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ABSTRACT
Semi-analytic galaxy formation models are widely used to gain insight into the astrophysics
of galaxy formation and in model testing, parameter space searching and mock catalogue
building. In this work, we present a new model for gas cooling in haloes in semi-analytic
models, which improves over previous cooling models in several ways. Our new treatment
explicitly includes the evolution of the density profile of the hot gas driven by the growth of the
dark matter halo and by the dynamical adjustment of the gaseous corona as gas cools down. The
effect of the past cooling history on the current mass cooling rate is calculated more accurately,
by doing an integral over the past history. The evolution of the hot gas angular momentum
profile is explicitly followed, leading to a self-consistent and more detailed calculation of the
angular momentum of the cooled down gas. This model predicts higher cooled down masses
than the cooling models previously used in GALFORM, closer to the predictions of the cooling
models in L-GALAXIES and MORGANA, even though those models are formulated differently. It
also predicts cooled down angular momenta that are higher than in previous GALFORM cooling
models, but generally lower than the predictions of L-GALAXIES and MORGANA. When used in a
full galaxy formation model, this cooling model improves the predictions for early-type galaxy
sizes in GALFORM.
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1 IN T RO D U C T I O N

Understanding galaxy formation is a central aim of astrophysics.
Galaxies are interesting objects in their own right. In addition, they
are a tracer of the large-scale matter distribution, which is impor-
tant for the study of cosmology, and also provide the background
environment for astrophysical processes happening on small scales,
such as star formation and black hole growth. Despite its impor-
tance, many aspects of galaxy formation remain poorly understood,
because of the complexities of the physical processes involved.

Currently, there are two major theoretical approaches to studying
galaxy formation: hydrodynamical simulations and semi-analytic
(SA) models, both of which have advantages and disadvantages.
Hydrodynamical simulations provide a more detailed picture of
galaxy formation by numerically solving the equations governing
this process, but at large computational expense. This limits their
ability to generate large galaxy samples. To derive a representa-
tive sample of galaxies, hydrodynamical simulations have to be
performed in cosmological volumes. Such simulations necessarily
employ parametrized subgrid models for many physical processes
happening on small scales, due to limited numerical resolution; their
large computational expense makes it difficult to explore the entire
parameter space. In contrast, SA models (e.g. White & Frenk 1991;
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Baugh 2006) develop a coarse-grained picture of galaxy forma-
tion by focusing on global properties of a galaxy, such as total
stellar mass, total cold gas mass, etc. SA models view many such
quantities as reservoirs, and the physical processes driving the evo-
lution of them, such as gas cooling, star formation, feedback and
galaxy mergers, are viewed as channels connecting the correspond-
ing reservoirs. Simplified analytic descriptions are used to model
these channels, and to evolve the global properties from the initial
time to the output time. Many SA models also contain simplified
recipes for calculating galaxy sizes. SA models calculate the evo-
lution in less detail than hydrodynamical simulations, but are much
less computationally expensive. SA models make it easy to gen-
erate large mock catalogues and to search parameter space, so SA
models can be very complementary to hydrodynamical simulations.
Moreover, SA models are more flexible, and one can easily apply
different models for a given physical process, which makes these
models an ideal tool for testing different modelling approaches and
different ideas about which physical processes are important.

Although the prescriptions in SA models are generally simpli-
fied, it is still important to make them as physically consistent as
possible. This lays the foundation for the realism and reliability
of the resulting mock catalogues, and also reduces the extent of
false degrees of freedom generated by the model parametrization,
so that parameter space searches produce more physically useful
information. In this work, we focus on the modelling of gas cooling
and accretion in haloes. In hierarchical structure formation models,
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dark matter haloes grow in mass through both accretion and merg-
ers. Baryons in the form of gas are accreted into haloes along with
the dark matter. However, only some fraction of this gas is accreted
on to the central galaxy in the halo, this being determined by the
combined effects of gravity, pressure, shock heating and radiative
cooling. This whole process of gas accretion on to galaxies in haloes
is what we mean by ‘halo gas cooling’. This is a crucial process
in galaxy formation, for, along with galaxy mergers, it determines
the amount of mass and angular momentum delivered to a galaxy,
and thus is a primary determinant of the properties and evolution of
galaxies.

Currently, most SA models use treatments of halo gas cooling that
are more or less based on the gas cooling picture set out in White &
Frenk (1991) [also see Binney 1977; Rees & Ostriker 1977;
Silk 1977; White & Rees 1978, in which the gas in a dark matter
halo initially settles in a spherical pressure-supported hot gas halo,
and this gas gradually cools down and contracts under gravity as it
loses pressure support, while new gas joins the halo due to structure
growth or to the re-incorporation of the gas ejected by feedback
from supernovae (SNe) and active galactic nucleus (AGN).

The above picture has been challenged by the so-called cold
accretion scenario (e.g. Birnboim & Dekel 2003; Kereš et al. 2005),
in which the accreted gas in low-mass haloes (Mhalo � 3 × 1011 M�)
does not build a hot gaseous halo, but rather stays cold and falls
freely on to the central galaxy. However, in these small haloes, the
cooling time-scale of the assumed hot gas halo in SA models is
very short, and the gas accretion on to central galaxies is in practice
limited by the free-fall time-scale, both in the original White &
Frenk (1991) model and in most current SA models. Therefore, the
use of the White & Frenk cooling picture for these haloes should
not introduce large errors in the accreted gas masses (Benson &
Bower 2011). In the cold accretion picture, cold gas flows through
the halo along filaments (Kereš et al. 2005), and it has been argued
that even in more massive haloes some gas from the filaments can
penetrate the hot gas halo and deliver cold gas directly to the central
galaxy (e.g. Kereš et al. 2009), or to a shock close to the central
galaxy (e.g. Nelson et al. 2016). However, this only happens when
the temperature of the hot gas halo is not very high and the filaments
are still narrow, and so only in a limited range of redshift and halo
mass (e.g. Kereš et al. 2009). Furthermore, the effects of accretion
along filaments within haloes are expected to be reduced when the
effects of gas heating by SN and AGN are included (e.g. Benson &
Bower 2011). Therefore, the cooling picture of White & Frenk
(1991) should remain a reasonable approximation for the cold gas
accretion rate.

There are three main gas cooling models used in SA models,
namely those in the Durham model GALFORM (e.g. Cole et al. 2000;
Baugh et al. 2005; Bower et al. 2006; Lacey et al. 2016), in the
Munich model L-GALAXIES (Springel et al. 2001; Croton et al. 2006;
De Lucia & Blaizot 2007; Guo et al. 2011; Henriques et al. 2015),
and in the MORGANA model (Monaco, Fontanot & Taffoni 2007; Viola
et al. 2008). Most other SA models (e.g. Somerville et al. 2008) use
a variant of one of these. We outline the key differences between
the three cooling models here, and give more details in Section 2.2.

The GALFORM cooling model calculates the evolution of a cooling
front (i.e. the boundary separating the hot gas and the cooled down
gas), integrating outwards from the centre. However, it introduces
artificial ‘halo formation’ events, when the halo mass doubles; at
this time the halo gas density profile is reset, and the radius of
the cooling front is reset to zero. Between these formation events,
there is no contraction in the profile of the gas that is yet to cool.
An improved version of this model, in which the artificial halo

formation events are removed, was introduced in Benson & Bower
(2010), but the treatment of the cooling history and contraction of
the hot gas halo is still fairly approximate.

The L-GALAXIES cooling model is simpler to calculate than that
in GALFORM. It is motivated by the Bertschinger (1989) self-similar
solution for gas cooling. However, the original solution is derived
for a static gravitational potential, while in cosmological structure
formation, the halo grows and its potential evolves with time, so
this self-similar solution is not directly applicable.

The MORGANA cooling model incorporates a more detailed calcu-
lation of the contraction of the hot gas halo due to cooling compared
to the above models, but instead of letting the gas at small radius
cool first, it assumes that hot gas at different radii contributes to the
mass cooling rate simultaneously. However in a perfectly spherical
system, as assumed in MORGANA, the gas cooling time-scale is a
unique function of radius, and the gas should cool shell by shell.

Furthermore, while the GALFORM cooling model accounts for an
angular momentum profile in the halo gas when calculating the
angular momentum of the cooled down gas, the L-GALAXIES and
MORGANA models are much more simplified in this respect.

In summary, all of the main cooling models used in current SA
models have important limitations. In this paper, we introduce a
new cooling model. This new model treats the evolution of the hot
gas density profile and of the gas cooling more self-consistently
compared to the models mentioned above, while also incorporating
a detailed treatment of the angular momentum of the cooled down
gas. This new cooling model is still based on the cooling picture
in White & Frenk (1991). In particular, it still assumes a spherical
hot gas halo. As argued above, this picture may be a good ap-
proximation, but it needs to be further checked by comparing with
hydrodynamical simulations in which shock heating and filamen-
tary accretion are considered in detail. We leave this comparison
for a future work. Note that even if accretion of cold gas along
filaments within haloes is significant, this does not exclude the ex-
istence of a diffuse, roughly spherical hot gas halo, and our new
model should provide a better modelling of this component than
the previous models mentioned above, and thus constitutes a step
towards an even more accurate and complete model of halo gas
cooling.

This paper is organized as follows. Section 2 first describes our
new cooling model, and then the other main cooling models used in
SA modelling. Then, Section 3 compares predictions from the new
cooling model with those from other models, first in static haloes
and then in hierarchically growing haloes. The effects of the new
cooling model on a full galaxy formation model are also shown
and briefly discussed in this section. Finally, a summary is given in
Section 4.

2 MO D E L S

2.1 The new cooling model

2.1.1 Overview of the new cooling model

The hot gas inside a dark matter halo is assumed to form a spher-
ical pressure-supported halo in hydrostatic equilibrium. The gas
accreted during halo growth and also the re-incorporated gas that
was previously ejected by SN feedback are shock heated and join
this hot gas halo. The hot gas halo itself can cool down due to radi-
ation, and this cooling removes gas from the halo. The cooled down
gas, which lacks pressure support, falls into the central region of
the dark matter halo and delivers mass and angular momentum to
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Figure 1. Sketch of the new cooling model.

the central galaxy. We call this component of cold infalling gas the
cold gas halo. Typically, the gas at smaller radii cools faster, and
this kind of cooling leads to the reduction of pressure support from
the centre outwards. The hot gas halo then contracts under gravity.

The boundary between the cold gas halo and the hot gas halo is
the so-called cooling radius, rcool, at which the gas just has enough
time to cool down [the mathematical definition of rcool is given
in equation (5)]. When discrete time-steps are used, we introduce
another quantity, rcool,pre, which is the boundary at the beginning
of a time-step. The hot gaseous halo is treated as fixed during a
time-step, rcool is calculated based on this fixed halo, and the gas
between rcool,pre and rcool cools down in this time-step, and is called
the cooling gas. Note that rcool,pre is identical to rcool calculated in
the previous time-step only if there is no contraction of the hot gas
halo. This picture is sketched in Fig. 1.

The above scheme is similar to that in White & Frenk (1991)
and to those in many other SA models, but most of these other
models (apart from MORGANA) do not explicitly introduce the cold
gas halo component or the contraction of the hot gas halo. Unlike
the MORGANA model, in which the whole hot gas halo contributes
to the cooled down gas in any time-step, here the hot gas cools
gradually from halo centre outwards. A more detailed discussion of
the relation of the new cooling model to those in other SA models
is given in Section 2.2.

2.1.2 Basic assumptions of the new cooling model

Based on the above picture, we impose our basic assumptions about
the cooling as follows:

(i) The hot gas in a dark matter halo is in a spherical hot gas halo,
with a density distribution described by the so-called β-distribution:

ρhot(r) ∝ 1

r2 + r2
core

, rcool,pre ≤ r ≤ rvir, (1)

where rcore is called the core radius and is a parameter of this density
distribution, while rvir is the virial radius of the dark matter halo,
defined as

rvir =
(

3Mhalo

4π�virρ

)1/3

, (2)

where ρ is the mean density of the universe at that redshift, and the
overdensity, �vir(�m, �v), is calculated from the spherical collapse
model (e.g. Eke, Cole & Frenk 1996). In GALFORM, typically rcore is

set to be a fixed fraction of rvir or of the NFW scale radius rNFW

(Navarro, Frenk & White 1997).
(ii) The hot gas has only one temperature at any time, and it is

set to be the dark matter halo virial temperature Tvir, where

Tvir = μmV 2
vir

2kB
, (3)

where kB is the Boltzmann constant, μm is the mean mass per
particle, and Vvir = (GMhalo/rvir)1/2 is the circular velocity at rvir.

(iii) When new gas is added to the hot gas halo, it is assumed to
mix homogeneously with the existing hot gas halo. This also means
that the hot gas halo has a single metallicity, Zhot, at any given time.

(iv) In the absence of cooling, the specific angular momentum
distribution of the hot gas, jhot(r) ∝ r, corresponding to a mean
rotation velocity in spherical shells that is constant with radius. This
applies to the initial time when no cooling has happened and also to
the gas newly added to the hot gas halo, which is newly heated up.
When cooling induces contraction of the hot gas halo, the angular
momentum of each Lagrangian hot gas shell is conserved during
the contraction, and after this, the rotation velocity is no longer a
constant with radius.

Our choices of ρhot(r) and of the initial jhot(r) follow those of Cole
et al. (2000), which are based on hydrodynamical simulations with-
out cooling. This is reasonable because here they only apply to the
hot gas.

2.1.3 Cooling calculation

We describe the calculation for a single time-step, starting at time
t and ending at time t + �t. The time-step, �t, should generally
be chosen to be small compared to the halo dynamical time-scale,
so that the evolution in the halo mass and the contraction of the
hot gas halo over a time-step are small. At the beginning of each
step, Mhalo is updated according to the halo merger tree, and rvir

and Tvir are then updated according to the current values of �vir

and ρ. Next, the hot gas density profile, ρhot(r, t), is updated, which
involves two quantities, namely rcore and the density normalization.
As mentioned above, rcore is calculated from the halo radius rvir or
rNFW. The normalization is fixed by the integral

4π

∫ rvir(t)

rcool,pre(t)
ρhot(r, t) r2dr = Mhot(t), (4)

where Mhot is the total hot gas mass, and rcool,pre the inner boundary
of the hot gas halo at time t. Initially rcool,pre = 0 and is updated (see
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below) in each time-step for the calculation of the next time-step.
For a static halo, rcool,pre(t) = rcool(t), but this no longer applies if
the halo grows or the hot gas distribution contracts.

With the density profile determined, the cooling radius
rcool(t + �t) at the end of the time-step can be calculated. rcool

is defined by

tcool(rcool, t + �t) = t̃cool,avail(rcool, t + �t), (5)

where tcool(r, t) is the cooling time-scale of a shell at radius r at time
t, and t̃cool,avail(r, t) is the time available for cooling for that shell.
tcool(r, t) is defined as

tcool = δU

δLcool
= 3kB

2μm

Tvir

�̃(Tvir, Z)ρhot
, (6)

where δU is the total thermal energy of this shell, while δLcool

is its current cooling luminosity. For gas with temperature Tvir

and metallicity Zhot, we express the thermal energy density as
(3/2)(ρhot/μm)kBTvir, and the radiative cooling rate per unit vol-
ume as �̃(Tvir, Zhot)ρ2

hot, assuming collisional ionization equilib-
rium. This then leads to the final expression on the right-hand side
(RHS) above.

The calculation of the time available for cooling, t̃cool,avail(r, t),
is more complicated. For a halo in which the hot gas density dis-
tribution, temperature, and metallicity are static, and in which the
gas started cooling at a halo formation time tform, we would define
t̃cool,avail = t − tform, as in Cole et al. (2000). However, this defini-
tion is not applicable to an evolving halo. Instead, we would like
to define a gas shell as having cooled when δU = δEcool, where
δU is defined as above, and δEcool is the total energy that would
have been radiated away by this hot gas shell over its past history
when we track the shell in a Lagrangian sense. When we calculate
δU and δEcool for a gas shell, we include the effects of evolution
in ρhot, Tvir, and Zhot due to halo growth, reaccretion of ejected gas
and contraction of the hot gas. However, in our approach, ρhot and
T in a gas shell are assumed to be unaffected by radiative cooling
within that shell, up until the time when the cooling condition is
met, when the hot gas shell is assumed to lose all of its thermal
energy in a single instant, and be converted to cold gas. Combining
the condition δU = δEcool with equation (6) then leads to a cooling
condition of the form tcool(r, t) = t̃cool,avail(r, t) if t̃cool,avail for a shell
is defined as

t̃cool,avail = δEcool

δLcool
. (7)

This is just the time that it would take for the gas shell to radiate
the energy actually radiated over its past history, if it were radi-
ating at its current rate. Note that for a static halo cooling since
time tform, Lcool is constant over the past history of a hot gas shell,
so δEcool = δLcool (t − tform), and the above definition reduces to
t̃cool,avail = t − tform.

The quantity tcool is easy to calculate for each hot gas shell because
it only involves quantities at time t. In contrast, the calculation
of t̃cool,avail is more difficult, because δEcool involves the previous
cooling history. To calculate t̃cool,avail exactly, the cooling history of
each Lagrangian hot gas shell would have to be stored. However,
this is too computationally expensive for an SA model, and some
further approximations are needed. We first note that for a discrete
time-step of length �t and starting at t,

t̃cool,avail(rcool, t + �t) = t̃cool,avail(rcool, t) + �t (8)

≈ t̃cool,avail(rcool,pre, t) + �t. (9)

The first line above comes from the assumption that the hot gas
halo is fixed within a given time-step, and thus the increase of
t̃cool,avail over the step is just the increase of the physical time.
To justify the approximation in the second line, we consider two
cases: (i) rcool ∼ rcool,pre. In this case, which typically happens when
the gas cools slowly compared to the halo dynamical time-scale,
t̃cool,avail(rcool, t) ≈ t̃cool,avail(rcool,pre, t). (ii) rcool � rcool,pre. This typ-
ically happens when the gas cools fast compared to the halo dy-
namical time-scale, but in that case, halo growth and hot gas halo
contraction play only a weak role in cooling, which means that
t̃cool,avail is nearly the same for all gas shells (as in a completely
static halo), so again t̃cool,avail(rcool, t) ≈ t̃cool,avail(rcool,pre, t).

Finally, we make the approximation

t̃cool,avail(rcool,pre, t) = δEcool(rcool,pre, t)

δLcool(rcool,pre, t)
≈ Ecool(t)

Lcool(t)
(10)

Here, Lcool is the cooling luminosity of the whole hot gas halo at
time t,

Lcool(t) = 4π

∫ rvir

rcool,pre

�̃(Tvir, Zhot) ρ2
hot(r, t) r2 dr, (11)

and Ecool(t) is the total energy radiated away over its past history by
all of the hot gas that is within the halo at time t,

Ecool(t) = 4π

∫ t

tinit

∫ rvir(τ )

rp(τ )
�̃(Tvir, Zhot) ρ2

hot(r, τ ) r2drdτ. (12)

In the above integral, tinit is the starting time for the cooling calcu-
lation, and rp(τ ) is the radius at time τ of the shell that has radius
rcool,pre at time t.

To justify the approximation made in equation (10), we first note
that, due to the integrals in equations (11) and (12) involving ρ2

hot,
both are dominated by the densest regions in the hot gas halo.
We now need to consider two cases. (i) rcool,pre � rcore. In this
case, the gas density decreases monotonically for r � rcore, pre, so
that both integrals are dominated by the contributions from the
gas shells near the lower limit of the integral, i.e. near rcool,pre. It
follows that Ecool(t)/Lcool(t) ≈ δEcool(rcool,pre, t)/δLcool(rcool,pre, t). (ii)
rcool,pre � rcore. In this case, δEcool(r, t)/δLcool(r, t) is approximately
independent of radius for r � rcore due to the approximately constant
density, while the integrals for Ecool(t) and Lcool(t) are dominated
by the region r � rcore, so that we again have Ecool(t)/Lcool(t) ≈
δEcool(rcool,pre, t)/δLcool(rcool,pre, t).

By combining equations (9) and (10), we obtain the expression
for tcool, avail that we actually use:

tcool,avail(t + �t) = Ecool(t)

Lcool(t)
+ �t

≈ t̃cool,avail(rcool, t + �t), (13)

In the above, the term Ecool(t)/Lcool(t) represents the available time
at the start of the step, calculated from the previous cooling history.

The calculation of Ecool from equation (12) appears to require
storing the histories of all of the shells of hot gas in order to evaluate
the integral. However, from its definition, it is easy to derive an
approximate recursive equation for it (see Appendix A)

Ecool(t + �t) ≈ Ecool(t) + Lcool(t) × �t

− L′
cool(t) × tcool,avail(t + �t), (14)

where

L′
cool(t) = 4π

∫ rcool

rcool,pre

�̃(Tvir, Zhot) ρ2
hot r

2 dr. (15)
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The second term in equation (14) adds the energy radiated away in
the current time-step, while the third term removes the contribution
from gas between rcool,pre and rcool, because it cools down in the cur-
rent time-step and therefore is not part of the hot gas halo at the next
time-step. Starting from the initial value Ecool = 0, equation (14)
can be used to derive Ecool for the subsequent time-steps, and then
equations (5), (6), and (13) can be used to calculate rcool. For
a static halo, in which there is no accretion and no contraction
of the hot gas, it can be shown that equations (13)–(15) lead to
tavail(t + �t) = t + �t − tinit, the same as in Cole et al. (2000).

With rcool,pre and rcool determined, the mass and angular momen-
tum of the gas cooled down over the time interval (t, t + �t) are
calculated from

�Mcool = 4π

∫ rcool

rcool,pre

ρhotr
2dr (16)

�Jcool = 4π

∫ rcool

rcool,pre

jhotρhotr
2dr, (17)

where jhot(r) is the specific angular momentum distribution of the
hot gas, which is calculated as described in Section 2.1.4. �Mcool

and �Jcool are used to update the mass, Mhalo, cold, and angular
momentum, Jhalo, cold, of the cold halo gas component.

Gas in the cold halo gas component is not pressure supported,
and so is assumed to fall to the central galaxy in the halo on the
free-fall time-scale. We therefore calculate the mass, �Macc,gal, and
angular momentum, �Jacc,gal, accreted on to the central galaxy over
a time-step as

�Macc,gal = Mhalo,cold × min[1,�t/tff (rcool)] (18)

�Jacc,gal = Jhalo,cold × min[1,�t/tff (rcool)] (19)

where tff(rcool) is the free-fall time-scale at the cooling radius.
Note that in the slow cooling regime, where tff(rcool) < tcool(rcool),
the mass of the cold halo gas component remains relatively small,
since the time-scale for draining it (tff) is short compared to the
time-scale for feeding it (tcool).

Note that here we treat the angular momentum of the cooled down
gas as a scalar. This means that the axis of the galaxy spin is assumed
to be always aligned with the axis of the hot gas halo spin. We adopt
this assumption mainly because the halo spin parameter, which is the
basis of the calculation of hot gas angular momenta, only contains
information on the magnitude of the angular momentum. This is an
important limitation, and a calculation of the angular momentum of
the hot gas considering both its magnitude and direction should be
developed. However, this is beyond the scope of this paper, and we
leave it for future work.

Finally, we consider the contraction of the hot gas halo. The
gas between the cooling radius and the virial radius is assumed to
remain in approximate hydrostatic equilibrium, so for simplicity,
we assume that it always follows the β-profile. The hot gas at the
cooling radius is not pressure-supported by the cold gas at smaller
radii, so we assume that this gas contracts towards the halo centre on
a time-scale tff(rcool). The new rcool,pre at the next time-step starting
at t + �t is therefore estimated as

rcool,pre(t + �t) = rcool(t + �t) × max[0, 1 − �t/tff (rcool)]. (20)

The above equation only applies if the gravitational potential of the
halo is fixed. When the halo grows in mass, and when the mean halo
density within rvir adjusts with the mean density of the universe, the
gravitational potential also changes, and this affects the contraction
of the hot gas halo. We estimate the effect of this on the inner

boundary of the hot halo gas by requiring that the mass of dark
matter contained inside rcool, pre remains the same before and after
the change in the halo potential, i.e.

M ′
halo[r ′

cool,pre(t + �t)] = Mhalo[rcool,pre(t + �t)], (21)

where the quantities with apostrophes are after halo growth, while
those without apostrophes are before halo growth. The reason for
using the dark matter to trace this contraction is that the gas within
rcool, pre is cold with negligible pressure effects, so its dynamics
should be similar to those of the collisionless dark matter.

2.1.4 Calculating jhot(r)

The specific angular momentum of the hot gas averaged over spher-
ical shells is assumed to follow jhot(r) ∝ r at the initial time, as stated
in Section 2.1.2, with the normalization set by the assumption that
the mean specific angular momentum of the hot gas in the whole
halo, j hot, is initially equal to that of the dark matter, Jhalo/Mhalo (see
Section 2.3). Later on, the dark matter halo growth, the contraction
of the hot gas halo and the addition of new gas all can change the
angular momentum profile. In this new cooling model, at the be-
ginning of each time-step, we first consider the angular momentum
profile change of the existing hot gas due to the hot gas halo con-
traction and the dark matter halo growth that took place during the
last time-step, and then add the contribution from the newly added
hot gas to this adjusted profile.

In deriving the change of angular momentum profile of the exist-
ing hot gas, we assume mass and angular momentum conservation
for each Lagrangian shell. Consider a shell with mass dm, original
radius r, and specific angular momentum jhot(r), which, after the
dark matter growth and hot gas halo contraction, moves to radius
r′ with specific angular momentum j ′

hot(r
′). The shell mass is un-

changed because of mass conservation. Then, angular momentum
conservation implies j ′

hot(r
′) = jhot(r). In other words, the angular

momentum profile after these changes is jhot[r(r′)]. Given jhot(r)
from the last time-step, the major task for deriving j ′

hot(r
′) is to de-

rive r(r′). This can be done by considering shell mass conservation
and the density profiles of the hot gas. Specifically, assuming ρhot(r)
and ρ ′

hot(r
′) are, respectively, the density profiles of the existing hot

gas before and after the dark matter halo growth and hot gas halo
contraction, then one has

4πρhot(r)r2dr = dm = 4πρ ′
hot(r

′)r ′2dr ′. (22)

This, together with the assumption that ρhot(r) and ρ ′
hot(r

′) follow
the β-distribution, can then be solved for r(r′). Unfortunately, this
equation can only provide an implicit form for r′(r), and does not
lead to an explicit analytical expression for j ′

hot(r
′). A straightfor-

ward way to deal with this is to evaluate j ′
hot(r

′) numerically for a
grid of radii and then store this information, however, this is com-
putationally expensive. Instead, we apply further approximations to
reduce the computational cost of solving for j ′

hot(r
′), as described

in detail in Appendix B.
To derive the final angular momentum distribution, j ′′

hot(r
′), one

still needs to consider the contribution from the newly added hot
gas. Assuming the gas newly added to a given shell with radius r′

has mass dmnew and specific angular momentum jnew(r′), then one
has

j ′′
hot(r

′)(dm + dmnew) = j ′
hot(r

′)dm + jnew(r ′)dmnew. (23)
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Since the newly added gas is assumed to be mixed homoge-
neously with the hot gas halo, so all dmnew/(dm + dmnew) should
be the same for all shells, and hence

dmnew

dmnew + dm
= Mnew

Mnew + Mold
, (24)

where Mnew is the total mass added to the hot gas halo during the
time-step, while Mold is the previous mass.

Further, according to the assumption in Section 2.1.2, jnew(r′) ∝
r′. In general, there are two components to the newly added hot
gas: (i) gas brought in through growth of the dark matter halo; and
(ii) gas that has been ejected from the galaxy by SN feedback, has
joined the ejected gas reservoir, and then has been reaccreted into
the hot gas halo. Their contributions to the total angular momentum
of the newly added gas are described in Section 2.1.5. With this, the
normalization of jnew(r′) can be determined.

Finally, with j ′
hot(r

′) and jnew(r′) known, the specific angular mo-
mentum distribution at the current time-step, j ′′

hot(r
′), is determined

as

j ′′
hot(r

′)(Mnew + Mold) = j ′
hot(r

′)Mold + jnew(r ′)Mnew. (25)

In this way, the specific angular momentum distribution for any
given time-step can be derived recursively from the initial distribu-
tion.

2.1.5 Treatments of gas ejected by feedback and halo mergers

The SN feedback can heat and eject gas in galaxies, and the ejected
gas is added to the so-called ejected gas reservoir. This transfers
mass and angular momentum from galaxies to that reservoir. The
gas ejected from both the central galaxy and its satellites is added
to the ejected gas reservoir of the central galaxy. The ejected mass
is determined by the SN feedback prescription, and is typically
proportional to the instantaneous star formation rate. The angular
momentum of this ejected gas is calculated as follows.

The total angular momentum of the ejected gas can be expressed
as the product of its mass and its specific angular momentum. For the
gas ejected from the central galaxy, its specific angular momentum is
estimated as that of the central galaxy, while for the gas ejected from
satellites, its specific angular momentum is estimated as the mean
specific angular momentum of the central galaxy’s host dark matter
halo, i.e. Jhalo/Mhalo, in order roughly to include the contribution
to the ejected angular momentum from the satellite orbital motion.
This is only a rough estimate. A better estimate would be obtained
by following the satellite orbit, but we leave this for future work.

This ejected gas can later be reaccreted on to the hot gas halo,
thus delivering mass and angular momentum to it. The reaccretion
rates of mass and angular momentum are respectively estimated as

Ṁ return = αreturn × Meject/tdyn (26)

J̇ return = αreturn × Jeject/tdyn, (27)

where Ṁreturn and J̇return are, respectively, the mass and angular
momentum reaccretion rates, Meject and Jeject are, respectively, the
total mass and angular momentum of the ejected gas reservoir,
tdyn = rvir/vvir is the halo dynamical time-scale and αreturn ∼ 1 a free
parameter. For a time-step of finite length �t, the mass and angular
momentum reaccreted within it is then calculated as the products of
the corresponding rates and �t.

When a halo falls into a larger halo, it becomes a subhalo, while
the larger one becomes the host halo of this subhalo. The halo gas in
the subhalo could be ram pressure or tidally stripped. This process

can be calculated within the SA framework (see e.g. Font et al. 2008
or Guo et al. 2011), but here we assume for simplicity that the rel-
evant gas is instantaneously removed on infall. The new cooling
model assumes that the hot gas and ejected gas reservoir associated
with this subhalo are instantaneously transferred to the correspond-
ing gas components of the host halo at infall. The masses of these
transferred components can be simply added to the corresponding
components of the host halo. However, the angular momentum can-
not be directly added, because it is calculated before infall, when
the subhalo was still an isolated halo, and the reference point for
this angular momentum is the centre of the subhalo, while after the
transition, the reference point becomes the centre of the host halo.

Here, the angular momentum transferred is estimated as follows.
The total angular momentum transferred is expressed as a product of
the total transferred mass and the specific angular momentum. The
latter one is estimated as jnew, halo = �Jhalo/�Mhalo, where �Jhalo and
�Mhalo are the angular momentum and mass changes in dark matter
halo during the halo merger, and they can be determined when the
mass and spin, λhalo, of each halo in a merger tree are given (see
Section 2.3). The reason for this estimation is that the dark matter
and baryon matter accreted by the host halo have roughly the same
motion, and thus should gain similar specific angular momentum
through the torque exerted by the surrounding large-scale structures.
The mass and angular momentum transferred during the halo merger
can be summarized as:

�Mhot,mrg =
Nmrg∑
i=1

Mhot,i, (28)

�Jhot,mrg = jnew,halo × �Mhot,mrg, (29)

�Meject,mrg =
Nmrg∑
i=1

Meject,i, (30)

�Jeject,mrg = jnew,halo × �Meject,mrg, (31)

where �Mhot, mrg and �Jhot, mrg are, respectively, the total mass and
angular momentum transferred to the hot gas halo of the host halo
during the halo merger, while �Meject, mrg and �Jeject, mrg are the mass
and angular momentum transferred to the ejected gas reservoir; Nmrg

is the total number of infalling haloes over the time-step, Mhot, i is
the total mass of the hot gas halo of the ith infalling halo, and Meject, i

is the mass of its ejected gas reservoir.
In this cooling model, by default, the halo cold gas is not trans-

ferred during halo mergers, because it is cold and in the central
region of the infalling halo, and thus is less affected by ram pres-
sure and tidal stripping. After infall, this cold gas halo can still
deliver cold gas to the satellite for a while. There are also options
in the code to transfer the halo cold gas to the hot gas halo or halo
cold gas of the host halo. In this work, we always adopt the default
setting.

A dark matter halo may also accrete smoothly. The accreted
gas is assumed to be shock heated and join the hot gas halo.
In each time-step, the mass of this gas, �Mhot, smooth, is given
as �Mhot, smooth = [�b/�m]�Mhalo, smooth, with �Mhalo, smooth the
mass of smoothly accreted dark matter, which is provided by the
merger tree, while the associated angular momentum is estimated
as �Jhot, smooth = jnew, halo × �Mhot, smooth.

In each time-step, �Mreturn, �Mhot, mrg, and �Mhot, smooth increase
the mass of the hot gas halo, but do not increase Ecool. This
means the newly added gas has no previous cooling history, con-
sistently with the assumption that this gas is newly heated up by
shocks. The total angular momentum of this newly added gas is
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�Jreturn + �Jhot, mrg + �Jhot, smooth, and, together with the assump-
tion that jnew(r) ∝ r, it completely determines the specific angular
momentum distribution of the newly added gas.

2.2 Previous cooling models

2.2.1 GALFORM cooling model GFC1

The GFC1 (GalForm Cooling 1) cooling model is used in all re-
cent versions of GALFORM (e.g. Gonzalez-Perez et al. 2014; Lacey
et al. 2016), and is based on the cooling model introduced in Cole
et al. (2000), and modified in Bower et al. (2006). The Cole et al.
(2000) cooling model introduced so-called halo formation events.
These are defined such that the appearance of a halo with no pro-
genitor in a merger tree is a halo formation event, and the time when
a halo first becomes at least twice as massive as at the last halo for-
mation event is a new halo formation event. The Cole et al. model
then assumes that the hot gas halo is set between two adjacent halo
formation events, and is reset at each formation event. Under this as-
sumption, t̃cool,avail(rcool, t) is always the time elapsed since the latest
halo formation event, which is straightforward to calculate. As in
the new cooling model, we denote the actual t̃cool,avail(rcool, t) used
in this model as tcool, avail(t). With tcool, avail given, rcool can be then
calculated from equation (5), and the mass and angular momentum
cooled down can be calculated as described below. The assumption
of a fixed hot gas halo between two halo formation events means
that changes in rvir and Tvir induced by halo growth, and by the addi-
tion of new hot gas either by halo growth or by the re-incorporation
of gas ejected by feedback between halo formation events, are not
considered until the coming of a halo formation event. While this
may be reasonable for halo formation events induced by halo major
mergers, in which the hot gas halo properties change fairly abruptly,
it is not physical if the halo formation event is triggered through
smooth halo growth, in which case the changes in the hot gas halo
should also happen smoothly, instead of happening in a sudden
jump at the halo formation event.

The GFC1 model (Bower et al. 2006) improves the Cole et al.
model by updating some hot gas halo properties at each time-step in-
stead of only at halo formation events. Specifically, the hot gas is still
assumed to settle in a density profile described by the β-distribution,
with temperature equal to the current halo virial temperature, Tvir,
and rcore set to be a fixed fraction of the current rvir. The halo mass is
updated at each time-step, and the total hot gas mass and metallic-
ity include the contributions from the hot gas newly added at each
time-step. However, Vvir and Tvir are fixed at the values calculated
at the last halo formation event. Unlike in the new cooling model,
the normalization of the density profile is determined by requiring
that

4π

∫ rvir

0
ρhotr

2dr = Mhot + Mcooled, (32)

where Mhot is the total mass of the hot gas, while Mcooled is the
total mass of the gas that has cooled down from this halo, since
the last halo formation event, and is either in the central galaxy or
ejected by SN feedback but not yet reaccreted by the hot gas halo.
Accordingly, Mcooled is reset to 0 at each halo formation event, while
the ejected gas reservoir mass, Meject, evolves smoothly and is not
affected by halo formation events.

This is not very physical because the cooled down gas might
have collapsed on to the central galaxy long ago, while the ejected
gas is outside the halo. This also means that the contraction of the
hot gas halo due to cooling is largely ignored in the determination

of its density profile. This point is most obvious in the case of a
static halo, when the dark matter halo does not grow. In this case,
if there is no feedback and subsequent reaccretion, then the amount
of hot gas gradually reduces due to cooling, and the hot gas halo
should gradually contract in response to the reduction of pressure
support caused by this cooling. However, in the GFC1 model, in this
situation, the hot gas profile remains fixed, because Mhot + Mcooled

always equals the initial total hot gas mass. For a dynamical halo,
Mcooled is reset to zero at each halo formation event, and thus the
hot gas contracts to halo centre at these events. In this way, the halo
contraction due to cooling is included to some extent.

In the GFC1 model, rcool is calculated in the same way as in
Cole et al. (2000). For the estimation of t̃cool,avail(rcool, t), the GFC1
model retains the artificial halo formation events. This means that
in both the GFC1 and Cole et al. (2000) cooling models, the hot
gas cooling history is effectively reset at each halo formation event.
While this might be physical when the halo grows through major
mergers,1 it is artificial when a halo grows smoothly, in which
case the cooling history is expected to evolve smoothly as well.
Moreover, in principle t̃cool,avail(rcool, t) should change when the hot
gas halo changes, which happens between halo formation events in
the GFC1 model, so estimating t̃cool,avail(rcool, t) in the GFC1 model
in the same way as in Cole et al. (2000) is not self-consistent.

Unlike the new cooling model that explicitly introduces a cold
halo gas component that drains on to the central galaxy on the free-
fall time-scale, the GFC1 and Cole et al. (2000) cooling models
introduce a free-fall radius, rff, to allow for the fact that gas cannot
accrete on to the central galaxy more rapidly than on a free-fall
time-scale, no matter how rapidly it cools. rff is calculated as

tff (rff ) = tff,avail, (33)

where tff(r) is the free-fall time-scale at radius r, defined as the time
for a particle to fall to r = 0 starting at rest at radius r, and tff, avail

is the time available for free-fall, which is set to be the same as
tcool, avail in these two cooling models. Then, the mass accreted on to
the central galaxy over a time-step is given by

�Macc,gal = 4π

∫ rinfall

rinfall,pre

ρhot r
2dr, (34)

where ρhot is the current halo gas density distribution, while
rinfall = min (rcool, rff), and rinfall, pre is determined by 4π

∫ rinfall,pre
0

ρhotr
2dr = Mcooled.

The introduction of rff and rinfall leaves part of the cooled down
gas in the nominal hot gas halo when rcool > rff, which is the case in
the fast cooling regime. This gas is treated as hot gas in subsequent
time-steps. While in the fast cooling regime, this should not strongly
affect the final results for the amount of gas that cools, due to the
cooling and accretion being rapid, this misclassification of cold gas
as hot is still an unwanted physical feature of a cooling model.

The calculation of the angular momentum of the gas accreted on
to the central galaxy is the same in the cooling model in Cole et al.
(2000) and GFC1 model. The angular momentum is calculated as

�Jacc,gal = 4π

∫ rinfall

rinfall,pre

jhotρhotr
2dr, (35)

where jhot is the specific angular momentum distribution of the hot
gas halo, which is assumed to vary as jhot ∝ r. As mentioned in

1 Although, Monaco et al. (2014) suggest that halo major mergers do not
strongly affect cooling.
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Section 2.1.2, this assumption is based on hydrodynamical sim-
ulations without cooling. Assuming it applies unchanged in the
presence of cooling means that the effect of contraction of the hot
gas halo due to cooling is ignored.

This model adopts treatments for the gas ejected by feedback
and for halo mergers similar to those of the new cooling model.
Since the GFC1 model assumes that tcool, avail is always the physical
time since the last halo formation event, here the gas newly added
through halo growth and reaccretion of the feedback ejected gas
would share this tcool, avail and thus implicitly gain some previous
cooling history. As a result, the newly added gas is effectively not
actually newly heated up.

2.2.2 galform cooling model GFC2

The GFC2 (GalForm Cooling 2) model was introduced by Benson &
Bower (2010). It makes several improvements over the GFC1
model. The assumptions about the density profile,2 temperature
and metallicity of the hot gas halo are the same as in GFC1, but the
influence of halo formation events is mostly removed. The density
profile of the hot gas is normalized by requiring

4π

∫ rvir

0
ρhotr

2dr = Mhot + Mcooled + Meject, (36)

where Meject is the mass of gas ejected by SN feedback and not
yet reaccreted, while the definition of Mcooled is modified: (i) it
is incremented by the mass cooled and accreted on to the central
galaxy, and reduced by the mass ejected by SN feedback. (ii) A
gradual reduction of Mcooled as

Ṁcooled = −αremove × Mcooled/tff (rvir), (37)

with αremove ∼ 1 being a free parameter. (iii) When a halo merger
occurs, the value of Mcooled is propagated to the current halo from
its most massive progenitor (rather than being reset to 0 at each halo
formation event as in the GFC1 model). Since the density profile
normalization for the hot gas is determined by equation (36), for
a given Mhot and Meject, the gradual reduction of Mcooled due to
equation (37) lowers the normalization, and so to include the same
mass, Mhot, in the density profile, the hot gas must be distributed
to smaller radii. This gradual reduction of Mcooled thus effectively
leads to a contraction of the hot gas halo in response to the removal
of hot gas by cooling, which is more physical than the treatment in
the GFC1 model. However, here the time-scale for this contraction
is tff(rvir), while the region where the contraction happens has a
radius ∼rcool, so there is still a physical mismatch in this scale. This
is improved in the new cooling model introduced in Section 2.1,
where the time-scale tff(rcool) is adopted instead.

In the GFC2 model, as in the new cooling model, rcool is calculated
using equation (5), with t̃cool,avail(rcool, t) being estimated from the
energy radiated away. By doing this, the effect of artificial halo
formation events on the gas cooling is largely removed. However,
instead of directly accumulating this radiated energy as in the new
cooling model, the GFC2 model further approximates the integrals
involving ρ2

hot in equations (11) and (12) as

4π

∫ rvir

0
ρ2

hotr
2dr ≈ ρ̄hot × 4π

∫ rvir

0
ρhotr

2dr

= ρ̄hot(Mhot + Mcooled + Meject), (38)

2 Benson & Bower (2010) actually adopt a different density profile for the
hot gas halo; however, here for a fair comparison with other GALFORM cooling
models, the β-profile is adopted instead for this model.

where ρ̄hot is the mean density given by the density profile. This
approximation is very rough, and while in the new cooling model,
the integral is limited to the gas that is hot, i.e. between rcool, pre and
rvir, in the GFC2 model the integration range is extended to r = 0,
which, according to equation (36), includes the part of the density
profile where the gas has already cooled down. These approxima-
tions make the calculation of t̃cool,avail(rcool, t) faster but less accurate
and physical than in the new cooling model.

With these approximations, for any time t, the GFC2 model adopts
the following equations in place of equations (11) and (12) in the
new cooling model:

Lcool(t) = �̃(Tvir, Z)ρ̄hot(Mhot + Mcooled + Meject) (39)

Ecool(t) =
∫ t

tinit

�̃(Tvir, Z)ρ̄hot

× [Mhot(τ ) + Mcooled(τ ) + Meject(τ )]dτ

+
∫ t

tinit

3kB

2μm
TvirṀcooleddτ. (40)

The second term in equation (40), which is negative, is equal in abso-
lute value to the total thermal energy of the cooled mass removed ac-
cording to equation (37), and is designed to remove the contribution
to Ecool from this cooled mass. Given Ecool and Lcool, t̃cool,avail(rcool, t)
for a given time-step is calculated from equation (13),
as in the new model. Again, the actual t̃cool,avail(rcool, t) used in
this model is denoted as tcool, avail(t). Note that the approximation
made in equation (38) leads to the derived tcool, avail being closer
to the average cooling history of all shells instead of the cooling
history of gas near rcool, and so leads to less accurate results than in
the new cooling model.

The GFC2 model allows for the effect of the free-fall time-scale
on the gas mass accreted on to the central galaxy in a similar way
to the GFC1 model, by introducing the radius, rff, calculated from
equation (33), but with tff, avail calculated in a way similar to that
for tcool, avail. Specifically, a quantity with dimensions of energy
similar to Ecool is accumulated for tff, avail, but this quantity has
an upper limit, tff(rvir) × Lcool, and once it exceeds this limit, it is
then reset to this limit value. This limit ensures tff, avail ≤ tff(rvir).
Note that the effect of imposing this limit is usually to lead to a
tff, avail different from both tcool, avail and tff(rvir). This calculation of
tff, avail is not very physical because the calculation of tcool, avail here
is based approximately on the total energy released by the cooling
radiation, while the accretion of the cooled gas on to the central
galaxy is driven by gravity, which does not depend on the energy
lost by radiation. In addition, by introducing rff, the GFC2 model
inherits the associated problems already identified for the GFC1
model.

The GFC2 model also adopts a specific angular momentum dis-
tribution for the hot gas to calculate the angular momentum of the
gas that cools down and accretes on to the central galaxy. The sim-
pler method to specify this angular momentum distribution is as
a function of radius, namely jhot(r). But, in principle, this requires
calculating the subsequent evolution of jhot(r) as the hot gas halo
contracts, which is considered in the new cooling model but not in
the GFC1 or GFC2 models. A more complex method is to specify
jhot as a function of the gas mass enclosed by a given radius, i.e.
jhot(<M). This implicitly includes the effect of contraction of the hot
gas halo in the case of a static halo, where no new gas joins the hot
gas halo, because while the radius of each gas shell changes during
contraction, the enclosed mass is kept constant and can be used to
track each Lagrangian shell. However, when there is new gas being
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added to the hot gas halo, this method also fails, because the newly
joining gas mixes with the hot gas halo after contraction, and, in
this case, the contraction has to be considered explicitly. Since even
the more complex method is not fully self-consistent, for the sake
of simplicity, in this work we adopt the simpler method to calculate
the angular momentum, without allowing for contraction of the hot
gas halo.

This model also adopts the treatments for the gas ejected by
feedback and for halo mergers similar to those of the new cooling
model, but unlike in the latter, here Ecool of the hot gas in the infalling
haloes is also transferred. This again gives the newly added gas some
previous cooling history, so it is not newly heated up.

2.2.3 Cooling model in l-galaxies

The cooling model used in L-GALAXIES (see e.g. Croton et al. 2006;
Guo et al. 2011; Henriques et al. 2015) assumes that the hot gas
is always distributed from r = 0 to r = rvir, and that its density
profile is singular isothermal, namely ρhot(r) ∝ r−2, with a single
metallicity and a single temperature equaling Tvir. The total mass
inside this profile is Mhot.

Then, a cooling radius, rcool, is calculated from tcool(
rcool) = tcool, avail, with tcool, avail = tdyn = rvir/Vvir. If rcool ≤ rvir,
then the mass accreted on to the central galaxy in a time-step, �t,
is3

�Macc,gal = 4πρhot(rcool) × r2
cool

drcool

dt
�t

= Mhot

rvir

rcool

tdyn
�t, (41)

with drcool/dt being estimated as drcool/dt = rcool/tcool, avail =
rcool/tdyn. If instead rcool > rvir, then

�Macc,gal = Mhot

tdyn
�t. (42)

Note that earlier predecessors of the L-GALAXIES model made
slightly different assumptions. Kauffmann, White & Guiderdoni
(1993) and subsequent papers in that series followed the approach
of White & Frenk (1991), assuming that tcool, avail = t, with t being
the age of the universe, and also that drcool/dt = rcool/(2tcool, avail),
where the latter follows mathematically from the result that
rcool ∝ t1/2 for a static halo with ρhot(r) ∝ r−2 and Thot(r) = const.
Springel et al. (2001) modified the first of these assumptions by
instead assuming tcool, avail = tdyn. This change in tcool, avail was ef-
fectively justified by the work of Yoshida et al. (2002), who com-
pared the L-GALAXIES cooling model with results from the ‘stripped-
down’ cosmological gas dynamical simulation of galaxy formation
described below. As described in Guo et al. (2011), versions of
L-GALAXIES from Croton et al. (2006) onwards then changed to us-
ing drcool/dt = rcool/tcool, avail. This originates from an erroneous
omission of the factor 0.5 in the L-GALAXIES code [see the foot-
note to equation (5) in Guo et al. for more details]. Note that the
Semi-Analytic Galaxy Evolution model (e.g. Croton et al. 2016)
uses the same cooling model, but keeps the factor 1/2, adopting
drcool/dt = rcool/(2tdyn).

The L-GALAXIES cooling model is motivated by the self-similar
cooling solution for a static halo derived in Bertschinger (1989), in
which the evolution of the hot gas profile driven by cooling is ex-
pressed in terms of a characteristic scale length rcool(t). Bertschinger

3 Here, we adopted the equation for �Macc, gal from recent versions of the
L-GALAXIES model (e.g. Guo et al. 2011; Henriques et al. 2015).

defines rcool by tcool(rcool) = t, where tcool(r) is the cooling time-scale
profile of the hot gas profile at the initial time, i.e. before the start of
cooling, while t is the physical time elapsed since then. Bertschinger
found that the mass accretion rate on to the centre is approximately
the same as the mass cooling rate at rcool, leading to an expression
similar to the first line of equation (41). Note that the rcool introduced
in Bertschinger (1989) is a scale radius in the hot gas profile, while
the rcool in other cooling models considered in this paper is the inner
boundary of the hot gas halo, which separates hot and cooled down
gas, and thus they have different physical meanings.

However, the Bertschinger (1989) solution does not provide
a complete justification for the L-GALAXIES cooling model. The
L-GALAXIES cooling model does not follow the original defini-
tion of rcool in Bertschinger (1989). It instead defines rcool as
tcool(rcool) = tdyn, where tcool(r) is the cooling time-scale profile
of the current hot gas halo (including the evolution of the density
of the hot gas halo driven by cooling) rather than that at the initial
time, and the halo dynamical time-scale tdyn is adopted instead of
the time elapsed since the initial time. Moreover, the solution in
Bertschinger (1989) is for a static gravitational potential, while in
the cosmological structure formation context, the halo grows and
its potential evolves with time.

Mass accretion rates on to central galaxies calculated using equa-
tions (41) and (42) have been shown to be in good agreement
with stripped-down smoothed particle hydrodynamics (SPH) simu-
lations, in which cooling is included but other processes, such as star
formation and feedback, are ignored (Yoshida et al. 2002; Monaco
et al. 2014), but because of the inconsistencies in its physical for-
mulation, this agreement is more in the nature of a fit to the results
of these simplified simulations, and does not imply the physical
validity of this calculation in the full galaxy formation context.

The angular momentum of the cooled down gas that accretes on
to the central galaxy is calculated as

�Jacc,gal = �Macc,gal × j̄halo, (43)

where j̄halo = Jhalo/Mhalo is the specific angular momentum of the
entire dark matter halo, with Jhalo and Mhalo being the total angular
momentum and mass of the dark matter halo, respectively. This
corresponds to a specific angular momentum distribution for the
hot halo gas very different from the jhot(r) adopted in GALFORM

cooling models.
When a halo falls into a larger halo and becomes a subhalo, the

L-GALAXIES model assumes that its hot gas halo is instantaneously
stripped and added to the hot gas halo of its host halo [see e.g.
equation (1) in De Lucia et al. (2010), but note that a more complex
gradual stripping model also exists in the L-GALAXIES model, see
e.g. Guo et al. (2011)]. In this work, we only use the L-GALAXIES

cooling model in the stripped down model (without other physical
processes such as galaxy mergers, star formation, and feedback), so
we do not consider the treatment of gas ejected by SN feedback.

2.2.4 Cooling model in morgana

The full details of this cooling model are given in Monaco et al.
(2007) and Viola et al. (2008). The hot gas in a dark matter halo
is assumed to be in hydrostatic equilibrium, and a cold halo gas
component similar to that in the new cooling model is also intro-
duced. As in the new cooling model, in the continuous time limit,
the boundary between the hot gas halo and the cold halo gas is the
cooling radius rcool. The hot gas halo density and temperature pro-
files are determined by the assumptions of hydrostatic equilibrium
and that the hot gas between rcool and rvir follows a polytropic equa-
tion of state. This generally gives more complex profiles than those
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used in GALFORM and L-GALAXIES, but typically the derived density
profile is close to the cored β-distribution used in GALFORM, while
the temperature profile is very flat and close to Tvir. Therefore in
this work, when calculating predictions for this cooling model, for
simplicity we will adopt the β-distribution as the hot gas density
profile and a constant temperature, Tvir, as the temperature profile.
Just as in the new cooling model, the density profile and temperature
of the hot gas halo are updated at every time-step.

The MORGANA cooling model then calculates the cooling rate
Ṁcool. However, unlike the cooling models described previously,
this does not explicitly depend on the cooling history of the hot gas,
as expressed in tcool, avail, but instead it assumes that at any given
time, each shell of hot gas contributes to Ṁcool according to its own
cooling time-scale.4 Specifically, this is

Ṁcool = 4π

∫ rvir

rcool

ρhot(r)

tcool(r)
r2dr, (44)

where ρhot(r) is the hot gas density at radius r, while tcool(r) is
the cooling time-scale corresponding to gas density ρhot(r) and
temperature Tvir, and is given by equation (6). This equation is
supplemented by another equation,

ṙcool = Ṁcool

4πρhot(rcool)r2
cool

− cs(rcool), (45)

where cs(rcool) is the local sound speed at radius rcool. The first term
in equation (45) describes the increase of rcool due to cooling. The
form of this term is derived from the picture that the cooled down
gas all comes from the region near rcool, and then mass conserva-
tion for a spherical shell gives Ṁcooldt = 4πρhot(rcool)r2

cooldrcool. The
second term describes the contraction of the hot gas halo due to the
reduction of pressure support induced by cooling. Since the hot gas
halo is in hydrostatic equilibrium in the gravitational potential well
of the dark matter halo, cs(rcool) is close to the circular velocity at
rcool, so the contraction time-scale is comparable to tff(rcool). Thus,
the contraction here is similar to that introduced in the new cooling
model, but in the MORGANA cooling model the contraction does not
include the effect of halo growth, which is included explicitly in the
new cooling model using equation (21). Together, equations (44)
and (45) enable the calculation of rcool and Ṁcool for each time-step.

There are some physical inconsistencies between equations (44)
and (45). In equation (44), it is assumed that the cooled down
gas comes from the whole region between rcool and rvir, but in
equation (45), the cooled down gas is assumed to only come from
a shell around r = rcool. Unless rcool is very close to rvir, these two
assumptions about the spatial origin of the cooled down gas conflict
with each other. Furthermore, equation (44) implies that there is
differential cooling within a single hot gas shell, with a fraction
of the gas cooling completely and the remainder not cooling at
all. However, since in a perfectly spherical system, the gas inside
one shell all has the same density and temperature, the whole shell
should cool down simultaneously, namely all gas in it cools down
after a time tcool, but no gas cools down before that time. Of course,
in reality deviations from spherical symmetry will make the cooling
process more complex.

The mass of gas cooled down in one time-step is then �Mcool =
Ṁcool�t . This mass is used to update the mass of the cold halo gas

4 Viola et al. (2008) introduced a modification of this for a static halo, in
which the onset of cooling is delayed by a time interval equaling tcool(r = 0).
But this modification is not applied in the full MORGANA model, so here we
ignore it and use the cooling model described in Monaco et al. (2007).

component, Mhalo, cold, and then the mass accreted on to the central
galaxy, �Macc, gal, is derived assuming gravitational infall of the
cold halo gas component, which is calculated in the same way as
our new cooling model, using equation (18).

The MORGANA cooling model does not explicitly follow the flow
of angular momentum. Instead, it assumes that the central galaxy
always has a specific angular momentum equal to that of its host
dark matter halo, j̄halo, with j̄halo = Jhalo/Mhalo, and Jhalo and Mhalo,
the total angular momentum and mass of the dark matter halo, re-
spectively. This assumption is even cruder than the treatment in
L-GALAXIES. Stevens et al. (2017) compare j̄halo and the specific an-
gular momentum of central galaxies in the Evolution and Assembly
of GaLaxies and their Environments simulation, and find that this
assumption is indeed very crude.

The MORGANA model adopts a relatively complex treatment of halo
gas components during halo mergers (e.g. Monaco et al. 2007).
One important feature of the original MORGANA treatment is that
gas cooling is forced to pause for several halo dynamical time-
scales after halo major mergers. However, Monaco et al. (2014)
argued that this suppression of cooling seems to be too strong when
compared with SPH simulations and suggested turning it off. Here,
for simplicity, and in order to concentrate on the cooling calculation,
we adopt the same treatment for the MORGANA cooling model as in
the new cooling model, and the suppression of cooling during halo
major mergers is not included.

In this paper, the MORGANA cooling model is only used in the
stripped down model, therefore we do not consider here the treat-
ment of the gas ejected by SN feedback in the MORGANA model.

2.3 Halo spin and concentration

All of the cooling models described above require knowledge of
the density profile and angular momentum of the dark matter halo.
The former is needed for calculating the free-fall time-scale from
a given radius, while the latter is required for the calculations of
the angular momentum of the gas. Assuming the NFW profile for
the dark matter halo, the remaining major task for characterizing the
profile is to determine the halo concentration, cNFW; other parame-
ters of the profile, such as halo mass and virial radius, are relatively
straightforward to derive given the merger tree. The angular mo-
mentum of a halo is usually expressed in terms of the halo spin
parameter, λhalo, which is defined as,

λhalo = Jhalo |Ehalo|1/2

GM
5/2
halo

, (46)

where Jhalo, Ehalo, and Mhalo are the total angular momentum, energy,
and mass of a dark matter halo, respectively, and G is the gravita-
tional constant. Thus, the major task of determining halo angular
momentum is to determine λhalo for a given halo.

Different SA models use different methods to assign these two
parameters to each halo in a merger tree. The main GALFORM mod-
els (e.g. Baugh et al. 2005; Bower et al. 2006; Gonzalez-Perez
et al. 2014; Lacey et al. 2016) follow the method introduced in Cole
et al. (2000), in which a halo inherits the cNFW and λhalo of its most
massive progenitor until it undergoes a halo formation event. At
a halo formation event, a new cNFW is assigned according to the
mass and redshift of this halo through the Mhalo–cNFW correlation
(Navarro et al. 1997), and a new λhalo is randomly selected accord-
ing to a lognormal distribution derived from N-body simulations
(e.g. Cole & Lacey 1996; Warren et al. 1992; Gardner 2001, but see
Bett et al. 2007 for a different fitting form). This method introduces
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sudden jumps in cNFW and λhalo at halo formation events even if
the halo growth is smooth, which is unphysical. Also, the possible
evolution of cNFW and λhalo between two adjacent halo formation
events is ignored.

L-GALAXIES models use halo merger trees from N-body simula-
tions, and adopt cNFW and λhalo measured directly for the haloes
in these simulations. In principle, this provides the most accurate
way to assign cNFW and λhalo to a given halo; however, it also has
some limitations. First, resolving the halo mass accretion history
and thus building merger trees only requires marginal resolution,
i.e. a halo should be resolved by at least several tens of particles, but
robust measurement of cNFW and λhalo requires higher resolution,
i.e. a halo should be resolved by at least several hundred particles
(Neto et al. 2007; Bett et al. 2007). Therefore, cNFW and λhalo values
measured for the smaller haloes from an N-body simulation are not
reliable. Secondly, an SA model employing this method cannot use
Monte Carlo merger trees, which limits its applicability, particularly
in building large statistical samples.

The MORGANA model also assigns cNFW according to the Mhalo–
cNFW correlation, but it does this at each time-step instead of at each
halo formation event. By doing so, the artificial sudden jumps in
cNFW at halo formation events is removed. In the MORGANA model,
each halo inherits the λhalo of its most massive progenitor, while for
each halo without progenitor, a value of λhalo is assigned randomly
according to the lognormal distribution. In this way, λhalo is constant
in each branch of a merger tree, and there is no artificial jump in its
value as in GALFORM models, but the evolution of λhalo due to halo
growth is completely ignored.

Benson & Bower (2010) and Vitvitska et al. (2002) (see also
Maller, Dekel & Somerville 2002) proposed another way to assign a
value of λhalo to each halo. In their method, haloes with no progenitor
are assigned λhalo values randomly according to the λhalo distribution
derived from N-body simulations, but then the evolution of λhalo

is calculated based on the orbital angular momenta of accreted
haloes. With the halo accretion history given by the merger tree and
distributions of orbital parameters derived from N-body simulations,
the evolution of λhalo can be calculated. One potential problem with
this method is that it assumes that smoothly accreted mass makes no
contribution to the evolution of λhalo. This may not be true, and also
whether the accretion is smooth or clumpy is resolution dependent,
so this approach omits the effect of unresolved accreted haloes,
which may affect the long-term evolution of λhalo.

In this paper, we follow Cole et al. (2000) to set cNFW and λhalo for
the GFC1 model, to remain consistent with its original assumptions.
For other models, we adopt the method used in the MORGANA model
for setting cNFW (i.e. setting it according to the adopted cNFW–
Mhalo relation at each time-step), while for the assignment of λhalo,
we introduce a new and simple method. Specifically, a lognormal
distribution is adopted to randomly generate spins for haloes at
the tips of merger trees. The subsequent evolution of λhalo is then
modelled by a Markov random walk, in which the spins of a halo and
its progenitor become approximately uncorrelated when this halo
reaches twice its progenitor’s mass. In each time-step, a conditional
probability distribution for the new spin can be constructed for each
halo given the mass increase and progenitor λhalo, and then a value of
λhalo is assigned randomly according to this conditional distribution.
This method allows large spin changes when the halo mass increases
by a large factor, i.e. in major mergers, and small, but usually non-
zero, changes for small mass increases, which are typical in smooth
halo growth. More details of this random walk method are provided
in Appendix C, together with some comparisons of the predictions
of this method with results from N-body simulations.

We have checked that all the results presented in this paper are
not sensitive to the method used for assigning cNFW and λhalo.

3 R ESULTS

This section presents predictions from the new cooling model,
and compares them with the corresponding results from the ear-
lier cooling models described in the previous section. We start, in
Section 3.1, by considering the cooling histories for the simplest
case of a static haloes, and then, in Section 3.2, consider the more
realistic case of evolving haloes with full merger histories. Finally,
in Section 3.3, we show the effects of using the new cooling model
within a full galaxy formation model. All the calculations adopt the
cooling function tabulated in Sutherland & Dopita (1993).

3.1 Static halo

For the static halo case, we consider dark matter haloes of fixed
mass, Mhalo, and also a fixed density profile, corresponding to a halo
that forms at redshift z. We present four cases that illustrate the range
of behaviours: Mhalo = 1011 M� (low-mass and fast cooling halo),
Mhalo = 1012 M� (Milky Way-like halo), Mhalo = 1013 M� (group
halo), and Mhalo = 1014 M� (cluster halo). For Mhalo = 1011 M�,
we choose z = 3, while for the other cases, we choose z = 0. The
core radius of the β-distribution for hot gas is set to be
rcore = 0.07rvir. The redshift is introduced here to determine rvir,
which then enters the calculation of the virial temperature Tvir, free-
fall time-scale tff(r) and core radius rcore of the hot gas density
profile. To isolate the effects of the different cooling models, star
formation and feedback processes are turned off.

Fig. 2 shows the total mass and the specific angular momentum
of the gas that has cooled down and accreted on to the central
galaxy, as predicted by the different cooling models. Results are
plotted against the time, t, since radiative cooling is turned on in
the halo. For the fast cooling halo (Mhalo = 1011 M�), all cooling
models predict very similar results for the two quantities. This is
because in the fast cooling regime, the accretion of the cooled down
gas is mainly limited by the time-scale for free-fall rather than
that for radiative cooling, and all of the cooling models calculate
the free-fall accretion rate in a similar way. For the more massive
haloes (Mhalo = 1012–1014 M�), the results for the L-GALAXIES and
MORGANA cooling models remain very similar, but the results for the
GFC1, GFC2, and new cooling models diverge from those models
and from each other.

For haloes of all masses, gas starts to accrete on to the central
galaxy from t = 0 in the L-GALAXIES and MORGANA cooling models;
for the GFC1, GFC2, and new cooling models, there is a time delay
that varies with halo mass. This time delay is equal to the central
radiative cooling time-scale, tcool(r = 0). It is a consequence of the
assumption that the hot gas density decreases monotonically with
radius, so that tcool ∝ ρhot(r)−1 increases with radius. In the GALFORM

cooling models, the hot gas density at r = 0 is finite, and gas cools
shell by shell, so no gas can cool and accrete before the gas at the
centre cools. In contrast, in the L-GALAXIES cooling model, the hot
gas density at r = 0 is infinite, while in MORGANA, the gas does not
cool shell by shell, so there is no time delay.

For the Milky Way-like halo, the GFC1 and GFC2 models gen-
erally predict lower accreted masses than the new cooling model,
and this difference grows with halo mass. For the 1014 M� halo,
the difference can be a factor �4. The origin of this difference can
be understood by looking at the cooling in more detail, as is done
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Figure 2. Cooling histories for static haloes, measured from the time when radiative cooling is turned on. The different line styles show the predictions for
different cooling models, as labelled in the line key. Each row corresponds to a different halo mass and assembly redshift, as labelled. Left-hand column: the
ratio of cooled mass to total baryon mass. Right-hand column: the ratio of the specific angular momentum of the cooled gas to the specific angular momentum
of the halo. Note the different time spans in the different panels.
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Figure 3. More detailed information on the cooling in static haloes in the three GALFORM cooling models for Mhalo = 1014 M�. From upper left to lower
right, these four panels, respectively, show the time evolution of the cooling radius, rcool, ratio of the density of the shell at rcool to the density of the same
Lagrangian shell at t = 0, the time available for cooling, tcool,avail, and the scaled time available for cooling, t ′cool,avail, predicted by the three models. Each line
style corresponds to a different model, with the model name given in the key in the upper right panel. The vertical dashed line in each panel indicates the
moment at which cooling starts.

in Fig. 3. For conciseness, we only show the most massive halo,
where the above-mentioned difference is largest. The results for
less-massive haloes are similar.

The upper left panel of Fig. 3 shows the time evolution of the
cooling radius, rcool. The GFC1 model predicts that rcool increases
monotonically with time. This is expected for a fixed hot gas halo,
in which the hot gas cools down at larger and larger radii with in-
creasing time. For the GFC2 and new cooling models, however, rcool

tends to reach a stable value instead of increasing with time. This
is caused by the contraction of the hot gas halo included in these
two models. Although radiative cooling leads to an increase of rcool,
just as in the GFC1 model, the contraction moves the hot gas shells
to smaller radii, and the competition of these two factors results in
rcool approaching a nearly constant value. The GFC2 model pre-
dicts larger values of rcool than the new cooling model, because, as
mentioned in Section 2.2.2, these two models adopt different con-
traction time-scales, and the GFC2 model tends to overestimate the
contraction time-scale, leading to slower contraction, and resulting
in values of rcool intermediate between the GFC1 and new cooling
models.

When a hot gas shell moves to smaller radius, it is compressed
to a higher density. This effect is shown in the upper right panel of
Fig. 3. This panel gives the ratio of the density of the gas at rcool to
the density, ρhot, original, in the same Lagrangian gas shell at t = 0.
This ratio is always 1 for the GFC1 model, because it assumes a
static hot gas halo, while for the GFC2 and new cooling models,

it is larger than 1, due to the compression induced by the hot halo
contraction.

The lower left panel of Fig. 3 shows the tcool, avail predicted by the
three models. The prediction of the GFC1 model is just the physical
time, while those of the GFC2 and new cooling models tend to level
off at constant values. tcool, avail encodes the previous cooling history
of the hot gas. The advance of cooling tends to increase tcool, avail by
increasing Ecool in equation (13), while the hot gas halo contraction
in the GFC2 and new cooling models increases the shell density,
which leads to an increase of the cooling rate, and so tends to reduce
tcool, avail by increasing Lcool in equation (13). The combination of
these two effects causes tcool, avail to approach a roughly stable value.

In the GFC2 and the new cooling models, tcool, avail is used to
calculate the cooled mass for the hot gas halo after contraction. As
shown in the upper right panel of Fig. 3, the extent of contraction is
different in these two models, while the GFC1 model does not have
this contraction. Thus, the tcool, avail in these three models are for
different hot gas haloes. This makes it complicated to analyse the
origin of the differences in predicted cool mass based on tcool, avail.
Therefore, we introduce another quantity, t ′

cool,avail, which is defined
as

t ′
cool,avail = tcool,avail

ρhot(rcool)

ρhot,original
, (47)

where ρhot(rcool) is the density of the shell that has just cooled down,
while ρhot, original is the density at t = 0 of the same Lagrangian shell,
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and this density ratio is that shown in the upper right panel of Fig. 3.
Since for the shell just cooled down one has tcool, avail = tcool(rcool),
and from equation (6), tcool ∝ ρ−1

hot , equation (47) implies that

t ′
cool,avail = tcool(rcool)

ρhot(rcool)

ρhot,original

= tcool,original, (48)

where tcool, original is the cooling time-scale of this Lagrangian shell
at t = 0. Then, it is clear that t ′

cool,avail is linked to the cooling time-
scale at the initial moment, at which the hot gas halo is the same in
all three models, and so is easier to compare between models.

The lower right panel of Fig. 3 shows the t ′
cool,avail predicted by the

three models. The new cooling model predicts the highest t ′cool,avail,
which means that at any given time, the shell at rcool in this model has
the largest initial radius among the three models, and since at t = 0,
the hot gas halo density profile is the same for these three models,
the largest radius implies the highest cooled mass. In contrast, the
GFC2 model predicts the smallest t ′

cool,avail, so it predicts the lowest
cool mass (see Fig. 2).

The density enhancement (ρhot(rcool)/ρhot, original > 1) seen in the
GFC2 and new cooling models implies a higher cooling luminosity
than for the case of a fixed hot gas halo as in the GFC1 model. This
higher cooling luminosity means more thermal energy is radiated
away by a given time, and since the hot gas haloes in these three mod-
els all have the same temperature, this higher thermal energy loss
should mean higher cooled mass. Therefore, it would be expected
that for a cooling model with density enhancement, its predicted
cooled mass should be higher than for a model assuming a fixed hot
gas halo. Also, a higher cooled mass means the shell cooled down
was initially at larger radius, and since the density decreases with
increasing radius for the assumed initial density profile, this larger
radius implies lower initial density and longer original cooling time-
scale, tcool, original. Therefore, for a given ρhot(rcool)/ρhot, original, in so
far as this ratio is greater than one, the expected t ′

cool,avail should
be larger than in a model with a fixed hot gas halo, i.e. the GFC1
model.

The new cooling model does predict cooled mass and t ′
cool,avail

larger than those in the GFC1 model, but the GFC2 model predicts
these to be lower than in the GFC1 model, which contradicts the
physical expectation above. Thus, the GFC2 model appears to be
physically inconsistent, and the t ′

cool,avail in it tends to be too small.
Furthermore, because t ′

cool,avail and tcool, avail are related by the density
ratio through equation (47), for a given density ratio, the underesti-
mation of t ′

cool,avail also implies an underestimation of tcool, avail.
To understand why tcool, avail is underestimated in the GFC2 model,

consider the following. As described in Section 2.2.2, the GFC2
model accumulates the total energy radiated away for the current hot
gas halo (equation 40) and then divides it by the current halo cooling
luminosity to estimate tcool, avail. When some gas cools down from the
hot gas halo, its contribution to the total energy radiated away should
be removed, because this gas is no longer part of the hot gas halo,
and this is the motivation for the second term in equation (40). This
term basically removes the total thermal energy corresponding to
the mass removed from the hot gas halo. This would be correct if the
GFC2 model exactly accumulated the total energy radiated away by
cooling. However, the GFC2 model adopts a very rough approxima-
tion (equation 38), whereby the cooling luminosity of a gas shell is
approximated as δLcool = 4π�̃ρ2

hot(r)r2dr ≈ 4π�̃ρ̄hotρhot(r)r2dr ,
with �̃ being the cooling function and ρ̄hot the mean density of
the hot gas. For the β-distribution used for the static halo compar-
ison, ρ̄hot ∼ ρhot(r = 0.5rvir), and for the group and cluster haloes,

cooling happens in the region where ρhot(r) > ρ̄hot. Thus, the ap-
proximation underestimates the energy radiated away, and so the
second term in equation (40) removes more energy than neces-
sary, leading to an underestimation of tcool, avail. The final cooling
depends on the relative strength of this underestimation and the
density enhancement. For the static halo, this underestimation of
tcool, avail exceeds the effects of the density enhancement and leads to
even less gas cooling down than in the GFC1 model, but for other
cases, the results could be different.

Overall, the introduction of the contraction of the hot gas halo
in the new cooling model results in more efficient cooling than in
the more traditional GALFORM cooling model GFC1. Some previous
works (De Lucia et al. 2010; Monaco et al. 2014) also noticed that
the GFC1 model tends to predict less gas cooling than other cooling
models such as MORGANA and L-GALAXIES, and also less than SPH
hydrodynamical simulations. These works suggested using more
centrally concentrated hot gas density profiles such as the singular
isothermal profile to bring SA predictions into better agreement
with SPH simulations. However, the results here suggest that at
least part of the reason for the GFC1 model giving low cooling
rates is that it does not include contraction of the hot gas halo as
cooling proceeds. Note that the enhancement of hot gas density and
hence cooling induced by contraction is also mentioned in MORGANA

papers (e.g. Viola et al. 2008), but taking the average over all hot gas
shells to calculate the mass cooling rate (as is done in the MORGANA

cooling model) may not be the best way to model this effect.
Fig. 2 also shows that for the haloes other than the fast cooling

halo, the different cooling models predict different specific angu-
lar momenta for the gas in the central galaxies. The L-GALAXIES

and MORGANA cooling models give higher specific angular momen-
tum than the GFC1, GFC2, and new cooling models. They predict
higher specific angular momentum mainly because they (implic-
itly) assume specific angular momentum distributions of the hot
gas, jhot(r), that are very different from the three GALFORM mod-
els. The L-GALAXIES cooling model assumes that the gas accreting
in the current time-step has specific angular momentum equal to
the mean specific angular momentum of the dark matter halo. This
corresponds to jhot(r) = constant, i.e. no dependence on the radius
from which the gas is cooling. The MORGANA cooling model instead
assumes that the mean specific angular momentum of all the gas
that has cooled down and accreted on to the central galaxy over
its past history is equal to the mean specific angular momentum of
the current dark matter halo. In the static halo case, in which the
mean specific angular momentum of the halo does not change with
time, the assumption in the MORGANA model is equivalent to that in
L-GALAXIES cooling model. As shown in the right-hand column of
Fig. 2, this results in the mean specific angular momentum of the
cold gas in central galaxies being equal to the mean halo specific
angular momentum at all times for these two models, in the case of
a static halo.

In contrast, the GFC1, GFC2, and new cooling models assume
that jhot(r) increases with radius, and that the mean specific angular
momentum of all the baryons in a halo is equal to the mean specific
angular momentum of the halo. Under this assumption, the hot gas
in the central region has lower specific angular momentum than
the mean for the halo. For the haloes other than the fast cooling
halo, typically only part of the hot gas cools down, and since the
cooling proceeds from halo centre outwards, the hot gas having
low specific angular momentum cools first, so the predicted mean
specific angular momentum of the cold gas in central galaxies is
lower than that of the dark matter halo. The new cooling model
predicts higher specific angular momentum for the cooled gas in
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central galaxies compared to the GFC1 and GFC2 models, because it
cools more effectively, and so can cool gas shells that were originally
at larger radii, which, according to the assumed jhot(r), have higher
specific angular momentum.

3.2 Cosmologically evolving haloes

Having understood the behaviours of the different cooling models in
the simplified case of static haloes, the next step is to compare them
in the context of cosmic structure formation. To achieve this, we run
the cooling models in cosmologically evolving haloes, whose for-
mation histories are described by merger trees. As before, we choose
four different halo masses at z = 0, namely Mhalo = 1011, 1012, 1013,
and 1014 M�. For each of these masses, we generate 100 indepen-
dent merger trees to sample the range of formation histories, using
the Monte Carlo method of Parkinson, Cole & Helly (2008) that
is based on the Extended Press–Schechter approach (e.g. Lacey &
Cole 1993).(We use Monte Carlo rather than N-body merger trees
for this comparison because it is then easier to build equal size
samples for different z = 0 halo masses.) The merger trees are built
with halo mass resolution, Mres = 5 × 109 M�. We choose this rel-
atively high Mres mainly to avoid too much cooling in small haloes,
which would leave little gas for the slow cooling regime in high-
mass haloes. Star formation, SN, and AGN feedback processes and
galaxy mergers are all turned off in order to isolate the effects of
the different cooling models. For each merger tree, the mass and
angular momentum of the gas cooled and accreted on to the central
galaxy in the haloes in the major branch of this merger tree are
recorded.

Fig. 4 shows the medians of 100 realizations for each halo mass
of the mass and specific angular momentum of gas accreted on to the
central galaxy in the main branch of the merger tree. Many features
seen in the static halo case also appear here. For the fast cooling
haloes (Mhalo = 1011 M� at z = 0), the predictions of the different
cooling models are similar, again because in the fast cooling regime,
the accretion of gas on to galaxies is limited by the free-fall time-
scale and largely insensitive to the details of the cooling calculation.
For the slower cooling haloes (Mhalo ≥ 1012 M�), the new cooling
model predicts larger cooling masses than the GFC1 and GFC2
models, because of the contraction of the hot gas halo. For haloes
less massive than 1014 M�, the predictions of the new cooling model
for the mass cooled down are close to those of the L-GALAXIES and
MORGANA cooling models, but for 1014 M� haloes, the predictions
of the new cooling model at z = 0 are about a factor of two lower
than those of MORGANA, and a factor of three lower than those of
L-GALAXIES.

In the static halo case, the cooled down mass predicted by the
GFC2 model is always lower than that of the GFC1 model, but
here the relation of their predictions is more complex. For some
halo masses, the GFC2 model gives higher cooled down masses,
but for other halo masses, its predictions are lower. This is because
the diverse halo merger histories affect the comparative strengths of
the underestimation of tcool, avail and the enhancement of the hot gas
density in the GFC2 model, and the competition of these two factors
determines the final cooling efficiency of this model, as described
in Section 3.1.

The MORGANA cooling model forces the specific angular mo-
mentum of the cooled down gas to always equal the mean spe-
cific angular momentum of the halo by construction. Although the
L-GALAXIES cooling model makes the same prediction in the static
halo case, for dynamically evolving haloes, the L-GALAXIES cooling
model predicts lower specific angular momenta. This is because

L-GALAXIES assumes that the gas currently cooling and accreting on
to the central galaxy has specific angular momentum equal to that
of the current halo. For cosmologically evolving haloes, the halo
specific angular momentum typically increases as the halo grows,
so the gas cooled at earlier times tends to have lower specific angu-
lar momentum, and so the total mean specific angular momentum
of all of the gas that has cooled up to that time is lower than the
mean value of the current halo.

The new cooling model tends to give higher specific angular
momentum than the GFC1 and GFC2 models, mainly because the
new cooling model can cool gas that was originally at larger radii,
which according to the assumed jhot(r) has higher specific angular
momentum.

For the dynamical halo case, a new phenomenon is that for haloes
with Mhalo � 1012 M� at z = 0, the GFC1, GFC2, and new cooling
models predict lower specific angular momentum for the cooled
down gas at z = 0 than the L-GALAXIES cooling model, while for
haloes with Mhalo � 1012 M� at z = 0, the reverse is true. This can
be understood as follows:

In the absence of cooling, all four models would predict that the
mean specific angular momentum of the hot gas always equals that
of the dark matter halo. Typically, the specific angular momentum
of the dark matter halo increases as it grows, which means that the
specific angular momentum of gas accreting later is higher than
that of gas accreting earlier. In the presence of cooling, the gas that
accreted earlier is more likely to cool, so the mean specific angular
momentum of the remaining gas is higher than that of the dark
matter halo.

For slower cooling haloes (those with Mhalo � 1012 M� at z = 0),
typically only a small fraction of the hot gas halo cools down, so
the mean specific angular momentum of the hot gas cannot be much
different from that of the dark matter halo. Moreover, the cooling
in this case typically happens at small radii, and because the GFC1,
GFC2, and new cooling models all assume jhot(r) increases with r,
they predict that the gas that is currently cooling has lower specific
angular momentum than the dark matter halo, and so also lower
than the predictions of the L-GALAXIES cooling model.

For the faster cooling haloes (those with Mhalo � 1012 M� at
z = 0), most of the gas cools, so the specific angular momentum
of the remaining hot gas can end up being significantly larger than
that of the halo. Since the gas ends up cooling from large radii, the
specific angular momentum of the gas that cools in a single time-
step may be larger than the mean for the dark halo. This effect is
more or less captured in the GFC1, GFC2, and new cooling models,
but not in the L-GALAXIES cooling model, which is why for this case
L-GALAXIES predicts lower specific angular momentum for the cooled
down gas as a whole compared to the GALFORM cooling models.

3.3 Full galaxy formation model

In this section, we show the effects of implementing the new cooling
model in a full galaxy formation model. The GALFORM, L-GALAXIES ,
and MORGANA SA models have very different modelling of galaxy
sizes, star formation, black hole growth, SN and AGN feedback.
A full comparison of these models is not the aim of this paper, so
here we restrict our scope to the GALFORM model, and investigate the
effects of the new cooling model on a recent version of GALFORM,
namely ‘Lacey16’ (Lacey et al. 2016). The ‘Lacey16’ model is
calibrated primarily on eight observational constraints: at z = 0,
the bJ- and K-band galaxy luminosity functions (LFs); the HI mass
function; the morphological fractions; the black hole–bulge mass
relation; in the range z = 0–3, the evolution of the K-band galaxy LF;
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Figure 4. The same as Fig. 2, but for cosmologically evolving haloes. For each z = 0 halo mass shown in the figure, 100 merger trees are constructed, and the
cooling models run on all branches of each merger tree. Star formation, SN, and AGN feedback, and galaxy mergers are turned off. The results are recorded
for the main branch of each merger tree, and the medians of each halo sample are plotted.

MNRAS 475, 543–569 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/475/1/543/4739355
by University of Durham user
on 15 February 2018



New cooling model 559

the submillimetre galaxy number counts and redshift distributions;
the far-infrared number counts; and at higher redshift still, the far-
ultraviolet LFs of Lyman-break galaxies. As previously mentioned,
the ‘Lacey16’ model adopts the GFC1 model for gas cooling in
haloes.

In our comparison, we focus on three important galaxy proper-
ties. The first is the galaxy LF at z = 0. This gives the abundance
of galaxies of different masses, and reproducing the observed LFs
is typically a basic requirement for any successful galaxy forma-
tion model. The second is the halo mass–stellar mass/total galaxy
mass (stars + cold gas) correlations at z = 0, which are also basic
properties. The third is the galaxy size–luminosity relation. This is
of special interest because the new cooling model predicts specific
angular momenta for galaxies that are significantly different from
previous cooling models.

We first compare the original ‘Lacey16’ model to variants using
the new cooling model, while keeping the other parameters fixed at
their original values. In the original ‘Lacey16’ model, as in earlier
published GALFORM models using the GFC1 cooling model, the halo
virial velocity, Vvir, is updated only at halo formation events, while
in the new cooling model Vvir is normally updated at every time-
step. Changing how Vvir is updated by itself results in significant
changes in some GALFORM predictions. To separate more clearly
the effects of the new cooling model from the effects of how Vvir

is updated, we define several variants which we then compare:
‘Lacey16+cv’, which is identical to the original ‘Lacey16’ model
except that Vvir is updated at every time-step; ‘Lacey16+new cool’,
which is the ‘Lacey16’ model with the new cooling model except
with Vvir updated at formation events; and ‘Lacey16+cv+new cool’
model, which is the ‘Lacey16’ model with the new cooling model
and with Vvir updated at every time-step (the default case for the
new cooling model). These variants are discussed in Section 3.3.1.

As shown below, the ‘Lacey16+cv+new cool’ model without
retuning does not provide a good match to the observed galaxy LFs
at z = 0, so we then introduce a retuned model, ‘Lacey16+cv+new
cool + retuned’, in which some of the other GALFORM parameters
are adjusted to provide a better fit to these data. This retuned model
is discussed in Section 3.3.2. For simplicity, the retuning here is
limited, and only considers the z = 0 bJ- and K-band LFs and the
z = 0 morphological fractions as constraints. This retuning also tries
to maintain the improvement in early-type galaxy sizes achieved by
the ‘Lacey16+cv+new cool’ model.

All of these models are run on merger trees extracted from
Millennium–WMAP7 N-body simulation. More details of these
merger trees are given in Lacey et al. (2016).

3.3.1 Original Lacey16 model and variations

We first consider galaxy LFs. The intrinsic luminosity of a given
galaxy is calculated self-consistently by convolving its star forma-
tion history with the luminosities of single stellar populations, while
the extinction is calculated self-consistently based on the galaxy’s
cold gas mass and metallicity and its radius. More details are given
in Lacey et al. (2016). Fig. 5 shows the present-day bJ- and K-
band LFs predicted by the different model variants described above,
compared with observational data. The original ‘Lacey16’ model
was calibrated to provide a good fit to the observed LFs. Updating
the halo virial velocity, Vvir, at every time-step, as for the variant
‘Lacey16+cv’, is seen by itself to produce only small changes in
the LFs, reducing them slightly at the faint end. However, replacing
the original cooling model (GFC1) with the new cooling model is
seen to produce a large increase in the number of bright galaxies,

although this effect is smaller in the model ‘Lacey16+cv+new cool’,
where Vvir is updated at every time-step (lower panels), compared
to the model ‘Lacey16+new cool’ where it is only updated at forma-
tion events (upper panels). In the ‘Lacey16’ model, the bright ends
of the LFs at z = 0 are controlled mainly by AGN feedback. The
excesses seen at the bright ends show that the AGN feedback is too
weak when the new cooling model is introduced without adjusting
any other parameters. There are two reasons for this. First, as shown
in Sections 3.1 and 3.2, by more carefully modelling the contraction
of the hot gaseous halo, the new cooling model predicts higher cool-
ing luminosity and more efficient cooling, which requires stronger
AGN feedback to balance it. Secondly, the efficiency of the AGN
feedback that is available in the model is tightly correlated with the
growth of supermassive black holes (SMBH) at the centres of galax-
ies. As discussed in Lacey et al. (2016), in the ‘Lacey16’ model, the
black hole accretion triggered by bar instabilities in galaxy discs is
a major contributor to black hole growth. The new cooling model
generally predicts higher angular momentum for the cooled down
gas, resulting in larger disc sizes, and delaying the onset of disc
instabilities (typically by ∼5 Gyr). This then delays the onset of
efficient AGN feedback, leading to ineffective AGN feedback over
most of the history of a galaxy.

A further effect of using the new cooling model that is apparent
in Fig. 5 is to lower the faint ends of the LFs relative to the cor-
responding models using the GFC1 cooling model. However, this
change is fairly modest, less than a factor of two. This difference
indicates that the new cooling model predicts less gas cooling in the
haloes forming these faint galaxies, which are typically low mass
(Mhalo � 1012 M�) and close to the fast cooling regime. At first
sight, this seems to contradict the conclusions in Sections 3.1
and 3.2, which claim that the cooling in low-mass haloes predicted
by the different cooling models is similar. However, the models
used in Sections 3.1 and 3.2 do not include SN feedback and so
there is no re-incorporation of the gas ejected out of the halo by SN
feedback. In the full model here, this ejected gas plays a central role
in gas cooling because faint galaxies have very strong SN feedback,
and so a large fraction of their gas is ejected and later reaccreted.

Both the new cooling model and the GFC1 model assume that
the ejected gas is gradually re-incorporated into the hot gas halo,
and when it joins the hot gas halo, it is shock heated to Tvir, so that
it joins as hot gas without any previous cooling history. However,
as mentioned in Section 2.2.1, the GFC1 model always calculates
tcool, avail as the time since the last halo formation event, which means
that ejected gas that is re-incorporated between two halo formation
events is treated as having been cooling for longer than it has been
part of the hot halo. In contrast, the new cooling model estimates
the cooling history by accumulating the energy previously radiated
away, Ecool, and the re-incorporation of the ejected gas does not
change Ecool. This difference in the treatment of the re-incorporated
gas causes the new cooling model to predict less cooling in these
low-mass haloes. The strength of this effect depends on the amount
of gas ejected, so only the galaxies experiencing strong SN feedback
are strongly affected.

The top row of Fig. 6 shows the halo mass–stellar mass/total
galaxy mass (stars + cold gas) correlations predicted by different
models. Here, for conciseness, we only show the results of models
in which Vvir is updated at every time-step. With the new cooling
model, i.e. in the ‘Lacey16+cv+new cool’ model, the galaxies in
haloes with Mhalo � 1012 M� tend to have lower stellar masses and
total galaxy masses, which is again caused by the reduction of cool-
ing in the new cooling model when including the re-incorporated
gas.
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Figure 5. The galaxy LFs at z = 0 in the bJ and K bands for different variants of the ‘Lacey16’ model. Each line shows the prediction for a different model,
with the corresponding model name given in the key. The different models are described in the text. The top panels show the original ‘Lacey16’ model and the
separate effects of changing to the new cooling model or of updating the halo virial velocity at every time-step. In the bottom panels, all models have the halo
virial velocity updated at every time-step. These panels include the retuned ‘Lacey16’ model incorporating the new treatment of gas cooling. The grey open
circles with error bars are observational data, from Norberg et al. (2002) for the bJ band, and from Driver et al. (2012) for the K band.

We now consider galaxy sizes. In GALFORM, the disc size is re-
lated to the disc specific angular momentum, while the bulge size
at formation is estimated based on energy conservation and the
virial theorem, and these sizes are then adjusted adiabatically un-
til the disc and bulge reach equilibrium under the gravity of each
other and the halo. More details of the size calculation are given in
Cole et al. (2000). Fig. 7 shows the r-band half-light radius versus
r-band absolute magnitude relations for both late-type and early-
type galaxies at z = 0. The original ‘Lacey16’ model predicts too
large sizes for faint late-type galaxies (Mr � −20) and for faint early-
type galaxies Vvir (Mr � −21). The ‘Lacey16+cv’ model, in which
Vvir is updated at every time-step, gives similar results, with the
predicted sizes of faint late-type galaxies being even larger. Using
the new cooling model, as in ‘Lacey16+cv+new cool’, then reduces
the sizes of faint late-type galaxies compared to the ‘Lacey16+cv’
model, due to the reduction of gas cooling when including the re-
incorporated gas. Lower cooled down mass implies that gas has
cooled from smaller radii in the hot gas halo, because the cooling
proceeds from the halo centre outwards. Then, since in GALFORM , the
assumed hot gas specific angular momentum distribution predicts

lower specific angular momentum at smaller radii, the reduction of
cooling leads to the reduction of galaxy specific angular momenta
and thus galaxy sizes. However, the sizes of late-type galaxies in the
‘Lacey16+cv+new cool’ model are almost the same when compared
to the original ‘Lacey16’ model. This indicates that some physical
effect other than gas cooling in haloes must be responsible for the
deviation of the model prediction from observations for late-type
galaxies. One possibility is that the current GALFORM model assumes
the same radius for both stellar and gas discs in a galaxy. In reality,
the gas disc could be more extended than the stellar disc, because
star formation happens mainly in the central region of the gas disc,
where the gas density is higher.

Using the new cooling model results in a larger improvement
in the size–luminosity correlation of the early-type galaxies at
z = 0. The predicted relation is now in better agreement with
observations, much better than both the original ‘Lacey16’ and
‘Lacey16+cv’ models, although the scatter around the median
is still much larger than observed. This improvement is mainly
due to the reduction in the sizes of the faint early-type galaxies.
This can again be understood as a consequence of the reduction
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Figure 6. Upper left panel: the halo mass–stellar mass correlations at z = 0 predicted by different models. For central galaxies, the halo masses are their
host halo masses at z = 0, while for satellites, the halo masses are the masses of haloes at infall. The thick lines of different styles are median stellar masses
at a given halo mass predicted by different models, with the corresponding model names given in the key. The thin solid lines show the 5th–95th percentiles
of stellar mass in the retuned model, indicating the scatter around the median correlation. The scatters in other models’ predictions are similar to the retuned
model, and they are omitted here for clarity. The long dashed line indicates the correlation in Moster, Naab & White (2013) for reference. It is derived by using
an abundance matching method. Upper right panel: similar to the upper left panel, but for the halo mass–total galaxy mass correlations at z = 0 predicted by
different models. Here, the total galaxy mass is the sum of the stellar mass and the cold gas mass. Lower left panel: the halo mass–stellar mass correlations
at z = 0 predicted by different models, shown separately for central and satellite galaxies. The dashed lines show the median stellar masses for a given halo
mass predicted by the ‘Lacey16+cv’ model, while the solid lines are the predictions of the retuned model. The thick lines are for the central galaxies, and the
thin lines are for the satellites. The scatters around the median correlations are similar in each model’s predictions and similar to those shown in the upper two
panels. They are omitted here for clarity. Lower right panel: similar to the lower left panel, but for the halo mass–total galaxy mass correlations at z = 0.

of cooling in relatively low-mass haloes when including the re-
incorporated gas.

3.3.2 Retuned Lacey16 model

As already discussed, we retune some of the parameters in the ver-
sion of the ‘Lacey16’ model incorporating the new cooling model,
in order to match better the z = 0 bJ- and K-band LFs at z = 0,
using the early-type galaxy fraction at different luminosities as a
secondary constraint (see section 4.2.3 in Lacey et al. 2016). At the
same time, we ensure that the improvement in the size–luminosity
correlation of the early-type galaxies at z = 0 is not spoilt. The
retuned parameters are summarized in Table 1.

To match the LF measurements, the major problem needing to be
solved is the excess at the bright end. As discussed in Section 3.3.1,
this is due to the ineffectiveness of AGN feedback, which is a
combined effect of enhanced cooling and the less efficient black

Table 1. Retuned parameters and their original values in the ‘Lacey16’
model.

Parameter Lacey16 Retuned Description

αcool 0.8 1.4 Threshold of the
ratio of the free-fall/cooling

time-scale
γ SN 3.2 2.8 Slope of the SN feedback

power-law scaling
fdf 1.0 0.7 Normalization of the

dynamical friction sinking
time-scale

hole growth induced by the suppression of the disc instabilities. One
direct solution would be to increase the number of disc instabilities
by raising the stability threshold, which is somewhat uncertain.
However, the faint early-type galaxies are mainly produced by disc
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Figure 7. Half-light radii of late-type (left-hand column) and early-type (right-hand column) galaxies versus luminosity at z = 0. Both the half-light radius
and luminosity are in the r band. The models plotted and their arrangement between top and bottom rows are the same as in Fig. 5. The thick lines show the
median relations, while the corresponding thin lines indicate the 10–90 per cent ranges around this. In the models, galaxies are defined as late- or early-type
according to their r-band bulge to total ratio, (B/T)r, with (B/T)r < 0.5 for late type and (B/T)r > 0.5 for early type. The grey dots with error bars show medians
and 10–90 per cent ranges based on observational data from Shen et al. (2003). Shen et al. (2003) measured the half-light radii by fitting Sérsic profiles to
galaxy images and defined the late- and early-type galaxies by Sérsic index n < 2.5 and n > 2, 5 respectively. The observed late-type galaxy sizes have been
multiplied by 1.34 to make an average correction to face-on values (see section 4.3.2 of Lacey et al. 2016 for more details).

instabilities, and raising the stability threshold would let discs with
higher specific angular momentum, and thus larger sizes, be turned
into spheroids. This would increase the median size of the faint
early-type galaxies, and thus spoil the improvement achieved by
using the new cooling model. Therefore other ways of enhancing
the AGN feedback effect should be considered first. The effect
of the AGN feedback can also be increased by turning on AGN
feedback earlier. This can be done by increasing the parameter
αcool, which sets the threshold of the ratio of the free-fall time-scale
over the cooling time-scale (both evaluated at r = rcool) at which
AGN feedback turns on (for more details, see Appendix D). Here,
we increase αcool from 0.8 to 1.4.

We also slightly reduce the uncertain SN feedback strength in
low-mass galaxies to improve the predictions for the faint ends of
the LFs. In GALFORM, the strength of the SN feedback scales with
galaxy circular velocity, Vc, as a power law, Vc)−γSN . We reduce γ SN

from 3.2 to 2.8.
We also slightly reduce the also uncertain galaxy merger time-

scale to improve the predicted early-type fraction for bright galaxies.

The original ‘Lacey16’ model and all the variations considered here
adopt the fitting formula from Jiang et al. (2008) to calculate the
galaxy merger time-scale due to dynamical friction. We modify
this by introducing an extra factor fdf in the formula for the galaxy
merger time-scale (equation 14 in Lacey et al. 2016). The original fit
in Jiang et al. (2008) implies fdf = 1, and this value was effectively
assumed in Lacey et al. (2016). Here, we reduce fdf to 0.7, which is
still roughly consistent with the simulation data in Jiang et al. (2008,
see their fig. 10). The most important effect of this is to increase the
number of mergers, particularly major mergers.

After this limited retuning of parameters, the predicted LFs agree
with observations again, as shown in the bottom row of Fig. 5. The
improvements in the predicted galaxy sizes are largely retained.

The halo mass–stellar mass/total galaxy mass correlations pre-
dicted by the retuned model are very similar to those of the
‘Lacey16+cv’ model (top row of Fig. 6). This is not very surprising,
because these two models are tuned to reproduce the K-band LF,
which is tightly related to galaxy stellar masses. The stellar and total
galaxy masses in haloes with Mhalo � 1012 M� in the retuned model

MNRAS 475, 543–569 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/475/1/543/4739355
by University of Durham user
on 15 February 2018



New cooling model 563

are close to those in the ‘Lacey16+cv’ model because the SN feed-
back strength in the retuned model is reduced and more mass can
stay in galaxies. We checked that in haloes with Mhalo � 1012 M�,
the masses delivered to galaxies by cooling are still close to those
in the model before retuning (i.e. ‘Lacey16+cv+new cool’ model)
and lower than in the ‘Lacey16+cv’ model. This confirms that when
we include the re-incorporated gas, the new cooling model predicts
less cooling in low-mass haloes.

For the retuned model as well as for the ‘Lacey16+cv’ model, we
also show the halo mass–stellar mass/total galaxy mass correlations
separately for central galaxies and satellites. These correlations are
shown in the bottom row of Fig. 6. The differences between central
and satellite galaxies are mainly in the halo mass range Mhalo �
1012 M�. In this range, for a given halo mass, the satellites tend
to have higher stellar mass, but lower galaxy mass, which implies
they contain less cold gas than the central galaxies. Switching from
the GFC1 model to the new cooling model does not change this
difference between central and satellite galaxies.

4 SU M M A RY

We have introduced a new model, better motivated and more self-
consistent than previous models, for gas cooling in haloes and accre-
tion of gas on to galaxies for use in SA models of galaxy formation.
In this model, we explicitly calculate the contraction of the density
profile of the hot gas halo induced by cooling and by dark matter
halo growth. This contraction was not calculated explicitly in the
previous GALFORM cooling models, nor in the L-GALAXIES cooling
model, while the MORGANA cooling model only considers the con-
traction of the hot gas halo induced by cooling. We include the effect
of the cooling history of the hot gas on the current mass cooling
rate by estimating the total energy lost by cooling over the history
of the gas in the halo, using a new iterative scheme. We argue that
our new method for calculating mass accretion rates on to galax-
ies is more accurate and more physically motivated than the other
cooling models mentioned above. In the new model, we also follow
the evolution of the angular momentum distribution of the hot gas
halo under the effects of contraction of the hot gas distribution,
which enables a more detailed and self-consistent calculation of the
angular momentum of the gas accreted on to galaxies.

After setting out the methodology of the new cooling model,
we then compare its predictions to those of several previous cool-
ing models, including two older GALFORM cooling models and the
cooling models in L-GALAXIES and MORGANA. The comparison is first
done for static dark matter haloes with masses in the range 1011–
1014 M�. The comparison is then done for evolving dark matter
haloes with full merger histories, for haloes covering the same mass
range at z = 0. Both of these comparisons include gas cooling and
accretion only, without any kind of feedback effects. Finally, we
investigate the effects of our new cooling model on a full galaxy
formation calculation, our starting point being the ‘Lacey16’ (Lacey
et al. 2016) GALFORM model. Using the new cooling model without
any other adjustments results in too many bright galaxies, and thus
spoils the bright end of the predicted galaxy LFs. However, by
slightly adjusting the values of three uncertain parameters relating
to SN and AGN feedback and to the time-scale for dynamical fric-
tion, we are able to bring the GALFORM model predictions back into
agreement with observations.

Compared to the cooling models previously used in GALFORM,
the improved calculation of the cooling history and the detailed
modelling of the contraction of the hot gas halo significantly in-
crease the mass that cools in massive haloes. Some previous works

(e.g. De Lucia et al. 2010; Monaco et al. 2014) argued that the
GALFORM cooling model tends to underestimate the gas mass that
cools in massive haloes, and proposed using a more centrally con-
centrated hot gas density profile (e.g. a singular isothermal profile)
to solve this problem. However, in the new cooling model, the
predicted cooled mass becomes closer to the predictions of the
L-GALAXIES and MORGANA cooling models.

When comparing predictions between different cooling models
for the angular momentum of the cooled down gas, even larger
differences are seen than for the mass. The new cooling model tends
to predict higher specific angular momentum of the cooled down
gas than the cooling models previously used in GALFORM. On the
other hand, the predictions of the new cooling model for the angular
momentum are generally smaller than those from the L-GALAXIES and
MORGANA cooling models. This is mainly because different models
adopt different distributions for the specific angular momentum of
the hot gas, and different treatments of the effects of cooling on
these distributions.

In the full GALFORM model with all other processes such as star for-
mation, SN, and AGN feedback included, the new cooling model
tends to predict less gas cooling in lower mass haloes (Mhalo �
1012 M�) than the cooling model previously used in GALFORM, be-
cause it models more correctly the effects of the gas that is re-
incorporated into the hot gas halo after being ejected by SN feed-
back. This effect improves the predicted size–luminosity relation
of both early- and late-type galaxies relative to observations. How-
ever, the improvement in the sizes of late-type galaxy is very small,
which indicates that other physical effects may be involved in ex-
plaining the discrepancy with observations. For example, GALFORM

forces the stellar and gas discs to have the same scale radius, while
in reality, the gas disc could be much more extended than the stellar
disc. The inclusion of the new cooling model into GALFORM and the
retuning of a handful of uncertain parameters (see Table 1) in the
latest version of the model (‘Lacey16’) leads to an improved model,
which supersedes previous versions of GALFORM.

Having understood the behaviour of the new cooling model, and
having compared the new cooling model to other cooling models,
the next step is to compare the predictions of the new cooling
model with the results from hydrodynamical simulations. We leave
this comparison for future work.
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APPENDI X A : A PPROX I MATE R ECURSI VE
E QUAT I O N F O R Ecool

Here, we consider the change of Ecool in a time-step (t, t + �t], and
derive an approximate equation that relates Ecool(t) and Ecool(t +�t).
This equation can then be used to calculate Ecool at any given time
recursively from the initial time tinit.

Within this time-step, the hot gas halo is treated as fixed, with
its inner and outer boundaries, respectively, at rcool, pre(t) and rvir(t).
By t + �t, the gas between rcool, pre(t) and rcool(t + �t) has cooled
down.

From equation (12), one has

Ecool(t + �t) = 4π

∫ t+�t

tinit

∫ rvir(τ )

r ′
p(τ )

�̃ρ2
hot(r, τ )r2drdτ, (A1)

where �̃ is the cooling function, ρhot(r, τ ) is the density of the hot
gas at radius r and time τ , and r ′

p(τ ) is the radius at τ of a shell
that has radius rcool at t + �t. Note that here we use rcool instead of
rcool, pre(t + �t), because the hot halo is fixed here, and in the new
cooling model, after the cooling calculation, the halo contraction
would change rcool(t + �t) to rcool, pre(t + �t).

Then equation (A1) can be further expanded as

Ecool(t + �t) = 4π

∫ t+�t

tinit

∫ rvir(τ )

rp(τ )
�̃ρ2

hot(r, τ )r2drdτ

− 4π

∫ t+�t

tinit

∫ r ′
p(τ )

rp(τ )
�̃ρ2

hot(r, τ )r2drdτ

= I1 − I2, (A2)

where I1 and I2 represent, respectively, the two integrals in the above
equation, and rp(τ ) is the radius at τ of a shell that has radius rcool, pre

at t + �t. Note that at t + �t, the hot gas halo inner boundary is
still at rcool, pre(t) because the halo is assumed to be static over the
interval (t, t + �t]. Further

I1 = 4π

∫ t

tinit

∫ rvir(τ )

rp(τ )
�̃ρ2

hot(r, τ )r2drdτ

+ 4π

∫ t+�t

t

∫ rvir(τ )

rp(τ )
�̃ρ2

hot(r, τ )r2drdτ

= Ecool(t) + �t × 4π

∫ rvir

rcool,pre

�̃ρ2
hot(r, t)r

2dr

= Ecool(t) + Lcool(t)�t, (A3)

in which we have used equation (12) for the first integral in the above
equation, while the second integral is simplified by the assumption
that the hot gas halo is fixed within (t, t + �t], with the inner and
outer boundaries rcool, pre and rvir, respectively, and Lcool(t) is defined
in equation (11).

I2 can be further written as

I2 = 4π

∫ t+�t

t

∫ r ′
p(τ )

rp(τ )
�̃ρ2

hot(r, τ )r2drdτ

+ 4π

∫ t

tinit

∫ r ′
p(τ )

rp(τ )
�̃ρ2

hot(r, τ )r2drdτ

= L′
cool�t + I3, (A4)

where L′
cool(t) is defined in equation (15), and the first integral in

the above equation is simplified again because the hot gas halo is
assumed fixed within (t, t + �t], while I3 corresponds to the second
integral above.

The integral I3 represents the total energy radiated away by the
gas within rcool, pre ≤ r ≤ rcool from tinit to t, and it can be rewritten
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as the summation of δEcool of each gas shell in this range, namely

I3 =
∫ rcool

rcool,pre

δEcool

δr
dr

=
∫ rcool

rcool,pre

δEcool

δLcool

∂Lcool

∂r
dr

=
∫ rcool

rcool,pre

t̃cool,avail(r, t)
∂Lcool

∂r
dr, (A5)

in which we derive the third line from the second line by virtue
of the definition of t̃cool,avail for an individual gas shell given in
equation (7).

Now consider that in the slow cooling regime, typically rcool is
close to rcool, pre, thus the radial dependence in t̃cool,avail(r, t) can be
ignored, while in the fast cooling regime, although rcool could be
much larger than rcool, pre, the cooling is so fast that halo growth
and hot gas halo contraction only have weak effects on the cooling,
and thus can only introduce weak dependence of t̃cool,avail on r. In
all, for rcool, pre ≤ r ≤ rcool, we can approximate t̃cool,avail(r, t) ≈
t̃cool,avail(rcool, t), so

I3 ≈ t̃cool,avail(rcool, t)
∫ rcool

rcool,pre

∂Lcool

∂r
dr

= t̃cool,avail(rcool, t)L
′
cool, (A6)

where L′
cool(t) is defined in equation (15) and is the total cooling

luminosity at t of the gas between rcool, pre ≤ r ≤ rcool. Note that for
hot gas halo that is fixed at all times, this approximation becomes
exact. Based on this, one has

I2 ≈ [�t + t̃cool,avail(rcool, t)]L
′
cool

= t̃cool,avail(rcool, t + �t)L′
cool

≈ tcool,avail(t + �t)L′
cool, (A7)

in which we have used equations (8) and (13).
Substituting equations (A3) and (A7) into equation (A2),

one reaches the approximate recursive equation for Ecool, i.e.
equation (14).

A P P E N D I X B: C A L C U L ATI O N O F TH E
C H A N G E IN TH E A N G U L A R M O M E N T U M
D I S T R I BU T I O N O F T H E H OT G A S H A L O

B1 Approximate calculation of jhot[r(r′)]

In the new cooling model, the hot gas halo evolves with the growth
of the dark matter halo, and it also contracts in response to gas
cooling, which removes pressure support from the central regions.
These effects change the specific angular momentum distribution
of the hot gas halo. We assume that each spherical shell of hot gas
conserves its specific angular momentum, jhot, during this change,
but the shell moves from r to r′, and thus the angular momentum
profile changes from jhot(r) to j ′

hot(r
′) = jhot[r(r ′)]. As described in

Section 2.1.4, r(r′) can be determined through equation (22), which
is based on mass conservation for each shell. For the assumed form
of the hot gas density profile, this equation does not have an explicit
analytical solution, leading to no exact analytical expression for
jhot[r(r′)]. While jhot[r(r′)] can be derived numerically for each shell
at every time-step, this is computationally expensive, and so here
we present an approximate analytical expression that can be used
instead. In Appendix B2, we test the accuracy of this analytical
approximation against a numerical solution of the same equations.

At the end of a time-step, the hot gas is distributed between rcool

and rvir, following a β-distribution with core radius, rcore. Before
the calculation of the next time-step, the effects of halo growth
and hot gas halo contraction during the current time-step should be
included. These effects redistribute the hot gas that was previously
in this halo. The inner boundary of the hot gas moves from rcool to
rcool, pre, while the outer boundary moves from rvir to r ′

vir. According
to the assumptions in Section 2.1.2, this adjusted gas still follows
a β-distribution, but with a new core radius r ′

core. As mentioned in
Section 2.1.4, this adjustment is only for the hot gas previously in
this halo, while the newly added hot gas is assumed to mix with
the hot gas halo after this adjustment. Therefore the total gas mass,
Mhot, before and after this adjustment is unchanged.

When considering the approximate calculation of jhot[r(r′)], it is
more convenient to work with the variables x ≡ r/rcore and x ′ ≡
r ′/r ′

core instead of r and r′. Then, the angular momentum profile
after the adjustment of the hot gas halo can be written as jhot[x(x′)].
The function x(x′) can be derived from equation (22), which can be
written as

Mhot(<x) = M ′
hot(<x ′), (B1)

where Mhot(<x) is the mass of hot gas within radius x according
to the density profile before the adjustment induced by hot gas
halo contraction and dark matter halo growth, while M ′

hot(<x ′)
is the mass of hot gas within x′ according to the density pro-
file after this adjustment. As mentioned above, x and x′ are, re-
spectively, the radii of the same Lagrangian shell before and af-
ter the adjustment. Note that at the inner boundary the above
equation satisfies the condition Mhot(<x0) = M ′

hot(<x ′
0) = 0,

where x0 = rcool/rcore and x ′
0 = rcool,pre/r

′
core, while at the outer

boundary it satisfies Mhot(<xvir) = M ′
hot(<x ′

vir) = Mhot, where
xvir = rvir/rcore and x ′

vir = r ′
vir/r

′
core.

According to the assumed β-distribution, one has

Mhot(<x) = Mhot

Yvir − Y0
[x − arctan(x) − Y0], (B2)

where Yvir = xvir − arctan(xvir) and Y0 = x0 − arctan(x0). Simi-
larly, for the hot gas halo after the adjustment, one has

M ′
hot(< x ′) = Mhot

Y ′
vir − Y ′

0

[x ′ − arctan(x ′) − Y ′
0], (B3)

where Y ′
vir = x ′

vir − arctan(x ′
vir) and Y ′

0 = x ′
0 − arctan(x ′

0).
Substituting equations (B2) and (B3) into equation (B1), one

derives an implicit form for the function x(x′)

x − arctan(x) = Yvir − Y0

Y ′
vir − Y ′

0

[x ′ − arctan(x ′)]

+ Y ′
virY0 − YvirY

′
0

Y ′
vir − Y ′

0

. (B4)

Equation (B4) does not allow an explicit analytical expression
for x(x′). However, it is still possible to construct simple analytical
approximations for x(x′) in different ranges of x′, and so to derive
analytical approximations for jhot[x(x′)].

First note that typically x′ ≤ x, because the contraction moves
shells from large radii to small radii. When x′ is large, both
x − arctan(x) and x ′ − arctan(x ′) can be well approximated by lin-
ear functions. These linear functions then lead to a linear functional
form for jhot[x(x′)]. This linear functional form can be kept dur-
ing the recursion procedure, which is necessary for deriving the
specific angular momentum distribution from its initial value, so
for large enough x′, jhot[x(x′)] can always be expressed as a linear
function of x′.
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On the other hand, when x′ is very close to 0, a Taylor ex-
pansion gives x ′ − arctan(x ′) = x ′3/3 − x ′5/5 + O(x ′7). Note that
this typically happens in the slow cooling regime, in which the
cooling is limited to the central region of the halo and the in-
duced contraction of the hot gas halo is small in each time-
step, so typically in this case x is also close to 0, and the Tay-
lor expansion is also a good approximation for x − arctan(x), i.e.
x − arctan(x) = x3/3 − x5/5 + O(x7). These non-linear terms in
the Taylor expansions cause jhot to gradually deviate from the as-
sumed linear form before the starting of cooling. The non-linear
terms in the Taylor expansions are third and fifth orders. This sug-
gests the following expression for jhot[x(x′)]

jhot[x(x ′)] = c1x
′6 + c2x

′5 + c3x
′3 + c4x

′ + c5, (B5)

where c1 − c5 are coefficients and we include all terms with orders
lower than O(x′7) that can be generated by the third- and fifth-order
terms, while the linear term is added to include the initial linear
form of the angular momentum profile.

When x (and also x′) are either not very large or not close to 0,
the function x − arctan(x) has a non-linear dependence, but not so
strong as in the case when x is close to 0. Thus, generally speaking,
jhot[x(x′)] in this regime can be expressed approximately as a lower
order polynomial, and here we choose a second-order polynomial.

In summary, we adopt the following piecewise function as the
analytical approximation for jhot[x(x′)]

jhot[x(x ′)] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1x
′ + a2, x ′ ≥ 3.5

a3x
′ + a4, 2.0 ≤ x ′ < 3.5

a5x
′2 + a6x

′ + a7, 0.5 ≤ x ′ < 2.0
a8x

′6 + a9x
′5 + a10x

′3

+ a11x
′ + a12, 0.0 ≤ x ′ < 0.5

(B6)

where a1 − a12 are coefficients, with the coefficients in
equation (B5) to be renamed as a8 − a12.

The procedure is then as follows. At each time-step, several sam-
ple points are taken over the whole range of x′, and then equation
(B4) is solved numerically for these sample points to find the corre-
sponding x, with the specific angular momentum distribution in the
last time-step, jhot[x(x′)] being known for these sample points. Using
these values, equation (B6) then becomes a set of linear equations
for the coefficients a1 − a12, which can be solved easily. Once these
coefficients are determined, then the approximate jhot[r(r′)] can be
calculated for any value of r′ for the current time-step. Then, the
contribution from the newly added gas, jnew(r′), can be added as
described in Section 2.1.4. Since it is assumed that jnew(r′) ∝ r′, this
further changes the coefficients of the first- and zeroth-order terms
in equation (B6). After this, the angular momentum profile of this
time-step is fully determined.

This approximation requires nine sample points for determining
a1 − a12 (two adjacent x′ sections share one common sample point),

and so equation (B4) needs to be solved for x(x′) only nine times at
each time-step. An alternative to this approximate method would be
to evaluate jhot[r(r′)] numerically on a radius grid, which would re-
quire solving equation (B4) at each radius grid point, rather than at a
handful of sample points. The approximate method is computation-
ally much faster than the straightforward radius grid method. Also,
the approximate method only requires storing the 12 coefficients,
while the radius grid method requires storing the whole radius grid
and the numerical jhot[r(r′)] on it, and thus would require much more
computer memory.

B2 Comparison with direct calculation

To assess the accuracy of the approximation introduced in the pre-
vious section, we compared the angular momentum accretion rates
for central galaxies calculated using this approximation with those
calculated using a direct (but more computationally intensive) cal-
culation. This direct calculation evaluates jhot(r) numerically on a
radius grid at each time-step. The radius grid covers the range be-
tween rcool, pre and rvir with 1000 grid points. jhot(r) at a given time-
step is calculated from jhot(r) at the previous time-step by solving
equation (B4) for each grid point, and then using equation (25).

The comparison is done for three cases. The first one is for static
haloes, with no feedback. The second is for dynamically evolving
haloes, including full halo merger histories, but still without any
feedback. The third is also for dynamically evolving haloes, but
with strong SN feedback. Here, the SN feedback is modelled as
usual in GALFORM, with a mass ejection rate from the galaxy into the
ejected gas reservoir Ṁeject = βψ , where ψ is the star formation
rate and the mass-loading factor β = (Vc/VSN)−γSN , with Vc being
the circular velocity of the galaxy and VSN and γ SN parameters. For
the calculations here, we use VSN = 320 km s−1 and γ SN = 3.2,
which are close to the values adopted in recent versions of GALFORM.
The calculations are done for four different halo masses, namely
Mhalo = 1011, 1012, 1013, and 1014 M�, which covers both the fast
and slow cooling regimes. The 1011 M� static halo is at z = 3, and
other static haloes are at z = 0, while for dynamic haloes, these
masses are the halo masses at z = 0. For the dynamically evolving
haloes, results are calculated for 100 Monte Carlo merger trees for
each halo mass.

For each of these cases, the angular momentum accretion rate on
to the central galaxy due to the cooling flow, J̇cool, is calculated at
each time-step, both for the approximate method in Appendix B1
(J̇cool,app) and for the direct calculation (J̇cool,grid). The relative error,
�, is then calculated as � = (J̇cool,app − J̇cool,grid)/J̇cool,grid. Fig. B1
shows this relative error for the three cases and the four different
halo masses. From this figure, it can be seen that the relative error
is generally less than 10 per cent, so the approximate method works
well.
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Figure B1. The relative error, �, in the angular momentum accretion rate calculated using the approximate method for evolving jhot(r) compared with
that obtained from the direct calculation. Results are shown for three cases (static halo without feedback, dynamically evolving halo without feedback, and
dynamically evolving halo with strong SN feedback) and four different halo masses (1011, 1012, 1013, and 1014 M�). The 1011 M� static halo is at z = 3, and
other static haloes are at z = 0, while for dynamic haloes, these masses are the halo masses at z = 0. The dynamic halo cases use full halo merger histories,
with 100 Monte Carlo merger trees for each halo mass. For the dynamic halo cases, in each panel the solid line shows the median of the relative error, while
the shaded region indicates the 5–95 per cent range. See the text for more details.

A P P E N D I X C : R A N D O M WA L K MO D E L F O R
E VO L U T I O N O F λhalo

C1 Random walk model of halo spin evolution

The evolution of halo spin results from the angular momentum and
mass brought into the halo by accretion and mergers. The angular
momentum of the accreted material originates from the action of
gravitational tidal torques at earlier times. This angular momentum
depends on the tangential component of the infall velocity. A simple
model for the halo growth is to assume that these accretion/merger
events are random, with random infall velocities. In this case, the
evolution of the halo spin accompanying the mass accretion is a
kind of random walk (e.g. Vitvitska et al. 2002). For simplicity, we
further assume that this random walk for the halo spin is a Markov
walk, meaning that each step is statistically independent of previous
steps.

In this picture, the spins of the descendant halo and its major
progenitors are related by a conditional spin distribution, which
gives the probability density for any given descendant spin value
given the spin and mass accretion history of the progenitor. We now
derive the form of this probability distribution for some plausible
assumptions.

C2 Conditional distribution of descendant halo spin

Mathematically, a random walk is described as a sequence of ran-
dom variables, Y(x), where x is the sequence index and Y(x) is the

random variable at x, with its possible value y and corresponding
probability distribution P(y, x). For the random walk considered
here, we choose x = ln (Mhalo/Mi), where Mhalo is the mass of a
given halo, and Mi is its initial mass. We choose this form because
it gives the same �x whenever the halo mass has increased by a
certain factor, and we expect that the change of halo spin is more
closely related to the fractional increase in halo mass than to the
absolute increase in mass.

N-bodysimulations of the formation of dark matter haloes by
hierarchical clustering show that the distribution of λhalo is well
approximated by a lognormal, with median λmed and dispersion
σλ in ln λhalo that are almost independent of the halo mass and
cosmological parameters (e.g. Bett et al. 2007). Motivated by this,
we define Y = [ln (λhalo) − ln (λmed)]/σλ.

For a Markov random walk, P(y, x) is approximately described
by the Fokker–Planck equation:5

∂P

∂x
= − ∂

∂y
[a1P ] + ∂2

∂y2
[a2P ], (C1)

where a1 and a2 are two functions of y and x. Given the
results for the spin distribution described above, we want

5 Strictly speaking, the Fokker–Planck equation is not valid for an arbitrarily
sharp distribution like our initial condition P(y, 0) = δ(y − y0), but this
distribution would be broadened quickly by diffusion. Thus, the Fokker–
Planck equation is expected still to be valid at times not too close to the
initial time.
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equation (C1) to have a steady-state asymptotic solution P (y, x) =
1/

√
2π exp(−y2/2), which corresponds to a lognormal distribu-

tion for ln λhalo with parameters that do not depend on Mhalo.
For simplicity, we assume a2 is a constant. The requirement that
P (y, x) = 1/

√
2π exp(−y2/2) be a steady-state solution then leads

to the relation a1 = −a2y + c0 exp (y2/2), with c0 a constant. How-
ever, the term c0 exp (y2/2) provides a drag towards y = +∞, which
in terms of spin evolution is a trend for λhalo to become arbitrarily
large, and this is unphysical, so we set c0 = 0, leading to a1 = −a2y.
In terms of the random trajectories, Y(x), the first term on the RHS
of equation (C1) then represents a mean shift back towards Y = 0,
while the second term represents a diffusion of Y.

With these choices for a1 and a2, the Fokker–Planck equation has
the following analytical solution (see e.g. Garcia-Palacios 2007 for
details) for the initial condition P(y, 0) = δ(y − y0):

P (y, x|y0, 0) = 1√
2π(1 − e−2x/τ )

exp

[
(y − y0e−x/τ )2

2(1 − e−2x/τ )

]
, (C2)

where τ = 1/a2 and P(y, x|y0, 0) is the conditional distribution of y
given y = y0 at x = 0.

Here, τ serves as a relaxation scale for the variable x, with the
solution having roughly relaxed to the steady solution for x = τ .
We choose τ = ln 2, so that the correlation between the spin of a
halo and its progenitor nearly disappears when it becomes twice as
massive as the progenitor. This value for τ was originally chosen to
approximately match the assumption made in earlier GALFORM mod-
els that a new spin is assigned randomly at every halo formation
event, defined as happening whenever the halo mass has increased
by a factor two. However, we show below that this choice for τ pro-
duces results for the spin evolution in quite good agreement with
N-body simulations. With the parameter τ fixed, and the definitions
of Y and x, it is straightforward to derive the corresponding condi-
tional distribution for λhalo, with which a halo’s spin can be assigned
given its progenitor spin and mass growth history.

C3 Comparison with N-body simulations

We test our simple random walk model for the evolution of λhalo by
comparing its predictions with results from Vitvitska et al. (2002),
for haloes in cosmological N-body simulations. Fig. 4 in Vitvitska
et al. shows the conditional probability distribution of λhalo for
several ranges of initial spin and halo mass growth. Specifically,
they show three ranges for the initial spin, λi, namely λi < 0.025,
0.025 < λi < 0.055 and λi > 0.055, and three ranges for the mass
growth, which are, respectively, Mf/Mi < 1.1, 1.1 < Mf/Mi < 1.25,
and Mf/Mi > 1.25, with Mf the halo mass after growth and Mi

the mass before growth. In order to make a simple comparison
between the results of Vitvitska et al. and the predictions from our
random walk modelling, we estimate the typical value for each λi

and Mf/Mi range, and then calculate the conditional probability
distribution using equation (C2).

We choose λi = 0.019, 0.038, and0.08 as typical values for the
three ranges λi < 0.025, 0.025 < λi < 0.055, and λi > 0.055,
respectively. These are the means over the corresponding ranges
according to the lognormal distribution of λhalo measured from the
same simulation.

For the mass ratio Mf/Mi, we set Mf/Mi = 1 as its lower limit,
which means that the halo mass cannot decrease, while Mf/Mi = 2
is set as the upper limit. This is because Vitvitska et al. always
measure the change of halo spin between two adjacent N-body
snapshots, between which the physical time duration is relatively
short. Large values of Mf/Mi would be caused by major mergers

instead of smooth accretion, and the number of major mergers for
a halo should be at most one in this short time duration. Thus, the
three ranges of Mf/Mi in Vitvitska et al. become 1 < Mf/Mi < 1.1,
1.1 < Mf/Mi < 1.25, and 1.25 < Mf/Mi < 2, respectively. We take
the geometric mean of the range boundaries as the typical value for
the corresponding mass range, and this leads to Mf/Mi = 1.049,
1.173, and1.581 for the three ranges.

Using these estimated typical values, the corresponding condi-
tional distributions can be calculated for the random walk model.
Fig. C1 shows the comparison between the predictions of our sim-
ple random walk model and the results measured by Vitvitska et al.
from their N-body simulations. The agreement is acceptable for a
simple comparison.

A P P E N D I X D : SI M P L E AG N F E E D BAC K
M O D E L IN GALFORM

The AGN feedback model used in the ‘Lacey16’ model was first
introduced in Bower et al. (2006). Specifically, it assumes that the
AGN feedback is in the radio mode (Croton et al. 2006), in which a
relativistic jet generated by SMBH accretion heats the halo gas and
thus suppresses cooling.

In GALFORM, there are two conditions for effective AGN feedback.
First, the halo gas should be close to the slow cooling regime, in
which the cooling is slower than the gravitational infall and a quasi-
hydrostatic hot gaseous halo exists. This is motivated by the idea
that only the gas close to this regime can maintain its pressure
and thus the jet can interact and heat the halo gas effectively. This
condition is tested by comparing the cooling time-scale, tcool, and
the free-fall time-scale, tff, at the cooling radius, rcool. Specifically,
AGN feedback is assumed to be effective only if

tcool(rcool)/tff (rcool) > 1/αcool, (D1)

with αcool ∼ 1 an adjustable parameter. Consider that at earlier times,
the ratio tcool(rcool)/tff(rcool) is typically smaller, then increasing
αcool causes AGN feedback to turn on earlier and thus enhances the
suppression due to this feedback.

Secondly, the SMBH accretion rate should be significantly lower
than the Eddington limit so that jets can be efficiently produced
(Fanidakis et al. 2011), and the jet should be energetic enough to
balance the cooling radiation. This motivates the following condi-
tion

fEddLEdd(MBH) > Lcool, (D2)

where fEdd � 1 is a parameter, LEdd(MBH) is the Eddington luminos-
ity of a black hole with mass MBH, and Lcool is the cooling luminosity
of the hot gas halo. In the ‘Lacey16’ model, fEdd = 0.01.

Once the above two conditions are satisfied, the AGN feedback
is assumed to be effective. In the GFC1 model, the increase of rcool

due to cooling is then set to zero, and then the associated mass and
angular momentum cooling rates become zero.

In the new cooling model, since a different procedure is used
to calculate tcool, avail, some modifications are needed. Specifically,
when AGN feedback turns on, the energy previously radiated away,
Ecool, is set to zero because the halo gas is heated up. This causes
tcool, avail to reduce to zero. With this, rcool does not increase and
the halo cold gas component stops growing immediately. If this
component has non-zero mass, then it can still deliver cold gas to
the central galaxy. When a halo is close to the slow cooling regime,
the halo cold gas component typically is very small, so the cold gas
accretion on to the central galaxy should stop shortly after AGN
feedback turns on.
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Figure C1. Comparison of the conditional halo spin distributions predicted by our random walk model with measurements from N-body simulations in
Vitvitska et al. (2002). The nine panels correspond to those in fig. 4 of Vitvitska et al. Each row corresponds to a range of the initial spin, λi, with our estimated
typical λi for that range given in the upper left corner of each panel. Each column corresponds to a range of the ratio, Mf/Mi, with Mf and Mi being the halo
masses at adjacent snapshots, and our estimated typical Mf/Mi being shown at the top of the column. In each panel, the blue solid line is the conditional spin
distribution from Vitvitska et al., the red dashed line is the distribution calculated from equation (C2) based on our random walk model, and the black dotted
line shows the fully relaxed distribution expected in the random walk model for reference.
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