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Diastereoselective Synthesis and Diversification of Highly Functionalized 
Cyclopentanones 
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Abstract An efficient entry into highly substituted cyclopentanones is 
presented based on functionalizing cyclopentenones by means of an aza-
Michael reaction with different aniline nucleophiles. The excellent 
diastereoselectivity of this process is ascribed to H-bonding between a tertiary 
alcohol and the incoming nucleophiles. Additionally, the functionalization of 
the parent cyclopentenones via the Baylis-Hillman reaction is demonstrated. 
Together, these transformations showcase the elaboration of a simple 
precursor by installation of versatile functionalities at either the α- or β-
position of the embedded enone and thus represent valuable methods for the 
construction of diversely functionalized cyclopentanones.  

Key words cyclopentanone, aza-Michael reaction, Baylis-Hillman reaction, 
diastereoselectivity, H-bonding 

 

The efficient assembly of suitably functionalized three-

dimensional building blocks has in recent years gained increasing 

interest as it allows for the generation of structures occupying 

new chemical and biological space.1 Moreover, the sustainability 

of such processes is of increasing importance being a key feature 

that enables the reliable and future-proofed construction of such 

chiral building blocks.2 Together with the operational simplicity 

and robustness modern synthesis efforts aim to adhere to green 

chemistry principles whenever possible.3 In a recent synthesis 

program, we have for instance developed a flow process for 

converting bioderived D-glucono-1,5-lactone 1 into chiral 

cyclopentenone 4 in continuous mode (Scheme 1).4  

 

Scheme 1: Continuous flow synthesis of cyclopentenone 4. 

Highlights of this work included the application of powder dosing 

equipment and counter-current extraction modules allowing for 

the continuous production of 4 and selected key intermediates 

on large scale (>100 g). Furthermore, the successful implication 

of this route avoided the use of excessive or hazardous solvents 

and reagents as well as the need for chromatographic 

purifications. With a robust route to cyclopentenone 4 in hand we 

subsequently wished to study its conversion into further 

products of interest, especially those decorated with pendant 

amine functionalities. Crucially, we envisaged such amino-

hydroxy cyclopentanones to be worthwhile targets as related 

structures such as (–)-agelastatin A (5), pactamycin (6), or 

peramivir (7) are known to possess interesting biological 

properties. In addition, as highly efficient and modern routes 

towards such structures have been developed recently,5 

providing a rapid access to simplified derivatives is becoming 

equally desirable (Figure 1).  

 

Figure 1: Structures of bioactive cyclopentanes. 

We commenced our study by investigating the conjugate addition 

of different anilines 8 to cyclopentenone 4. Screening different 

solvents it was found that polar, aprotic solvents such as MeCN, 

dioxane or DMF were preferred over non-polar solvents (DCM, 

toluene, hexanes), especially when high concentrations of 2-4 M 

were employed. We thus opted for MeCN as a suitable and benign 

solvent and subsequently studied the effect of different 

temperatures keeping the concentration at 3 M throughout. It 
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was quickly established, that temperatures of 50-75°C gave full 

conversion within 6-12 h whereas lower temperatures 

significantly slowed down the reaction. We therefore identified 

ideal conditions to be the use of MeCN with high concentration of 

both substrates (4 and 8, 1:1 ratio, 3 M) at a reaction temperature 

of 70 °C (Scheme 2). 

Scheme 2: Optimized conditions for preparing aniline adducts. 

With these conditions in hand we next investigated the reaction 

of a series of anilines with substrate 4 aiming to establish the 

generality of this approach. We were thus pleased to see the 

smooth reaction of a variety of anilines under the established 

reaction conditions. As expected, electron-rich anilines gave 

faster reactions than neutral systems, whereas electron-poor 

anilines (R = CN, NO2) gave very low conversion (~10%) to the 

desired product after 12-24 h. It was also found that secondary 

anilines were poor reaction partners due to steric hindrance, 

typically resulting in low conversion only (5-10% after 24 h). 

Importantly, a variety of different substitution patterns on the 

arene moiety of primary anilines was tolerated allowing for the 

creation of diversely functionalized systems. In addition, 

heteroaryl amines such as those based on pyridines, as well as 

biaryl amines are well tolerated in this transformation furnishing 

the desired adducts in good to excellent isolated yields after 

purification via column chromatography (Scheme 3).   

 

Scheme 3: Substrate scope for products 9a-i. 

Crucially, these products were obtained as single diastereomers 

prompting us to investigate the origin of this stereoselectivity. 

We therefore crystallized products 9e and 9g allowing for single 

crystal diffraction experiments to be performed. These 

structures both indicate a syn-relationship between the tertiary 

alcohol and the amine functionality (Figure 2). 6  

Figure 2: X-ray structures of 9e (left) and 9g (right). 

We reasoned that this diastereoselectivity is the result of 

hydrogen bonding where the hydroxyl group directs the 

incoming amine nucleophile in a syn-fashion. It appears that this 

hydrogen bonding is not disturbed by additional hydrogen bond 

acceptors such as the pyridine nitrogen as evidenced in structure 

9g.  

Having accomplished the efficient functionalization of the β-

position of the cyclopentenone building block 4, we furthermore 

wished to establish whether the adjacent α-position is amenable 

to effective derivatization. To this end we opted to exploit the 

reaction of 4 with a small selection of benzaldehydes (10) via a 

Baylis-Hillman reaction. After screening different solvents, it was 

found that a mixture of chloroform and THF (1:1 v/v, 1.5 M) 

worked best in combination with DABCO as a catalyst (25 mol%) 

to give the desired reaction products 11 (Scheme 4). Using 1H-

NMR as a reliable technique to establish reaction progress 

allowed the identification of suitable conditions that promoted 

full conversion of all substrates within 10 h at 40 °C.  

Scheme 4: Baylis-Hillman reaction of 4 and benzaldehydes 10. 

Furthermore, we noticed that under the chosen reaction 

conditions cyclopentenone 4 is a fluctional species that 

undergoes additional transformations such as the formation of 

the isolable rearrangement structure 4c which likely results from 

an allylic transposition reaction of 4 via intermediate 4b (Scheme 

5).  

 

Scheme 5: Reaction pathways of cyclopentenone 4. 
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This material (4c) was identified based on a combination of 1H-

NMR and 13C-NMR techniques and did not form unless all 

components were present in the reaction mixture (4, 10 and 

DABCO). Based on this, we suggest a mechanism in which the 

aldehyde component is aiding in the allylic transposition by 

forming a covalent adduct 4a en route to intermediate 4b 

(Scheme 5). In addition, mixtures of 4 and 4c can be isolated after 

column chromatography for further analysis (see SI for details). 

However, as the desired Baylis-Hillman products 11 were 

obtained as principle products from this reaction, we surmise 

that 4b co-exists in an inconsequential equilibrium with 4 from 

which only 4 is partaking in the overall transformation. To 

confirm the connectivity of products 11 we secured an X-ray 

crystal structure of derivative 11a. In agreement with NMR-

spectroscopy the X-ray diffraction experiments confirmed that 

these products (11a-11d) are formed as mixtures of 

diastereoisomers (d.r. ~1:1)7 indicating that in this instance the 

more remote tertiary alcohol is not controlling the 

stereochemistry (Figure 3). 

 

Figure 3: Baylis-Hillman products and X-ray structure of 11 a. 

 

In summary, we have developed efficient routes for the 

functionalization of a versatile cyclopentenone building block 

that was previously accessed via a continuous flow sequence 

from D-glucono-1,5-lactone. Initially, we investigated the aza-

Michael addition of different anilines resulting in the 

diastereoselective formation of the corresponding adducts. We 

furthermore demonstrated the functionalization of the α-

position of the cyclopentenone substrate via a Baylis-Hillman 

reaction. Whereas the desired products were obtained as 

mixtures of diastereoisomers, we discovered a complementary 

allylic transposition pathway, that appears to be mediated by the 

aldehyde substrate which we will investigate in due course.  

 

The experimental section has no title; please leave this line here. 

Unless otherwise stated, all solvents were purchased from Fisher 

Scientific and used without further purification. Substrates and reagents 

were purchased from Alfa Aesar or Sigma Aldrich and used as received.  

1H-NMR spectra were recorded on a Bruker Avance-400 instrument and 

are reported relative to residual solvent: CHCl3 (δ 7.26 ppm) or DMSO (δ 

2.50 ppm). 13C-NMR spectra were recorded on the same instrument and 

are reported relative to CHCl3 (δ 77.16 ppm) or DMSO (δ 39.52 ppm). Data 

for 1H-NMR are reported as follows: chemical shift (δ/ ppm) (multiplicity, 

coupling constant (Hz), integration). Multiplicities are reported as 

follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = 

multiplet, br. s = broad singlet, app = apparent. Data for 13C-NMR are 

reported in terms of chemical shift (δ/ ppm) and multiplicity (C, CH, CH2 

or CH3). Data for 19F-NMR were recorded on the above instrument at a 

frequency of 376 MHz using CFCl3 as external standard. DEPT-135, COSY, 

HSQC, HMBC and NOESY experiments were used in the structural 

assignment. IR spectra were obtained by use of a Perkin Elmer RX1 

spectrometer (neat, ATR sampling) with the intensities of the 

characteristic signals being reported as weak (w, <20% of tallest signal), 

medium (m, 21-70% of tallest signal) or strong (s, >71% of tallest signal). 

Low and high-resolution mass spectrometry was performed using the 

indicated techniques on either Waters LCT Premier XE or Waters TQD 

instruments equipped with Acquity UPLC and a lock-mass electrospray 

ion source. Melting points were recorded on an Optimelt automated 

melting point system with a heating rate of 1 °C/min and are uncorrected.   

 

Procedures 

For the synthesis of amino-hydroxycyclopentanones 9a-9i the desired 

aniline (1 mmol, 1.0 equiv.) was added to a solution of cyclopentanone 4 

(1 mmol, 1.0 equiv.; 2 M, MeCN). The resulting reaction mixture was 

heated at 75 °C and monitored by 1H-NMR. Once complete conversion of 

substrates was observed (6-12 h) the reaction mixture was evaporated 

and purified by silica column chromatography using EtOAc/hexanes (10-

30% EtOAc) as solvent system. After evaporation of the volatiles the 

desired products were typically isolated as yellow oils that solidified upon 

standing. 

Rac-(1S,2R)-Methyl 2-((4-chlorophenyl)amino)-1-hydroxy-4-

oxocyclopentanecarboxylate (9a) 

IR (neat): 3386 (m), 2955 (w), 1737 (s), 1599 (s), 1492 (s), 1398 (m), 

1316 (m), 1277 (m), 1234 (s), 1179 (s), 1091 (s), 1029 (m), 818 (s), 753 

(s), 501 (m) cm–1. 

1H NMR (CDCl3, 400 MHz):  = 7.10 (d, J = 8.9 Hz, 2H), 6.55 (d, J = 8.9 Hz, 

2H), 4.48 (dd, J = 10.9, 7.9 Hz, 1H), 3.88 (br s, 1H), 3.74 (s, 3H), 2.79-2.89 

(m, 2H), 2.61 (d, J = 18.2 Hz, 1H), 2.30 (ddd, J = 18.3, 10.9, 1.8 Hz, 1H). 

13C NMR (CDCl3, 101 MHz):  = 210.6 (C), 174.0 (C), 144.9 (C), 129.2 (2CH), 

123.4 (C), 115.1 (2CH), 78.7 (C), 57.4 (CH), 53.6 (CH3), 50.7 (CH2), 42.2 

(CH2). 

HRMS (ASAP): m/z [M + H]+ calcd for C13H15NO4Cl: 284.0690; found: 

284.0688. 

 

Rac-(1S,2R)-Methyl 2-((3-bromophenyl)amino)-1-hydroxy-4-

oxocyclopentanecarboxylate (9b) 

IR (neat): 3392 (m), 2955 (w), 1737 (s), 1595 (s), 1505 (m), 1481 (m), 

1266 (m), 1235 (s), 1198 (s), 1164 (s), 1089 (s), 987 (s), 756 (s), 734 (s), 

682 (m), 480 (m) cm–1. 

1H NMR (CDCl3, 400 MHz):  = 7.01 (t, J = 8.0 Hz, 1H), 6.86 (ddd, J = 7.8, 

1.8, 0.9 Hz, 1H), 6.77 (t, J = 2.1 Hz, 1H), 6.54 (ddd, J = 8.2, 2.4, 0.9 Hz, 1H), 

4.51 (dd, J = 11.0, 7.9 Hz, 1H), 4.26 (br s, 1H), 3.80 (s, 3H), 2.81-2.92 (m, 

2H), 2.62 (d, J = 18.2 Hz, 1H), 2.32 (ddd, J = 18.2, 10.9, 1.8 Hz, 1H). 

13C NMR (CDCl3, 101 MHz):  = 210.3 (C), 173.9 (C), 147.6 (C), 130.7 (CH), 

123.4 (C), 121.6 (CH), 116.3 (CH), 112.9 (CH), 78.6 (C), 56.9 (CH), 53.8 

(CH3), 50.6 (CH2), 42.3 (CH2). 

HRMS (ASAP): m/z [M + H]+ calcd for C13H15NO4Br: 328.0184; found: 

328.0172. 

 

Rac-(1S,2R)-Methyl 2-((4-bromophenyl)amino)-1-hydroxy-4-

oxocyclopentanecarboxylate (9c) 

IR (neat): 3476 (m), 3383 (m), 2957 (w), 1737 (s), 1593 (s), 1489 (s), 

1437 (m), 1397 (m), 1316 (m), 1278 (m), 1235 (s), 1179 (s), 1074 (m), 

908 (s), 815 (s), 728 (s), 648 (m), 499 (m) cm–1. 

1H NMR (CDCl3, 400 MHz):  = 7.26 (d, J = 8.0 Hz, 2H), 6.53 (d, J = 8.0 Hz, 

2H), 4.51 (app q, J = 8.7 Hz, 1H), 4.25 (d, J = 9.1 Hz, 1H), 3.83 (br s, 1H), 

3.78 (s, 3H), 2.83-2.92 (m, 2H), 2.64 (d, J = 18.3 Hz, 1H), 2.33 (ddd, J = 18.3, 

10.8, 1.8 Hz, 1H). 
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13C NMR (CDCl3, 101 MHz):  = 210.4 (C), 174.0 (C), 145.3 (C), 132.1 (2CH), 

115.6 (2CH), 110.5 (C), 78.7 (C), 57.2 (CH), 53.7 (CH3), 50.7 (CH2), 42.3 

(CH2). 

HRMS (AP): m/z [M + H]+ calcd for C13H15NO4Br: 328.0184; found: 

328.0193. 

 

Rac-(1S,2R)-Methyl 2-(m-tolylamino)-1-hydroxy-4-oxocyclo-

pentanecarboxylate (9d) 

IR (neat): 3391 (m), 2959 (w), 1739 (s), 1606 (m), 1490 (m), 1437 (m), 

1235 (m), 1167 (s), 1096 (m), 1030 (m), 909 (s), 772 (s), 728 (s), 692 (s), 

648 (m), 440 (m) cm–1. 

1H NMR (CDCl3, 400 MHz):  = 7.07 (app t, J = 7.6 Hz, 1H), 6.60 (d, J = 7.6 

Hz, 1H), 6.40-6.50 (m, 2H), 4.54 (app q, J = 10.0 Hz, 1H), 4.09 (d, J = 9.6 Hz, 

1H), 3.75 (s, 3H), 2.80-2.92 (m, 2H), 2.65 (d, J = 18.4 Hz, 1H), 2.32 (ddd, J 

= 18.4, 11.0, 1.8 Hz, 1H), 2.27 (s, 3H). 

13C NMR (CDCl3, 101 MHz):  = 210.8 (C), 174.1 (C), 146.2 (C), 139.2 (C), 

129.3 (CH), 119.8 (CH), 114.8 (CH), 111.1 (CH), 78.8 (C), 57.4 (CH), 53.5 

(CH3), 50.6 (CH2), 42.5 (CH2), 21.6 (CH3). 

HRMS (ES): m/z [M + H]+ calcd for C14H18NO4: 264.1236; found: 264.1237. 

 

Rac-(1S,2R)-Methyl 2-((3-methoxyphenyl)amino)-1-hydroxy-4-

oxocyclopentanecarboxylate (9e) 

IR (neat): 3437 (m), 3359 (m), 2963 (w), 1733 (s), 1595 (s), 1492 (m), 

1230 (s), 1172 (s), 1126 (s), 1026 (s), 973 (m), 839 (s), 774 (m), 756 (m), 

692 (m), 498 (m) cm–1. 

1H NMR (CDCl3, 600 MHz):  = 7.06 (app t, J = 8.2 Hz, 1H), 6.30 (ddd, J = 

8.2, 2.3, 0.8 Hz, 1H), 6.23 (ddd, J = 8.2, 2.3, 0.8 Hz, 1H), 6.18 (app t, J = 2.3 

Hz, 1H), 4.51 (app t, J = 9.4 Hz, 1H), 4.17 (s, 1H), 3.77 (s, 1H), 3.75 (s, 3H), 

3.74 (s, 3H), 2.82-2.88 (m, 2H), 2.61 (ddd, J = 18.2, 1.9, 0.8 Hz, 1H), 2.30 

(ddd, J = 18.2, 10.8, 1.9 Hz, 1H). 

13C NMR (CDCl3, 151 MHz):  = 210.7 (C), 174.1 (C), 160.8 (C), 147.5 (C), 

130.2 (CH), 106.8 (CH), 103.8 (CH), 100.2 (CH), 78.8 (C), 57.2 (CH), 55.1 

(CH3), 53.6 (CH3), 50.6 (CH2), 42.4 (CH2). 

HRMS (ES): m/z [M + H]+ calcd for C14H18NO5: 280.1185; found: 280.1163. 

 

Rac-(1S,2R)-Methyl 2-((4-chloro-2,5-dimethoxyphenyl)amino)-1-

hydroxy-4-oxocyclopentanecarboxylate (9f) 

IR (neat): 3395 (w), 2957 (w), 1747 (s), 1596 (m), 1515 (s), 1450 (s), 1398 

(s), 1207 (s), 1159 (s), 1031 (s), 910 (m), 848 (m), 796 (m), 728 (s), 649 

(m)cm–1. 

1H NMR (CDCl3, 400 MHz):  = 6.76 (s, 1H), 6.31 (s, 1H), 4.51 (dd, J = 11.1, 

7.9 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.70 (s, 3H), 2.78-2.91 (m, 2H), 2.65 

(ddd, J = 18.2, 1.8, 0.9 Hz, 1H), 2.32-2.43 (m, 1H). 

13C NMR (CDCl3, 101 MHz):  = 210.4 (C), 174.0 (C), 149.6 (C), 141.7 (C), 

135.5 (C), 112.4 (CH), 110.3 (C), 98.6 (CH), 78.7 (C), 57.8 (CH), 57.2 (CH3), 

56.2 (CH3), 53.5 (CH3), 50.6 (CH2), 42.4 (CH2). 

HRMS (ES): m/z [M + H]+ calcd for C15H19NO6Cl: 344.0901; found: 

344.0900. 

 

Rac-(1S,2R)-Methyl 2-((5-bromopyridin-3-yl)amino)-1-hydroxy-4-

oxocyclopentanecarboxylate (9g) 

IR (neat): 3358 (m), 2926 (m), 1739 (s), 1582 (s), 1518 (m), 1448 (m), 

1234 (s), 1201 (s), 1161 (s), 1095 (s), 1031 (m), 1006 (m), 753 (s), 695 

(m) cm–1. 

1H NMR (CDCl3, 400 MHz):  = 8.02 (d, J = 1.9 Hz, 1H), 7.92 (d, J = 2.6 Hz, 

1H), 7.07 (dd, J = 2.6, 1.9 Hz, 1H), 4.46-4.56 (m, 2H), 3.82 (s, 3H), 2.81-2.92 

(m, 2H), 2.64 (ddd, J = 18.2, 19, 0.9 Hz, 1H), 2.29-2.41 (m, 1H). 

13C NMR (CDCl3, 101 MHz):  = 209.6 (C), 173.7 (C), 143.5 (C), 140.2 (CH), 

134.9 (CH), 121.9 (CH), 121.1 (C), 78.6 (C), 56.4 (CH), 53.8 (CH3), 50.7 

(CH2), 42.0 (CH2). 

HRMS (ASAP): m/z [M + H]+ calcd for C12H14N2O4Br: 329.0137; found: 

329.0122. 

 

Rac-(1S,2R)-Methyl 2-((3-(6-methoxypyridin-3-yl)phenyl)amino)-

1-hydroxy-4-oxocyclopentanecarboxylate (9h) 

IR (neat): 3383 (w), 2952 (w), 1740 (s), 1604 (s), 1481 (s), 1366 (m), 1283 

(s), 1235 (s), 1173 (s), 1021 (s), 832 (m), 752 (s), 697 (m), 609 (m) cm–1. 

1H NMR (CDCl3, 400 MHz):  = 8.33 (dd, J = 2.6, 0.7 Hz, 1H), 7.72 (dd, J = 

8.6, 2.6 Hz, 1H), 7.21 (app t, J = 7.8 Hz, 1H), 6.85-6.90 (m, 1H), 6.73-6.80 

(m, 2H), 6.60 (ddd, J = 8.2, 2.4, 0.9 Hz, 1H), 4.60 (dd, J = 10.8, 7.8 Hz, 1H), 

4.41 (br s, 1H), 4.16 (br s, 1H), 3.67 (s, 3H), 3.67 (s, 3H), 2.82-2.94 (m, 2H), 

2.59-2.67 (m, 1H), 2.35 (ddd, J = 18.8, 10.8, 1.8 Hz, 1H). 

13C NMR (CDCl3, 101 MHz):  = 211.0 (C), 174.0 (C), 163.6 (C), 146.8 (C), 

144.9 (CH), 139.1 (C), 137.5 (CH), 130.1 (C), 130.0 (CH), 117.2 (CH), 112.9 

(CH), 112.2 (CH), 110.6 (CH), 78.9 (C), 57.3 (CH), 53.6 (CH3), 53.5 (CH3), 

50.7 (CH2), 42.3 (CH2). 

HRMS (ASAP): m/z [M + H]+ calcd for C19H21N2O5: 357.1450; found: 

357.1452. 

 

Rac-(1S,2R)-Methyl 2-((3-fluoro-4-methylphenyl)amino)-1-

hydroxy-4-oxocyclopentanecarboxylate (9i) 

IR (neat): 3384 (m), 2956 (w), 1736 (s), 1633 (s), 1589 (m), 1516 (s), 

1438 (m), 1326 (m), 1266 (m), 1235 (s), 1159 (s), 1114 (s), 1029 (m), 838 

(m), 803 (m), 735 (s), 626 (m), 454 (m) cm–1. 

1H NMR (CDCl3, 600 MHz):  = 6.90-6.96 (m, 1H), 6.29-6.33 (m, 2H), 4.46 

(ddd, J = 11.0, 10.0, 7.9 Hz, 1H), 4.11 (d, J = 8.8 Hz, 1H), 3.77 (s, 3H), 3.70 

(s, 1H), 2.82-2.88 (m, 2H), 2.61 (ddd, J = 18.3, 1.9, 0.9 Hz, 1H), 2.27-2.33 

(m, 1H), 2.13 (d, J = 1.3 Hz, 3H). 

13C NMR (CDCl3, 151 MHz):  = 210.3 (C), 174.0 (C), 161.9 (d, J = 243 Hz, 

C), 145.7 (d, J = 11 Hz, C), 131.9 (d, J = 8 Hz, CH), 114.5 (d, J = 18 Hz, C), 

109.7 (d, J = 2 Hz, CH), 100.9 (d, J = 26 Hz, CH), 78.6 (C), 57.4 (CH), 53.6 

(CH3), 50.6 (CH2), 42.3 (CH2), 13.6 (CH3). 

19F NMR (CDCl3, 376 MHz):  = -116.3 (s). 

HRMS (ASAP): m/z [M + H]+ calcd for C14H17NO4F: 282.1142; found: 

282.1158. 

 

Procedures 

For the synthesis of Baylis-Hillman adducts 11a-11d cyclopentenone 4 

(0.8 mmol, 1.0 equiv.), DABCO (0.2 mmol, 0.25 equiv.) and the aldehyde 

component (1.0 mmol, 1.25 equiv.) were dissolved in a mixture of THF 

and CHCl3 (1:1 v/v, 1.5 M) and stirred at 40 °C for 10 h. After completion 

of the reaction was indicated by tlc (20% EtOAc/hexanes) the solvents 

were evaporated and the crude product was purified by silica column 

chromatography 10-30% EtOAc/hexanes) to yield a mixture of co-polar 

reaction products. It was found possible to crystalize the less soluble 

diastereomer of 11 using CHCl3 or Et2O as solvent. 

Methyl 3-((4-bromophenyl)(hydroxy)methyl)-1-hydroxy-4-

cyclopent-2-enecarboxylate (11a) 

IR (neat): 3418 (br), 2956 (w), 1714 (s), 1488 (m), 1437 (m), 1402 (m), 

1258 (s), 1198 (s), 1171 (s), 1071 (s), 1011 (m), 832 (m) cm–1. 

Diastereomer A: 1H NMR (CDCl3, 400 MHz):  = 7.47 (d, J = 8.4 Hz, 2H), 7.25 

(d, J = 8.4 Hz, 2H), 6.98 (s, 1H), 3.81 (s, 3H), 2.98 (br s, 1H), 2.95 (d, J = 18.4 

Hz, 1H), 2.60 (d, J = 18.4 Hz, 1H). 13C NMR (CDCl3, 176 MHz):  = 203.9 (C), 

173.9 (C), 153.8 (CH), 149.2 (C), 139.1 (C), 131.8 (2CH), 128.3 (2CH), 

122.3 (C), 76.9 (C), 68.9 (CH), 54.0 (CH2), 48.3 (CH2). Diastereomer B: 1H 

NMR (CDCl3, 400 MHz):  = 7.47 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 

6.98 (s, 1H), 5.52 (s, 1H), 3.79 (s, 3H), 3.03 (br s, 1H), 2.92 (d, J = 18.4 Hz, 

1H), 2.65 (d, J = 18.4 Hz, 1H). 13C NMR (CDCl3, 176 MHz):  = 204.1 (C), 

173.8 (C), 154.2 (CH), 149.1 (C), 138.3 (C), 131.8 (2CH), 128.3 (2CH), 

122.3 (C), 77.0 (C), 68.9 (CH), 53.9 (CH3), 48.2 (CH2). 

HRMS (ASAP): m/z [M - OH]+ calcd for C14H12BrO4: 322.9919; found: 

322.9932. 



Synthesis Feature Article 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2018-02-06 page 5 of 6 

 

Methyl 3-((3-fluorophenyl)(hydroxy)methyl)-1-hydroxy-4-

cyclopent-2-enecarboxylate (11b) 

IR (neat): 3424 (br), 2957 (w), 1711 (s), 1591 (m), 1487 (m), 1438 (m), 

1244 (s), 1198 (m), 1170 (m), 1082 (m),  911 (m), 789 (m), 758 (m), 731 

(m), 702 (m)cm–1. 

Diastereomer A: 1H NMR (CDCl3, 400 MHz):  = 7.29-7.35 (m, 1H), 7.13-

7.18 (m, 1H), 7.07 (dt, J = 9.7, 2.0 Hz, 1H), 6.97-7.03 (m, 2H), 5.96 (s, 1H), 

3.80 (s, 3H), 2.93 (d, J = 18.4 Hz, 1H), 2.65 (d, J = 18.4 Hz, 1H). 13C NMR 

(CDCl3, 101 MHz):  = 204.0 (C), 173.9 (C), 162.9 (CF, d, J = 244 Hz), 154.4 

(CH), 149.2 (C), 142.7 (C, d, J = 7 Hz), 130.3 (CH, d, J = 8 Hz), 122.4 (CH, d, 

J = 3 Hz), 115.2 (CH, d, J = 21 Hz), 113.6 (CH, d, J = 22 Hz), 77.1 (C), 68.8 

(CH, m), 54.0 (CH3), 48.2 (CH2). 19F NMR (CDCl3, 376 MHz):  = -112.4 (s). 

Diastereomer B: 1H NMR (CDCl3, 400 MHz):  = 7.29-7.35 (m, 1H), 7.13-

7.18 (m, 1H), 7.11 (dt, J = 9.7, 2.0 Hz, 1H), 6.97-7.03 (m, 2H), 5.98 (s, 1H), 

3.82 (s, 3H), 2.96 (d, J = 18.4 Hz, 1H), 2.62 (d, J = 18.4 Hz, 1H). 13C NMR 

(CDCl3, 101 MHz):  = 204.0 (C), 173.9 (C), 162.9 (CF, d, J = 244 Hz), 154.1 

(CH), 149.1 (C), 142.7 (d, J = 7 Hz), 130.3 (CH, d, J = 8 Hz), 122.2 (CH, d, J = 

3 Hz), 115.2 (CH, d, J = 21 Hz, 113.5 (CH, d, J = 22 Hz), 77.2 (C), 68.8 (CH, 

m), 54.0 (CH3), 48.3 (CH2). 19F NMR (CDCl3, 376 MHz):  = -112.2 (s).   

HRMS (ES): m/z [M - OH]+ calcd for C14H12FO4: 263.0714; found: 

263.0737. 

 

Methyl 1-hydroxy-3-(hydroxy(2-methoxypyrimidin-5-yl)methyl)-4-

oxocyclopent-2-enecarboxylate (11c) 

IR (neat): 3457 (m), 3171 (br), 1741 (s), 1713 (s), 1600 (m), 1570 (m), 

1478 (s), 1407 (s), 1331 (m), 1272 (s), 1197 (m), 1168 (m), 1031 (s), 804 

(m) cm–1. 

Diastereomer A: 1H NMR (CDCl3, 400 MHz):  = 8.53 (s, 2H), 7.12 (d, J = 1.4 

Hz, 1H), 5.60 (d, J = 1.4 Hz, 1H), 4.01 (s, 3H), 3.84 (s, 3H), 2.99 (d, J = 18.4 

Hz, 1H), 2.64 (d, J = 18.4 Hz, 1H), 2.17 (br s, 1H). 13C NMR (CDCl3, 101 

MHz):  = 203.8 (C), 173.7 (C), 165.5 (C), 158.1 (2CH), 154.2 (CH), 148.3 

(C), 127.1 (C), 77.2 (C), 65.6 (CH), 55.2 (CH3), 54.1 (CH3), 48.3 (CH2). 

Diastereomer B: 1H NMR (CDCl3, 400 MHz):  = 8.48 (s, 2H), 7.24 (s, 1H), 

5.56 (s, 1H), 3.99 (s, 3H), 3.79 (s, 3H), 3.20 (br s, 2H), 2.93 (d, J = 18.4 Hz, 

1H), 2.66 (d, J = 18.4 Hz, 1H). 13C NMR (CDCl3, 101 MHz):  = 203.6 (C), 

173.6 (C), 165.3 (C), 158.2 (2CH), 154.6 (CH), 148.7 (C), 127.3 (C), 77.2 

(C), 65.1 (CH), 55.2 (CH3), 54.0 (CH3), 48.3 (CH2). 

HRMS (ES): m/z [M + H]+ calcd for C13H15N2O6: 295.0930; found: 

295.0932. 

 

Methyl 1-hydroxy-3-(hydroxy(2,3,6-trichlorophenyl)methyl)-4-

oxocyclopent-2-enecarboxylate (11d) 

IR (neat): 3421 (br), 2956 (w), 1712 (s), 1436 (s), 1322 (m), 1249 (s), 

1192 (s), 1172 (s), 1092 (s), 1025 (m), 1010 (m), 913 (m), 912 (s), 771 

(m), 731 (s) cm–1. 

Diastereomer A: 1H NMR (CDCl3, 400 MHz):  = 7.39 (d, J = 8.7 Hz, 1H), 7.28 

(d, J = 8.7 Hz, 1H), 7.14 (d, J = 2.1 Hz, 1H), 6.39 (d, J = 5.2 Hz, 1H), 3.81 (s, 

3H), 3.79 (s, 1H), 3.61 (d, J = 7.0 Hz, 1H), 2.95 (d, J = 18.3 Hz, 1H), 2.68 (d, 

J = 18.3 Hz, 1H). 13C NMR (CDCl3, 101 MHz):  = 202.9 (C), 174.0 (C), 154.8 

(CH), 146.8 (C), 136.6 (C), 133.7 (C), 133.5 (C), 132.9 (C), 130.6 (CH), 129.5 

(CH), 76.8 (C), 68.1 (CH), 53.9 (CH3), 48.2 (CH2). Diastereomer B: 1H NMR 

(CDCl3, 400 MHz):  = 7.32 (d, J = 8.7 Hz, 1H), 7.21 (d, J = 8.7 Hz, 1H), 7.20 

(d, J = 2.1 Hz, 1H), 6.29 (d, J = 2.0 Hz, 1H), 4.11 (br s, 2H), 3.74 (s, 3H), 2.90 

(d, J = 18.4 Hz, 1H), 2.59 (d, J = 18.4 Hz, 1H). 13C NMR (CDCl3, 101 MHz):  

= 203.0 (C), 173.8 (C), 155.4 (CH), 147.0 (C), 136.4 (C), 133.7 (C), 132.8 

(C), 130.5 (CH), 129.4 (CH), 77.0 (C), 67.7 (CH), 53.7 (CH3), 48.2 (CH2).  

HRMS (ASAP): m/z [M - OH]+ calcd for C14H10Cl3O4: 346.9645; found: 

346.9650. 

 

Funding Information 

We gratefully acknowledge funding by the Royal Society (MB and IRB). 

Acknowledgment 

We thank Dr Andrej Batsanov (Durham University) for solving the X-ray 
structures. 

Supporting Information 

YES (this text will be updated with links prior to publication) 

Primary Data 

NO (this text will be deleted prior to publication) 

References 

(1) (a) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52, 6752. 

(b) Lovering, F. Med. Chem. Commun. 2013, 4, 515. (c) Bajorath, J. 

Expert Opinion Drug Disc. 2016, 11, 825. (d) Kirkpatrick, P. Nat. 

Rev. Drug Disc. 2003, 2, 948. 

(2) (a) Li, C.-J.; Trost, B.M. PNAS 2008, 105, 13197. (b) Varma, R.S. ACS 

Sustainable Chem. Eng. 2016, 4, 5866. (c) Sheldon, R.A. Green Chem. 

2016, 18, 3180. 

(3) (a) Anastas, P.T.; Warner, J.C. Green Chemistry Theory and Practice; 

Oxford University Press: New York, 1998. (b) Anastas, P.; Eghbali, 

N. Chem. Soc. Rev. 2010, 39, 301. (c) Li, C.-J.; Anastas, P.T. Chem. Soc. 

Rev. 2012, 41, 1413. 

(4) Baumann, M.; Baxendale, I.R.; Filipponi, P.; Hu, T. Org. Process Res. 

Dev. 2017 submitted. 

(5) (a) Veits, G.K.; Wenz, D.R.; Palmer, L.I.; St. Amant, A.H.; Hein, J.E.; de 

Alaniz, J.R. Org. Biomol. Chem. 2015, 13, 8465. (b) Shu, T.; Ni, Q.; 

Song, X.; Zhao, K.; Wu, T.; Puttreddy, R.; Rissanen, K.; Enders, D. 

Chem. Commun. 2016, 52, 2609. (c) Liu, G.; Shirley, M.E.; Van, K.N.; 

MacFarlin, R.L.; Romo, D. Nat. Chem. 2013, 5, 1049. 

(6) These structures have been deposited with the Cambridge 

Crystallographic Data Centre as CCDC XXXXXXX (9e) and CCDC 

XXXXXX (9g). 

(7) Although separation of these diastereoisomers was found 

challenging by silica gel chromatography, fractional crystallization 

from solutions of structures 11 in Et2O was found possible. The 

structure of 11a has been deposited with the Cambridge 

Crystallographic Data Centre as CCDC XXXXX. 

 

 

 

 

 

 

 

 

 

 

 
 
 



Synthesis Feature Article 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2018-02-06 page 6 of 6 

Biosketches 
 

 

Marcus Baumann graduated from Philipps University Marburg (Germany) in 2007 and subsequently 
undertook PhD studies with Prof. Steven V. Ley at the University of Cambridge (UK) focusing on developing 
continuous flow processes for key organic transformations and natural product applications. In 2011, he 
was awarded a Feodor Lynen fellowship from the Alexander-von-Humboldt foundation allowing him to 
work with Prof. Larry E. Overman at the University of California Irvine (U.S.A.). Upon completion of this 
postdoctoral fellowship he returned to the UK to join Prof. Ian R. Baxendale at Durham University as a senior 
postdoctoral research associate where his research interests lie in the area of continuous flow approaches 
applied to the synthesis of various bioactive entities. 

 

Ian R. Baxendale obtained his Ph.D. under the supervision of Prof. Pavel Kocovsky at the University of 
Leicester. He then moved to a postdoctoral position with Prof. Steven V. Ley at the University of Cambridge, 
initially conducting natural product synthesis before moving into the area of solid-supported reagents and 
scavengers. In 2008, he was promoted to Senior Research Associate in the Department of Chemistry and 
then in 2009 was awarded a Royal Society University Research Fellowship, becoming a member of the 
faculty. In 2012, he moved to Durham to take up the Chair of Synthetic Chemistry. His research interests are 
the design and implementation of new enabling technologies such as flow chemical synthesis (FCS), 
synthesis automation methodologies (SAM), microwave reactors, and immobilized reagents and scavengers 
to expedite complex chemical syntheses. 

 

 


