in texture and 239 

appearance (Fig. 2c).  Although core data is useful, it is usually only acquired for reservoir sections and 240 

any intrusions that are cored within the UKCS have often been done so serendipitously. 241 

  Core through intrusions allows the identification of intrusions which are < 10 cm in thickness, 242 

greater detection than would be possible with any of the common logging tools. 243 

As an illustration of intrusion detectability in wireline and core, the original composite log for 244 

well 205/10-2B (Fig. 2c) only interpreted two intrusions at the base of the well.  However, this section 245 

was also cored and actually contains 15 thin intrusions ranging from 4-30 cm in thickness with a 246 

cumulative thickness of 2.5m.   247 

 248 

Drilling Data  249 

Measurements recorded during drilling (MWD) such as rate of penetration (ROP), torque and weight 250 

on bit (WOB), can also be used to identify intrusions in the subsurface.  These measurements are 251 

acquired whilst the well is being drilled and are measured continuously with minimal lag time, therefore 252 

they provide the first indication of the presence of an intrusion within the subsurface.   Even logging 253 

measurements acquired whilst drilling (LWD), located downhole on the bottom hole assembly, 254 

possess a delay when compared to live drilling measurements as these tools are commonly located 255 



around 10 m from the drill bit, meaning that an intrusion could have already been penetrated before 256 

it is picked up on logs.  257 

When drilling through intrusions, it is common for the ROP to drop to values as low as <1-2 258 

m/hr, whereas shales have values around 5-20m/hr and sandstones typically have values 20-30m/hr.  259 

The ROP values for different sediments is highly variable due to factors such as weight on bit, drill bit 260 

type and drilling depth; however, igneous material typically drills much slower than sediments (Fig. 3).  261 

Additionally, due to the hard nature of crystalline rocks, bit degradation can rapidly increase. 262 

The WOB measures the amount of downward force exerted on the bit during drilling.  Due 263 

to the hardness of intrusions, ROP can drop significantly; to counteract this, the driller will increase 264 

the WOB to maintain high ROP (Fig. 3).   265 

If drilling through an igneous intrusion, the WOB and rotations per minute (RPM) of the drill 266 

bit are not closely controlled, the drill head can become stuck and ‘lock-up’, resulting in increasing 267 

torque on the drillstring.  If torque on the drillstring continues to increase to critical levels, it can cause 268 

‘twist off’ of the drillstring from the bottom hole assembly in the well bore. 269 

As igneous intrusions commonly contain cooling fractures, are brittle and therefore 270 

susceptible to further fracturing during later tectonic movements, issues can also occur with loss of 271 

drilling mud (used to maintain wellbore integrity and to prevent an influx of pressure and fluids into 272 

the wellbore).  Loss of drilling mud is not only costly, but the mud is also crucial to maintaining stable 273 

downhole conditions, cuttings return and importantly, control the potential influx of fluids into the 274 

wellbore.  275 



 276 

Figure 3:  Typical ROP and WOB response drilling through igneous intrusions in the 214/28-1 well. 277 

FSB INTRUSIONS STATISTICS 278 
 279 
From statistical analysis of the intrusions encountered by wells in the FSB, it is possible to gather data 280 

about the intrusions and their various characteristics such as abundance and average thicknesses 281 

(Schofield et al., 2015).  In total, 251 intrusions have been identified in the FSB wells based on log 282 

descriptions, petrophysical response and where possible, seismic to well ties.   283 

 284 

It has been possible to determine the following about the FSSC: 285 

 286 

 Average intrusion thickness:  14.9 m (minimum thickness: 6 cm and max thickness: 277 m) 287 



 288 

 Average depth of intrusions:  3579 m true vertical depth subsea (TVDSS). (shallowest: 1709 289 
m and deepest: 5755 m) 290 

 291 

 Claystone is the most common host rock lithology with 245 of the 251 total intrusions 292 

emplaced into claystone/shale. 293 
 294 

 8% of intrusions encountered are evolved.  These evolved compositions range from diorite 295 

to rhyolite and have a higher silca content. 296 
 297 

 75% of intrusions encountered occur in Cretaceous sediments. 298 

 299 

 24% of intrusions encountered occur in Palaeocene sediments. 300 
 301 

 1% of intrusions encountered occur in Jurassic sediments (this figure is highly biased due to 302 

few wells penetrations in the Jurassic– see discussion below) 303 
 304 

The above statistics, however, need to be taken in context of the data bias as exploration wells are 305 

typically situated away from areas that contain a large number of seismically resolvable intrusions. 306 

However, in terms of average thickness, when the well results are compared against wells which have 307 

accidentally targeted areas of high intrusion density (e.g. 164/7-1 in the Rockall Basin which 308 

encountered 76 intrusions over an 1800m thick interval; the average thickness is 11m Archer et al., 309 

2005) the average thickness value of c. 15m appears to be a reasonable estimate for offshore basins 310 

along the Atlantic Margin.   311 

In terms of the stratigraphic successions which host the most intrusions, factors like total 312 

depth of the well will affect whether intrusions are present or not. From both well and seismic data, 313 

it is clear that intrusions are prevalent throughout the Cretaceous succession. However, well 314 

penetrations of older successions in basinal settings (e.g. Jurassic) are limited within the FSB (Fig. 1) 315 

and tend to be focused along the basin margins (e.g. Judd High and Erlend High) where there are fewer 316 

intrusions, therefore introducing a strong sampling bias. Despite this, the fact that intrusions have been 317 

sampled within the Jurassic, even on basin highs, suggests that the percentage of intrusions in basinal 318 

area of the Jurassic (and older strata) is likely to be much higher than the 1% based on the current 319 

well data.  320 

The data is also biased towards intrusions ranging in thickness below 50 m, as intrusions thicker than 321 

this will generally be visible on seismic data and therefore likely to be avoided during drilling activities 322 



(Schofield et al. 2015).  A further bias also exists based on the age of the well since increased knowledge 323 

about the basin through drilling activity increases the chance of recognising igneous bodies within 324 

seismic data, and de-risks the likelihood of accidentally encountering them (Table 2). Continued future 325 

improvements in seismic data will likely reduce the number of igneous intrusions encountered in 326 

exploration wells by virtue of better detectability (Schofield et al., 2015). 327 

 328 

Time Period 

Number of Exploration 

Wells that Encountered 

Intrusions 

Number of 

Intrusions 

encountered by 

exploration wells 

Average Thickness of 

Intrusions 

1970-1980 3 20 16.8 

1980-1990 12 170 14.5 

1990-2000 6 7 52.9 

2000-present 8 40 14.5 

 329 

Table 2:  Intrusion statistics over time.  The increase in the number of intrusions encountered during 330 

the 2000-present period is likely a result of companies targeting sub-basalt prospects, particularly in 331 

the Faroes sector (e.g. Brugdan) with the extrusive basalt making it difficult to image intrusions. 332 

 333 

FSB EXPLORATION CASE STUDIES 1: ISSUES WITH EVOLVED INTRUSIONS AND 334 

SEISMIC IMAGING 335 

To understand the challenges caused by encountering igneous intrusions in the subsurface, it is 336 

important to summarise some of the key wells and the issues that occurred related to igneous 337 

intrusions.  The summary below, of a number of key wells, was compiled from composite logs, drilling 338 

reports and seismic data. 339 

 340 

Wells 205/10-2B and 205/10-5A - Evolved Intrusions 341 



The majority of intrusions within the FSSC that have been encountered in drilling operations have a 342 

basaltic composition and are described as tholeiitic olivine-dolerites (Gibb & Kanaris-Sotiriou, 1988; 343 

Ritchie et al., 2011).  However, several of the exploration wells have also encountered more evolved 344 

intrusions ranging from dioritic to rhyolitic compositions. Although some of the more evolved 345 

intrusions were encountered close to igneous centres (e.g. Erlend Igneous Centre wells 209/03-1, 346 

209/04-1A and 209/09-1A; Jolley & Bell, 2002), exploration wells that were drilled in more basinal 347 

locations away from known volcanic centres also encountered more evolved intrusions (Fig. 1).  Wells 348 

205/10-2B drilled in 1984 by Britoil and 205/10-5A drilled in 1997 by Chevron located along the Flett 349 

Ridge (Fig. 1), encountered evolved intrusions with compositions varying from dacite to rhyolite. 350 

The evolved intrusions in 205/10-2B occurred within a series of stacked basaltic intrusions, 351 

whereas the evolved intrusion within 205/10-5A was the only intrusion encountered within that well.  352 

Figure 4 shows the log and seismic response for the evolved intrusions encountered within the 205/10-353 

5A and 205/10-2B in comparison to the log response for a basaltic intrusion encountered in 205/10-354 

2B. Figure 4 illustrates the petrophysical and seismic imaging contrasts between evolved and basaltic 355 

intrusions.  Notably, the evolved intrusion in 205/10-2B is acoustically similar to the host rock shales 356 

and the density also drops compared to the host rock shales.  The gamma response is lower that the 357 

surrounding shales but is not as low as the basaltic intrusions encountered by 205/10-2B (Fig. 4a).  The 358 

evolved intrusion in 205/10-5A also has a lower density compared to the host rock shales, whereas 359 

the gamma ray log shows minimal changes between the host rock and the intrusion (Fig. 4b & c). The 360 

significance of these petrophysical differences and the issues of identification of evolved intrusions 361 

within the subsurface is discussed later.  362 



 363 

Figure 4:  Petrophysical and seismic imaging contrasts between basaltic intrusions and evolved 364 
intrusions. a) 47m thick basaltic intrusion encountered in 205/10-2B. b) 90m thick evolved intrusion 365 
encountered in 205/10-5A. c) 30m thick evolved intrusion encountered in 205/10-2B.  Seismic data 366 
courtesy of PGS (PGS FSB MegaSurvey Plus). 367 

 368 

 369 



207/01a-4/4Z - False Exploration Targets 370 

Well 207/01a-4 was drilled on the Rona Ridge in 1990 by Texaco Britain Ltd (Fig. 1).  The reservoir 371 

targets were sediments deposited on the flanks of the Rona Ridge including Carboniferous/Devonian 372 

sandstones, Jurassic sandstones and Lower Cretaceous sandstones.  These targets were not 373 

encountered during drilling; however, the top of a 213 m thick basaltic intrusion was encountered at 374 

1584 MDBRT, 25m deeper than the first prognosed reservoir horizons were expected to occur.   375 

Upon penetrating the intrusion, the decision was taken to core the intrusion to determine what the 376 

lithology was.  A virtual seismic profile (VSP) look ahead was also conducted, which showed that the 377 

intrusion was potentially 198m thick.  Based on the results of core and the VSP log, the decision was 378 

made to sidetrack the well at a depth of 618mBRT downdip to the SE (207/01a-4/4Z End of Well 379 

Report).  380 

The well drilled for a further 1369m before encountering the intrusion again at a depth of 381 

1987 MDBRT.  The sidetracked well drilled the entire intrusion, which was 213m thick.  At the time 382 

of drilling, it is likely that the intrusion was poorly imaged on seismic data and the intrusion’s close 383 

proximity to the Rona Ridge would make it difficult to distinguish a high amplitude intrusion from a 384 

high amplitude basement reflector.  Seismic data at the original well location reveals that the well 385 

penetrated the intrusion, and then the sidetracked well (207/01a-4Z) was drilled to avoid the intrusion 386 

but simply encountered the deeper southern wing of the intrusion (Fig. 5). 387 

 Upon entering the intrusion, ROP in both the original and sidetracked well dropped from 388 

25m/hr to 2m/hr; additionally, there were issues with bit wear (207/01a-4/4Z Geological Report).  In 389 

the case of the 207/01a-4/4Z sidetrack, this resulted in the drilling of an undergauge hole, that 390 

subsequently required reaming to prevent the drill string becoming stuck, resulting in further NPT.  391 



 392 

Figure 5:  a) Seismic cross line showing the intrusion encountered in the 207/01a-4 well, b) seismic 393 
inline across the intrusion encountered in the 207/01a-4 well. In this line, the intrusion is less obvious 394 

and looks concordant with Rona Ridge high amplitude reflector, c) 3D image of the horizons 395 
interpretation of the top surface of the intrusion illustrating how the sidetrack encountered the lower 396 
wing of the intrusion.  Seismic data courtesy of PGS (PGS FSB MegaSurvey Plus). 397 

 398 

FSB EXPLORATION CASE STUDIES 2: DRILLING ISSUES ASSOCIATED WITH 399 

INTRUSIONS 400 

Wells 214/28-1 - Drilling Issues (Gas Kicks and Bit Integrity)   401 

Exploration well 214/28-1, drilled in 1984 by Esso Exploration and Production UK, encountered a total 402 

of 9 intrusions between 3816 and 5020m MDBRT (measured depth below rotary table) in Lower 403 

Paleocene and Upper Cretaceous sediments (Tassone et al. 2014). These intrusions resulted in 404 

numerous drilling issues towards the lower half of the well, most notably the penetration of a series 405 

of gas charged intrusions between 4598-5014m MDBRT, which led to the temporary loss of well 406 

control and drilling fluids being ejected out of the well onto the kelly bushing and rig floor (Fig. 6).   407 



Well 214/28-1 also experienced problems with drill bit integrity and low ROP.  Six drill bits 408 

were required to drill a 322m section in the Middle Paleocene which contained four intrusions with a 409 

combined thickness of only 52m, whereas a similar 400m sedimentary section with no intrusions in 410 

the nearby 214/27-1 offset well required only 3 drill bits.   411 

The largest intrusion encountered in the 214/28-1 well occurred at 3992m MDBRT and was 412 

44m thick.  This intrusion had ROP of less than 1.5m/hr, whereas the host rock sandstones had ROP 413 

values of 3-6m/hr.  Despite the thickness of this intrusion and the benefit of modern 3D seismic data, 414 

the intrusion is extremely difficult to fully image (Fig. 6). 415 

The sixth deepest intrusion encountered at 4596m MDBRT was 6m thick and was one of the 416 

two intrusions within the well that was gas charged and required drilling to be stopped whilst the well 417 

was circulated to bring the gas influx under control.  During this process, the mud weight was raised 418 

from 10.7 pounds per gallon (ppg) to 13.2 ppg which brought the gas influx in the well to acceptable 419 

levels.  In total, this intervention incurred 15 days of non-productive time (NPT) and also resulted in 420 

the premature setting of the 7” liner which ultimately meant the well was unable to reach its intended 421 

TD (Fig. 6). 422 

The eighth deepest intrusion encountered at 4927m MDBRT was 10m thick and resulted in 423 

extremely low ROPs which dropped from 2.5m/h through shales to 0.3m/hr through the intrusion.  424 

When the bit was pulled, it was found to be highly worn with a considerable amount of metal shavings 425 

found in the drilling mud.  A new bit was deployed, but slow ROP continued through the intrusion 426 

with only 13m drilled in 34 hours (Fig. 6). 427 

The ninth and deepest intrusion encountered in the 214/28-1 well occurred at 5013m MDBRT 428 

and was 7.6m thick.  This intrusion was also found to be gas charged and the resulting influx of gas 429 

into the well bore resulted in mud flowing out over the kelly bushing.  Drilling ceased and the well 430 

was shut in, whilst the mud weight was raised again, to 14.3 ppg.  Although the mud weight was 431 

sufficient to control the pressure of the influxing gas, the high mud weight also led to mud losses.  432 

These losses were likely the result of induced fracturing of the surrounding host rock strata.  This 433 

incident resulted in a total of 7 days of NPT whilst the gas levels were monitored (Fig. 6).  434 



In total on well 214/28-1, the issues with gas charged intrusions and drill bit integrity resulted 435 

in a combined NPT of 22 days on top of the slow drilling rates (Fig. 6).  The presence of the 9 intrusions 436 

was unexpected in the pre-drill scenario and the efforts to control the gas charged intrusions resulted 437 

in a premature termination of the well before it had reached its intended exploration target. 438 

 439 

Figure 6:  From left to right: composite log from 214/28-1 which encountered 9 dolerite sills; drilling 440 
chart from 214/28-1 showing the drilling issues encountered whilst drilling the sills; seismic line 441 

showing the amplitudes associated with the sills.  Seismic data courtesy of PGS (PGS FSB 442 
MegaSurvey Plus). 443 

 444 

Well 214/23-1 - Loanan Case Study 445 
 446 
The Loanan prospect (214/23-1) was drilled in 2016 by JX Nippon Exploration & Production (U.K) 447 

Ltd (Fig. 7).  The prognosed primary and secondary reservoir targets were Middle Paleocene turbidite 448 

reservoirs. Importantly, the closest offset well to Loanan is 214/28-1, which as described above, 449 

experienced significant problems whilst drilling due to the presence of igneous intrusions.   450 

The Loanan primary target was within a structural closure, located at the edge of a forced fold 451 

(Schofield et al. 2015), and located 0.35s TWT (~600m’s) above a large sill that was the continuation 452 

of the sills encountered in the 214/28-1 exploration well (Fig. 8).  The secondary target was located 453 

300m deeper, approx. 0.155s TWT (~260m) from the imaged top of the sill.  454 

 455 



 456 

Figure 7: Map showing the location of the Loanan prospect relative to 214/28-1 which encountered 457 
overpressured intrusions. 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 



 469 

Figure 8: Arbitrary seismic line showing the Loanan target and its location relative to sills encountered 470 
in 214/28-1, which caused problems during drilling.  Seismic data courtesy of PGS (PGS FSB 471 
MegaSurvey Plus). 472 

 473 

During the well design process, concern had been expressed about encountering potentially 474 

overpressured intrusions, specifically in the secondary target, based on the offset well 214/28-1.  475 



Although the planned TD for the Loanan was located some 400 metres above the stratigraphic level 476 

containing intrusions which caused the drilling issues in 214/28-1, seismic data appeared to image a 477 

series of cross-cutting intrusions potentially connecting the ‘family’ of intrusions which caused 478 

problems in the 214/28-1 well to the large intrusion which sat below the Loanan secondary target.  479 

On close inspection of the seismic data, it appears that thin intrusions, below the tuning thickness, 480 

potentially intrude the secondary Loanan target (Fig. 9) 481 

Given the historical risk in offset wells and the uncertainty in encountering intrusions, 482 

particularly towards the base of the well, the well design catered for the small, but not negligible risk 483 

of encountering an overpressured, gas charged sill.    484 

 485 

Figure 9:  Seismic line showing the proximity of the Loanan target to the large sill beneath.  Seismic 486 
line on the right shows the potential that there are small offset intrusions bifurcating from the large 487 



intrusion towards the Loanan secondary target.  There could also be additional smaller intrusions 488 

which are not seismically resolvable.  Small bifurcating intrusions emanating from a larger intrusion is 489 
seen in outcrop on Jameson Island, East Greenland (modified from Eide et al., 2017) and the San Rafael, 490 
Utah. Intrusions splays are a common feature in siliciclastic units (Eide et al., 2017).  Seismic data 491 
courtesy of PGS (PGS FSB MegaSurvey Plus). 492 

 493 

In line with pre-drill expectations, the Loanan well encountered no intrusions near the primary 494 

target. Importantly, in addition to this, the leak of test (LOT) taken below the 9 5/8” shoe (146m 495 

above the top of the primary reservoir) was significantly lower than expected, suggesting that the rock 496 

formation was weaker then prognosed in pre-drill estimates. After the primary target had been 497 

penetrated, a second LOT was conducted to assess whether drilling could safely proceed given the 498 

concern of encountering an overpressured intrusion.  The result of this LOT was 13.48ppg equivalent 499 

mud weight (EMW), again significantly below pre-drill estimates and lower than the previous LOT 500 

conducted 147 m above the primary target.  This low LOT was deemed insufficient to provide 501 

adequate kick tolerance should an overpressured intrusions have been encountered deeper in the 502 

section towards TD.  The decision was therefore taken to prematurely TD’d the well, short of the 503 

secondary target (Fig. 10) (214/23-1 End of Well Report).  504 



 505 

Figure 10:  Prognosed vs actual stratigraphy of the Loanan well. The well was prematurely TD as a 506 
result of the anomalously low LOT below the 9 5/8” and 7 5/8” shoe. Modified from 214/23-1 End of 507 
Well Report. 508 

 509 

Well 209/04-1A - Drilling Issues (Overpressure) 510 

Well 209/04-1A drilled in 1985 by North Sea Sun Oil Co was drilled on the Erlend High near to the 511 

Erlend Volcanic Centre.  This well encountered a series of evolved intrusions and also a series of 512 

basaltic intrusions.  At a depth of 3085m MDBRT, a sudden lithology change from a thick rhyolitic 513 



intrusion to Upper Cretaceous claystone subsequently lead to an increase in the pore pressure.  This 514 

increase in pore pressure required the mud weight to be raised from 8.7 ppg to 10.8 ppg to contain 515 

the pore pressure increase, although, like 214/28-1, this also resulted in mud losses (Fig. 11).   516 

 517 

Figure 11:  Pore pressure chart for the 209/04-1A well.  The chart shows the sudden increase in 518 

pressure when drilling out of the evolved intrusions into the underlying claystones and the need to 519 
raise the ECD to mitigate this.  However, raising the ECD resulted in mud losses. 520 

 521 

 522 



Well 208/15-1A – Drilling Issues (Mud Losses and Wireline Running Issues) 523 

 524 

Well 208/15-1A, drilled in 1979 by BP, encountered 7 basaltic intrusions in the Lower Paleocene 525 

succession between 1923m to 3123 MDBRT, with a range between 2.5m to 100m in thickness.  A 60 526 

m thick intrusion encountered at 1935 MDBRT incurred significant mud losses.  The losses within this 527 

single intrusion were classed as severe and ranged from 3m³/hr (18bbls/hr) to 20m³/hr (126bbls/hr) 528 

and eventually resulted in total loss of circulation (208/15-1A End of Well Report). During this period, 529 

drilling was continued although the lithology log had to be determined based on ROP alone as there 530 

were no cuttings returned to the surface.  In total, 23,000bbls (approx. 3.6 million litres) of mud where 531 

lost drilling the 1.2km section containing the seven intrusions, with losses as high as 60m³/hr 532 

(377bbls/hr) (208/15-1A End of Well Report).  To maintain well control whilst drilling through the 60 533 

m thick intrusion, seawater had to be pumped down the wellbore to maintain a static annulus, which 534 

resulted in a well which was out of balance.  In an attempt to deal with the mud losses, loss of 535 

circulation material (e.g. bark, mineral fibre, hair, mica flakes, plastic, coconut husk, limestone 536 

chippings), was pumped down the well, in an attempt to try and mitigate the losses but this had limited 537 

success.  538 

This section with intrusions also had further issues when it came to logging runs, with 539 

problems running wireline tools.  The tools were frequently held up on ledges (208/15-1A End of Well 540 

Report) (Fig. 12).  In total, the logging and loss of circulation issues resulted in 12 days of NPT. 541 



 542 

Figure 12:  Schematic illustrating the potential impacts intrusions can have on drilling operations 543 
including, loss of circulation fluids, wellbore instability and problems running wireline logs.  544 

 545 

DISCUSSION 546 

Underestimation of Intrusions on Seismic and Log Data 547 

When the number of intrusions in FSB wells is plotted on a log-log scale, the trend for intrusions 548 

encountered below a metre thick deviates from the normal trend line (Fig. 13).  However, it is unlikely 549 

that this is a true representation of the intrusions in the subsurface but rather a function of the difficulty 550 

of resolving sub-metre thick intrusions in wireline or cuttings data.  This interpretation is corroborated 551 

by core data from 205/10-2B, which retrieved a section of Cretaceous sediments intruded by 15 thin 552 

basaltic intrusions ranging in thicknesses from 5-30cm, with a cumulative thickness of 2m (Fig. 14).  553 

When the wireline data across this cored interval is examined, no notable variations in the 554 



petrophysical response are observed.   In the absence of core, it is unlikely that the intrusions would 555 

have been noticed (Fig. 14). Observations of intrusions in the field also indicate that there are 556 

numerous thin intrusions which propagate off larger intrusions indicating that there is potential for 557 

many more intrusions in the FSB than well and seismic data alludes to.  This would have important 558 

implications for assumptions about melt volumes in the FSB and other magmatically influenced basins 559 

worldwide. 560 

 561 

Figure 13:  Intrusion thickness vs frequency plot for exploration wells in the FSB (plotted on a log-log 562 
scale).  The blue line indicates the point below which thin intrusions are below the petrophysical 563 
resolution; the red line indicates the point above which intrusions are so thick that they are easily 564 

identifiable in the subsurface and therefore avoided.  The intrusions between the blue and red line 565 
represent the majority of intrusion thicknesses in the FSB and are typically below seismic resolution 566 
(and therefore would not be recognised pre-drill) but easily resolvable petrophysically once logs have 567 
been acquired. 568 

 569 

 570 



 571 

Figure 14:  Core from the 205/10-2B well, which contains 10 additional intrusions varying in thickness 572 
from 10-30cm compared to the petrophysical response through the section.  Note that the intrusions 573 
are too thin to be resolved and therefore without the core data, would never have been recognised.  574 

 575 

Previous work on intrusions on the Atlantic Margin has focussed on the readily imaged and 576 

often visually striking mafic sills (Gibb & Kanaris-Sotiriou, 1988; Bell & Butcher, 2002; Smallwood & 577 

Maresh, 2004; Archer et al., 2005; Thomson & Schofield, 2008; Schofield et al., 2012; Schofield et al., 578 

2015).  Schofield et al. (2015, 2017) demonstrates that the number (and total thickness) of basaltic 579 

intrusions in seismic data along the Atlantic Margin is already likely underestimated. However, as 580 

detailed previously, evolved intrusions are particularly difficult to identify within seismic data and even 581 

if drilled serendipitously, their discovery would rely on the careful interpretation of petrophysical well 582 

logs combined with cuttings and core.  583 

The above observations raise the likelihood that within the FSB and Atlantic Margin, there are 584 

considerably more evolved intrusions than previously thought. As the observations from well 205/10-585 

5A indicate, even a 90m thick evolved intrusion is not easily identifiable seismically, on wireline data 586 

or indeed during drilling (205/10-5A Geological Report). From the work of Schofield et al. (2015), an 587 

intrusion of 90 m thick is statistically less common, with most intrusion thicknesses falling in a 0-40 m 588 

range.  It may therefore be the case that within FSB wells and the wider Atlantic Margin, evolved 589 



intrusions may have been penetrated but gone completely unrecorded in wells and simply classified as 590 

sandstones.  The only indication that may corroborate the presence of an evolved igneous intrusion 591 

would be a drop in ROP.  The difficulties identifying igneous intrusions in the subsurface demonstrates 592 

the importance of integrating datasets, but as Watson et al. (2017) highlight, the drive to cut costs in 593 

future exploration often results in a reluctance to acquire core and run full wireline suites over non 594 

prospective intervals, intensifying the issue of misidentification of intrusions within sedimentary basins. 595 

 596 

False Exploration Targets – Basaltic Intrusions vs Basement 597 

The 207/01a-4&4Z exploration well targeted high amplitude reflectors which were believed to be 598 

sedimentary targets but turned out to be igneous intrusions.  Despite the failure of these wells, they 599 

yield important lessons about exploration in rifted margins with pervasive igneous intrusions. 600 

The large intrusion encountered in 207/01a-4&4Z is an important consideration for future 601 

exploration along the Rona Ridge.  Where intrusions have been emplaced along basement highs such 602 

as the Rona Ridge, it can be difficult to differentiate high amplitude reflectors which are associated 603 

with the top basement and high amplitude reflectors associated with igneous intrusions.  In the 604 

example of 207/01a-4&4Z, 3D seismic data makes it possible to visualise along strike from the well 605 

location where the intrusion crosscuts stratigraphy and has morphologies indicative of an intrusion.  606 

The identification is aided by the fact that the intrusion is 213m thick and easily resolvable.  However 607 

at the top hole location of 207/01a-4, the intrusion appears concordant with the Rona Ridge reflector 608 

and is not clearly identifiable as an igneous body.  Future exploration along the Rona Ridge and 609 

particularly future development of the Southern Clair field, where there are abundant intrusions, may 610 

face challenges with differentiating intrusions from the basement horizon. 611 

 612 
False Exploration Targets - Basaltic vs Evolved in the FSB  613 

 614 
The distinctly different petrophysical and seismic response between basaltic intrusions and evolved 615 

intrusions (Fig. 4) was demonstrated in the 205/10-5A and 205/10-2B wells.  These evolved intrusions 616 

can be misidentified as exploration targets and in order to mitigate this in the future, it is important 617 

to understand why the evolved intrusions have such different petrophysical characteristics. 618 



Evolved intrusions differ considerably in petrophysical response to basaltic intrusions due to 619 

underlying differences in magma and mineral chemistry (Fig 15).  In particular, evolved intrusions have 620 

lower densities and sonic velocities compared to their basaltic counterparts.  The sonic velocities and 621 

densities of the evolved intrusions (e.g. 205/10-5A) are lower as the intrusion mainly consists of 622 

minerals with lower elastic properties such as quartz (compressional velocity: 5880m/s, density: 623 

2.65g/cm³) and orthoclase feldspar (compressional velocity: 4423m/s, density 2.54g/cm³).  The 624 

intrusion encountered by well 205/10-5A was also reported as containing numerous amygdales filled 625 

with kaolinite (compressional velocity: 6200m/s, density 2.64g/cm³; Mavko et al., 2009; Rider & 626 

Kennedy, 2011).  The result of these differences manifests itself in substantial differences in acoustic 627 

impedance between mafic and evolved intrusions and as a result, evolved intrusions do not form a 628 

typical ‘high amplitude’ response that is often associated with basaltic intrusions in basins. 629 

 630 

Figure 15:  Density vs p-wave crossplot showing the different petrophysical properties of evolved vs 631 

basaltic intrusions.  The data is for basaltic and evolved intrusions encountered in the 205/10-5A and 632 
205/10-2B wells. 633 

 634 

Within well 205/10-5A, which penetrated a 90m thick evolved intrusion, the dominant 635 

frequency of the data, even at this relatively deep level in the contemporaneous basin fill, is 22Hz. The 636 

average seismic velocity of the Paleocene interval in which the evolved intrusion occurs is 2819ms 637 



(Schofield et al., 2015), leading to a vertical seismic resolution of 32m and a detectability thickness of 638 

16m.  639 

However, despite relatively good vertical resolution of data, the intrusion, which is 90m thick, 640 

is difficult to image and is only visible as a weak seismic response with a chaotic seismic character 641 

compared to the surrounding seismic data (Fig. 4).  This weak seismic response is also corroborated 642 

by synthetic modelling (Fig. 16).  205/10-2B, which is only 8km from 205/10-5A, contains a 40m thick 643 

intrusion at 3000mBRT which is clearly resolvable. 644 

 645 

Figure 16:  Modelling the synthetic seismic response of the evolved intrusion in 205/10-5A to the 646 
basaltic intrusion in 205/10-2B.  a) The basaltic intrusion resolves well as it has a high density and sonic 647 
velocity resulting in a high acoustic impedance.  b) The evolved intrusion does not resolve well due to 648 
the lower density and sonic velocities resulting in a lower acoustic impedance.  Seismic data courtesy 649 
of PGS (PGS FSB MegaSurvey Plus). 650 

 651 

Evolved intrusions, particularly those reaching granitic in composition, have much higher 652 

viscosities and therefore do not propagate considerable distances from their magma source (Philpotts 653 

& Ague, 2009).  The fact that they do not flow easily accounts for the observation that the intrusion 654 



looks so different to the basaltic intrusions nearby.  The seismic morphology is chaotic (Fig. 17) and 655 

does not exhibit features like saucer shapes or magma lobes which are common in basaltic intrusions 656 

elsewhere in the FSB (Schofield et al., 2015).  If evolved intrusions typically do not travel far from the 657 

source of the magma, it may indicate that there are more evolved intrusions within that vicinity of the 658 

Flett Ridge other than the ones encountered in 205/10-2B and 205/10-5A. 659 

Unfortunately, the substantial difference in seismic imaging between mafic and evolved 660 

intrusions led to the drilling of 205/10-5A, which was intended to target a mid- amplitude body that 661 

was interpreted to represent turbidite.  Furthermore, the chaotic geometry of the intrusion created 662 

an amplitude anomaly with a fan-like geometry, making the target appear a likely reservoir (205/10-5A 663 

End of Well Report).  The well target, which was perceived to be a turbidite fan lobe, turned out to 664 

be the 90 m evolved intrusive detailed previously. During drilling, the intrusive body was also cored, 665 

as the subsequent quartz-rich cuttings from the intrusion brought up along with the drilling mud was 666 

thought to represent the quartz rich sand of the turbidite (Fig. 17) 667 

 668 



 669 

Figure 17: a): Seismic line across the evolved intrusion encountered in the 205/10-5A well.  The 670 

intrusions is 90m thick but is poorly resolved in seismic data.  The pre-drill prognosis was for the 671 
amplitude anomaly was a turbidite fan lobe. b):  A 2m long cored section of the 90m thick evolved 672 
intrusion, core image courtesy of BGS offshore database (BGS 2017).  Seismic data courtesy of PGS 673 
(PGS FSB MegaSurvey Plus). 674 

 675 

In a wider context, the volume of evolved magmatic bodies within the subsurface of the FSB 676 

is difficult to estimate.  ODP drilling on the Vøring Plateau has identified evolved magmas (Eldholm et 677 

al., 1989).  Evolved extrusives and intrusions have been identified in many of the wells drilled near the 678 

Erlend Volcanic Centre (Bell & Jolley, 2002).  In the contiguous Rockall Basin to the south-west of the 679 

FSB, Morton et al., (1988) commented on the presence of more evolved magmatism identified in the 680 

163/06-1A exploration well.  The onshore volcanic rocks of the British Tertiary Igneous Province 681 

contain many large evolved igneous centres, such as the Red Hills of Skye and the Arran granite.  There 682 

are also minor intrusions such as the Drumadoon sill on Arran which is described as a quartz porphyry 683 

similar in composition to the intrusion encountered in 205/10-5A.  These examples of evolved 684 

magmatism identified in other basins are interpreted to be derived from crustal melting of sedimentary 685 

rocks by contact with a large body of high-temperature basaltic melt (Morton et al., 1988, Eldholm et 686 

al., 1989).  The Erlend wells (209/03-1, 209/04-1A and 209/09-1A), which encountered evolved 687 

magmatism, were drilled near to the Erlend Volcanic Centre which would have likely been a heat 688 

source promoting crustal melting to generate evolved magmatism (Kanaris-Sotiriou et al., 1993).   689 

However, wells 205/10-5A and 205/10-2B were not drilled near any known volcanic centres, 690 

although there are numerous large basaltic intrusions imaged on seismic at depth (Fig. 18).  These 691 

large basaltic intrusions could have caused crustal melting of sedimentary rocks on the Flett Ridge to 692 

generate evolved intrusions seen in 205/10-5A and 205/10-2B (BGS Technical Report, The Nature and 693 

Origin of Igneous Rocks from Well 205/10-5A).  The evolved intrusion in 205/10-5A were interpreted 694 

as being peraluminous (BGS Technical Report, The Nature and Origin of Igneous Rocks from Well 695 

205/10-5A) and therefore potentially sourced from melting of clay rich sediments (Morton et al., 1988). 696 



Although from well penetrations these intrusions are relatively rare, the difficulty in even 697 

seismically resolving thick evolved intrusions (e.g. 90 m) at shallow stratigraphic levels, brings into 698 

question exactly how much evolved magmatism has occurred within the FSB or Atlantic Margin.  699 

Future exploration in the FSB and other rift basins should acknowledge the risk of encountering 700 

evolved intrusions, in particular the likelihood of them forming false exploration targets.   701 

 702 



Figure 18: Seismic line showing the large basaltic intrusions at depth which could potentially be the 703 

heat source causing crustal melting to generate evolved magmatism.  There are no large igneous 704 
centres near this location.  Seismic data courtesy of PGS (PGS FSB MegaSurvey Plus). 705 

 706 

Drilling through Intrusions – Non-Productive Time (NPT) issues  707 

The drilling issues outlined above such as drill bit integrity, slow ROP, undergauge borehole and 708 

overpressured intrusions all resulted in additional NPT and in some cases, the premature TD of 709 

exploration wells. During hydrocarbon exploration, the biggest cost exposure to a given company is 710 

drilling related and therefore, any subsurface scenario that leads to a loss of drilling time, or missing 711 

of a target commitment can have significant multi-million pound cost implications.  712 

  For the 214/28-1 and 208/15-1A case studies, the total NPT related to intrusions was 34 713 

days.  NPT whilst drilling adds additional expenditure to drilling costs and must be minimised.  If we 714 

assume an average day rate for a drill rig (Semisub >7,500ft: $190,000 (IHS Markit, 2017)) and apply 715 

this to the number of NPT days related to issues with intrusions this totals over $6,500,000. This 716 

estimate of additional cost is based on lost drilling time and does not include the extra costs associated 717 

with damaged bottom hole assembly (BHA) or mud losses.  Furthermore, the total NPT detailed 718 

above only accounts for a quarter of the wells drilled in the FSB which encountered intrusions, so it 719 

is likely that this total number is much higher. 720 

 721 

Overpressure and Connection of Deeper Pressure Regimes via Intrusions 722 

  Well 214/28-1 and the recent Loanan well are examples of how analysis of the offset well 723 

data can inform companies about the potential drilling issues associated with intrusions and how to 724 

mitigate these issues in a pre-drill scenario.  The Loanan well was prematurely aborted prior to 725 

reaching its target depth (total depth TD) due to concerns about encountering overpressured 726 

intrusions given the low LOTs (Fig. 10).   727 

  The origin of the overpressure associated with the intrusions in 214/28-1 is not fully 728 

understood. Within well 214/28-1, the overpressured intrusions encountered are part of a family of 729 

intrusions which can be seen to connect down into the deepest parts of the basin, at around 4 km 730 



below the sea floor (Fig. 19).   Extensive mud losses that have been recorded in many of the igneous 731 

intrusions within the FSB indicate that they can have open fractures even at depths of 5000mBRT 732 

(Rateau et al., 2013). Therefore, one possible explanation for the overpressure within well 214/28-1 is 733 

that the interconnected intrusions acted as fractured conduits, connecting a pressure regime from 734 

deeper within the basin (Fig. 19).  735 

Other mechanisms for overpressure generation are related to gas generation (Osborne & 736 

Swarbrick, 1997).  The abundance of intrusions around the 214/28-1 well location could have caused 737 

local thermal maturation of shale host rocks during emplacement generating gas (Svensen et al., 2004), 738 

which is a known cause of overpressure (Osborne & Swarbrick, 1997). However, with the repeated 739 

instances of loss of circulation events within intrusions in the FSB, implying an open fracture system, 740 

the risk that intrusions could act as conduits vertically though the basin connecting different pressure 741 

regimes needs to considered.  742 

In the case of the Loanan well, the planned TD for the well was <200m above the nearest, 743 

seismically imaged-intrusion (Fig. 9).  Recent field work focused on sills in outcrop emphasises that it 744 

is common to see multiple thin splays or offshoot intrusions propagating away from large intrusions 745 

(Fig. 9); this effect is particularly pronounced in siliciclastic dominated intervals, which typically form 746 

hydrocarbon reservoirs (Eide et al., 2017).   As the Loanan well approached the secondary reservoir 747 

target, the potential for encountering multiple thin splays off the large intrusion would be increased 748 

(Fig. 9).  Inspection of the current seismic data appears to show thin reflectors intruding the base of 749 

the secondary target, possibly indicating an increased risk of communication between the reservoir 750 

and intrusion (Fig. 9).  751 

For future exploration in the FSB, and particularly the Flett Sub-basin around well 214/28-1, a 752 

different approach with respect to drilling design is needed in order to deal with issues related to 753 

overpressured sills and the eventuality of weaker than expected stratigraphic formations (which will 754 

affect the maximum mud weight that can be used).  755 



 756 

Figure 19: Seismic line through the 214/28-1 well, which shows the intrusions plumbing into the 757 
deepest parts of the basin.  The Seismic line is schematically coloured to infer different pressure 758 

regimes and how the interconnected intrusions could result in shallow intrusion having pressures 759 
similar to pressures encountered in the deepest part of the basin.  This could potentially explain the 760 
overpressured intrusions encountered in 214/28-1.  Seismic data courtesy of PGS (PGS FSB 761 

MegaSurvey Plus). 762 

 763 

Rigid Frameworks Resulting in Disequilibrium Compaction 764 

 In well 209/04-1A, overpressure was observed during a sudden lithology change from a 270 m thick 765 

rhyolitic intrusion to Upper Cretaceous claystones at 3085mBR.  It is possible that the impermeable 766 

intrusion prevented normal compaction and lead to disequilibrium compaction whereby pore fluids 767 

within the claystones were unable to escape.  This results in the pore fluid pressure rising above 768 

hydrostatic (Osborne & Swarbrick, 1997).  It was below this intrusion that the overpressure was 769 

encountered, resulting in the need to raise the mud weight to 10.8ppg, resulting in mud losses.  Prior 770 

to drilling into the claystone, a fracture integrity test was carried out in the intrusion giving a result of 771 

13.4ppg EMW, indicating that a mud weight of 10.8ppg would not fracture the formation.  This 772 

misalignment between expected fracture integrity and the mud weight, which resulted in fracture of 773 

the formation, is caused by the fracture integrity test being carried out in the intrusion, which has 774 

much stronger mechanical strength compared to the claystone below (Fig. 11).  775 



CONCLUSIONS 776 

This work demonstrates the different seismic and petrophysical characteristics of igneous intrusions 777 

in the FSB and by using case studies from explorations wells, demonstrates their impact on 778 

hydrocarbon exploration.  Exploration is ongoing in the FSB and due to the areal extent of the Faroe-779 

Shetland Sill Complex and its proximity to oil and gas fields, it is important that the intrusions are 780 

studied and their implications for the petroleum system understood.  The findings can be summarised 781 

as; 782 

 Thin intrusions are difficult to identify in the subsurface due to seismic and logging tool 783 

limitations.  The difficulty identifying intrusions in the subsurface means that it is likely that 784 

many more intrusions are present in basins.  Combined with the difficulties associated with 785 

identifying evolved intrusions, estimates of melt volumes in rift basins are likely to be 786 

underestimated. 787 

 The FSSC has previously been identified as mainly comprising basaltic intrusions but this study 788 

presents examples of evolved magmatic bodies. 789 

 In contrast to basaltic magma, the distinct petrophysical and seismic properties of the evolved 790 

intrusions make them difficult to identify in the subsurface and as a result, can be misidentified 791 

as exploration targets.   792 

 Where intrusions have been encountered in the subsurface, this has commonly resulted in 793 

issues such as low ROP, drill bit integrity, loss of circulation, cavings and overpressure. 794 

 The 214/28-1 and Loanan case study reveals the difficulties associated with targeting prospects 795 

close to intrusions, such as drilling issues or premature TD as a result of a low LOT and risk 796 

of encountering overpressured intrusions. 797 

In summary this study shows that intrusions can have significant implications for hydrocarbon 798 

exploration.  The igneous intrusive complex in the FSB extends into the contiguous Møre Basin to the 799 

north, and the Rockall Basin to the south so utilising the knowledge gained from the FSB would be 800 

beneficial for future exploration in these regions and other volcanic margins globally. 801 
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SUPPLEMENTARY MATERIAL  978 
 979 

Drilling Acronym/Terminology Definition 

ROP (rate of penetration) The speed at which the drill bit can break the 

rock to deepen the well bore. 

WOB (weight on bit) The amount of downward force exerted on the 

drill bit. 

Drilling mud/ Equivalent Mud Weight Drilling mud maintains the hydrostatic pressure 

within the wellbore and also transports drill 

cuttings to the surface. 



BHA (bottom hole assembly) Lowest part of the drill string.  This contains the 

drill bit, drill collar, measurement-while-drilling 

tools (not always run). 

Drill bit The tool used to cut the rock. 

Drillstring Combination of drillpipe, the bottom hole 

assembly. 

NPT (non-productive time) Time which is not spent drilling the hole. 

RPM (revolutions per minute) How quickly the drillstring rotates. 

Casing Casing is carried out every time the well drills 

to a new a certain depth and the wellbore 

diameter is changed.  Casing prevents the 

formation caving into the wellbore and also 

controls formation fluids and pressures. 

FIT (Fracture integrity test or formation 

integrity test) 

Test of the strength and integrity of a new 

formation.  Commonly occurs after a casing 

point to determine the suitable mud weight to 

contain the well. 

LOT (Leak off test) Similar to a FIT but this tests the formation to 

the point that it fractures.  This allows the 

determination of the maximum mud weight 

which could be sustained before fracturing the 

formation. LOT measures the strength of the 

formation and informs what mud weight can be 

used before the formation will fracture and incur 

mud losses. 

Overpressure Subsurface pressure which is abnormally high 

and exceeds hydrostatic. 



Underbalanced drilling The pressure in the wellbore is lower than the 

pressure of the formation being drilled, resulting 

in fluids flowing into the wellbore. Left 

unchecked, this can result in a potential 

blowout. 

Overbalanced drilling The pressure in the wellbore is higher than the 

formation pressure to prevent fluids flowing into 

the wellbore. If too high, this can lead to 

fracturing and damage of the formation being 

drilled through. 

Loss of circulation Drilling mud is lost into the formation either 

through an open fracture network in the 

subsurface, or induced fractures due to the mud 

weight being too high. 

Underguage Undergauge hole occurs in abrasive formations 

when the well bit becomes worn, resulting in a 

smaller wellbore diameter. See ‘Reaming’ below.  

Ledges Ledges are coherent blocks/bodies which 

remain stable forming tight spots which are 

obstacles for wireline tools (Millet et al., 2016) 

corresponding to the intrusions. 

TD (total depth) The total depth that the well drills. 

Reaming Enlarging the wellbore to maintain wellbore 

diameter. 

Twist off Separation or breaking of the drillstring 

downhole.  Can be caused by excessive torque. 



Cavings/well bore instability Pieces of rock that fall into the wellbore but are 

not a result of drilling action. 

 980 


