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Isotopic information may provide powerful insight into the elemental cycling processes which occur in natural compartments.
Further implementation of isotopic techniques in natural sciences requires a better understanding of the range of elemental and
isotopic compositional variability in environmental matrices. 'is study assesses the local-scale concentration and isotopic
composition variability of nine elements: boron (B), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), strontium
(Sr), thallium (Tl), and zinc (Zn) in lysimetric waters, mushrooms, litter, needles, leaves, and lichens. Sequential extractions were
also performed on soil samples from 6 depth profiles providing more detailed information on the variability of elemental
concentrations and isotope ratios between the elemental pools present in soil. For most of the sample types studied the range of
isotopic variability between samples spans almost the entire ranges reported in the literature for natural samples. 'ese results
represent a starting point for discussing the role of natural variability in isotopic studies (for example, as a limiting factor in the use
of isotopic mixing models) and a baseline for future in-depth studies examining the controls on isotope fraction in
natural systems.

1. Introduction

'e development of isotope-based techniques in envi-
ronmental science has grown exponentially in the last few
decades [1–6]. Recent studies in the field are increasingly
adopting multielemental approaches to determine sample
provenance [7–9], fingerprint pollution sources [10–14]
and identify biochemical processes [15, 16]. Ultimately, the
usefulness of all such single and multielemental isotope
methods in biological and environmental sciences is
limited by the uncertainties of interpreting the isotope
ratio data [17].

Historically, analytical (im)precision was a significant
barrier to unambiguous data interpretation for stable
[18, 19] and even radiogenic isotopic systems [20]. 'e
advent and continued development of multiple collector
inductively coupled plasma mass spectrometry (MC-ICP-
MS) has greatly improved analytic precision attainable.
Nowadays, the ability to unambiguously interpret high-
quality MC-ICP-MS data is increasingly limited by a lack of
data on the isotopic variability of environmental samples,
i.e., is the identified difference in isotopic compositions
between two samples within a range to be expected for the
sample type given natural variability or not?
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'e severity of the issue was highlighted in a previous
study whereof the total concentrations and isotope ratios of a
number of elements in leaves, needles, and mushrooms from
northern Sweden were determined [2]. Even after removing
some known sources of variation such as sampling height
(for leaves and needles) and sampling period, very broad
ranges in isotopic compositions of many elements were
found across samples collected over a confined geographic
area. 'e variability was attributed to a combination of
differences in accumulation pathways, soil type, subsoil
geology, proximity to local contamination sources, sampling
period, and weather preceding sampling occasion [21–23].
Given such a large number of confounding factors may
contribute to the isotopic composition of environments
samples, it was concluded that while foliage samples may
provide highly spatially and temporally resolved snapshots
of elemental and isotopic interactions, a better un-
derstanding of the individual variables within the system is
needed to understand the observed isotopic variability in
bioindicators.

'erefore, the aim of this work is to build on the previous
work [2] and extend a comprehensive dataset of concen-
trations and isotopic compositions to nine elements in a
variety of environmental samples (topsoil, lysimetric waters,
mushrooms, litter, wood ash, needles, leaves, and lichens).
As the fate and behaviour of an element in soil is dependent
on the physical/chemical form of that element in soils,
i.e., dissolved, exchangeable, included in the mineral lattice,
or insoluble [24], distinguishing the subpools is an im-
portant complement to bulk concentration and isotope ratio
measurements. 'e sequential extraction procedure (SEP)
used by this study allowed the determination of 6 func-
tionally defined elemental pools from 6 soil profiles from
urban and suburban locations.

'e elements measured in this study are currently
broadly used across many environmental fields (disciplines)
to study a wide range of processes. Several of the elements
(Zn, Fe, Cu, and B) are essential for plant growth and can be
important cofactors in other biological processes. Moreover,
the elements included in the study can be of environmental
concern (Cd, Pb, Cr, Cu, Zn, and Tl) and/or are commonly
used tracers in provenance studies (Sr, B, and Pb). Overall,
both radiogenic (Sr and Pb) and stable isotopic systems (B,
Cd, Cr, Cu, Fe, Sr, Tl, and Zn) are included and a single
multielement/multi-isotopic analytical procedure [2] can be
used to measure them all.

'e local-scale variability in isotopic composition was
compared with the published assessments of global isotopic
variability. For elements like Tl, where there is limited
published data on the isotopic compositions of environ-
mental samples, the information thus obtained aids gaining
knowledge needed for better understanding of Tl system-
atics. For other elements, such as Fe, the information offers a
framework for considering the relationship between care-
fully controlled fractionation experiments and real-world
samples. In order to illustrate the significance of such
variability assessments, a case study is presented usingmulti-
isotope data for two landfills contaminated by tailings from
Fe production, Fe and Cu slag, and fly ash.

2. Materials and Methods

2.1. Study Site. All samples in this project were collected in
and around the city of Luleå, a medium-sized town situated in
northern Sweden in the province of Norrbotten (Figure 1).
'e original village of Luleå dates back to 1649 [25] and has
more recently become industrialized including a major
steelworks. Samples collected within approximately 5 km
direct distance from local steelworks and harbours will, for the
remainder of this study, be referred to as “city” samples.
Samples from a broader area, approximately 10 km from the
major local industries, are referred to as “suburb” samples.
'e suburban locality was relatively recently a seabed (the
study area, as well as entire northern part of the Nordic region
is rising due to postglacial up-lift almost 9mm a year, due to
isostatic glacial readjustment [26]) and has been involved in
the urbanization process only from the late 1980s.

'e local soil consists mainly of clay and silt loam
overlying 1.9 Ga granitic bedrock with minor metasedi-
mentary constituents. 'e suburban location is specifically
characterized by a rather homogeneous sandy and well
sorted soil with little variations in grain size. 'e sampling
locations in the urban (city) area are till soils characterized
by coarse and heterogeneous grain sizes which were
formed at the time the land emerged from a sea some
400 years ago.

2.2. Sample Collection and Preparation. 'e sampling pro-
cedures for bioindicator organisms (mushrooms, n > 60; one
pooled litter sample; leaves, n > 200; needles, n > 40; lichens,
n > 30) are reported in Pallavicini et al. [21] and in
Rodushkin et al. [2].Wood ash (originatedmainly from local
birch wood) was collected from several dedicated recrea-
tional fireplaces in Luleå vicinity and pooled into a single
sample. Individual soil samples were collected at the end of
July 2015 following the same scheme (n > 150, approxi-
mately 10 g of soil from upper, predominantly organic, 2-
3 cm layer sampled by acid-washed plastic spoon). To
supplement the individual soils, samples six soil profiles, two
from the city centre and four from the suburban area
hereafter referred to as “city” and “suburb” respectively,
were also collected. 'e profiles were collected using a
vertical soil core sampler to a maximum sampling depth of
60 cm (consistent with typical rooting depth for tree species
sampled [27]. Once collected, each soil core was divided into
four equal 15 cm horizontal subsamples and stored in 50mL
polypropylene screw-capped tubes.'e soil subsamples does
not directly correspond to different soil horizons. In order to
compliment the soil samples, pore-water solutions (ap-
proximately 250mL) were collected from nine locations in
the town using drain-gauge passive-capillary lysimeters (n �

15) installed at 20 cm depth. Two heavily contaminated soil
samples (landfills) from the same region were also added to
this study.

Details on sample preparation procedure including
chemicals and reagents used, sample digestion and se-
quential extraction procedure (SEP), analyte/matrix sepa-
ration, element concentration, and isotopic analyses are fully
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reported in the ESI.�e SEP followed amethod involving six
extractions [28] and has been summarized in Table 1.

2.3. Analytic Performance. Information on operating pa-
rameters and measurement conditions for MC-ICP-MS
can be found in Table 2 (see ESI for more detailed de-
scription). All stable isotopic systems are reported in
standard delta (δ) notation while radiogenic systems are
reported as ratios in accordance with standard practices.
Stable isotopic di�erences between samples are reported as

capital delta (Δ) notation denoting the di�erence between
two δ values.

All solutions were analyzed in duplicate. Signal in-
tensities were transferred to commercially available
spreadsheet software for further o�-line calculations, in-
cluding blank, isobaric interference(s) as well as in-
strumental mass bias corrections.�e latter was corrected by
the revised exponential correction model [29] using the
internal standard (for all isotopic systems but B), and the
corrected ratios or δ-values were calculated against
bracketing standard solutions. Results from the two
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Figure 1: Map of the sampling locations. Filled circles represent the sampling point where biological samples have been collected (leaves,
needles, and mushrooms); �lled stars represent the locations where soil samples have been collected.
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measurements were used to calculate mean ratios or δ-values
and in-run repeatability for each sample.

For the stable isotopic systems, many of the individual
isotopes were measured as possible (Table 2) to validate the
mass dependent nature of the measurements, but for easy of
reporting, only a single δ value will be used consistently for
each system (Table 2).

'e analytical results for reference standards (QC Loam
Soil (VIK) (soil powder) (Eurofins A/S Denmark, Vallens-
bæk Strand, Denmark), GBW 07410 (soil) (National Re-
search Centre of Geoanalysis, Beijing, China), and IRMM
ERM-CC141 (soil powder)) along with typical repeatability
and intermediate precision figures for soils, mushrooms, and
leaves are reported in Table 3. All reference standards were
processed and analyzed in parallel with the samples. It
should be noted that results for GBW 07410 and ERM-
CC141 are calculated using concentrations and isotope ra-
tios for individual sequential extraction fractions and
therefore more uncertain. A full list of certified materials
used to assess performance of the method for bioindicators
is available in the ESI.

'ough mass balances for both concentrations (%-re-
covery of sum of extracts) and stable isotope ratios (com-
parison of measured and calculated bulk sample delta
values) for all soil samples subject to SEPmay aid to accuracy
evaluation, this would require thorough homogenization
(e.g., by fine grinding) of soils before taking subsample for
bulk analyses with accompanying risk of introducing con-
tamination and affecting distribution between phases.

2.3.1. Precision. 'e intermediate precision for concentra-
tion data, defined as the reproducibility of an analytic
technique from digestion to measurements on multiple
occasions by different analysts, for the reference standards
BCR-146R and CRM052 is <7% for most elements (Table 3).
For isotopic ratios, attainable precision varies significantly
between isotope systems and matrices studied. It should be
stressed that intermediate precision is about two times
greater than repeatability (Table 3) due to varying element
concentrations, slight variations in column yield, efficiency
of matrix separation and contamination during column
chemistry, instrumental optimization, etc. Intermediate
precision, defined in this manner, is therefore considered to
provide a valid assessment of the overall method uncertainty

or the analytical “resolution” of the procedure. For example,
due in large part to low absolute B concentrations, B isotope
ratio measurements in mushrooms have a mean uncertainty
of approximately 5‰ if performed on different occasions,
and natural variations in isotopic composition below this
level cannot be discerned.

2.3.2. Accuracy. Elemental concentrations in the aqua regia
digests were within the 90%–110% range of the certified
values for the CRMs except for Sr in CRM052 (Table 3).
Reanalysis of the digests by an alternative technique (ICP-
optical emission spectrometry) confirmed the double-
focusing sector field ICP-MS (ICP-SFMS) results and the
reason for our high reported Sr concentrations remains
unclear. 'e overall accuracy of the SEP was calculated by
summing the elemental concentrations in all the fractions in
GBW 07410 and ERM-CC141. 'e majority of elements
were within 10% of the certified values, but Cr concentra-
tions samples are around 80% of the certified values.

'e reference materials utilized in this study are not cer-
tified for isotopic composition, and, to the authors’ knowledge,
there is no other published isotope data for the measured
CRMs. 'erefore, the accuracy of the presented isotope ratio
data cannot be directly evaluated. Isotopic information for
CRMs presented in Table 3 can aid future interlaboratory
calibrations of new reference standards for such matrices.

3. Results and Discussion

3.1. Element Concentrations and Isotope Ratios in Environ-
mental Samples. Isotopic composition and concentration
data for each element studied is presented in Tables 4–12.
'e tables are formatted to show the soil profile information
for all six SEP fractions in the city and suburb locations (with
the reported concentrations representing an average of the
individual profiles). For some analytes, only pooled isotopic
ratio data is available (F1 + F2 + F3 and F4 + F5 + F6) due to
there being insufficient concentrations in the single ex-
tractions to make the isotopic measurements. Concentration
and isotopic ratio data for the top soils, lysimetric waters,
mushrooms, needles, leaves, lichens, and litter sample are
reported, for comparison, below the profile data.

Discussion in this section will start with an examination
of multielement patterns which help identify major pro-
cesses affecting all the samples. 'e multielement patterns
will be followed by a section focused on element-specific
patterns including relative differences between the city and
suburban samples and relative differences a function of soil
depth. Comparing the data between the city and the suburb
locations (and between upper and lower soil layers) gives an
indication of the isotopic and elemental signature of an-
thropogenic activity. Depth-related differences in the isotope
ratios of labile SEP fractions within the soil profiles might
reaffirm a potential role of gradual soil thawing during
spring-early summer in the availability of specific element
pools with variable isotopic composition to plant root
system, as suggested in previous studies [2, 30, 31]. It is
important to point out that differences in soil characteristics/

Table 1: Sequential extraction scheme.

Code Extracted
phase Solution Volume

(mL)
F1 Exchangeable Distilled water 40
F2 Carbonates 0.11M·CH3COOH (acetic acid) 40

F3 Reducible 0.1M·NH2OH·HCl
(hydroxylamine hydrochloride) 40

F4 Oxidizable 8.8M·H2O2 (hydrogen
peroxide) 10 + 10

1 M·CH3COONH4 (ammonium
acetate) pH 2 50

F5 Residual I Aqua regia 20
F6 Residual II HF 10
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morphology at each location may play an important role in
the differences observed. 'e final area of discussion will
highlight a case study involving environmental pollution.

3.1.1. Multielement Patterns

(1) Batch-Type Leach Water and Lysimeritc Waters. 'e
batch-type water leaches (fraction F1) and lysimetric waters

have similar elemental concentrations, with the exception of
Cu, Pb, and Zn, (assuming an average water to soil mass
ratio of 1 :10 for the F1 fraction). 'e concentrations of the
latter analytes are several orders of magnitude lower in
lysimetric waters than in the F1 fraction. Most of the isotopic
compositions of the elements follow a similar pattern.
Isotopic ratios of radiogenic elements (Pb and Sr) in the
F1 fractions from upper soil layers overlap the composi-
tions of lysimetric waters. 'e differences in the isotopic

Table 4: Boron concentrations and isotopic composition in environmental samples from Luleå.

Soil profiles Concentration, µg·g−1 DW δ11B, ‰
Fractions F1 F2 F3 F4 F5 F6 Total F1 F2 F3 F4 F5 F6 Total
City (n � 2)
0–15 cm 0.57 0.24 0.48 1.05 1.71 3.87 7.91 2 −9 −17 −12 −12 −7 −9
16–30 cm 0.21 0.16 0.15 0.35 0.62 2.88 4.38 −3 −11 −16 −13 −10 −19 −16
31–45 cm 0.04 0.11 0.04 0.09 0.38 1.90 2.56 −9 −11 −10 −15 −16 −24 −22
46–60 cm 0.04 0.15 0.02 0.06 0.34 1.86 2.47 −4 −6 −7 −15 −12 −23 −21
Suburb (n � 4)
0–15 cm 0.16 0.06 0.10 0.17 0.83 5.15 6.47 −25 −24 −17 −2 −17 −14 −14
16–30 cm 0.11 0.06 0.06 0.10 0.60 5.01 5.94 −7 −13 −8 −11 −15 −2 −4
31–45 cm 0.06 0.11 0.04 0.07 0.80 5.10 6.17 −10 −4 −2 10 −6 −4 −4
46–60 cm 0.05 0.09 0.04 0.05 0.58 4.75 5.56 −6 −2 −5 12 −14 −8 −9

Concentration, µg·g−1 DW
(µg·L−1 for waters) δ11B, ‰

Mean Median σ Min. Max. Mean Median σ Min. Max. Range
Top soils 8 7 7 2 53 −7 −8 7 −17 12 29
Lysimetric waters 10 7 12 5 54 4 4 3 −2 7 9
Mushroom 1.3 0.6 1.5 0.2 6.8 −8 −10 13 −24 3 27
Litter 21 NA NA NA NA 8 NA NA NA NA NA
Wood ash 290 NA NA NA NA 7 NA NA NA NA NA
Needles 14 13 6 6 31 17 19 9 −2 38 40
Leaves 21 18 13 7 76 10 10 9 −7 34 41
Lichens 2.7 2.4 1.1 1.6 6.6 32 37 9 13 40 27

Table 5: Cadmium concentrations and isotopic composition in environmental samples from Luleå.

Soil profiles Concentration, µg·g−1 DW δ114Cd, ‰
Fractions F1 F2 F3 F4 F5 F6 Total F1 F2 F3 F4 F5 F6 Total
City (n � 2)
0–15 cm 0.006 0.016 0.427 0.149 0.122 0.036 0.756 0.08 0.04 0.08 −0.19 −0.19 — −0.02
16–30 cm 0.003 0.012 0.137 0.056 0.049 0.032 0.289 0.17 0.40 0.09 −0.69 −0.31 — −0.10
31–45 cm 0.001 0.012 0.019 0.015 0.016 0.019 0.081 0.25 0.26 −0.02 −0.91 −0.24 — −0.15
46–60 cm 0.001 0.016 0.005 0.010 0.015 0.017 0.065 0.26 0.33 −0.06 0.00 −0.91 — −0.09
Suburb (n � 4)
0–15 cm 0.002 0.010 0.027 0.010 0.013 0.012 0.074 0.23 — — — — —
16–30 cm 0.001 0.027 0.012 0.008 0.009 0.011 0.069 — — — — — —
31–45 cm 0.001 0.026 0.008 0.005 0.010 0.010 0.061 — — — — — —
46–60 cm 0.001 0.025 0.003 0.006 0.009 0.012 0.056 0.19 — — — — —

Concentration, µg·g−1 DW
(µg·L−1 for waters) δ114Cd, ‰

Mean Median σ Min. Max. Mean Median σ Min. Max. Range
Top soils 0.66 0.51 0.32 0.13 2.40 0.08 0.09 0.14 −0.32 0.42 0.74
Lysimetric waters 0.04 0.03 0.05 0.01 0.22 0.22 0.19 0.07 0.14 0.34 0.20
Mushroom 1.6 1.2 1.4 0.03 5.0 0.15 0.23 0.28 −0.71 0.52 1.23
Litter 0.30 NA NA NA NA 0.17 NA NA NA NA NA
Wood ash 3.3 NA NA NA NA −0.33 NA NA NA NA NA
Needles 0.06 0.04 0.04 0.01 0.16 0.09 0.10 0.26 −0.52 0.56 1.08
Leaves 0.33 0.29 0.16 0.06 0.83 0.46 0.48 0.29 −0.60 1.31 1.91
Lichens 0.13 0.12 0.03 0.09 0.18 0.08 0.07 0.03 0.05 0.18 0.13
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compositions of B, Cd, and Fe between these two matrices
are also very minor. However, lysimetric waters were found
to be preferentially enriched in the heavy isotopes of Cr, Cu,
and Zn relative to the batch-type leach waters.

'e overall isotopic and elemental pattern is most readily
explained as the product of exchange between rainwater and

soil particles. In natural systems, weakly sorbed elements
such as Cu and Pb likely undergo reversible sorption and
their retention is strongly depended on meteoric percolation
dynamics.

At least for Cu and Zn, this portioning/sorption process
induces stable isotope fractionation [32].

Table 6: Chromium concentrations and isotopic composition in environmental samples from Luleå.

Soil profiles Concentration, µg·g−1 DW δ53Cr, ‰
Fractions F1 F2 F3 F4 F5 F6 Total F1 F2 F3 F4 F5 F6 Total
City (n � 2)
0–15 cm 0.09 0.18 0.14 7.5 7.7 9.5 25 −0.16 −0.11 0.38 0.04 0.04 0.11 0.04
16–30 cm 0.09 0.10 0.12 4.3 11 11 27 −0.13 −0.12 0.37 0.02 0.03 0.09 0.03
31–45 cm 0.09 0.03 0.06 2.8 11 8.8 23 0.05 0.10 0.21 0.04 0.02 0.11 0.04
46–60 cm 0.04 0.04 0.05 1.7 15 9.2 26 0.01 0.12 0.28 0.11 0.01 0.12 0.04
Suburba (n � 4)
0–15 cm 0.08 0.13 0.13 2.4 8.5 11 22 0.22 — — 0.11 — — 0.11
16–30 cm 0.09 0.06 0.13 2.0 5.8 10 18 — — — — — — —
31–45 cm 0.08 0.04 0.14 2.0 8.6 10 21 — — — — — — —
46–60 cm 0.10 0.02 0.16 1.9 7.8 9.0 19 0.16 — — 0.12 — — 0.12

Concentration, µg·g−1 DW
(µg·L−1 for waters) δ53Cr, ‰

Mean Median σ Min. Max. Mean Median σ Min. Max. Range
Top soils 21 18 16 4 68 0.10 0.07 0.143 −0.16 0.41 0.57
Lysimetric waters 4.3 4.4 0.4 3.9 5.1 0.26 0.26 0.01 0.25 0.27 0.02
Mushroom 0.12 0.10 0.12 0.01 0.63 NA NA NA NA NA NA
Litter 1.8 NA NA NA NA NA NA NA NA NA NA
Wood ash 70 NA NA NA NA 0.12 NA NA NA NA NA
Needles 0.23 0.21 0.19 0.05 0.97 NA NA NA NA NA NA
Leaves 0.26 0.22 0.15 0.10 0.95 NA NA NA NA NA NA
Lichens 2.2 1.6 1.1 1.5 4.2 0.36 0.36 0.11 0.21 0.57 0.36
aValues reported as empty entries are due to pooling of several fractions. 'e isotopic values reported for the outmost top and bottom layers for F1 and F4
correspond to averaged values of respectively soil profiles F1+F2+F3 and F4+F5+F6 fractions.

Table 7: Copper concentrations and isotopic composition in environmental samples from Luleå.

Soil profiles Concentration, µg·g−1 DW δ65Cu, ‰
Fractions F1 F2 F3 F4 F5 F6 Total F1 F2 F3 F4 F5 F6 Total
City (n � 2)
0–15 cm 0.33 0.58 0.08 26 11 1.2 39 0.10 0.05 0.38 0.23 0.29 0.06 0.26
16–30 cm 0.18 0.21 0.06 9.4 5.7 0.46 16 0.28 0.30 0.11 0.40 0.22 −0.23 0.31
31–45 cm 0.16 0.11 0.03 3.1 3.5 0.31 7.2 0.15 0.30 0.92 0.16 0.25 0.51 0.26
46–60 cm 0.14 0.15 0.05 2.0 3.9 0.34 6.6 0.27 0.41 1.04 0.68 0.22 −0.47 0.33
Suburb (n � 4)
0–15 cm 0.13 0.50 0.06 2.1 3.0 0.58 6.4 0.35 — — −0.14 — — −0.06
16–30 cm 0.12 0.17 0.06 1.9 2.1 0.37 4.8 — — — — — — —
31–45 cm 0.09 0.07 0.07 1.5 2.6 0.58 4.9 — — — — — — —
46–60 cm 0.08 0.05 0.06 1.2 2.0 0.39 3.8 0.06 — — −0.11 — — −0.10

Concentration, µg·g−1 DW
(µg·L−1 for waters) δ65Cu, ‰

Mean Median σ Min. Max. Mean Median σ Min. Max. Range
Top soils 15 11 11 3 84 0.06 0.01 0.21 −0.51 0.51 1.02
Lysimetric waters 0.6 0.5 0.2 0.4 1.1 0.76 0.72 0.17 0.64 0.99 0.35
Mushroom 44 39 25 10 120 −0.56 0.74 −2.4 0.62 3.02
Litter 7 NA NA NA NA −0.08 NA NA NA NA NA
Wood ash 180 NA NA NA NA −1.00 NA NA NA NA NA
Needles 3.2 3.0 0.9 2.1 5.2 −1.09 −1.15 0.58 −2.0 0.05 2.08
Leaves 7.1 5.3 3.4 3 17 −0.35 −0.33 0.35 −1.34 0.83 2.15
Lichens 4.6 4.5 1.0 3.1 7.1 0.05 0.05 0.20 −0.28 0.30 0.58
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(2) Biologic Samples. Comparing the compositions of the
biologic samples, i.e., lichen, mushrooms, and vascular plant
tissue, from the same location can help differentiate bio-
chemical variability from geochemical variability. Lichens
do not contain roots, and therefore, their composition is
expected to provide information on aerial (precipitation, sea
aerosols, and long range pollution) sources of elements [33].

Unlike lichens, fruit bodies of mushrooms and vascular
plant tissue are much less affected by direct contribution
from airborne sources, both because of very short duration
of exposure and significantly lower surface area/volume
ratio.

For many elements (Cd, Cu, Fe, Pb, and Zn), lichens
display a significantly narrower range of isotopic variability

Table 8: Iron concentrations and isotopic composition in environmental samples from Luleå.

Soil profiles Concentration, µg g−1 DW δ56Fe, ‰
Fractions F1 F2 F3 F4 F5 F6 Total F1 F2 F3 F4 F5 F6 Total
City (n � 2)
0–15 cm 26 110 420 2700 16000 6800 26000 0.21 0.21 −2.0 0.33 0.22 0.17 0.19
16–30 cm 48 31 290 2100 14000 6000 22000 0.10 0.24 −1.8 0.36 0.20 0.16 0.18
31–45 cm 75 15 200 740 12000 5300 18000 0.07 −0.67 −1.3 0.88 0.18 0.15 0.17
46–60 cm 39 17 160 330 14000 6000 21000 0.07 −1.4 −1.1 0.75 0.19 0.11 0.16
Suburb (n � 4)
0–15 cm 45 66 560 530 7000 6100 14000 −0.87 — — 0.09 — — 0.04
16–30 cm 73 33 620 780 5800 5100 13000 — — — — — — —
31–45 cm 54 10 630 550 7400 5500 14000 — — — — — — —
46–60 cm 54 7 580 460 7000 5400 13000 −0.49 — — 0.20 — — 0.16

Concentration, µg·g−1 DW
(µg·L−1 for waters) δ56Fe, ‰

Mean Median σ Min. Max. Mean Median σ Min. Max. Range
Top soils 19000 17000 9000 4100 72000 0.07 0.10 0.13 −0.33 0.45 0.78
Lysimetric waters 5200 5400 900 3600 5900 0.19 0.15 0.43 −0.20 0.91 1.11
Mushroom 130 40 330 17 2100 −0.48 −0.47 0.35 −1.16 0.26 1.42
Litter 1180 NA NA NA NA 0.07 NA NA NA NA NA
Wood ash 3500 NA NA NA NA 0.67 NA NA NA NA NA
Needles 140 110 110 33 440 −0.41 −0.35 0.41 −1.4 0.05 1.45
Leaves 200 160 150 61 1500 −0.29 −0.26 0.20 −0.84 0.09 0.93
Lichens 250 210 110 150 500 −0.09 −0.09 0.04 −0.14 −0.02 0.12

Table 9: Lead concentrations and isotopic composition in environmental samples from Luleå.

Soil profiles Concentration, μg·g−1 DW 206Pb/207Pb/208Pb/207Pb
Fractions F1 F2 F3 F4 F5 F6 Total F1 F2 F3 F4 F5 F6 Total
City (n � 2)
0–15 cm 0.31 0.02 3.2 52 30 5.9 91 1.14/2.37 1.16/2.41 1.15/2.39 1.15/2.42 1.17/2.43 1.10/2.34 1.15/2.41
16–30 cm 0.17 0.02 0.75 9.4 18 6.6 35 1.17/2.43 1.20/2.43 1.16/2.43 1.17/2.43 1.20/2.44 1.09/2.33 1.17/2.41
31–45 cm 0.08 0.02 0.27 1.3 7.7 4.3 14 1.28/2.50 1.23/2.46 1.22/2.49 1.28/2.51 1.35/2.49 1.13/2.34 1.27/2.44
46–60 cm 0.02 0.03 0.08 0.15 4.3 4.9 9.4 1.42/2.61 1.35/2.54 1.42/2.60 1.42/2.58 1.54/2.62 1.13/2.34 1.32/2.47
Suburb
(n � 4)
0–15 cm 0.04 0.04 0.54 1.2 5.9 5.9 14 1.32/2.57 1.35/2.58 1.29/2.54 1.32/2.56 1.38/2.55 1.08/2.32 1.24/2.44
16–30 cm 0.04 0.08 0.34 0.26 4.6 5.5 11 1.30/2.55 1.25/2.53 1.26/2.48 1.30/2.51 1.37/2.55 1.08/2.32 1.22/2.43
31–45 cm 0.04 0.08 0.19 0.52 4.2 6.8 12 1.33/2.56 1.23/2.50 1.29/2.52 1.38/2.64 1.42/2.58 1.08/2.32 1.21/2.42
46–60 cm 0.02 0.07 0.07 0.05 3.2 7.4 11 1.44/2.64 1.22/2.50 1.46/2.61 1.54/2.69 1.55/2.64 1.08/2.32 1.21/2.41

Concentration, µg·g−1 DW (µg·L−1

for waters)
206Pb/207Pb/208Pb/207Pb

Mean Median σ Min. Max. Mean Median σ Min. Max. Range
Top soils 18 16 21 5 470 1.35/2.49 1.34/2.50 0.15/0.01 1.05/2.30 1.77/2.61 0.72/0.31
Lysimetric
waters 0.50 0.40 0.40 0.03 1.1 1.17/2.45 1.17/2.44 0.03/0.02 1.10/2.42 1.20/2.47 0.10/0.05

Mushroom 0.17 0.11 0.14 0.01 0.51 1.18/2.45 1.17/2.45 0.04/0.03 1.10/2.41 1.30/2.56 0.20/0.15
Wood ash 6.4 NA NA NA NA 1.15/2.40 NA NA NA NA NA
Litter 2.3 NA NA NA NA 1.16/2.42 NA NA NA NA NA
Needles 0.15 0.12 0.11 0.02 0.54 1.18/2.42 1.18/2.42 0.03/0.03 1.11/2.34 1.26/2.47 0.15/0.21
Leaves 0.29 0.21 0.29 0.04 2.1 1.18/2.44 1.18/2.43 0.03/0.02 1.11/2.39 1.25/2.49 0.14/0.10
Lichens 1.9 1.8 0.4 1.3 2.6 1.14/2.38 1.14/2.38 0.01/0.01 1.14/2.37 1.15/2.40 0.01/0.03
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than mushrooms, leaves, and needles. 'is is probably a re-
flection of the isotopically homogenous nature of Aeolian
inputs combined with limited biologic fractionation of stable
isotopes within lichen [16, 34, 35]. Lichens have significantly
higher concentrations of Cr, Pb, and Tl and lower concen-
trations of B and Sr relative to leaves and needles.'is indicates
that atmospheric pollution is a significant source for heavy
metals in the region relative to potential geologic sources.

'e mushrooms are not only accumulating Cd, Cu, and
Zn relative to the water-leachable element fraction of soils,
but, with the exception of Cd, the isotopic composition of
these metals also differs between the mushrooms and lysi-
meric waters and/or the local soil. 'e most likely expla-
nation of this isotopic fractionation is the active uptake of
heavy metals by siderophilic root exudates. Lithophilic and
chalcophilic elements (B, Cd, Pb, Sr, and Tl) do not appear to

Table 10: Strontium concentrations and isotopic composition in environmental samples from Luleå.

Soil profiles Concentration, µg·g−1 DW 87Sr/86Sr
Fractions F1 F2 F3 F4 F5 F6 Total F1 F2 F3 F4 F5 F6 Total
City (n � 2)
0–15 cm 0.5 2.3 11 5.4 6.4 141 167 0.730 0.734 0.734 0.733 0.732 0.727 0.727
16–30 cm 0.3 1.7 5.1 3.0 6.0 138 154 0.727 0.734 0.733 0.735 0.733 0.731 0.732
31–45 cm 0.1 1.2 1.0 0.70 7.0 161 171 0.724 0.734 0.728 0.726 0.735 0.727 0.727
46–60 cm 0.1 1.2 0.60 0.50 7.7 170 180 0.727 0.743 0.724 0.727 0.747 0.727 0.728
Suburb (n � 4)
0–15 cm 0.3 0.6 1.2 0.62 6.5 146 146 0.727 — — 0.732 — — 0.732
16–30 cm 0.2 1.1 0.69 0.42 4.8 148 148 — — — — — — —
31–45 cm 0.1 1.5 0.41 0.33 6.0 179 179 — — — — — — —
46–60 cm 0.1 1.4 0.32 0.31 5.1 188 188 0.729 — — 0.733 — — 0.733

Concentration, µg·g−1 DW
(µg·L−1 for waters)

87Sr/86Sr

Mean Median σ Min. Max. Mean Median σ Min. Max. Range
Top soils 25 23 15 3 150 0.731 0.731 0.004 0.723 0.739 0.016
Lysimetric waters 12 10 2 8 12 0.733 0.733 0.001 0.732 0.733 0.010
Mushroom 0.5 0.3 0.2 0.1 1.8 0.729 0.727 0.006 0.721 0.750 0.039
Litter 28 NA NA NA NA 0.731 NA NA NA NA NA
Wood ash 950 NA NA NA NA 0.732 NA NA NA NA NA
Needles 18 15 16 2 63 0.734 0.733 0.007 0.724 0.754 0.030
Leaves 34 31 16 6 120 0.730 0.730 0.005 0.721 0.742 0.024
Lichens 8.3 7.4 3.9 2.5 16 0.733 0.731 0.006 0.725 0.742 0.017

Table 11: 'allium concentrations and isotopic composition in environmental samples from Luleå.

Soil profiles Concentration, µg·g−1 DW δ205 Tl, ‰
Fractions F1 F2 F3 F4 F5 F6 Total F1 F2 F3 F4 F5 F6 Total
City (n � 2)
0–15 cm 0.004 0.002 0.024 0.046 0.058 0.32 0.45 0.36 0.10 −0.02 −0.32 −0.45 −0.47 −0.42
16–30 cm 0.001 0.001 0.009 0.024 0.070 0.40 0.50 0.36 0.12 0.00 −0.39 −0.40 −0.49 −0.46
31–45 cm 0.0003 0.0007 0.002 0.006 0.051 0.30 0.36 0.20 −0.10 −0.21 −0.28 −0.27 −0.54 −0.50
46–60 cm 0.0002 0.0006 0.002 0.004 0.064 0.31 0.39 0.18 −0.07 −0.26 −0.38 −0.28 −0.57 −0.52
Suburb (n � 4)
0–15 cm 0.001 0.001 0.004 0.007 0.081 0.48 0.57 −0.08 — — −0.52 — — −0.51
16–30 cm 0.001 0.0008 0.003 0.005 0.054 0.50 0.56 — — — — — — —
31–45 cm 0.0007 0.0007 0.002 0.004 0.074 0.53 0.62 — — — — — — —
46–60 cm 0.0005 0.0006 0.002 0.003 0.056 0.55 0.61 −0.12 — — −0.62 — — −0.62

Concentration, µg·g−1 DW
(µg·L−1 for waters) δ205 Tl, ‰

Mean Median σ Min. Max. Mean Median σ Min. Max. Range
Top soils 0.26 0.20 0.26 0.03 3.2 −0.61 −0.61 0.17 −0.95 −0.20 0.70
Lysimetric waters 0.04 0.04 0.024 0.002 0.07 −0.14 −0.17 0.07 −0.22 −0.05 0.17
Mushroom 0.015 0.009 0.016 0.002 0.081 −0.18 −0.28 0.30 −0.62 0.42 1.04
Litter 0.030 NA NA NA NA −0.41 NA NA NA NA NA
Wood ash 0.230 NA NA NA NA −0.27 NA NA NA NA NA
Needles 0.010 0.010 0.020 0.001 0.090 −0.31 −0.38 0.21 −0.63 0.16 0.89
Leaves 0.006 0.004 0.007 0.001 0.043 −0.30 −0.39 0.16 −0.42 −0.09 0.33
Lichens 0.023 0.009 0.024 0.004 0.060 −0.53 −0.54 0.10 −0.72 −0.41 0.31
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be significantly fractionated by mushrooms. 'e mush-
rooms’ ability to accumulate Cd without inducing isotopic
fraction may indicate an alternative biochemical mechanism
for element uptake in mushrooms.

It is difficult to identify any clear patterns in the leaf and
needle data (Tables 4–12). 'is may be a result of the far
greater biochemical complexities of higher plants causing a
much wider spread of interspecies and intertree isotopic
variability. 'e litter layer was sampled to study potential
isotopic shift related to nutrient reabsorption back into tree
during late stages of senescence [36]. However, preliminary
analysis of Fe and Pb concentration data demonstrate that
the litter had become significantly contaminated by soil
particles. 'e isotope signature of leaves in late stage of
development therefore overlapped with the isotopic com-
position of the top soils.

3.1.2. Single-Element Patterns

(1) Boron. Total B concentrations in the soil profile decrease
with depth in the city samples, but not in the suburban
samples (Table 4). Between 80% and 95% of the total B

content was associated with the refractory phases (F5-F6)
consistent with mineral bound B being the main source of B
in the soils [37]. Secondary mineral formation is associated
with the preferential incorporation of 10B into the secondary
minerals [38] resulting in a heavier residual B composition
in solution. 'is process appears to be the best explanation
of the composition of the lysimetric waters in the present
study (δ11Bwater-soil ≈+11‰). 'e B isotopic composition of
the mobile fraction trends towards a heavier signature in the
upper soil layers, probably reflecting input from vegetation
with plant biomass having distinctly heavier values
(δ11Bleaves/needles-soil ≈+20‰).

'ere is a notable trend towards heavier B isotopic
signatures in the direction soil< plants< lichens with soil
consistently characterized by negative δ-values and plant
materials always having positive δ11B. Boron is not thought
to be strongly fractionated by biological activity [39]; thus,
this trend can, at least partially, also be explained by source
mixing. 'e isotopic composition of the lichens (mean value
of +32% for δ11B) will be affected by aerial marine aerosols
with δ11B of about +40% [40], and the influence from this
source could also explain the isotopic composition of leaves
and needles in coastal regions. 'e total span of δ11B values

Table 12: Zinc concentrations and isotopic composition in environmental samples from Luleå.

Soil profiles Concentration, µg·g−1 DW δ66Zn, ‰
Fractions F1 F2 F3 F4 F5 F6 Total F1 F2 F3 F4 F5 F6 Total
City (n � 2)
0–15 cm 7.2 230 180 96 38 13 560 −0.13 −0.07 0.01 0.02 −0.24 0.30 −0.04
16–30 cm 17 100 260 120 45 14 560 −0.17 −0.17 −0.14 −0.11 −0.31 0.32 −0.14
31–45 cm 5.4 49 35 18 23 11 140 0.01 −0.07 −0.09 −0.06 −0.01 0.34 −0.01
46–60 cm 4.9 35 12 7.4 22 11 91 0.01 0.02 0.04 0.00 0.30 0.37 0.15
Suburb (n � 4)
0–15 cm 7.9 75 27 5.6 15 12 140 −0.23 — — 0.11 — — −0.09
16–30 cm 10 49 24 5.5 11 11 110 — — — — — — —
31–45 cm 7.6 110 13 3.4 14 10 160 — — — — — — —
46–60 cm 10 28 14 3.6 15 10 84 −0.13 — — 0.10 — — 0.03

Concentration, µg·g−1 DW
(µg·L−1 for waters) δ66Zn, ‰

Mean Median σ Min. Max. Mean Median σ Min. Max. Range
Top soils 93 83 72 28 640 0.18 0.16 0.20 −0.47 0.69 1.16
Lysimetric waters 5.0 4.6 3.2 1.3 11 0.15 0.14 0.13 −0.05 0.30 0.35
Mushroom 120 110 50 40 260 0.58 0.55 0.36 −0.16 1.25 1.41
Litter 220 NA NA NA NA 0.00 NA NA NA NA NA
Wood ash 6200 NA NA NA NA −0.45 NA NA NA NA NA
Needles 51 50 19 22 96 −0.09 −0.08 0.30 −0.96 0.67 1.64
Leaves 220 180 140 11 800 −0.13 −0.11 0.21 −0.94 0.24 1.18
Lichens 57 60 8 36 70 0.04 0.07 0.06 −0.07 0.11 0.17

Table 13: Concentration and isotopic data for two contaminated soils (landfill A and landfill B) and waste samples from local industries (Fe,
Cu slag, and fly ash).

Cd, µg·g−1 δ114Cd Cr, µg·g−1 δ53Cr Cu, µg·g−1 δ63Cu Fe, % δ56Fe Zn, µg·g−1 δ66Zn Pb, µg·g−1 206Pb/207Pb
Landfill A 1.5 0.0 450 0.2 2700 −1.0 15 0.4 1100 1.4 40 1.32
Landfill B 0.6 −1.5 2600 0.1 170 −1.4 10 1.0 180 −0.2 170 1.17
Fe slag 0.2 0.1 4100 0.1 100 0.7 12 0.9 150 −0.7 250 1.16
Cu slag 11 −0.2 650 0.1 16000 0.1 35 0.4 12000 0.0 200 1.17
Fly ash 1.1 1.7 50 0.2 25 0.3 2.7 0.2 50 0.6 15 1.21
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for our samples vary by around 64‰ (Table 4), corre-
sponding to almost half of the published span of δ11B values
[41]. More interestingly, the results for our bioindicator
samples (mushrooms, needles, leaves, and lichens) show
similar variability to coffee beans collected from vastly
different geographic areas [8, 42] (Table 4). Overall, the B
isotope systems appear to have characteristics which favor its
use as an abiotic tracer of source mixing.

(2) Cadmium. 'e soil in the city locations contained sig-
nificantly more Cd than the suburban location (Table 5).
Such concentration difference is more pronounced in the
surface soil layers compared to deeper profiles. For example,
the upper most layers of the city soil profiles contain, on
average, about 10 times the concentration found in the
deepest inorganic layer. 'e major part of Cd is present in
relatively mobile phases as about 70% of the total soil Cd was
found in fractions (F1-F2-F3-F4). 'e reducible fraction
(F3) contains especially high concentrations of Cd. 'is
pattern suggests an anthropogenic source of Cd in the urban
soil samples, but Cd isotopes do not appear a reliable means
of identifying the pollution source.

Published variations of δ114Cd values in rock and
mineral samples do not exceed 1‰, excluding the extreme
fractionation values published for extraterrestrial material
[43]. 'is relatively narrow fractionation span (corre-
sponding to 0.25‰ per mass unit) is small compared to light
elements such as Li and B, reflecting less relative mass
difference between Cd isotopes. 'e mass balanced soil Cd
pool has an isotopic composition equal within measurement
uncertainty to δ114Cd � 0‰ and the fractions with highest
Cd concentrations do not have a distinct isotope signature.
Cadmium isotopes do however appear to be influenced by
biological activity.

'ere are limited published data on the Cd isotope
ratios of nongeologic material, while geologic matrixes
display a narrow range of isotope compositions. 'e range
in δ114Cd values found in the leaves from the studied area
(almost 2‰, Table 5) by far exceeds the variability of the
geologic samples and the soil and lysimetric waters in this
study. 'us, significant Cd fractionation occurs during Cd
uptake or incorporation into the leaves. Biologically me-
diated fractionation appears to be the best explanation of
the heavier Cd isotopic composition in bioindicators
[2, 21]. It has been proposed [44] that carrier-mediated
transport plays a major role in the root uptake process for
Zn, and such process, also defined high-affinity transport,
has been associated to a preferential translocation of
heavier isotopes. Preferential incorporation of the heavy
isotopes could explain also the observed shift between
soil and leave isotope signatures (average δ114Cdsoil-leaves ≈
−0.4‰), as confirmed in recent studies [45], as well as the
negative δ114Cd for the residual/immobile Cd pool in the
soils.

(3) Chromium. 'ere are minor differences in soil Cr
concentrations between the sample locations (Table 6). Top
soils have slightly lower Cr contents, which is probably due
to dilution by Cr-poor organic material (offal). 'e mobile

fractions contain only a minor share of the total Cr pool
irrespective of location or depth; on average, 83–88% of the
total Cr is associated with residual phases. Cr isotopic
compositions are very homogenous with practically all ratios
in soils being the same within the uncertainty of the method
(Table 3).

'e Cr content of mushrooms, needles, and leaves was
too low for accurate isotopic ratio measurements. δ53Cr
values increased from soil-to-soil solution to lichens. Wet
deposition could be the explanation for the heavy signature
found for δ53Cr in lichens [46].'ere is a positive correlation
between Cr concentrations and increasing proximity to
chromite processing steelworks and a negative correlation
between δ53Cr values and increasing proximity to the
steelworks implicating the smelter as the primary airborne
Cr contributor in the area.

(4) Copper. Highest concentrations of Cu were found in the
upper soil horizons from the city location and concentra-
tions decrease with depth (Table 7). Similarly to Cd soil
distribution, Cu is significantly less stratified in the suburb
soil than in the soil from the city. However, Cu is bound in
soils in a different pool than Cd. Most of the Cu in top soil
resides in the oxidizable fraction (F4), generally associated
with organic matter. 'e smallest Cu pool was found within
the F3 fraction in all depths and at all sample locations.
Hence, Cu is not associated with Mn and Fe-oxides in the
soil profiles.

'e Cu isotopic ratios show no notable variations with
soil depth. 'e Cu in the city soils has a heavy isotopic
signature, while the suburban soil has a δ65Cu value of
approximately −0.1‰. 'is is consistent with previously
reported findings for soil systems affected by Cu from an
anthropogenic source [47], affirming that Cu isotopes can be
used an indicator of anthropogenic pollution.

'e biological samples have lighter Cu isotopic com-
position relative to the soil and lysimetric waters (Table 7). A
shift towards lighter δ65Cu in vegetation is consistent with
the previous reports of Cu fractionation in plants (e.g., [48]),
and a similar general pattern was reported for other nu-
trients [21, 49]. However, the fractionation may not be a sole
result of a biomediated reaction. While reduction in the
rhizosphere by organic exudates is associated with the
fractionation of the bioavailable pools of Fe and Cu towards
lighter values, a biotic reduction has the same effect at least
for Fe [50].

(5) Iron. 'e total concentrations of Fe in city soil samples
are approximately twice than those found in the suburbs
(Table 8). However, unlike Cu and Cd, Fe concentrations do
not change significantly with depth, and the majority of Fe
was bound on the F5 and F6 fractions thus associated with
primary bedrockmineral phases. Fe is one of the least mobile
elements during chemical weathering creating the potential
for soil iron concentrations to increase with increasing
weathering intensity. 'is is consistent with the elevated Fe
concentrations in the city soil probably reflecting a higher
degree of chemical weathering, caused by a longer exposure,
than the suburban soils.'e iron isotopic composition of the
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city soil with the average δ56Fe value � 0.16‰ is within the
range of values reported for granite reference materials (0.13
± 0.12‰, [51]).

Clear iron isotopic variability within soil fractions is
consistent with chemical weathering being the dominant
driver of iron cycling in the soil. Iron isotopic composition
of the F3 and F4 fractions resemble findings of previous
studies [52, 53] attributing such variations to kinetic frac-
tionation as a result of chemical weathering. 'e compo-
sition of leaching solutions used here for F1 and F2 soil
fractions are different from those used in separation schemes
designed specifically for Fe [54], which makes it difficult to
compare the patterns. However, as mentioned in the pre-
vious section, redox processes may strongly fractionate iron
(δ56FeII-III � −3‰ [55]). It is possible that the Fe isotopic
fractionation between the F1 and F2 fractions in the upper
30 cm and lower 30 cm reflects a soil redox change with the
lower (deeper?) soils being enriched in Fe2+.

(6) Lead. Lead concentrations display the classic pattern
expected for anthropogenic pollutant in soils. In deeper soil
layers (depths >30 cm), Pb concentrations are constant at
both locations. In the city location, there is a significant
increase in Pb concentrations in the upper soil layers while
Pb concentrations are constant at the surburb location. 'e
excess Pb in the upper most city soil also has a significantly
different Pb isotope composition than the geologic Pb in the
region.

'e isotopic composition of the Pb pool in the suburban
samples is within the range of agricultural soils reported for
northern Sweden [56]. 'e upper soil horizons from the city
soil contain Pb with a significantly less radiogenic value.
Back calculating the isotopic composition of this excess Pb
(assuming end-member mixing) provides a value near that
found inmodern lichen 206Pb/207Pb � 1.14 and 208Pb/207Pb �

2.38 (Table 9) [57]. All the bioindicators studied here have a
significantly less radiogenic isotopic composition than the
presumed natural Pb baseline in deep soil horizons.

'e absence of increased Pb in the suburban samples
suggests that pollution is more local than what might be
expected based on other locations in northern Sweden [58],
and it might be explained by the relatively short time interval
since the area emerged from the sea.'e existence of various
local pollution sources also appears to be evident in the wide
spread of Pb isotopic ratios found in birch leaves and pine
needles around Luleå.

Moving away from using Pb as a pollution tracer, the
selective extractions also highlight that the influence pref-
erential mineral weathering can have on the isotopic
compositions of Pb pools within soils. 'e residual fraction
F6 (HF digestion) of the SEP used in the present study
contains a uniform Pb concentration at all locations and
depths with significantly less radiogenic Pb isotopic com-
position than in other fractions (Table 9). Similarly, in a
study of sediments from 31 lakes in Sweden [59], lower
206Pb/207Pb ratios were found in samples prepared using HF
digestion compared to those treated using HNO3 + HClO4
(10 :1 v/v). 'is was attributed to the Pb contribution from
feldspars, which are more resistant to chemical weathering

than most other minerals. In the present study, potassium
feldspar is the main Pb carrier in the silicate soil fractions
[60]. 'e majority of radiogenic Pb, formed in silicates by
238U, 235U, or 232' decay, might be efficiently leached in the
first five SEP fractions. 'is leaves the final HF fraction-
ation with a less radiogenic isotope composition reflecting
those for the time of mineral formation approximately 2Ga
years ago.

(7) Strontium. Total Sr concentrations display little vari-
ability across the dataset (Table 10). Top soils have slightly
lower Sr concentrations, as for Cr most likely reflecting di-
lution effects by organic matter. 'emajority of Sr is found in
the residual fractions (F5-F6), suggesting most of the element
is bound in refractory mineral phases within the soil.

Mean 87Sr/86Sr ratios in all environmental matrices from
Luleå fall into a relatively narrow range (0.729–0.734) with
little differences in isotopic composition between soil and
bioindicators. 'us, unlike B, Sr in needles, leaves, and li-
chens appears to be of a terrestrial rather than marine origin;
seawater aerosols have less radiogenic Sr isotope ratios [61].
To a significant degree, the homogeneity of the 87Sr/86Sr
ratios is expected given the composition of the local bedrock
[60, 62].

Strontium isotopic ratios, primary variations in radio-
genic 87Sr abundance, have been extensively used for au-
thentication and provenance studies [4]. Waters, crops,
livestock, a variety of food products and ultimately man are
known to reflect the Sr isotopic ratios typical for the geo-
logical setting in which they occur [63]. Strontium isotopic
systematics has been also used, in combination with other
systems, to trace anthropogenic sources in the environment
[10, 11, 64].

(8) =allium. Total Tl concentrations in soils from city and
suburban locations vary over a very limited range of ap-
proximately 0.4–0.6 µg·g−1 at all depths (Table 11). 'allium
predominantly resides in the residual fractions (98% of Tl
recovered in leachates F5-F6) most likely in the crystalline
structure of silicate minerals such as potassium feldspar and
quartz [65]. Concentration of the remaining Tl fractions,
associated with reducible and oxidizable phases, is signifi-
cantly higher in top soil from the city than that in the suburb.
Our findings reaffirm previously reported Tl speciation data
for rhizospheric soils [66].

'ere is very limited data on Tl isotopes in environ-
mental samples if compared to other more “traditionally”
studied isotopic systems. Tl isotopic ratio data from con-
taminated soils have been reported in literature with a δ205Tl
value of ≈−0.3‰ relative to the natural background, with
average Tl concentrations of 0.75 µg·g−1 [67].'e same study
reported a lighter Tl signature with increasing soil depth in
both the extractable and the residual fractions which is
similar to our findings (Table 11).

F1 and F2 soil fractions have positive δ205Tl values. 'is
heavier signature is then can be traced in significantly higher
δ205Tl found in lysimetric waters, which in turn may con-
tribute to the heavier Tl ratios found in mushrooms, needles,
and leaves (Table 11).
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(9) Zinc. Zinc concentrations follow a similar pattern as for
Pb.'e top soil layers from the city are significantly enriched
in Zn while deeper soil horizons are characterized by more
uniform concentrations (Table 12). 'e majority of Zn was
found in the first four fractions (80–90% leached in F1−F4),
suggesting that source of anthropogenic Zn, like Pb, contains
the element in a readily mobile form. Isotopic composition
patterns for Zn and Pb show little similarities.

'e deep soil layers (46–60 cm) have Zn isotopic com-
positions consistent with that of the local bedrock (−0.05–
1.5‰; converted from the “Lyon” JMC 3–0749 L standard)
[47]. 'e soil horizons with the highest Zn concentrations
seem to be slightly enriched in the light isotopes of Zn, but the
trend is not overly convincing. Previous studies reported that
exogenous dust deposition does cause measurable shift in
soils Zn isotopic composition [68] which otherwise is rela-
tively constant [30] for less contaminated soils. 'is suggests
that the source of anthropogenic Zn has a Zn isotope
composition very close to the local bedrock. Previously, Zn
fractionation in soil horizons was attributed to sorption onto
the Fe oxyhydroxides [47].

'e mean δ66Zn of top soils and lysimetric waters is
approximately +0.2‰, while a significantly higher value of
+0.6‰ was found in mushrooms indicating preferential
uptake of heavier isotopes. 'e mechanism(s) of uptake of
heavy metal ions by fungi can be via either an active or
passive [69], and the prevailing heavier Zn signature in
mushrooms compared to the soil pool suggests an active
uptake strategy. On the contrary, Zn in needles and leaves is
isotopically lighter most likely as a result of fractionation
processes during Zn translocation through the shoot [70],
favoring lighter isotopes.

3.2. Landfills and IndustrialWastes. Pollution source tracing
using isotopic data can be challenging for a number of
reasons:

(i) 'e composition of potential sources is seldom
represented by isotopically well-defined end
members

(ii) 'e isotopic signature of potential sources may
overlap natural isotopic variability

(iii) Even where end-member compositions are distinct
and well-constrained, there might be a large number
of potential sources

(iv) For stable isotopes, numerous postdeposition
fractionating processes may alter the original ratios
(see, e.g., [4])

In order to demonstrate the severity of these compli-
cating factors, concentration and isotopic data for waste
samples from local industries (Cu slag, Fe slag, and fly ash)
and two heavily contaminated soils (landfills) were obtained
(Table 13). 'ese waste samples are very likely to be a major
contributor to the landfills, and the goal of the exercise was
to attempt identification of the presence of the industrial
waste materials in the landfill using concentration patterns
and isotopic fingerprints.

Both landfills are high in Cd with Cd concentrations at
least 10 times higher than those found in the soil from
the suburb location. 'e Cd in landfill A is relatively
unfractionated which may point towards Cu slag as the most
likely source of the element as Cd found in Cu slag has an
isotopic composition undistinguishable from the mean for
top soils. Fly ash, on the contrary, is significantly enriched in
heavier Cd isotopes. Copper slag is also significantly
enriched in Cu, Zn, and Fe relative to the other pollution
sources so these elements would be expected to be enriched
in landfill A if Cu slag was indeed the source of Cd. 'is fits
very well with the concentrations measurements of landfill A
(Table 13). 'is raises the question of why the Zn and Cu
isotopic compositions of landfill A are nothing like the Zn
and Cu isotopic compositions of Cu slag.

Based on the overall elemental concentrations of Zn and
Cu in landfill A, it is hard to imagine that source mixing can
account for the isotopic offset between the slag and the
landfill. 'is is because it would take an enormous quantity
of these elements from a highly fractionated source to attain
the isotope composition of the landfill if there is really slag
present in the landfill. Alternatively, post depositional
processes might significantly alter the isotopic composition
of landfill, though this contradicts by the observed lack of
fractionation of Fe isotopes in landfill A. 'e Fe isotope
compositions of landfill A and Cu slag are identical, and
most processes which heavily fractionate Cu and Zn isotopes
would also be expected to fractionate Fe isotopes.

'e picture is not clarified by the evaluation of landfill B.
Landfill B has a number of characteristics pointing towards
Fe slag being the primary source of contamination with fly
ash being a second significant source of contaminants. 'e
Fe, Zn, Cu, Cr, and Cd concentrations and Cr, Fe, and Zn
isotope compositions of landfill B are consistent with Fe slag
mixed with some fly ash. At the same time, the Cu and Cd
isotopic composition of landfill B requires an alternative
explanation. It is possible that Cu isotopes are just not a
reliable tracer of pollution sources in these landfills, but it is
harder to account for Cr and Zn isotopes. 'e systems
appear reliable in one of the landfills but not in the other.

Overall this case study highlights that pollution source
mixing can be challenging, but the difficulty is proportional
to the number of elements and isotopes measured. We
cannot readily account for the behaviour of all the systems
we measured, but a weight-of-evidence approach allows for
the potential sources of pollution identified with some
certainty. 'at is while any number of factors may com-
plicate source tracing, they do not render the process total
ineffective.

4. Conclusions

It is now technically feasible to rapidly analyze not only the
trace metal composition of a broad range of the environ-
mental samples but also the isotope compositions of all
the metals. Expanding the number of elements utilized in
isotope tracing provides a powerful way to decipher sources
and fate of environmental exposure by adding degrees
of freedom to the process. However, it also becomes
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increasingly complex to interpret large multielement data
set. All the samples in this study were collected from spatially
limited area, but a number of the analytes still displayed a
significant range of concentration and isotopic values. As
expected, the different elements also appear to be responding
to different drivers such that for any given question, mea-
suring more elements does not result in better/clearer an-
swers. 'is highlights the need to simultaneously advance
our understanding of single-element systems while pro-
gressing the technical capabilities required to measure more
elements in more matrices. Natural variability, which often
far exceeds the intermediate precision of the analytical
method, needs to be considered when interpreting results of
environmental studies.
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