
Quasi-matrix-free hybrid multigrid on dynamically adaptive

Cartesian grids

Marion Weinzierl ∗ Tobias Weinzierl †

July 19, 2017

Abstract

We present a family of spacetree-based multigrid realizations using the tree’s multiscale
nature to derive coarse grids. They align with matrix-free geometric multigrid solvers as they
never assemble the system matrices which is cumbersome for dynamically adaptive grids and
full multigrid. The most sophisticated realizations use BoxMG to construct operator-dependent
prolongation and restriction in combination with Galerkin/Petrov-Galerkin coarse-grid oper-
ators. This yields robust solvers for nontrivial elliptic problems. We embed the algebraic,
problem- and grid-dependent multigrid operators as stencils into the grid and evaluate all
matrix-vector products in-situ throughout the grid traversals. While such an approach is
not literally matrix-free—the grid carries the matrix—we propose to switch to a hierarchi-
cal representation of all operators. Only differences of algebraic operators to their geometric
counterparts are held. These hierarchical differences can be stored and exchanged with small
memory footprint. Our realizations support arbitrary dynamically adaptive grids while they
vertically integrate the multilevel operations through spacetree linearization. This yields good
memory access characteristics, while standard colouring of mesh entities with domain decom-
position allows us to use parallel manycore clusters. All realization ingredients are detailed
such that they can be used by other codes.

1 Introduction

Quadtrees, octrees and their generalization, all covered by the term spacetree, are popular meshing
paradigms in scientific computing, either for plain meshing or as building blocks within forests of
trees [13, 31, 40, 42, 43, 49, 50, 58]. They offer a geometric multiscale hierarchy, they support in-situ
meshing, they offer the opportunity to erase and refine parts of the grid easily, their structuredness
facilitates efficient implementations, and fast domain decomposition methods are known for them—
notably in combination with space-filling curves (SFCs) [4]. Therefore, they are well-suited for
multigrid solvers for elliptic partial differential equations (PDEs) discretized by finite elements.
Stagnating or decreasing memory per core, a widening memory gap and communication constraints
hereby encourage the use of matrix-free multigrid [2]. Instead of assembling an equation system,
all required matrix-vector multiplications (matvecs) are computed directly on the grid. No matrix
allocation or maintenance costs arise.

∗Department of Mathematical Sciences, Durham University, UK. (marion.weinzierl@durham.ac.uk)
†School of Engineering and Computing Sciences, Durham University, UK. (tobias.weinzierl@durham.ac.uk)

1

ar
X

iv
:1

60
7.

00
64

8v
5

 [
cs

.N
A

]
 1

7
Ju

l 2
01

7

Matvecs without assembly or storage of matrix entries require that all operators can efficiently
be determined on-the-fly from the grid. In algebraic multigrid (e.g. [48] and references therein),
inter-grid transfer (prolongation and restriction) and coarse-grid operators however depend recur-
sively over several mesh levels on the PDE discretization. An on-the-fly computation requires the
partial, repeated and redundant re-assembly of the system matrix entries in every solver sweep.
Furthermore, algebraic methods derive the coarse grid from the operator characteristics, i.e. a good
coarse grid anticipates the problem’s behaviour. The grid and its data structures are not given
a priori. Geometric multigrid (e.g. [11] and references therein) in contrast is better suited for
matrix-free, fast implementations as it fixes the grid hierarchy and hardcodes or prescribes the
operators. Unfortunately, it quickly becomes unstable.

We use the convection-diffusion equation

−∇ · (ε∇)u+ (v∇)u = f on Ω = (0, 1)d, u : Ω 7→ R (1)

as demonstrator, where the diffusion coeffient ε is a rank-2 tensor with diagonal entries ε1, . . . , εd and
the convection velocities v = (v1, . . . , vd)

T for d ∈ {2, 3}. It describes, for example, the transport
of chemicals u in a fluid given by v or yields a precursor for the Navier-Stokes equations where
v 7→ u and f 7→ f(u). This equation is challenging for geometric multigrid if ε, v or—not studied
in the present work—the shape of Ω are non-trivial and if no particular/manual effort is invested
to construct well-suited coarse grids. Algebraic multigrid, in contrast, can robustly and efficiently
solve it as black box: Classic coarse grid identification places coarse grid points along material-
/ε-transitions, makes coarse grids anticipate anisotropies and convection, and it anticipates the
domain layout. Classic multigrid operator construction takes the same triad into account. Both
complement each other, i.e. sophisticated AMG makes the operators compensate weaker coarse grid
choices and the other way round.

We see three approaches for combining the robustness of algebraic multigrid with the advantages
of geometric multigrid. First, we can use the spacetree concept to define the grid hierarchy and
the fine-grid discretization (stencils), but compute the coarse-grid operators and inter-grid transfer
operators algebraically (not on-the-fly). An expensive coarse-grid/c-point identification phase, as
necessary in algebraic multigrid through matching on graphs, e.g., is thus omitted. At the same time,
the linear algebra subroutines and the memory allocation can take advantage of the structured grid.
As a second possibility, we may couple a geometric and an algebraic multigrid code. On fine meshes,
diffusion processes typically dominate while material parameters are reasonably smooth. Matrix-
free geometric multigrid based on rediscretization and fixed inter-grid operators yield reasonable
convergence. On coarse meshes, one can employ algebraic multigrid, alternative iterative schemes or
a direct solver. Such an approach [28, 35, 43, 49] is robust and fast at modest memory requirements
as long as the finest algebraic problem with a matrix setup remains reasonably coarse within the
grid hierarchy. Finally, we may also decide to tailor all operators to the problem manually and to
hard-code it into the solver software. Inter-grid transfer operators, for example, can anticipate the
ε and v behaviour on finer meshes through homogenization. Such a strategy mirrors the fact that
many engineers put significant effort into the creation of high-quality simulation grids. We fix the
grid but invest into the operator. Such an approach does not work on-the-fly as black box.

In this paper, we present a fourth technique that merges the advantages of spacetrees plus re-
discretization with the robustness of algebraic multigrid: space-tree based multigrid using Petrov-
Galerkin coarse-grid and operator-dependent inter-grid transfer operators. This allows us to solve
significantly harder elliptic problems without matrix assembly than a classic geometric approach
while we retain the advantages of geometric multigrid. On the one hand, our solvers do not increase

2

the memory footprint significantly and thus are a convenient building block for extreme scale simu-
lations where the memory per core is a limiting factor. On the other hand, our solvers preserve the
geometric structuredness of spacetrees which is an important characteristic for many optimisation
techniques and domain decomposition approaches.

Our description consists of three parts. We start from an outline of the used tree data structures,
grid traversal and terminology (Sect. 3). In Sect. 4 we then revisit three multigrid solver variants
that fit to spacetrees and spacetree traversals: additive, BPX-type and multiplicative solvers [8] on
hierarchical generating systems [30]. All work in a strictly element-wise multiscale sense, that is,
they only require one cell or vertex record, respectively, plus their parents (next coarser entities)
at a time, and they read each individual spacetree cell only once per multigrid smoothing step.
This makes them well-prepared for future architecture with a widening memory gap [22]. We next
introduce block Jacobi-type smoothers that preserve the tree’s single run-through policy, and we
enhance the geometric multigrid implementation with element-wise Galerkin coarse-grid operators.
These operators are embedded into the tree, that is, the grid acts both as an organizational and
as a compute data structure. Galerkin coarse-grid operators improve the convergence rates, but
the solver becomes really robust only once we use operator-dependent prolongation and restriction
through Black Box Multigrid (BoxMG) [16, 17, 20]. BoxMG on locally refined grids for bipartition-
ing is known [47]. Our contribution is that we simplify its realisation on (dynamically) adaptive
grids through the fusion of BoxMG with full approximation storage (FAS) [52] realized through
HTMG [29]. Our code furthermore reduces the computation of BoxMG operators through mirror-
ing all computations onto one reference configuration. This renders the programming of BoxMG,
notably for d = 3, simpler than published by any other author.

Embedding all operators as stencils into the grid is not literally matrix-free. In the second
part of the manuscript (Sect. 5), we thus replace the storage of the operators in the tree with a
compressed encoding. We determine the difference of all operators to geometric rediscretization or
d-linear operators, respectively, and store only the hierarchical differences of algebraic to geometric
stencils. In the best case, the difference is negligible and no floating point data is to be held at all.
This reduces the memory footprint. We work almost matrix-free but preserve BoxMG’s robustness.
To the best of our knowledge, such an approach to realize algebraic operators almost at the memory
cost of rediscretization-based multigrid is new.

The final part of the paper (Sect. 6) sketches a shared and distributed memory parallelization.
The shared memory discussion derives data dependency graphs that can be fed into a task-based
system [3]. The distributed memory discussion studies data flow characteristics for non-overlapping
domain decompositions well-suited for MPI. For both parallelization variants we show that our
approach is by construction well-suited for parallel machines; a property stemming from the strict
element-wise data access.

Our contribution benefits from the fusion of three ingredients: Operator-dependent prolongation
and restriction on dynamically adaptive spacetrees, stencil compression and concurrency analysis.
These three parts introduce two notions of hybrid algebraic-geometric multigrid that are orthogonal
to the classic notion of hybrid where coarser grids are tackled by algebraic multigrid while fine grids
benefit from geometric multigrid with rediscretization: our approach is hybrid as we (i) stick to the
geometric multigrid structure but have algebraic operators and (ii) determine algebraic operators
but store only their difference to geometric operators. The present manuscript’s idioms perform
on reasonably well-posed problems. They enlarge the applicability of geometric multigrid with all
its geometric advantages. This enlargement is made possible by an integration of known multigrid
techniques. Their elegant integration is, to the best of our knowledge, new.

3

Table 1: Overview of discussed implementation techniques (first row) with references to cor-
responding manuscript sections (second row). Where appropriate, we add in the bottom part in
which previous work we have studied related or similar concepts. Dissertations, as they have not
appeared in peer-reviewed journals, are put in brackets.

Techniques: Matrix-free
on spacetree
with redis-
cretisation
and HTMG

Element-wise
tree block
smoothers

Galerkin and
BoxMG

Operator com-
pression

Shared mem-
ory

Distributed
memory

Section Sect. 4.1 Sect. 4.2 Sect. 4.3,4.4 Sect. 5 Sect. 6.1 Sect. 6.2

Additive [40] without
HTMG, [42]

BPX [42]
Multiplicative ([54]) ([53])) ([53])) [12] for un-

knowns in-
stead of
stencils

([53]) ([54]),([53])

[23] for un-
knowns in
SPH

2 Previous work and shortcomings of present approach

Peano [55, 57] serves as code base to realize our single-touch tree traversals. All implementation
ideas however apply to other spacetree software, too. Single-touch additive multigrid solvers for
spacetrees with rediscretization are subject of discussion in [40], though the discussion lacks details
on the handling of dynamic adaptivity. The FAS and HTMG combination is explored in [54], and
detailed for additive multigrid and BPX in [42]. A combined, concise presentation for additive,
BPX and multiplicative solvers is new (cmp. Table 1).

Our augmentation of tree solvers with block smoothers stems from the dissertation [53] where
block smoothers are solely applied to multiplicative solvers. The present manuscript generalizes
them to additive and BPX solvers, too. (author?) [53] also introduces the fusion of the tree
with Galerkin operators and BoxMG—again solely for the multiplicative case and lacking our
mirroring/reference element idea which simplifies the coding. The compression of solution data
through a hierarchical transform is explored in [12] for multigrid and in [23] for SPH codes. Its
application to the operators is, to the best of our knowledge, new, though we reuse some the
aforementioned mechanisms. Fragments of our shared memory or distributed memory concepts
first can be found in [54] or [53], respectively. We focus on the correlation with multigrid and
a theoretical concurrency analysis here, while technical details are subject of other publications
[24, 55].

Our studies concentrate on operators with the sparsity pattern of d-linear discretization and
inter-grid transfer operators. Wider operators, which are reasonable from an HPC point of view
[26] or mandatory if stronger solver ingredients are required, induce different memory access pat-
terns. The present ideas continue to apply but require additional work. Besides that, our exper-
imental data stem from a multigrid prototype which is not tuned. For real-world computations,
real scalability and performance engineering is mandatory, and it might turn out that it is reason-
able to compromise between our academic approach and severely optimised strategies and existing
libraries. Manycore vectorization for example has been successfully demonstrated [42] where we
fuse our tree paradigm with batched BLAS concepts [21]. In general, performance and scalability
engineering for particular problems requires tailored solutions. Finally, our experiments restrict
to academic setups challenging enough to uncover the approach’s potential. It is obvious that
the application to real-world experiments introduces further challenges such as more sophisticated
boundary conditions.

4

Figure 1: Left: Spacetree for d = 2 from [56]. The top layer shows an adaptive Cartesian grid
that results from a union of the individual levels of the tree (below). Right: Grid for the three-
dimensional convection-diffusion equation in the checkerboard setup with an isosurface of the
solution at u = 0.1.

Besides experimental and implementational limitations due to the manuscript’s scope, there are
conceptual limitations to the presented family of solvers: Our approach reduces the memory foot-
print and data exchange but sacrifices compute power. Roadmaps predict that this is a reasonable
strategy for next generation linear algebra [2]. However, the flops are not for free yet. The most
severe restriction is that our approach cannot tackle problems where geometric coarsening cannot
resolve coarse-scale effects (as convection) anymore or where the discretization requires very strong
smoothers. As such phenomena typically arise for coarser discretizations, it will remain obligatory
for these applications to apply algebraic or direct solvers on coarse levels, even though our tech-
niques are applied. The proposed approach can widen this notion of coarseness: Our solvers remain
stable for way coarser convection operators than a pure geometric approach.

3 Spacetrees and FAS on generating systems

Let a spacetree be a generalization of octrees or quadtrees w.r.t. the dimension d and the cut
cardinality k ≥ 2 (Fig. 1): We embed Ω into a d-dimensional hypercube and cut it equidistantly
into k pieces along each coordinate axis. The original hypercube is the root. It acts as parent node
to the newly created kd smaller hypercubes that are children of the root. Root in turn is the parent
of its children. This process is repeated recursively. Per cube we decide independently whether to
refine. The construction scheme yields a spacetree.Each node of the tree graph represents one cell,
i.e., a square (d = 2) or cube (d = 3). Let the level of a cell be the minimal number of construction
steps we need to create it. Root has level 0. This usage of the term level results from a graph
language.

For the present paper, we use k = 3 as we base our experiments on the Peano software. We
traverse the trees starting from the root which represents the coarsest grid and run through them
cell by cell. Efficient storage concepts for such traversals are known (cmp. Appendix A which details

5

the construction and traversal of the grid and the underlying data structure).
Our present codes exploit the fact that a spacetree yields a cascade of ragged Cartesian grids,

i.e. each grid level defines vertices, but each level might cover a smaller part of the domain than
the next coarser one. As a result, a vertex is unique through its position in space plus its level. We
distinguish three different vertex types: a vertex is hanging if it has less than 2d adjacent cells on
the same level; a vertex is refined if there exists another non-hanging vertex at the same position in
space on a finer level, which implies that all adjacent cells are refined further; and all other vertices
are unrefined.

Our operators stem from a finite element discretization of (1) with d-linear shape functions. This
yields 3d-point stencils on regular grids. Let each non-hanging vertex induce a shape function that
spans all adjacent cells of the same level. The spacetree’s shape functions then form a hierarchical
generating system [30]. We combine the Full Approximation Storage (FAS) [10, 52] scheme with the
hierarchical generating system and the idea of the Fast Adaptive Composite-Grid Method (FAC)
[32, 39]:

1. Let a refined vertex hold the nodal value of all the vertices at the same spatial position with
a higher level: u` = Iu`+1 with I being the point-wise injection. We copy the u values of
every vertex onto the u values of coarser vertices for each vertex pair sharing the same spatial
position.

2. Let a hanging vertex’s value be the d-linear interpolant from the coarser meshes.

3. Rely on the same discretization technique on every level.

Smoothers then can be read from a domain decomposition point of view, where coarser grids
prescribe the values at hanging nodes while fine-grid values yield Dirichlet values in regions of the
coarse grid overlapped by finer discretizations. This renders the handling of hanging nodes and,
more general, adaptivity straightforward. Notably, it implies that any discretization stencil can
be unaware of resolution transitions. Otherwise, the region where a fine grid transitions into a
correction grid as it is refined further requires special attention and additional coding (Figure 2):
The semantics of the degrees of freedom change from discretization weights into correction weights.
While the degrees of freedom at the transition have to carry the solution as they act as boundary to
the PDE solve on coarse mesh parts, their degree of freedom weights have to approach zero once the
solution starts to converge. A FAS, i.e. a scheme that starts to change coarse grid values from an
injection of fine grid solutions, removes this contradiction: u` plays two different roles in adaptive
meshes. In unrefined regions, it carries a discretization of the PDE, while it carries solution plus
correction otherwise. A` plays two roles, too. In unrefined regions, it represents a discretization of
the PDE, while it encodes discretization plus correction term in refined regions. The operator does
not have to be changed at resolution transitions, which otherwise yields a large number of modified
stencils even if we apply tree balancing [44] to reduce the number of possibilities of coarse to fine
cell configurations. While a coarsened/injected data representation is advantageous for non-linear
problems, we consequently highlight a different advantage:

Observation 1 FAS allows us to ignore that some unknowns of one level carry a solution while
others have to carry a multigrid correction, as the latters’ degrees of freedom encode a correction
term plus the coarsened solution. No case distinction w.r.t. the semantics of the stencil or the
unknown is required.

6

(a)

(b)

(c) (c)

(f)

(d) (d)

(e)

Figure 2: Classic nodal shape functions yield discretization stencils for non-equidistant grids along
the resolution boundary (in point (a) of left/top sketch), even if ε and v are invariant. We use
a marginally hierarchical basis (top right) where the stencil in (b) can be computed such as any
other stencil on this level. No source code modification is required. We read the adaptive grid as
overlapping domain decomposition with Dirichlet-Dirichlet coupling: In both variants, the hanging
node acts on the fine grid as if there were an additional shape function halve centred in (c). No
stencil is to be altered w.r.t. coarse-fine transitions in point (d). The values in (e) or (f), respectively
result from injection, i.e. these points can be read as halved shape functions placed on the coarse
grid, acting as Dirichlet points there, and thus coupling fine grid to coarse grid solution. In a
multigrid context, (f) plays two roles: it acts as coarse system Dirichlet point and as left-most
correction point on the coarser level. This induces a transition dilemma: the point carries the
solution while it should be zero for the exact solution, e.g. With FAS, all correction system points
carry a nodal representation, too, i.e. this dilemma is resolved.

7

All discretization operators have strict local support, as a stencil spans 3d neighbouring vertices.
Let inter-grid transfer operators have local support, too. A parent vertex b of a vertex a is any
vertex that has at least one adjacent cell that is a parent of an adjacent cell of b. Interpolation
and restriction couple vertices and parents only. The notion of parent vertices here is slightly too
generous. The d-linear interpolation and restriction operators are actually even sparser.

The spacetree’s cascade of grids embeds function spaces into each other. We propose to exploit
this beyond sole FAS through the HTMG idea [29]. Let A`u` = b` be the linear equation system
for (1) on a level `. The u` here are weights of the shape functions in Ωh,` and comprise degrees of
freedom on the fine grid mesh of level `. They also contain correction degrees of freedom if there
are unrefined vertices on `. The b` result from a discretization of f if we are on the finest level.
Otherwise, they comprise a multigrid correction component. Instead of a correction equation, we
use the Petrov-Galerkin coarse-grid operator definition, switch to FAS and solve

A`(u` + e`) = R (b`+1 −A`+1(id− PI)u`+1) =: R (b`+1 −A`+1û`+1) =: Rr̂`+1.

Here, A` is the level operator, e` or r` are the nodal shape function correction weights and residuals,
respectively, P and R are prolongation and restriction, id is the identity, r̂ is called the hierarchical
residual, and û the hierarchical value. Given an injected (a coarse) representation of the solution
on a level ` through I, a multigrid solver computes a coarse-grid update, keeps track of this coarse-
grid solution modification e` and prolongs this value back to the fine grid later all with one set of
unknowns.

Our solver family relies on the following spacetree traversal paradigm:

Definition 1 A multiscale element-wise traversal of the spacetree is a traversal of the cascade of
grids Ωh,` where
1. each cell is processed only once, and the traversal offers throughout this processing access to all

adjacent vertex data,
2. each cell access allows for access to the cell’s parent as well as its adjacent vertices,
3. and a refined cell is processed after its children.

Def. 1 gives a partial order on the tree. The order can be formalised as a set of operation applications
handleCell. These operation applications (events) are implemented as function calls that are
invoked at certain points during the spacetree traversal. handleCell implicitly introduces two
further orders touchV ertexF irstT ime and touchV ertexLastT ime on the tree’s vertices that specify
when a vertex is read for the first time and for the last time. Mirroring the statements from Def. 1,
the corresponding operations shall have access to their parent data, too.

We finally augment this set by a fourth transition: descend accepts a cell and its adjacent
vertices as well as the 3d children of the cell with their vertices and precedes any handleCell on any
child. Such an event fits into a depth first traversal and does preserve the single touch policy—
every cell/vertex is read only once per multiscale grid sweep—if we make the traversal code load
within a refined cell first all kd children cells before is continues to recurse further (Figure 16 in
the appendix). Traversals loading more than the direct children make some assumptions or have to
have knowledge about the grid structure. descend does not need this and thus fits to our strictly
element-wise mindset.

Definition 1 is a formalisation of our algorithmic ingredients which directly fits to many standard
ways to run through a spacetree, in particular depth-first and breadth-first. Depth-first traversals
of spacetrees always resemble the construction of space-filling curves as long as the run-through

8

Table 2: Overview of unknowns per vertex v in the three geometric multigrid variants. pers

indicates that the value is required in-between two solver iterations, i.e. has to be stored persistently.
tmp denotes that it is required only temporarily.

Description Add BPX Mult
u Weight of shape function centred at vertex, i.e., function value in v. pers pers pers
û Hierarchical surplus in v, i.e. difference to coarsened solution. tmp tmp tmp
r Residual. tmp tmp tmp
r̂ Hierarchical residual. tmp tmp tmp
d Helper variable transferring solver updates (deltas) between levels. pers pers pers
b Right-hand side. pers pers pers
i Injected impact of the smoother. pers

order of the kd children of a parent is deterministic. Notably, Hilbert and Morton (k = 2) and
Peano (k = 3) fall into place.

4 Solver realizations

A stencil of a vertex v describes the entries of one row in A`. Such a row (A`)v decomposes over the
cells adjacent to v. To compute rv = (A`)vu, we can either compute rv by a sum over the vertices,
or we can split up (A`)v additively over all the cells and accumulate rv element-wisely. For d = 2,
the stencil s6 s7 s8
s3 s4 s5
s0 s1 s2

 decomposes into

 s6
s7
2 0

s3
2

s4
4 0

0 0 0

+

 0 s7
2 s8

0 s4
4

s5
2

0 0 0

+

 0 0 0
0 s4

4
s5
2

0 s1
2 s2

+

 0 0 0
s3
2

s4
4 0

s0
s1
2 0

 .
(2)

4.1 Geometric multigrid variants

The realization of a multiplicative, geometric multigrid solver within strictly element-wise space-
tree traversals requires a state automaton S steering the algorithm. Let S have two proper-
ties current(S) and old(S) that identify the current smoothing level and the previous one. At
startup, current(S) = old(S) = `max. The automaton S supports two transitions: If we invoke
S ← ascend(S), current(S) is decreased. If we invoke S ← descend(S), current(S) is increased.

Both operations are controlled from a loop over the multigrid iterations. Within, the actual
multigrid solver is a set of nested for loops mirroring the well-known V- or W-cycle pattern. We
study only V (µpre, µpost)-cycles with µpre ≥ 1 and µpost ≥ 1 here. From within these loops,
Algorithm 1 is run once per multigrid cycle step. If we realize a V (µpre, µpost)-cycle, the algorithm’s
recursive function is invoked (µpre + µpost)(`max − `min + 1) times. The S state transitions are
invoked between two function calls. We end up with three different state configurations. For
current(S) = old(S), we perform either a pre- or a post-smoothing step, which is not the first
smoothing step on level current(S). For current(S) = old(S) − 1, we run the first pre-smoothing
step on current(S) and restrict the right-hand side from level old(S) to the next coarser level.
For current(S) = old(S) + 1, we run the first post-smoothing step on current(S) and prolong
corrections from level old(S) to the next finer level.

Cells contribute to the residual either if they are on the active level or if they belong to a level
that is coarser than the active level and are adjacent to at least one unrefined vertex. Such a

9

Algorithm 1 Geometric multiplicative multigrid with rediscretization. It embeds into a
multiscale element-wise spacetree traversal such as a depth-first ordering and is invoked by
geomMult(`max, S) per smoothing step. S is a state machine holding the current and previous
active smoothing level. The combination of these two levels distinguishes pre- from post-processing
and triggers inter-grid data transfers.
1: function geomMult(`, S)
2: if ` = current(S) ∨ (current(S) > ` ∧ vertex unrefined) then r` ← 0 end if
3: if ` = current(S) ∨ (current(S) > ` ∧ vertex unrefined) then r̂` ← 0 end if
4: if current(S) < old(S) ∧ old(S) = ` then û` ← u` − Pu`−1 end if
5: if current(S) < old(S) ∧ current(S) = ` ∧ vertex refined then b` ← 0 end if
6: if current(S) > old(S) ∧ current(S) = ` then u` ← u` + Pd`−1 end if
7: if current(S) > old(S) ∧ current(S) = ` then d` ← d` + Pd`−1 end if
8: if ` < `max ∧ ` < max{current(S), old(S)} then geomMult(`+ 1,S) end if
9: if current(S) = ` ∨ current(S) < ` ∧ cell unrefined then r` ← −A`u` end if

10: if current(S) < old(S) ∧ ` = old(S) then r̂` ← −A`û` end if
11: if current(S) = ` ∨ current(S) < ` then r` ← r` + b` end if
12: if current(S) < old(S) ∧ ` = old(S) then r̂` ← r̂` + b` end if
13: if ` = current(S) ∨ (current(S) > ` ∧ vertex unrefined then
14: u` ← u` + ω diag−1(A`) r` end if

15: d` ←

0 if ` = current(S) ∧ vertex refined
d` + ω diag−1(A`) r` if ` = current(S) ∨ (current(S) > ` ∧

vertex unrefined)
d` otherwise

16: if current(S) ≥ ` then u`−1 ← Iu` end if
17: if current(S) < old(S) ∧ old(S) = ` then b`−1 ← Rr̂` end if
18: end function

multiscale smoothing can be read in a domain decomposition way, where coarse-grid values are
overwritten by overlapping fine-grid values. Many multiplicative multigrid codes coarsen all grid
regions when they ascend. The present code, in contrast, coarsens the levels that are finer than
the previous smoothing level. This makes the code easier to understand. A fine-grid region then is
subject to the more smoothing steps the coarser it is.

Observation 2 We can implement matrix-free, geometric multiplicative multigrid within an element-
wise multiscale traversal with one smoothing step per grid sweep.

In [42], two additive solver alternatives are presented that work in an element-wise multiscale
traversal and both require, amortized, one multiscale grid sweep per additive cycle. The versions of
these solvers that we use in this work are Algorithm 2 and Algorithm 3. Algorithm 2 is a classical
additive scheme, and Algorithm 3 is a BPX variant. A detailed describtion these algorithms and
their implementation can be found in Appendix B.

Observation 3 We can implement a matrix-free, geometric additive multigrid
solver (a solver based upon d-linear inter-grid operators and rediscretization of coarse grid matrices)
within an element-wise multiscale traversal that requires, amortized, one multiscale grid sweep per
additive cycle.

Observation 4 We can implement a matrix-free, geometric BPX solver within an element-wise
multiscale traversal that requires, amortized, one multiscale grid sweep per additive cycle.

10

Algorithm 2 Geometric additive multigrid based upon rediscretization. It embeds into a multiscale
element-wise spacetree traversal such as a depth-first ordering and is invoked by geomAdd(`max).
If all hanging nodes are made to hold the d-linear interpolant of the next coarser levels, the code
works on arbitrary adaptive meshes.
1: function geomAdd(`)
2: d` ← d` + Pd`−1; u` ← u` + Pd`−1; û` ← u` − Pu`−1 . Vertex-wise correction
3: r` ← 0; r̂` ← 0 . (coarse-to-fine data flow)
4: b` ← 0 for all b associated to refined vertices
5: if ` < `max then geomAdd(`+ 1) end if . Recursion into finer grid levels
6: r` ← −A`u` ; r̂` ← −A`û` . Cell-wise residual accumulations
7: r` ← r` + b`; r̂` ← r̂` + b`
8: d` ← ω diag−1(A`) r` . Vertex-wise smoothing
9: u` ← u` + d`

10: if ` > `min then u`−1 ← Iu`; b`−1 ← Rr̂` end if . Vertex-wise restriction and injection
11: end function

Algorithm 3 Geometric BPX variant with rediscretization. It embeds into a multiscale element-
wise spacetree traversal such as a depth-first ordering and is invoked by geomBPX(`max).

1: function geomBPX(`)

2: d` ← d` +

{
Pd`−1 if c-point
Pd`−1 − Pi`−1 else

. Vertex-wise operations from geomAdd

3: u` ← u` +

{
Pd`−1 if c-point
Pd`−1 − Pi`−1 else

. with modified prolongation

4: û` ← u` − P`−1

5: r` ← 0; r̂` ← 0
6: b` ← 0 for all b associated to refined vertices
7: if ` < `max then geomBPX(`+ 1) end if
8: r` ← −A`u`; r̂` ← −A`û`
9: r` ← r` + b`; r̂` ← r̂` + b`

10: d` ← ω diag−1(A`) r`
11: u` ← u` + d` for non-c-points
12: if ` > `min then b`−1 ← Rr̂`; i`−1 ← Id` end if . Injection of skipped updates
13: d← 0 for c-points . Skip update
14: end function

4.2 Spacetree block smoothers

Strict element-wise matvecs that touch each (fine-grid) cell only once render smoothers beyond
point Jacobi technically challenging if a whole smoothing step has to be realized within one grid
traversal. We can update an unknown only once a vertex is used for the last time (in (2) once the
fourth cell has been processed), and information of a vertex update thus can propagate only along
the grid traversal sequence: A vertex update may only affect vertices that are adjacent to the last
cell processed that is adjacent to this vertex. We observe that a naive splitting of a stencil into
equal parts as realised in (2) then is not possible anymore and the splitting has to anticipate the
Gauss-Seidel like enumeration.

Gauß-Seidel with an unknown enumeration that is not tied to the cell traversal order or line
smoothers can not be realized within one grid traversal. Coloured schemes such as red-black Gauss-
Seidel require one grid traversal per colour. Krylov schemes work if we evaluate the matvec as well
as all scalar products in one grid sweep and apply the impact in a second sweep [5]. With pipelining,
multiple sweeps can be fused and the amortized cost per unknown update can be reduced [26]. In
the present work, we however restrict ourselves to multigrid ingredients with minimalist memory

11

access and thus stick to Jacobi.
Point Jacobi is a poor choice for many non-trivial parameter combinations in (1). To facilitate

more powerful smoothers without giving up data locality or single touch, we augment Jacobi by
an additional block smoothing that improves convergence locally on very small subdomains (kd

patches). For this, we generalize the tree traversal by a descend event (see Sect. 3). In a depth-first
traversal code, such an operation makes a recursive step down within the tree and loads all children
of a node before it continues recursively—a one-level recursion unrolling [24].

c

c

c

c

γ

γ

γ

γ

γ γ

γ γ

ι

ι

ι

ι * * *
* * *
* * *

* * *
* * *
* * *

* * *
* * *
* * *

* * *
* * *
* * *

Figure 3: Left: 3d patch available to descend (together with the parent cell). We distinguish three
vertex types: c-points coincide with vertices on the next coarser grid level, γ-points lie on coarse-
grid lines, and ι-points lie within the patch. Right: Illustration of a cell-wise Galerkin coarse grid
operator computation. With P and R known, we can set the interpolation for the vertices of a cell,
apply the element matrix and add the result back to the coarse cell’s stencils via R. Coarse-grid
stencil entries subject to accumulation are bold.

A block smoother accepts all (k+ 1)d vertices and runs the solver’s correction steps for them if
not triggered by adjacent cells already. We distinguish three different types of vertices (Fig. 3)—the
nomenclature follows the BoxMG terminology as detailed in Sect. 4.4—and we use the term block
Jacobi for a smoother that performs Jacobi on the γ and c points and processes the ι vertices
differently. When block Jacobi loads a patch’s (k − 1)d ι-vertices for modification (clearance of
right-hand sides, e.g.) it first runs Gauß-Seidel sweeps on them. Then it computes the respective
operations from the algorithm, determines the hierarchical surplus and continues in an element-wise
fashion.

While an exact solve on the interior points of a patch would be possible and even trivial for
k = 2, we use k = 3 and find it convenient to make the patch sweeps run Gauß-Seidel iterations.
For the geometric multigrid solver, these iterations use on-the-fly rediscretization. For the Galerkin
coarse grid variants using d-linear or BoxMG inter-grid transfer operators we make them use stencils
that are explicitly available. The proposed technique falls into the class of hybrid smoothers [6].

Observation 5 Through an augmentation of the multiscale element-wise spacetree traversal with
a descend operation, the realization of block Jacobi smoothers is straightforward. They preserve the
data locality of the element-wise traversal.

12

4.3 Galerkin multigrid variants

Galerkin in our tests denotes all multigrid variants where prolongation and restriction are d-linear,
while coarse grid operators result from A`−1 = RA`P . The Galerkin computation rules do not imply
any assumption about P and R. As a computation of A`−1 depends on a cascade of evaluations
on finer levels, an on-the-fly computation of A`−1 is impossible. The coarse-grid system has to be
held explicitly. For this, we augment the vertex records with 3d (for multiplicative multigrid) or
2 · 3d (for additive and BPX) doubles. They hold the stencil associated with a vertex that in turn
determines the element-wise matrices. All r ← −A`u and r̂ ← −A`û evaluations are modified such
that they read the stencils from the cells’ adjacent vertices. Whenever we create a new vertex,
the stencil entries are initialized via PDE discretization. To determine the Galerkin operator,
we accumulate the coarse-grid operator element-wisely together with the residual by decomposing
A`−1|v = (RA`P)|v over all 2d ·3d child cells ĉ of the cells adjacent to v (Fig. 3, right). This strategy
is element-wise w.r.t. level `− 1.

To make the accumulation work, we have to clear the stencils before. If a grid is stationary and
the PDE is linear, we could skip any re-accumulation of coarse-grid operators. If the grid however
refines into a level `+ 1, fine grid stencils on a level ` that are associated to newly refined vertices
transform into stencils that carry a Galerkin operator and thus have to be recomputed. This re-
computation recursively triggers stencil updates on coarser levels. If the PDE is non-linear, the
stencils on the finest level depend on the current approximate solution uh and thus trigger changes
recursively on all coarser levels as soon as we update uh. Even if we stick to linear problems such
as (1), it is convenient to recompute the coarse-grid operators in every cycle before we coarsen in
the spacetree. We then do not have to analyze whether the grid changes. Our vertical integration
of multigrid operations suggests that all fine-grid operators influencing a Galerkin recomputation
are held in caches. The re-accumulation does not increase the pressure on the memory subsystem.
Finally, we could omit the storage of the stencils on the finest grids and rely on on-the-fly redis-
cretization. Yet, we introduce a holistic memory compression applying to all grid levels in Sect. 5
that realises this storage optimisation automatically.

If we recompute the Galerkin operator in each traversal, we need both a valid operator and
memory to accumulate the coarse grid stencils for the additive solver variants. Additive multigrid
and the BPX variant thus store a copy of the stencil upon the first read of a vertex in the data
structure. Hereafter, all current stencil entries are cleared and we start the accumulation. Matvecs
use the backup copy, which can be held temporarily, i.e., not stored in-between two grid sweeps. A
Galerkin variant of the multiplicative Algorithm 1 does not require duplicated stencils. Let

recomputeGalerkin(`, S) =

 > if `+ 1 = current(S) ∧ last smoothing step
on level `+ 1 ∧ vertex refined

⊥ otherwise.
(3)

A vertex’s stencil is set to zero when we read the vertex for the first time if recomputeGalerkin = >.
Coarse operator contributions are added to those coarser vertices where the predicate holds. They
are not altered on finer grids than the active smoothing level or during the descend process.

Observation 6 If we augment each vertex data structure by 3d (multiplicative) or 2 · 3d (additive
and BPX) doubles, we can realize Galerkin multigrid variants within the element-wise multiscale
traversal that work on-the-fly.

A proper choice of `max is delicate for multigrid methods: If `max is too fine, multigrid convergence
suffers. If `max is too coarse, the Galerkin operators deteriorate, might become indefinite, and, in

13

the worst case, the coarse grid smoothing contributions destroy the overall convergence and make
the solver diverge [61]. We propose to rely on a dynamic coarsest level which starts with `max = 1.
On the one hand, the solver increases `max in-between two multigrid cycles/iterations once we
observe stagnating or growing residuals. On the other hand, the solver immediately increases `max
if one Galerkin operator computation yields a coarse grid stencil that is not diagonal dominant
anymore or carries negative diagonal values. This approach makes our solver variants start as
a multilevel approach and deteriorate, in the worst case, to (block) Jacobi. We note that the
definiteness check is, in principle, active only at the solver startup, if the underlying PDE is linear.
The convergence speed criterion however can kick in later. For more sophisticated applications, it
might be reasonable to make `max space-dependent, too. We do not follow-up such a sophisticated
scheme.

4.4 BoxMG

To construct PDE-dependent inter-grid transfer operators, we rely on BoxMG [16] applied to tri-
partitioning [20, 53, 61]. It has been shown to yield robust and efficient multigrid solvers for a
large class of problems while it can be seen as a special case of classical algebraic multigrid with a
geometric definition of “strong connections” [36]. It thus fits to our geometric multiscale meshing
concept. For studies on the robustness and efficiency of BoxMG, we refer to [17, 19, 41], and
notably cite [59] offering a framework for the construction of prolongation operators where BoxMG
is recovered as a special case of more general multigrid techniques.

For any refined vertex, this vertex’s inter-grid transfer operator affects 5d fine grid vertices. It
carries a 5d stencil for P and R. Instead of discussing how the inter-grid stencils affect the 5d fine
grid vertices, we

• clear P and R upon a coarse grid vertex load,

• plug into descend when we descend from an refined cell that is adjacent to the vertex into
the finer grids,

• collect there the 4d stencils from the fine grid vertices, and

• alter the 3d affected stencil entries of the coarse grid,

whenever these are to be recomputed. In exchange, descend always computes 2d partial inter-grid
transfer stencils per cell, i.e. contributes to the stencils of all the vertices adjacent to a cell. We fit
to the concept of element-wise assembly for the multigrid.

As we work with cubes only, any vertex/stencil configuration can be mirrored by a matrix M
such that the coarse vertex and its stencil of interest coincide with the left, bottom vertex. M
reorders the vertices within a 3d patch an all of their stencils, too. Once we have determined all
P entries of interest—R follows due to RT = P if not explicitly stated otherwise—we can mirror
all entries back through MT . We break down BoxMG into multiscale element-wise operations that
we formalise w.r.t. one vertex configurations from which 2d − 1 further operations results through
mirroring.

Our presentation restricts to one partial inter-grid transfer stencil therefore. Following the
literature, we distinguishe c-, γ- and ι-points (Fig. 3) within a 3d patch and re-order the equation
system accordingly. All formalism and techniques are here described for d = 2 and extend naturally

14

to the three-dimensional case. For the complete operators, we refer to Appendix C. Let the stencil
P be equivalent to the vector P = (Pc Pγ Pι)

T . In 2d, the entries read

P =

p0,4 p1,4 p2,4 p3,4 p4,4
p0,3 p1,3 p2,3 p3,3 p4,3
p0,2 p1,2 p2,2 p3,2 p4,2
p0,1 p1,1 p2,1 p3,1 p4,1
p0,0 p1,0 p2,0 p3,0 p4,0

 7→ (p2,2︸︷︷︸
Pc

, p3,2, p4,2, p2,3, p2,4︸ ︷︷ ︸
Pγ

, p3,3, p4,3, p3,4, p4,4︸ ︷︷ ︸
Pι

)T

with lexicographic stencil entry enumeration for the prolongation stencil associated to the bottom
left coarse grid vertex of a 3×3 patch (Fig. 3). BoxMG makes the impact of a coarse-grid correction
u`−1 onto u` fall into the PDE’s nullspace. Its operator-dependent inter-grid transfer implies that
an interpolation of coarse data fits to the PDE.

A`Pu`−1 =

 Acc Acγ Acι
Aγc Aγγ Aγι
Aιc Aιγ Aιι

 Pc
Pγ
Pι

u`−1 =

 bc
bγ
bι

 , (4)

p2,2=1 induces 5d − 1 interpolated fine grid values that disappear under the PDE operator. To
achieve this, P = (Pc Pγ Pι)

T is constructed in five steps:

1. c-points are assigned the value of their coarse counterpart coinciding spatially. Pc = IT with
I from FAS.

2. We ignore the impact of γ- and ι-points on c-points and from ι-points on γ-points. Acγ =
Acι = Aγι = 0 and, therefore, Acc = id. We bring Aγc and Aιc to the right-hand side and
obtain (

Aγγ 0
Aιγ Aιι

)(
Pγu`−1

Pιu`−1

)
=

(
bγ −AγcPcu`−1

bι −AιcPcu`−1

)
.

3. This system remains hard to solve as the matrices are large. BoxMG therefore decomposes the
level ` into patches (Fig. 3). To reduce inter-patch dependencies, the two-dimensional stencils
belonging to γ points are collapsed to one-dimensional stencils by summing up all stencil
entries in the dimension perpendicular to the corresponding coarse grid line. In d = 2 and for
coarsening by a factor of three, each two γ points on a coarse-grid line can be computed from
the two neighbouring c points and themselves by solving two equations in two unknowns:

Pγu`−1 = Ã−1
γγ (bγ − ÃγcPcu`−1).

4. As multigrid is defined over residual equations, it is reasonable to assume bγ = bι = 0. This
yields a linear equation for Pγ . More efficient BoxMG variants apply a postsmoothing step
similar to smoothed aggregation to P and do not neglect the right-hand side in (4) [36]. We do
not follow-up this technique though our software base in principle allows for nonhomogeneous
right-hand sides.

5. Finally, the four ι points are computed by solving four equations in four unknowns.

Observation 7 BoxMG yields operator-dependent inter-grid transfer operators that can be repre-
sented by 5d-stencils per vertex. We thus can realize an algebraic-geometric multigrid solver without
any external global matrix if we store these stencils within the vertices.

15

The extension of the scheme to three dimensions is straightforward [9, 18, 46, 61]: The stencils are
collapsed into 1d stencils along patch cube edges and into 2d stencils on the patch faces. An 8× 8
equation system is to be solved in the patch interior. We summarise the key property of BoxMG’s
construction from a traversal’s point of view: Whenever the tree traversal descends within a refined
cell, it alters exactly 3d entries of any P stencil of any adjacent coarse stencil. For this, it has to
know the 3d stencils of the fine grid vertices affected. Within a patch however no P entry depends
on any stencil of any vertex that is not contained within the same patch.

Observation 8 We can implement BoxMG in a strict multiscale element-wise sense through the
introduction of descend. All inter-grid transfer operators of one level become available within one
grid sweep. We propose a single-sweep, single-touch inter-grid transfer operator computation.

One advantage of additive multigrid variants is the possibility to merge coarse grid operator
computations with the smoothing process ([3] and references therein). Our approach offers this
propery also for the multiplicative variant: Coarse-grid operator computation, level `−1 smoothing
and restriction from level `+ 1 all are interwoven.

Plugging a symmetrized system operator Asym = 1
2 (A` + AT`) into the computation of either

restriction or prolongation computation in the BoxMG scheme improves the convergence and ro-
bustness for non-symmetric setups [17, 61]. Such a Petrov-Galerkin multigrid scheme however
changes the memory access pattern for P : As “half of Asym” stems from AT` , a patch’s computa-
tion of P entries needs the stencils of vertices surrounding a patch. It effectively uses a patch with
5d cells, i.e. 6d vertices per linear equation system solve. It currently is unclear whether we can
avoid a spreading of the influence area and stick to a strictly patch-wise, localized data evaluation
pattern and, at the same time, use a symmetrized operator. This has to be subject of future stud-
ies. Yet, we can use simpler symmetric restriction operators R in combination with the BoxMG
prolongation P . Notably, simple injection R = I [29] or aggregation of 5d fine grid points into one
coarse grid point are trivial to implement. The resulting inter-grid operator combination then lacks
the accuracy required by multigrid efficiency proofs, but we know that the resulting Galerkin coarse
grid operators tend to remain more stable—they do not degenerate that fast into central differences
for convection-dominated flows when we coarse [60]. We thus can expect that our adaptive coarse
grid selection does not increase `max as fast as for traditional BoxMG.

The computation of P and R fits to descend, and we can store the results as stencils in the
vertices. Again, we need (temporary) backups of the inter-grid operators in the additive variants.
All statements and details on (re-)accumulation of stencils for the coarse-grid operators apply to
the BoxMG-operators, too.

The patch-based locality makes BoxMG well-suited for spacetree-based non-uniform grids. The
interpolant on hanging vertices is no longer determined geometrically. It instead results from P
and R according to the BoxMG formalism. At the hanging vertices, well-suited stencils that can
be collapsed are required. We use d-linear interpolation of the parent stencils to obtain them. The
elimination of dependencies through stencil collapsing along patches preserves the high memory
access locality of an augmented element-wise multiscale traversal.

5 Stencil compression

Our Galerkin and BoxMG multigrid variants are not literally matrix-free. They do not hold a
dedicated matrix data structure, but they store the stencils within the grid. Since sparse matrix

16

storage formats exist that introduce a small administrative overhead [34], the savings through this
in-situ storage are limited. Yet, significant savings can be made if we omit storage on the finest grid
levels and recompute the stencils there on-the-fly. This does not introduce any savings on coarser
grids. If the discretization is costly—through material parameters ε that have to be integrated or
challenging boundary conditions, for example—it might be better for performance-wisely to store
the stencils on the finest grid level, too.

Galerkin coarse-grid operators resemble rediscretizations for smooth ε, small v = 0 or fine mesh
sizes. We thus introduce hierarchical operators

Â = A−Arediscretized, P̂ = P − Pd−linear and R̂ = R−Rd−linear.

Â, P̂ and R̂ can be computed whenever we use a vertex for the last time throughout a grid traversal.
Either A or Â have to be held in-between two iterations, i.e., we can either store the original
operator or reconstruct it from the hierarchical representation upon the subsequent vertex load.
The argument holds for P̂ and R̂ analogously.

Observation 9 For setups where ε is smooth and v is small in most of the domain, the entries of
the hierarchical operators Â, P̂ and R̂ are small. They hold fewer valid digits than made available
through the IEEE standard.

For an almost matrix-free multigrid realization, we thus propose to rewrite all three operators held
within the vertex into their hierarchical representation. If the operators are zero, i.e., the stencil
equals rediscretization and the inter-grid transfer operators are d-linear we mark the vertex and
discard the operator’s stencil. Otherwise, we convert all entries x of the hierarchical representation
into a format f−1

bpa(x) = m · 2e, where the exponent e is stored in one byte (C data type char) and
m ∈ N0, with e chosen such that m fits exactly into bpa − 1 bytes as a natural number. Here,
bpa ∈ {0, 2, . . . , 8} (bytes per attribute) is the number of bytes that we use to store the exponent
e plus the integer value m. Upon a vertex store, we determine per operator the smallest bpa such
that |fbpa(x̂)− x̂| ≤ εmf with εmf � 1.

Within the vertex, solely bpa per stencil is held in-between two iterations. All three bpa values
for A, P and R fit into 9 bits. The values e and m per stencil entry are piped into a separate byte
stream. When we read the vertex for the first time, we take bpa from the vertex record, apply
fbpa, add Adiscretized or Pd−linear respectively, and from hereon continue to work with the standard
IEEE precision.

Such a conversion computationally is not for free but reduces the memory footprint. First, few
vertices with an uncompressed operator representation are required simultaneously at the same
time. Those vertices which have not been used yet or where all adjacent cells have been processed
already can be held in compressed form. Second, all stencils on fine-grid vertices are removed
completely from the persistent data structures as ε and v here are simple. Third, all Galerkin and
BoxMG inter-grid transfer operators are held persistently. Yet, their hierarchical surplus often is
very small, yields small bpa and thus is compressed aggressively. The coarser the grid, the more
bytes have to be invested in operator storage. This is not problematic as the number of coarser
grid vertices is small.

Observation 10 Our implementation is almost matrix-free in terms of storage.

Our fine grid statement is invalid if ε and v on the fine grid are homogenized from subgrid sampling.
Homogenized stencils differ from rediscretization though we may expect again that the difference

17

is small. We also note that our approach is orthogonal to [23] and [12] where we use a hierarchical
transform to reduce the memory footprint of unknowns or hierarchical surpluses, respectively. In the
present approach, the unknown per vertex is only one double compared to 2 ·5d+3d (multiplicative)
or 4 · 5d + 2 · 3d (additive/BPX) doubles required to store the stencils. A bpa-based compression of
u (and probably b) on top of the stencil compression thus would only have a minor impact.

6 Parallelization

Our parallelization considerations focus on shared memory and distributed memory via tasking or
MPI, respectively. We rely on static load balancing and task stealing only. That is, we concentrate
on an academic discussion of potential concurrency in the linear algebra and postpone performance
engineering.

6.1 Shared memory

The dynamic adaptivity plus vertical integration render standard loop-based shared memory paral-
lelization problematic, as we we do not assume that there are larger regular grid region [24]. There
are no major loops well-suited for a parallel for and tiling [3]. We therefore derive a task-based
parallelism formalized via operation dependencies on the element-wise traversal. These dependen-
cies can be resolved by a directed acyclic graph and then directly can be passed to any task-based
library.

For all solver variants, first accesses to vertices may run in parallel as long as the traversal
preserves a top-down ordering for touchV ertexF irstT ime. As soon as a set of vertices on level `
is loaded, all vertices on level `+ 1 that share only the level ` vertices as parents can be handled in
parallel. On one level, touchV ertexF irstT ime (and thus prolongation) is embarrassingly parallel,
with read-only access to the coarser level.

The element-wise residual computation exhibits a lower level of concurrency. For purely ge-
ometric multigrid solvers, no two cells may be updated concurrently that share a vertex. This
induces a red-black type colouring of the cells with 2d colours. Galerkin and BoxMG solvers are
more restrictive as they compute the residual and modify the coarse-grid stencil and the inter-grid
transfer operators (Fig. 4). Here, two cells on level ` may be updated in parallel if their parent
cells on level `− 1 do not share any common adjacent vertex. If we read ` as a regular grid, this is
a (2k)d colouring of the cells. Such a multiscale dependency reduces the algorithm’s concurrency
severely. However, we can work with kd colouring where possible and only use (2k)d colours while
recomputeGalerkin in (3) holds.

touchV ertexLastT ime updates the unknowns, restricts right-hand sides and injects data. Up-
dates are embarrassingly parallel. As each vertex on level ` coincides spatially with at most one
vertex on level ` + 1, the injection of vertices on level ` + 1 is embarrassingly parallel too. Again,
the multiscale traversal synchronizes the individual levels and ensures that all vertices on level `
receive a touchV ertexLastT ime before any of their shared parents is handed over to this event.
The restriction imposes additional constraints. Where the interpolation reads coarse-grid data only,
the restriction reads fine-grid data (modified by the update) and writes to the coarse grid. No two
vertices on level `+ 1 that share a parent may thus be updated concurrently. If we read level `+ 1
as a regular grid, this implies a (2k + 1)d colouring of the vertices. We were not able to obtain
reasonable speedups if we always sticked to (2k+ 1)d colouring. Therefore, we apply this colouring

18

X

X

Y

Y

level

level +1

Figure 4: Left: BoxMG concurrency within the spacetree. Cells of same grey shade can be
processed in parallel. All vertices can be updated in parallel upon their very first usage. Those
vertices carrying an X or Y marker, e.g., can be processed in parallel when the last operations per
vertex per traversal are executed. Right: Solution to the circle benchmark for d = 3 with some
contour faces. Diffusion dominates in the back half of the setup while ε = 10−4 in the front half
allows the convection to yield an asymmetric solution.

19

Figure 5: Left: Domain decomposition along an SFC with four ranks highlighted. The decompo-
sition induces a logical tree topology with masters and workers among the MPI ranks (from [55]).
Right: Sparsity pattern of an explicitly assembled (PETSc) matrix for the d = 2 setup on regular
grids. As we use a space-filling curve to traverse the finest grid, the matrix pattern is not dominated
by diagonals.

only for levels and grid regions where the right-hand side needs to be re-determined. Otherwise,
we process vertices embarrassingly parallel.

The descend events require a 2d colouring on the coarser level ` if P and R are re-computed.
Theoretically, all BoxMG patches can be computed in parallel. Yet, along the interface of two
patches all adjacent patches compute the same entries due to the stencil collapsing. Though this
is a race condition where multiple threads determine the same data and write the same entries, a
concurrent, redundant computation of some stencil entries without a synchronization led invalid
stencil entries in our implementation. We thus fall back to 2d (coarse cell) colouring where no two
adjacent 3d patches determine BoxMG operators. For the block smoothers, we run the patches
parallel without locks. They never modify any data on level `+ 1 (Fig. 3).

6.2 Distributed memory

The MPI parallelization of multigrid is an active area of research. There are dozens of different
strategies for any combination of solver variant, machine and problem. In line with the shared
memory parallelization, we conduct a basic data flow analysis for the multiplicative algorithms on
non-overlapping multiscale decompositions here.

A decomposition scheme fitting to our notion of element-wise spacetree traversals is a classic
non-overlapping domain decomposition. Each cell in the fine grid is assigned to a unique rank, while
vertices along the domain boundary are replicated on each adjacent rank. Two options exist how
to handle coarser levels [55]: We can hold a refined spacetree cell on any rank that also holds one of
its children. Such a bottom up construction of ownership implies that refined spacetree nodes are
replicated on multiple ranks—we are not non-overlapping in a multiscale sense—and that vertices

20

can be replicated on more than 2d ranks. Notably, it implies that each rank holds the spacetree’s
root. Alternatively, we can assign a refined spacetree cell uniquely to one of the set of ranks that
hold one its children (Fig. 5). Such a bottom-up construction yields a non-overlapping domain
decomposition on each and every level. It implies that each cell has a unique owner, that vertices
are adjacent to at most 2d ranks, that there is a logical tree topology induced on the MPI ranks,
and that most ranks holds only a fragment of the overall spacetree. In our implementation, we
follow the latter approach though all data flow insights holds for both approaches.

We assume that all replicated data, i.e. all values and stencils stored within the vertices, are
consistent after the initial grid construction. All element-wise stencil evaluations can be done
without communication on all ranks holding a cell. This yields a rank-local partial residual. If
cells are held redundantly, also the partial results are determined redundantly. As soon as the
local residual on a domain boundary vertex is accumulated, we send out this residual to all other
ranks that hold a copy of this vertex and continue the rank-local spacetree traversal. A traversal
realization that sticks to the single-touch policy for the unknowns and hides data exchange behind
computation postpones the update of a vertex’s unknown. i.e. no update of unknowns is conducted
right away. Instead, we retain the residual in-between two grid traversals and add a prelude to the
vertex’s load process of the subsequent traversal. Data is sent out when a vertex has been processed
for the last time, but it is not merged into data structures prior to the subsequent grid traversal.
The prelude receives all residual contributions from all other adjacent ranks, adds them to the local
residual and performs the unknown update. If we had redundant cells, the accumulation of the
residual has to anticipate that some residual fragments might be determined multiple times.

The postponing of unknown updates decreases the speed of the smoother by one grid sweep
in total. Amortized over all sweeps, our parallelization does not alter the convergence speed. In
return, the data exchange can be realized in a non-blocking manner in the background. However, we
experience a slight reduction of the speed along grid resolution changes. Our FAS-based handling of
coarser grid regions requires the injected fine-grid solution. If the smoother’s fine grid updates are
postponed to the subsequent iteration, no valid injected data from the current iteration is available
there yet. In the parallel code, updates are injected into coarser levels one sweep later than in the
serial case. This has an impact on smoothers working on adaptive grids. At hands of the domain
decomposition description of such smoothers, we see that the fine-to-coarse domain coupling is
delayed while the coarse-to-fine coupling through interpolation along the hanging vertices remains
tight.

While a relaxed inter-level coupling is acceptable, we face a more severe data consistency chal-
lenge throughout the reduction of the multiplicative algorithm. The hierarchical residuals—partially
computed along the domain boundaries—are restricted per rank. The restricted values then are
exchanged to determine the right-hand side for the coarse grid correction. This postponed data
flow scheme mirrors the exchange of residuals. Our serial/shared memory algorithms propose to
fuse the coarse grid smoothing with the restriction. This relies on the facts that (i) the right-hand
side is correctly restricted when a vertex is used for the last time throughout a traversal, (ii) the
matvec accumulation of the correction is independent of the right-hand side, and (iii) the fine grid
computation of r̂ has no influence on the injected coarse grid representation u`−1 = Iu`. Obviously,
constraint (i) and (ii) are shifted to the begin of the subsequent grid sweep in our scheme. Through
this, constraint (iii) is harmed.

We thus run µpre pre-smoothing steps per level, and then add an additional grid traversal to
complete the smoothing, inject the solution to the next coarser grid and restrict the right-hand
side locally. The partially restricted right-hand sides are sent out at the end of the grid sweep

21

and thus are available on remote ranks once the first smoothing step on the coarser level starts.
This break-up of smoothing and restriction into two separate grid traversals reduces the solver
efficiency—additional `max − `min grid sweeps are required per V-cycle—but it allows us to keep
the right-hand sides consistent. No data consistency problems arise during the steps down within
the V-cycle as we realize our multigrid solver within depth-first tree traversals.

Observation 11 We have to invest one additional grid sweep per multigrid restriction in the mul-
tiplicative case. Otherwise, the data consistency can not be preserved with data exchange in the
background of the computation.

Our algorithm exchanges two doubles per refined vertex (r and b) and only the residual for
fine-grid vertices. For the dynamic adaptivity criterion, additional quantities are exchanged. While
the exchanged attribute cardinality is low, it is important to recognize that the two residuals on
boundary vertices now have to be stored persistently. Without MPI, we are able to discard them
after each traversal. This increases the memory footprint along domain boundaries.

The Galerkin coarse grid stencils are computed additively over cells. Consequently, we may
send out the partial stencils in the synchronization traversal and receive and accumulate them
in the preamble of the follow-up smoothing sweep. BoxMG determines P and R through local
patch computations. While we use a non-overlapping multiscale domain decomposition, we weaken
this concept and replicate those cells required to compute all patch operations on one rank. Con-
sequently, the descend event requires no special attention. Along the boundary, all rank-local
descends yield solely partial inter-grid transfer operators. As BoxMG computes entries along a
patch boundary redundantly—this statement also holds for injection and trivial aggregation—all
entries affecting local vertices are always available.

Additive multigrid is sketched in [40] and can be realized following the present data flow ideas
as long as no FAS is employed. If we use FAS, Observation 11 immediately implies that the scheme
runs into inconsistent data. A solution to this approach is the pipelining approach from [42] that
also fixes the weakened domain coupling of meshes of different resolutions in the adaptive case.
BPX follows these lines. It is an open question whether the pipelining concept applied to the
multiplicative setup yields a realization that is superior to the present approach with an additional
grid sweep per restriction step.

We conclude our distributed memory discussion with the observation that our code family
keeps redundantly held vertex data consistent—if required by additional spacetree sweeps. As a
consequence, stencil compression can be applied in parallel on boundary vertices, too, where it yields
the same compression factors for redundantly held grid entities. It is a straightforward decision
thus to exchange the compressed byte streams instead of the real stencils.

7 Results

Our benchmarks study (1) with the parameter sets from Table 3. To realize dynamic adaptivity,
we evaluate the mean value of the 3d− 1 surrounding vertices per non-hanging vertex and compute
the absolute value of the difference of this mean value to the actual vertex value. The feature-
based criterion assumes that refinement pays off where the problem changes rapidly, i.e. where
this difference is significant. A region around a vertex is a refinement candidate if the vertex is
unrefined and if the residual in the particular vertex falls below 10−2. Per grid sweep, we refine
the 10 percent of the candidates with the biggest absolute mean value differences as long as the

22

Table 3: Overview of the benchmark parameter sets for (1).
Identifier sin jump checkerboard

f 2π2Πisin(πxi) 1 1

u|∂Ω 0 0 0

v 0 0 0

ε 1

{
1 if x1 < 0.5

0.1 otherwise
εi =

{
1 if xi < 0.5,
0.1 otherwise

Identifier circle

f 0

u|∂Ω

{
1− 4(x2 − 0.5)2 if x1 = 0 ∨ x1 = 1
0 otherwise

v

 sin(πx2 − 0.5)cos(πx1 − 0.5)
−cos(πx2 − 0.5)sin(πx1 − 0.5)
0

ε

{
{10−1, 10−2, 10−3, 10−4} if x3 ≤ 0.5 or d = 2
1 otherwise

}

minimal mesh width permits. To avoid a global sorting step per iteration, our code uses binning
with ten bins, with each bin representing a certain range of the refinement criterion’s differences.
This range is adapted after each traversal as we keep statistics per bin on how many vertices fit
into it. All vertices fitting into the bin representing the mean value difference are refined—the 10
percent goal is approximated.

All experiments were conducted on a cluster with Intel E5-2650V4 (Broadwell) nodes with 24
cores per node. They run at 2.4 GHz. Furthermore, we reran the multicore experiments on an
Intel Knights Landing chip (Xeon Phi 7250) at 1.4 GHz. For the shared memory parallelization,
we rely on Intel’s Threading Building Blocks (TBB). For the distributed memory parallelization,
we use Intel MPI. Intel’s C++ compiler 2017 version 2 translates all codes. The realization is
based on the spacetree PDE framework Peano [57]. As we stick to a low order discretization on
dynamically adaptive meshes and do not exploit any mesh regularity, we only exploit the compiler’s
vectorization of the BoxMG matrix-vector products. Further vectorization along the lines of [42]
for multi-parameter runs or [24] for grids with some (patch) regularity is beyond scope.

7.1 Diffusion with constant coefficients

An analytical solution is known for the sin benchmark. Geometric rediscretization yields the
Galerkin coarse-grid operator if d-linear prolongation and restriction are chosen that BoxMG yields.
The setup thus acts as validation scenario.

All required records per vertex are enlisted in Table 2. For the pure geometric solver, we only
hold three or four, respectively, doubles per grid vertex. Exhaustive search over potential relaxation
parameters for the additive solver results in ω ≈ 0.8, yielding reasonable convergence rates though
no relaxation or slight overrelaxation is even faster (Table 4). As soon as we switch to a dynamically

23

Figure 6: Solution of the circle problem (Table 3) for d = 2, ε ∈ {10−1, 10−2, 10−4, 10−8} (left
to right) with isolines at u ∈ {0.1, 0.2, 0.3, 0.4, 0.44}.

Table 4: Number of grid sweeps for additive multigrid that are required to reduce the residual
for the sin benchmark (Table 3) by a factor of 10−8. The sections show d = 2 (top) and d = 3
(bottom) with ω = 0.8. All experiments are computed on regular Cartesian grids spanned by the
spacetree, i.e. we build up the whole grid and then start the solve. The tuples denote cycle counts
with exponential damping (left) and undamped coarse grid relaxation (right). Jac denotes a Jacobi
smoother, BJ is a block Jacobi with the number of Gauß-Seidel sweeps per block in brackets. The
/e postfix implies that we use an exact coarse grid solve.

h Jac BJ(1) BJ(2) BJ(4) BJ(8) Jac/e BJ(1)/e BJ(2)/e BJ(4)/e BJ(8)/e
3−2 34/26 19/19 16/16 13/13 12/12 34/26 16/16 13/13 12/12 12/12
3−3 48/41 24/22 20/18 17/18 17/18 48/41 22/21 19/18 17/18 17/18
3−4 63/44 29/24 24/21 22/21 22/21 63/44 27/23 24/21 22/21 22/21
3−5 82/47 34/24 30/23 28/23 28/23 82/47 33/24 30/23 28/23 28/23
3−6 98/45 41/25 37/26 35/26 35/26 98/45 40/25 37/25 35/26 35/26
3−2 21/19 19/19 17/17 17/17 17/17 21/19 17/17 17/17 17/17 17/17
3−3 42/39 26/25 23/22 22/22 22/22 42/39 25/24 23/22 22/22 22/22
3−4 51/39 32/27 29/25 29/25 28/25 51/39 31/27 29/25 29/25 28/25

24

0 10 20 30 40 50 60 70 80 90
iteration n

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|r
(n

)| 2
/|
r(

0)
| 2

h=3−3 , Jac

h=3−3 , BJ(1)

h=3−4 , Jac

h=3−4 , BJ(1)

h=3−5 , Jac

h=3−5 , BJ(1)

0 20 40 60 80 100
iteration n

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| 2
/|
r(

0)
| 2

Figure 7: Convergence behaviour of additive multigrid with exponential damping for the sin

benchmark on regular grids (left) and dynamically adaptive grids (right) with ω = 0.8 and d = 2.
Dynamical implies that we start F-cycle like with a coarse grid and leave it to the refinement criterion
to yield the final mesh. Solid lines show results for Algorithm 2 compared to a synchronized variant
from [42] (dotted lines).

adaptive solver, we find that ω ≥ 1.0 becomes unstable. Thus, we stick to ω = 0.8 from hereon.
Better convergence rates might be obtained for alternating relaxation parameters, where we use a
different parameter for each sweep. We refer to [33] for some symbol analysis or [42] for a Helmholtz
example. If we damp ω exponentially—use ω on the finest grid, ω2 on the first coarse grid, and
so forth—we harm the speed. However, we obtain a stable scheme, while otherwise the additive
solver tends to overshoot [8, 42]. The speed gap between exponential ω damping and smoothing
with uniform relaxation factor narrows if we use a block smoother, but it does not close completely.
Block smoothers can double the convergence speed, but more than four Gauß-Seidel block sweeps
rarely pay off. An exact coarse grid solve does not pay off for the additive solvers.

In Algorithm 2, fine-grid updates are immediately injected to the coarser grids. In turn, coarse-
grid computations might work with outdated coarse solutions, which change during the element-
wise assembly. Our experiments show that this inconsistency does not make a difference for regular
grids (Fig. 7). It, however, slightly deteriorates the convergence for adaptive grids. Here, we start
from h = 3−1 and make the adaptivity criterion add further vertices. The effect is studied and a
single-touch solution is proposed in [42], and we conclude for our experiments that their multilevel
synchronization with pipelining should be used.

All statements on additive solvers also hold for BPX, besides the fact that an exact coarse grid
solve here has no major positive impact (Fig. 8). In general, BPX from Algorithm 3 outperforms
the additive solver. Block smoothing pays off. The impact of block smoothing on multiplicative
multigrid is even more significant. For the latter, exact coarse-grid solves are advantageous and we
need 10–15 iterations in total.

Observation 12 Our experiments validate at hands of the sin benchmark that all three algorithm
variants yield multigrid behaviour.

Next we compare the residual reduction to unknown reads from memory. The latter scale with
touchV ertexF irstT ime counts. Block operations and accumulations all are expected to happen in
the cache due to the vertical integration of the algorithm’s phases within one tree sweep [58]. We

25

0 10 20 30 40 50
iteration n

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|r
(n

)| 2
/|
r(

0)
| 2

GeometricBPX, 2d

h=3−2 , Jac

h=3−2 , Jac/e

h=3−2 , BJ(1)

h=3−2 , BJ(1)/e

h=3−2 , BJ(3)

h=3−2 , BJ(3)/e

h=3−3

h=3−4

h=3−5

h=3−6

0 5 10 15 20 25 30 35 40
iteration n

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|r
(n

)| 2
/|
r(

0)
| 2

GeometricBPX, 3d

0 2 4 6 8 10 12 14 16
iteration n

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| 2
/|
r(

0)
| 2

MultiplicativeGeometricV21, 2d

0 2 4 6 8 10 12 14
iteration n

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| 2
/|
r(

0)
| 2

MultiplicativeGeometricV21, 3d

0 2 4 6 8 10
iteration n

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| 2
/|
r(

0)
| 2

MultiplicativeGeometricV33, 2d

0 2 4 6 8 10
iteration n

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| 2
/|
r(

0)
| 2

MultiplicativeGeometricV33, 3d

Figure 8: Convergence of various solvers for the sin benchmark on regular grids with ω = 0.8.
Solid lines with filled symbols use a Jacobi smoother, dashed lines use block Jacobi with one Gauß-
Seidel sweep, and dotted lines apply three sweeps. Empty symbols furthermore are for solving the
coarse-grid problem exactly while solid symbols are for applying only µpre + µpost sweeps on the
coarsest grid.

26

101 102 103 104 105 106 107 108

unknown reads

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

|r
(n

)| 2
/|
r(

0)
| 2

WithExponentialDamping

h=3−2 , Jac

h=3−2 , Jac/e

h=3−2 , BJ(1)

h=3−2 , BJ(1)/e

h=3−2 , BJ(3)

h=3−2 , BJ(3)/e

h=3−3

h=3−4

h=3−5

h=3−6

101 102 103 104 105 106 107

unknown reads

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| 2
/|
r(

0)
| 2

WithExponentialDamping

102 103 104 105 106 107 108

unknown reads

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| 2
/|
r(

0)
| 2

MultiplicativeGeometricV21

102 103 104 105 106 107

unknown reads

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

|r
(n

)| 2
/|
r(

0)
| 2

MultiplicativeGeometricV21

Figure 9: Cost in terms of unknown reads for the sin benchmark with ω = 0.8 and d = 2. Regular
grids (left column) are compared to grids that unfold dynamically through the adaptivity criterion
(right). The additive solver (top) is slower by a factor of one up to two compared to BPX (not
shown) which is in the same order of cost as the multiplicative variant (bottom).

27

0 10 20 30 40 50
iteration n

0

1

2

3

4

5

6

` m
a
x

0 5 10 15 20 25 30 35
iteration n

0

1

2

3

4

5

6

` m
a
x

h=3−2

h=3−3

h=3−4

h=3−5

h=3−6

h=3−7

Figure 10: Development of `max over the number of iterations if the algorithm is allowed to
increase the coarsest level whenever the residual for the 2d version of the jump benchmark starts to
grow. Data for geometric BPX with the BlockJacobi(4) smoother (left) and multiplicative V11
with Jacobi smoothers (right).

validate this theoretic statement experimentally in Sect. 7.6. Multiplicative solvers are superior to
the other solver variants. However, the vast difference in iteration counts does not translate directly
into speed/data reads—the difference in actual runtime is smaller (Fig. 9). All variants yield cost
in the same order of magnitude.

Observation 13 For the smooth sin setup, multiplicative multigrid is not significantly superior to
additive variants in terms of memory access cost.

We observe an opposite effect regarding cost vs. iteration count in Fig. 9: The dynamic adaptivity
unfolds the grid in a full multigrid (FMG) way for BPX and the additive solver and naturally yields
FMG character lacking higher-order operators. This decreases the time-to-solution yet increases
the iteration count.

Observation 14 For a very smooth setup such as in the sin benchmark, a dynamic refinement
criterion unfolding the grid from a coarse start solution yields almost F-cycle-like convergence even
in the absence of higher order interpolation.

7.2 Jumping and anisotropic material parameters ε

We continue with the jump setup, where the material parameter changes in the middle of the
domain. The change/jump is not aligned with the grid. For the geometric multigrid variants,
any coarse-grid update’s d-linear interpolation Pd`−1 that overlaps the parameter jump does not
anticipate the lack of smoothness in the solution and, thus, introduces a localized fine-grid error
around the material parameter transition. If we project update from left and right of the jump, the
update’s linear interpolation lacks the discontinuity in the derivative, it pollutes the solve around
the ε jump. For reasonable big ω, the solvers start to oscillate locally.

The problem can be tackled by stronger smoothers or higher µ counts applied to the finest grids,
or we can use smaller ω. Both approaches harm multigrid performance. They furthermore suffer
from the fact that it is often not clear which `max still yields a robust solver for a particular setup.

28

Table 5: Iteration counts for the additive multigrid, additive multigrid with exact coarse-grid
solve, and BPX (left to right) with ω = 0.8 solving the jump benchmark for d = 2. ⊥ is used to
denote that a solver was not able to reduce the residual by a factor of 108 within 300 iterations.
h Jac BJ(1) BJ(2) BJ(4) BJ(8) Jac/e BJ(1)/e BJ(2)/e BJ(4)/e BJ(8)/e Jac BJ(1) BJ(2) BJ(4) BJ(8)
3−2 62 41 36 35 34 ⊥ 41 36 35 34 62 41 36 35 34
3−3 90 58 52 49 49 ⊥ 57 52 49 49 76 52 47 44 44
3−4 131 81 72 68 67 ⊥ 79 71 68 67 96 67 60 57 56
3−5 179 106 93 88 87 ⊥ 103 93 88 87 ⊥ 81 72 68 67
3−6 201 120 108 103 102 ⊥ 119 108 103 102 ⊥ 85 77 73 72
3−7 ⊥ 123 112 107 106 ⊥ 123 112 107 106 ⊥ 80 73 70 69

Table 6: Iteration counts for the jump and d = 2 with multiplicative V21-cycle. ⊥ denotes that a
solver is not able to reduce |r|2 by a factor of 108 within 300 iterations.
h Jac BJ(1) BJ(2) BJ(4) BJ(8) Jac/e BJ(1)/e BJ(2)/e BJ(4)/e BJ(8)/e
3−2 21 14 12 12 12 ⊥ 14 12 12 12
3−3 27 20 18 18 18 ⊥ 20 18 18 18
3−4 35 27 25 24 24 ⊥ 27 25 24 24
3−5 42 34 32 31 30 ⊥ 34 32 31 30
3−6 42 35 33 32 32 ⊥ 35 33 32 32
3−7 ⊥ 33 31 30 30 ⊥ 33 31 30 30

Our code family identifies non-diagonal dominant operators, stagnation or amplifying oscillations,
increases the coarsest mesh level `max autonomously and thus avoids some instabilities (Fig. 10).
Yet, we are not able to solve any setup from the jump benchmark with less than 300 iterations with
Jacobi once h < 3−2. For h = 3−2, the additive multigrid with a 4-sweep block smoother requires
already 133 iterations—it deteriorates. In general, the `max modifications remove more coarse grid
resolutions from the additive and BPX schemes than for the multiplicative multigrid, while the
increase of `max does not kick in for any Galerkin solver variant:

Observation 15 An adaptive coarse grid choice mitigates the effect of the absence of Galerkin
coarse grid operators w.r.t. stability and, at the same time, identifies the coarsest resolution level
where geometric multigrid remains robust. With respect to the performance, it remains a workaround
in the absence of proper unstructured coarse grids or algebraic/direct coarse grid solves.

Experiments reveal that the problem can be solved in around 107 iterations (h = 3−7) if we use
Galerkin coarse-grid operators and block smoothers. BPX converges in 35 (h = 3−2) to 70 (h = 3−7)
iterations (Table 5). We recognize that a grid spacing reduction from 3−6 to 3−7 reduces the total
iteration count here: in regions of interest the grid is refined aggressively, but if the maximum
level is too constrained, these regions spread out and increase the vertex count unnecessarily. This
anomaly carries over to multiplicative multigrid (Table 6), which now clearly outperforms the other
two solvers. An exact coarse-grid solve now does not pay off anymore. Though the solver remains
stable with `max = 1, the coarsest level can not contribute with any useful correction as it is too
coarse. As an improvement, one could choose a larger `max right from the start and solve exactly
there.

Dynamic adaptivity again pays off (Table 7) and reduces the number of unknown reads by an
order of magnitude: the grid quickly refines around the material transition and, thus, injects the
critical behaviour into the coarse-grid corrections. At the same time it acts as FMG facilitator.

29

Figure 11: From left to right: Solution of the checkerboard setup for d = 2. Typical adaptive
grid. Instability pattern arising from additive geometric multigrid with rediscretization after 28
iterations.

Table 7: Cost (number of unknown reads) of experiments of Table 6 with regular grid (top) and
the dynamically adaptive grid (bottom).

h Jac BJ(1) BJ(2) BJ(4) BJ(8)
3−2 5.90e+03 4.02e+03 3.48e+03 3.48e+03 3.48e+03
3−3 8.14e+04 6.11e+04 5.53e+04 5.53e+04 5.53e+04
3−4 1.00e+06 7.79e+05 7.24e+05 6.96e+05 6.96e+05
3−5 1.10e+07 8.95e+06 8.44e+06 8.18e+06 7.93e+06
3−6 9.96e+07 8.34e+07 7.88e+07 7.65e+07 7.65e+07
3−2 ⊥ 4.02e+03 3.48e+03 3.48e+03 3.48e+03
3−3 ⊥ 4.02e+03 3.48e+03 3.48e+03 3.48e+03
3−4 ⊥ 3.58e+04 3.37e+04 3.17e+04 3.17e+04
3−5 ⊥ 6.35e+06 6.35e+06 6.31e+06 6.31e+06
3−6 ⊥ ⊥ 5.12e+06 5.10e+06 5.10e+06

Table 8: Number of iterations to solve the checkerboard benchmark with additive multigrid
(left,middle) and BPX (right) for d = 2. All inter-grid transfer operators are bilinear, coarse-grid
operators realize the Galerkin idea.
h Jac BJ(1) BJ(2) BJ(4) BJ(8) Jac/e BJ(1)/e BJ(2)/e BJ(4)/e BJ(8)/e Jac BJ(1) BJ(2) BJ(4) BJ(8)
3−2 120 67 57 52 51 120 68 57 52 51 115 67 57 52 51
3−3 270 117 91 80 78 270 118 91 79 78 ⊥ 116 91 79 78
3−4 ⊥ 140 112 100 98 ⊥ 137 111 100 98 ⊥ 136 107 94 92
3−5 ⊥ 163 132 118 116 ⊥ 158 129 118 116 ⊥ 146 116 102 100
3−6 ⊥ 167 140 130 129 ⊥ 166 140 130 129 ⊥ 137 113 102 101
3−7 ⊥ 156 135 127 125 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 119 101 92 91

30

Table 9: Experiments from Table 8 with multiplicative V21 cycle.
h Jac BJ(1) BJ(2) BJ(4) BJ(8) Jac/e BJ(1)/e BJ(2)/e BJ(4)/e BJ(8)/e
3−2 44 23 18 16 16 44 23 18 16 16
3−3 ⊥ 40 32 29 29 ⊥ 40 32 29 29
3−4 ⊥ 49 42 39 39 ⊥ 49 42 39 39
3−5 ⊥ 58 52 50 49 ⊥ 58 52 50 49
3−6 ⊥ 56 51 50 49 ⊥ 56 51 50 49
3−7 ⊥ 50 47 46 45 ⊥ 50 47 46 45

Table 10: Cost for the experiments of Table 9 with regular (left) or dynamically adaptive grid
(right).
h Jac BJ(1) BJ(2) BJ(4) BJ(8) Jac BJ(1) BJ(2) BJ(4) BJ(8)
3−2 1.21e+04 6.43e+03 5.09e+03 4.56e+03 4.56e+03 1.21e+04 6.43e+03 5.09e+03 4.56e+03 4.56e+03
3−3 ⊥ 1.19e+05 9.60e+04 8.72e+04 8.72e+04 1.21e+04 6.43e+03 5.09e+03 4.56e+03 4.56e+03
3−4 ⊥ 1.39e+06 1.20e+06 1.11e+06 1.11e+06 ⊥ 7.63e+04 5.80e+04 5.05e+04 5.05e+04
3−5 ⊥ 1.51e+07 1.36e+07 1.30e+07 1.28e+07 ⊥ 1.13e+06 9.98e+05 9.79e+05 9.63e+05
3−6 ⊥ 1.32e+08 1.20e+08 1.18e+08 1.16e+08 ⊥ 4.63e+06 4.59e+06 4.55e+06 4.55e+06

Empty entries in Table 7 result from the fact that we always stop after 300 iterations; an iteration
count that is quickly met if grid “setup” iterations are counted as part of an FMG cycle.

Our follow-up experiments with the checkerboard setup continue to have ε jumps, but further-
more introduce anisotropic regions. Anisotropic behaviour poses even harder challenges to d-linear
inter-grid transfer operators: All geometric solvers are ill-suited for this problem, they do not con-
verge (Fig. 11). While the regular Galerkin solvers converge, mesh-independent convergence is
lost completely (Tables 8,9). Again, an exact coarse-grid solve in the multiplicative setting is not
required: no matter how exact the coarsest problem is solved, the prolongation of the correction
always yields wrong fine-grid modes for varying ε or anisotropic εi 6= εj .

The dynamic adaptivity criterion continues to make a dynamic approach outperform its regular-
grid counterpart in terms of cost (Table 10), while the actual number of grid sweeps is higher by a
factor of four. Yet, the sweeps are cheap as long as the grid has not unfolded substantially. Due to
the irregularity of checkerboard, the feature-based adaptivity refines anisotropic regions, regions
around ε changes and along the boundary (Fig. 11).

Observation 16 Our global, uniform choice of a smoothed grid level where fine grid regions coarser
than the current smoothing level are updated per cycle, too, plus the dynamic refinement criterion
being active in each cycle imply that rough solution regions are subject to immediate refinement. At
the same time, smooth regions resolved by a rather coarse grid are subject to more smoothing steps.

7.3 BoxMG

The recirculating flow problem circle (Table 3) with inflow boundary conditions from the left and
right side (Fig. 4) introduces non-zero convection which destroys the symmetry of A. The smaller
the (symmetric) diffusion weight ε of the operator relative to the convection the more challenging the
setup becomes for multigrid solvers. They struggle with convection-dominated systems (Fig. 6).
In our setup, the convection coefficients furthermore vary in space and there is a singularity in
the middle of the domain. Finally, the closed characteristics prevent any solver error from being
“pushed out” of the domain by relaxation. Geometric multigrid and Galerkin multigrid with d-

31

4 5 6 7 8 9 10 11 12
iteration n

0.2

0.4

0.6

0.8

stagnation

residual
growth

|ρ
| 2

Aggregation,h=3−4

h=3−5

h=3−6

h=3−7

h=3−8

Injection

Galerkin

4 5 6 7 8 9 10 11 12
iteration n

0.2

0.4

0.6

0.8

stagnation

residual
growth

|ρ
| 2

4 5 6 7 8 9 10 11 12
iteration n

0.2

0.4

0.6

0.8

stagnation

residual
growth

|ρ
| 2

4 5 6 7 8 9 10 11 12
iteration n

0.2

0.4

0.6

0.8

stagnation

residual
growth

|ρ
| 2

Figure 12: Convergence speed ρ = |res(n)|2/|res(n − 1)|2 as ratio between current residual to
residual of previous iteration. The experiments pass ε = {10−1, 10−2, 10−4, 10−8} (left to right,
top-down) into a V21 multigrid with a block Jacobi smoother running four iterations per patch.
Large empty symbols indicate that the solver increases `max in that iteration.

linear inter-grid transfer operators solve this problem if we use dynamic coarse-grid adaptation and
proper upwinding. However, `max increases fast and, hence, the solvers transition quickly into pure
(block) Jacobi.

Once we supplement the Galerkin coarse grid operator computation with BoxMG, we obtain a
more robust solver. To show this, we track the convergence speed ρ(n) as ratio of the residual norm
in an iteration n relative to the residual norm in the iteration n−1 (Fig. 12). Furthermore, we com-
pare plain BoxMG with a Petrov-Galerkin scheme where R = I (injection) or R is an aggregation
operator. We observe the convergence speed deteriorates with decreasing ε, i.e. with an increasing
impact of the convection, for all solvers. We start loosing multigrid behaviour. Convergence speed
depends on the mesh size, and measurements for one type of solver (same symbol) fan out. For
ε = 10−1 the automatic coarse grid increase is not triggered. The solvers work with `max = 1
all the time. The smaller ε the more often ` is increased. Injection yields consistently the worst

32

Table 11: Overview of the solver variants and their performance for the different problem setups.
A checkmark indicates that the problem can be solved by the respective solver with multigrid
performance, a checkmark in brackets indicates that the solver converges, but mesh-independent
(multigrid) performance is lost. A cross denotes that the solver diverges for the problem. For
circle, the behaviour depends strongly on the weight of the convection term relative to the diffu-
sion.

sin jump checkerboard circle

Geo. Add. X (X) × ×
Geo. BPX X (X) × ×
Geo. Mult. X (X) × ×
Galerkin. Add. X X (X) ×
Galerkin. BPX X X (X) ×
Galerkin. Mult. X X (X) ×
BoxMG Add. X X X X to (X)
BoxMG BPX X X X X to (X)
BoxMG Mult. X X X X to (X)

convergence speed and is thus not studied further. We can not identify a significant reduction of
the number of `max increases if we switch from pure BoxMG to the symmetric aggregation-based
restriction. While literature would expect us to obtain more stable coarse grid operators (cmp. the
discussion in [61] and references therein), we do not observe this effect here—probably due to a
lack of a higher order symmetric operator. However, we do observe that aggregation yields slightly
better convergence rates than a pure Galerkin approach with P = RT if the grid is sufficiently fine
and ε is small enough.

A study of the exact behaviour of the various multigrid compositions (Table 11) is beyond
scope here though we state that the BoxMG solvers are reasonably robust to tackle non-trivial
problems. Yet, the experiments also illustrate that stronger smoothers such as ILU, Kaczmarz or
alternating line Gauss-Seidel are highly desirable for dominating convection. Keeping this in mind,
our ideas can act as a reasonable code building block for robust solvers on spacetrees that work
strictly element-wise and matrix-free. All solvers implement a single-touch policy, i.e., one tree
traversal realizes one multigrid cycle (additive and BPX) or smoothing step (multiplicative). In
practice, this means that a multiplicative cycle is by a factor of (µpre + µpost) times slower than
an additive cycle. Both the problem character and the multigrid’s role—is it used as solver or
as preconditioner—determine which approach is superior in terms of time to solution. A generic
“better than” statement is impossible to make.

7.4 Memory consumption

To quantify the memory demands, we study dynamically adaptive grids with a multiplicative V11-
BoxMG solver. Our measurements compare an uncompressed version with εmf ∈ {10−2, 10−4, 10−8}.
The memory savings are enormous for the sin benchmark where all operators are well-known to
reduce to their rediscretization or d-linear counterpart. With decreasing h, the code becomes
matrix-free.

For the jump and circle setups, we preserve significant memory savings, though they are by
a factor of two to four smaller than for the sin setup. We may choose rather small εmf = 10−8

and nevertheless obtain both high compression rates and preserve the solvers’ semantics. If the
compression is too aggressive, the adaptivity criterion yields slightly different adaptivity patterns,

33

Table 12: Multiplicative BoxMG with dynamic adaptivity criterion for d = 2 and sin (top),
jump and circle (bottom). We present one tuple per run. The left entry denotes how many
vertex updates are required to reduce the residual to 10−8, while the right entry gives the memory
footprint with compressed algebraic operators relative to the uncompressed run.

h 0 1e-2 1e-4 1e-8
3−3 2.24e+03 / 1.0 2.24e+03 / 1.33e-02 2.24e+03 / 1.99e-02 2.24e+03 / 3.31e-02
3−4 1.36e+05 / 1.0 1.27e+05 / 5.68e-03 2.06e+05 / 8.35e-03 1.36e+05 / 1.38e-02
3−5 1.37e+05 / 1.0 2.97e+05 / 4.28e-03 4.57e+05 / 5.12e-03 1.37e+05 / 1.39e-02
3−6 2.09e+06 / 1.0 2.92e+06 / 2.83e-03 2.09e+06 / 4.39e-03 2.09e+06 / 7.29e-03
3−7 2.09e+06 / 1.0 4.80e+06 / 2.82e-03 2.09e+06 / 4.39e-03 2.09e+06 / 7.29e-03
3−3 2.65e+03 / 1.0 1.02e+03 / 1.63e-02 1.84e+03 / 2.48e-02 2.65e+03 / 4.10e-02
3−4 2.81e+04 / 1.0 4.41e+05 / 9.57e-03 2.51e+04 / 1.47e-02 2.81e+04 / 2.39e-02
3−5 4.54e+06 / 1.0 2.72e+05 / 7.90e-03 4.54e+06 / 8.41e-03 4.54e+06 / 1.35e-02
3−6 4.13e+06 / 1.0 2.72e+05 / 7.90e-03 4.13e+06 / 6.65e-03 4.13e+06 / 1.07e-02
3−7 4.17e+06 / 1.0 2.72e+05 / 7.90e-03 4.18e+06 / 6.72e-03 4.17e+06 / 1.08e-02
3−3 1.08e+04 / 1.0 5.10e+03 / 1.68e-02 7.75e+03 / 2.53e-02 2.33e+04 / 4.10e-02
3−4 2.43e+04 / 1.0 2.41e+04 / 9.57e-03 2.43e+04 / 1.42e-02 2.43e+04 / 2.25e-02
3−5 3.43e+05 / 1.0 2.05e+05 / 1.20e-02 3.43e+05 / 1.64e-02 3.43e+05 / 2.67e-02
3−6 1.84e+07 / 1.0 1.78e+07 / 1.14e-02 1.60e+06 / 1.62e-02 1.84e+07 / 2.51e-02
3−7 1.45e+07 / 1.0 1.86e+07 / 1.14e-02 1.60e+06 / 1.62e-02 1.45e+07 / 2.56e-02

Table 13: Characteristic runtimes per V22 cycle for a regular (left) and an adaptive (right) mesh
on a single core for the checkerboard setup.
hmin no compr. compr. no compr. compr.
3−4 1.54 · 10−2 2.03 · 10−3 1.08 · 10−2 1.55 · 10−2

3−5 6.28 · 10−2 8.92 · 10−2 2.31 · 10−2 3.49 · 10−2

3−6 3.89 · 10−1 5.26 · 10−1 0.56 · 10−1 1.01 · 10−1

3−7 2.74 · 10−0 3.53 · 10−0 2.42 · 10−1 1.53 · 10−1

34

PETSc
Jacobi

BoxMG
Jacobi

PETSc
GAMG

BoxMG
V22

BoxMG
V22

FMG-type

PETSc
GAMG
1 cycle

BoxMG
V22

1 cycle

10 7

10 6

10 5

10 4

10 3

10 2

tim
e/

un
kn

ow
n

= (0, 1)2, hmin = 3 3

PETSc
Jacobi

BoxMG
Jacobi

PETSc
GAMG

BoxMG
V22

BoxMG
V22

FMG-type

PETSc
GAMG
1 cycle

BoxMG
V22

1 cycle

10 7

10 6

10 5

10 4

10 3

10 2

tim
e/

un
kn

ow
n

= (0, 1)2, hmin = 3 6

create grid & init (multiscale) operators
create grid
enumerate & init datastructures
assemble
solve
plot & smooth
plot

Figure 13: Comparison of the runtime of our BoxMG solver to PETSc’s GAMG solver for the
checkerboard setup in 2d for two different mesh sizes. We compare the cost of a Jacobi solver
(single grid code), a full multigrid code, and one step of an FMG cycle.

presumably through inexact arithmetics.
Stencils plus the unknowns from Table 2 yield a memory footprint of 3 + 3d + 2 · 5d doubles plus

another byte for grid management [58]. This already is a small memory footprint for dynamically
adaptive grids. Compression reduces the average footprint to close to 3 doubles plus a byte per
vertex without loosing algebraic multigrid operators. Yet, its cost, on a single core, is not negligible
(Table 13) unless the grid is extremely adaptive.

Observation 17 The reduction of the solver’s memory footprint to almost the pure footprint of a
purely geometric approach can double the computational cost on one core.

7.5 Comparisons to PETSc’s GAMG

We start our runtime studies with a brief comparison of our code’s runtime to PETSc [7] with the
aggregation-based GAMG. Our naive realisation runs through the grid twice: In a first grid sweep,
we enumerate the unknowns and determine the matrix sparsity pattern. In a second sweep, we
assemble the matrix. A third sweep is necessary once we have solved the equation system if we
want to plot the result that ties the PETSc solution to the grid. If the grid changes, a complete
re-assembly with two grid sweeps becomes necessary. As we use a space-filling curve as enumeration
scheme, we obtain a sparsity pattern alike Fig. 5.

We make both BoxMG and PETSc work with the same settings: PETSc’s GAMG is configured
to stop once the relative residual is reduced to 10−8, uses a Jacobi smoother (Richardson update
with Jacobi diagonal preconditioner) with ω = 0.8, and an AMG connectivity threshold of 0.19
for its coarse grid identification is applied. This empirically chosen value yields, for the present
V22-cycle, comparable coarse grids to BoxMG in terms of unknown counts.

We observe that PETSc’s explicit assembly consisting of grid construction, grid enumeration and
sparsity identification plus matrix entry assembly is slightly slower than the monolithical approach
of our BoxMG implementation where everything is done in one place (Fig. 13). However, we might
be able to save the PETSc enumeration phase if the grid construction determined the sparsity

35

pattern on-the-fly. PETSc is, even though the coarse grids have to be determined algebraically and
it has to maintain the coarse matrices, significantly faster than our code if we kick off from the
finest grid.

The picture changes if we run a simulation where we start from a coarse grid, add (applying a
refinement criterion) one level after another and thus make each solve act as prediction for the next
finer solver. The picture changes if we use an FMG-type cycle. Our results show data for only two
steps of such a cycle.

Observation 18 Our approach is able to outperform a black-box solver such as PETSc’s GAMG
if and only if

1. the grid changes after each (or very few) solver steps,

2. the problem can be solved robustly with our hybrid geometric-algebraic ansatz, and

3. block Jacobi/Gauß-Seidel smoothers are sufficient.

If the problem is ill-suited for our code due to a lack of robustness, our approach however may act
as building block applied on the finer mesh levels while coarser problems are solved algebraically
[28, 35, 43, 49]. We reiterate that such a level `max can be determined automatically. If frequent
visualisation of the solve is required, our approach also is promising as we can merge plotting
and solution updates. If frequent remeshing is required and, thus, we face non-negligible assembly
overhead, our approach becomes competitive. This is in line with other papers. [15], e.g., report
AMG’s setup time to be equivalent to six multigrid cycles for similar algorithmic components, while
in the more sophisticated setting of [51], the coarse grid and operator construction even seems to
dominate the runtime.

We conclude with some memory observations made through PETSc’s PetscMallocGetCurrentUsage
function. Our BoxMG with memory compression can reduce the memory footprint to close to 25
bytes per degree of freedom. With PETSc, the grid requires slightly more than one byte per fine
grid vertex to store the linearized spacetree—the finest grid resolution level holding degrees of free-
dom dominates the memory footprint—plus one integer used as unknown index. These five bytes
per unkown are supplemented by a total of 38 kByte PETSc administration overhead. The lion
share of memory is allocated once we trigger the sparsity pattern analysis and enumeration. We
end up with PETSc alone requiring between 26.95 · 3d (strongly adaptive or very small grids) down
to 15.13 · 3d (more regular and/or large grids) bytes per degree of freedom.

7.6 Runtime and scalability studies

We wrap up our experiments with feasibility studies validating the parallel well-suitedness of the
proposed techniques. Our shared memory study maps the dependencies from Sect. 6.1 directly onto
TBB tasks. Such a näıve tactic is well-known to yield non-optimal performance as the tasks exhibit
small arithmetic intensity and a significant tasking overhead. Nevertheless, we observe speedup and
we are able to derive qualitative properties of the proposed scheme.

We start with d = 2 runs on the Broadwell (Fig. 14) and observe that the cost of the block
smoothing is negligible. All block data is cached and thus the flops for the small blocks are almost
for free. Despite the fact that the grid management overhead amortizes, we observe that the cost
per degree of freedom per cycle increases when we increase the number of mesh levels as additional

36

serial 6 12 18 24
Cores

10 5

10 4

tim
e/

un
kn

ow
n/

cy
cle

 [t
]=

s

V11-Jacobi
h=3 4

h=3 5

h=3 6

h=3 7

serial 6 12 18 24
Cores

10 5

10 4

tim
e/

un
kn

ow
n/

cy
cle

 [t
]=

s

V11-BlockJacobi4

serial 6 12 18 24
Cores

10 5

10 4

tim
e/

un
kn

ow
n/

cy
cle

 [t
]=

s

V21-BlockJacobi4

serial 6 12 18 24
Cores

10 5

10 4

tim
e/

un
kn

ow
n/

cy
cle

 [t
]=

s

V33-BlockJacobi4

Figure 14: Performance of one cycle of the multiplicative BoxMG solver on the Broadwell for the
sin benchmark and d = 2. The dotted line illustrates linear speedup (100% efficiency) truncated
by the minimum runtime cost obtained. Each measurement consists of two bars. The bar in the
background (lighter, higher runtime) uses εmf = 10−8. No compression is used for the measurement
in the foreground.

37

coarse grid problems are introduced. Finally, the runtime penalty of the on-the-fly compression on
a single core is pessimistically bounded a factor of two (cmp. Table 13).

Once we use more than one core, the compression yields better speedups than a plain imple-
mentation. The arithmetic intensity per grid entity is higher due to the computation of R̂, P̂ and
Â and the pressure on the memory subsystem is lower. Yet, this speedup improvement cannot
close the gap between the code with compression and without compression completely. As the
theoretical concurrency of the scheme increases with additional grid levels, the speedup increases
with an increase of levels. We observe a significant strong scaling behaviour manifested by the
fact that bigger problems for large thread counts outperform smaller problems. We further observe
that the more smoothing sweeps the better the scalability. Again, this is due to the fine grid which
parallelises best. Block smoothers in general have comparably high arithmetic intensity and thus
improve the scalability. At the same time, block data accesses and inter-grid transfer operators
however reduce the concurrency level.

Observation 19 For d = 2, block smoothers are for free in terms of computational cost. Cost-per-
vertex models that are linear in the number of smoothing steps and agnostic of the mesh size are
inappropriate here. The cost for data compression has to be evaluated carefully for any application
though the technique seems to be promising for manycores. Overall, the scalability is very limited;
an effect due to the low order of the discretization inducing a low arithmetic intensity and the
rigorous task formalism that introduces a higher administrative overhead than classic for loop-
based parallelism.

Overall, scalability and performance are limited. On all cores, Stream TRIAD [38] yields 3,346.99
MFlops/s with a total used bandwidth of 57,838.15 MBytes/s for the machine. The present V33
simulation however uses only 7,061.49 MBytes/s bandwidth and yields 317.9540 MFlops/s. Its
cache miss rate is 0.73%. Switching on the compression increases the compute load to 650.60
MFlops/s but reduces the bandwidth demands to less than 6,000 MBytes/s. However, the cache
miss rate increases to around 30%.

All characteristic data highlight the feasibility character of the study—and thus put the com-
parisons to PETSc into perspective—where no performance engineering is done, everything is mod-
elled with (tiny) tasks, memory access to the individual stencils held in unoptimised hash maps are
scattered, and where we study low order discretisations tackled by multiplicative multigrid cycles
coarsening up to the trivial level.

We continue with d = 3 experiments (Fig. 15) and observe some changes in the characteristics:
The finer the grid the smaller the cost per degree of freedom. Administrative cost now does amortize
while the reduction of vertices per coarsening by a factor of 27 is so significant that the coarse grids’
runtime behaviour has no major impact on the efficiency. The qualitative scalability does not change
dramatically, and we continue to see strong scaling stagnation already for reasonably small core
counts. Stagnation in the plots however is reached sooner as the maximal grid depths we are able
to resolve on a single node are shallower than in the two-dimensional counterpart.

Observation 20 For d = 3, the compression cost is not dominant anymore.

We finally rerun our experiments on the manycore architecture (Fig. 15). All of our statements
qualitatively remain valid. They however change quantitatively. The relative compression cost
on the manycore is lower and the code scales to slightly higher core counts. KNL’s SNC-4 mode
apparently is a well-suited hardware configuration here which implies that we have to use at least

38

serial 6 12 18 24
Cores

10 4

10 3

10 2

tim
e/

un
kn

ow
n/

cy
cle

 [t
]=

s

V21-Jacobi
h=3 2

h=3 3

h=3 4

serial 6 12 18 24
Cores

10 4

10 3

10 2

tim
e/

un
kn

ow
n/

cy
cle

 [t
]=

s

V33-Jacobi

serial 6 12 18 24 30
Cores

10 5

10 4

tim
e/

un
kn

ow
n/

cy
cle

 [t
]=

s

V11-Jacobi
h=3 4

h=3 5

h=3 6

h=3 7

serial 6 12 18 24 30
Cores

10 5

10 4

tim
e/

un
kn

ow
n/

cy
cle

 [t
]=

s

V21-Jacobi

Figure 15: BoxMG on Broadwell for d = 3 (top) and for the KNL for d = 2 (bottom).

39

Table 14: d = 2 MPI experiments for various node counts (four MPI ranks per node, 24 cores per
node) and minimal mesh sizes for V(1,1)-cycles (left) and V(2,1)-cycles (right). All speedups refer
to the geometric multigrid variant running on one node with four ranks. Relative to the geometric
multigrid baseline, we give the relative cost to compute and maintain the discretisation stencils of
BoxMG and, on top of this, do the compression.

#dofs nodes Sgeom stencil cost comp. cost Sgeom stencil cost comp. cost
5.91 · 104 1 1.00 1.06 1.53 1.00 1.37 1.44
5.31 · 105 1 1.14 1.14 1.57 1.13 1.14 1.58

8 7.74 2.59 1.16 7.74 2.66 1.13
16 9.41 2.81 1.18 9.41 2.84 1.16
64 31.29 5.18 1.08 33.35 5.22 1.09

4.78 · 106 1 1.23 1.01 1.72 1.22 1.00 1.68
8 9.20 1.43 1.44 9.06 1.43 1.42
16 11.40 1.55 1.44 11.31 1.60 1.40
64 61.33 3.19 1.21 59.74 3.15 1.20

4.31 · 107 8 9.78 1.06 1.78 9.69 1.07 1.74
16 12.11 1.25 1.76 11.84 1.28 1.47
64 54.91 1.38 1.65 52.39 1.26 1.45

3.87 · 108 16 12.92 1.18 1.89 12.83 1.20 1.83
64 59.30 1.00 2.21 62.22 1.27 1.53

four MPI ranks per node. We summarize that the architecture seems to be even more sensitive
to the tasking overhead as the single-core performance difference does not directly relate to the
difference in clock speed. Yet, the chip benefits from our data compression more significantly.

For our subsequent MPI experiments, we restrict to (µpre, µpost) = (1, 1) and (µpre, µpost) =
(2, 1). Both are challenging choices in terms of scalability as the arithmetic work is small compared
to the inter-grid operator evaluations and grid level changes. For the (µpre, µpost) = (2, 1), we
explicitly exchange all residuals plus stencil contributions per smoothing step, i.e. we anticipate
the data flow from a non-linear problem and ignore the fact that the first smoothing step does not
have to exchange partial stencils. For the decomposition, we naively apply graph partitioning on
the start grid chosen reasonably fine such that it can accommodate all MPI ranks. Any dynamic
load balancing is switched off. We have validated that the partitioner yields perfectly balanced
subdomains for regular grids. All cost per degree of freedom and, thus, all speedups are normalized
to the run with the smallest problem size. Following our shared memory results, we deploy four
MPI ranks per node.

We obtain a reasonable scalability Sgeom of the geometric baseline code for both cycles once
the problem sizes are sufficiently big (Table 14): When we increase the problem size, all grid
administration overhead gets amortized. This effect materializes in classic weak speedup, and it
also materializes in speedups for serial runs bigger than the minimum mesh size.

The merger of algebraic multigrid’s stencil storage into the geometric code increases the serial
runtime slightly. Holding the stencil within the grid also reduces the scalability for the majority
of the setups, i.e. the cost grows if we use multiple nodes. More data has to be piped through
the communication network. The bandwidth demands increase. This notably is problematic once
we run into a strong scaling regime. For very large problems with higher node counts, the stencil
administration and communication penalty is not that significant. Stencil compression increases

40

the runtime further, but this relative increase decreases, for the majority of the setups, with growing
node counts. The scheme releases stress from the communication network.

8 Conclusion and outlook

This paper proposes a, to the best of our knowledge, new combination of multigrid techniques and
novel implementation concepts for quasi-matrix-free geometric-algebraic multigrid on dynamically
adaptive grids. First, we apply the BoxMG principle to additive and BPX-type solvers together with
HTMG and, thus, are able to support vertical integration and dynamically adaptive grids without
any constraints on the frequency of the grid refinement or transition of refinement regions. Second,
we discuss an on-the-fly stencil compression that brings together the robustness of BoxMG with
the memory modesty of geometric rediscretization. There are efficient matrix storage schemes for
dynamically adaptive formats [34], but our approach goes beyond that as it analyzes the operators
themselves. It also reduces the amount of data exchanged between multiple ranks. Finally, we
sketch, as third methodological contribution, the impact of the proposed algorithms on parallel
programming. The resulting family of solvers is a hybrid between algebraic and geometric multigrid
and a hybrid between matrix-free and stencil-holding techniques. A third flavour of hybrid—purely
algebraic solvers on coarse grids or forests supplemented by geometric grid hierarchies on finer
levels—would fit to the proposed concepts.

While the realization idioms are elegant and the concept of mirroring the arising BoxMG equa-
tion systems to a reference configuration makes the higher dimensional implementation much less
tedious compared to setting up the equation systems straightforwardly, our experiments reveal
that the convergence speed for convection-dominated problems deserves additional attention. Next
steps are deriving well-suited estimators that autonomously identify a good `max more elegantly
and implementing more sophisticated Petrov-Galerkin inter-grid transfer operators. The most im-
portant multigrid shortcoming of the present work is the restriction to Jacobi and block Jacobi
smoothers. This restriction results from a single-touch single-traversal doctrine in combination
with the element-wise tree traversal. As such, the present studies have academic character, and it
is important in the future to weaken the single-sweep paradigm if it renders it possible to realize
stronger smoothers. Candidates for suitable smoothers are 2-sweep Krylov schemes [5] or red-black
Gauss-Seidel with pipelining which combines multiple sweeps [26]. While giving up on single touch
harms implementational elegance, it might even turn out to be favourable from a parallelization
point of view to run over the grid multiple times as long as the rank-local work increases faster
than the exchanged data cardinality.

Finally, we emphasize a solver property that deserves particular attention: the studied class
of low order discretizations yields compact stencils with relatively low arithmetic intensity. Such
stencil codes can, in the context of iterative solvers, significantly benefit from careful tuning such as
diamond tiling. However, most tunings require invariant stencils in order to perform [37]. Our work
targets problems where stencil entries are not constant. At the same time, it is able to compress
data automatically in areas where stencils are known a priori. It therefore seems to be promising
to inject state-of-the-art stencil techniques for those regions where the compression pays off and to
preserve the present approach’s robustness everywhere else.

With the obtained solver robustness our approach widens the class of (sub)systems that can be
solved with a spacetree-based multigrid solver significantly, while it preserves the structuredness
and low memory footprint properties of geometric multigrid solvers. The software concept thus can
become an enabler to solve challenging PDE problems on the grand scale where structuredness is

41

important to optimize and parallelize and memory (per core) is a precious resource. To achieve this,
state-of-the-art techniques from computer science and numerical linear algebra had to be merged
into one realization concept.

Acknowledgements

This work made use of the facilities of the Hamilton HPC Service of Durham University. Further-
more, we particularly have been benefitting from the support of the RSC Group who granted us
early access to their KNL machines. Thanks are due to Hans-Joachim Bungartz for supervising and
mentoring the underlying PhD theses. It was Irad Yavneh’s suggestion to use the idea of BoxMG in
this context, and first steps into this direction where made in [61]. Marion wants to thank him for
hosting her research stay at Technion which laid the foundations for the present work. Operator and
data compression is a workpackage in the ExaHyPE project and Tobias thus appreciates support
received from the European Unions Horizon 2020 research and innovation programme under grant
agreement No 671698 (ExaHyPE). All underlying software is open source [57].

References

[1] M. F. Adams, J. Brown, M. Knepley, and R. Samtaney, Segmental refinement: A
multigrid technique for data locality, SIAM Journal on Scientific Computing, (2016).

[2] Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee,
The Opportunities and Challenges of Exascale Computing, 2010.

[3] A. AlOnazi, G. Markomanolis, and D. Keyes, Asynchronous task-based parallelization
of algebraic multigrid, in Proceedings of the Platform for Advanced Scientific Computing Con-
ference, PASC ’17, ACM, 2017, pp. 5:1–5:11.

[4] M. Bader, Space-Filling Curves - An Introduction with Applications in Scientific Computing,
vol. 9 of Texts in Computational Science and Engineering, Springer-Verlag, 2013.

[5] M. Bader, S. Schraufstetter, C. A. Vigh, and J. Behrens, Memory efficient adaptive
mesh generation and implementation of multigrid algorithms using sierpinski curves, Interna-
tional Journal of Computational Science and Engineering, 4 (2008), pp. 12–21.

[6] A. B. Baker, R. D. Falgout, T. V. Kolev, and U. Meier Yang, Multigrid Smoothers
for Ultraparallel Computing, SIAM Journal on Scientific Computing, 33 (2011), pp. 2864–2887.

[7] S. Balay et al., PETSc Web page. http://www.mcs.anl.gov/petsc, 2016.

[8] P. Bastian, W. Hackbusch, and G. Wittum, Additive and multiplicative multi-grid : a
comparison, Computing, 60 (1998), pp. 345–364.

[9] A. Behie and P. A. Forsyth, Jr., Multi-grid solution of three-dimensional problems with
discontinuous coefficients, Appl. Math. Comput., 13 (1983), pp. 229–240.

[10] A. Brandt, Multi-level Adaptive Solutions to Boundary-Value Problems, Mathematics of
Computation, 31 (1977), pp. 333–390.

42

http://www.mcs.anl.gov/petsc

[11] , Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, 1984.

[12] H.-J. Bungartz, W. Eckhardt, T. Weinzierl, and C. Zenger, A precompiler to reduce
the memory footprint of multiscale pde solvers in c++, Future Generation Computer Systems,
26 (2010), pp. 175–182.

[13] C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees, SIAM Journal on Scientific Computing, 33
(2011), pp. 1103–1133.

[14] D. Charrier and T. Weinzierl, An experience report on (auto-)tuning of mesh-based pde
solvers on shared memory systems, in Parallel Processing and Applied Mathematics, PPAM
2017, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, eds., 2017. (accepted).

[15] A. Cleary et al., Robustness and scalability of algebraic multigrid, SIAM J. Scientific Com-
puting, 21 (2000), pp. 1886–1908.

[16] J. E. Dendy, Black Box Multigrid, Journal of Computational Physics, 48 (1982), pp. 366–386.

[17] , Black Box Multigrid for Nonsymmetric Problems, Applied Mathematics and Computa-
tion, 13 (1983), pp. 261–283.

[18] , Two Multigrid Methods for Three-Dimensional Problems with Discontinuous and
Anisotropic Coefficients, SIAM Journal on Scientific and Statistical Computing, 8 (1987),
pp. 673–685.

[19] , Black Box Multigrid for Periodic and Singular Problems, Applied Mathematics and
Computation, 25 (1988), pp. 1–10.

[20] J. E. Dendy and J. D. Moulton, Black Box Multigrid with Coarsening by a Factor of
Three, Numerical Linear Algebra with Applications, 17 (2010), pp. 577–598.

[21] J. Dongarra et al., A proposed api for batched basic linear algebra subprograms, Tech. Rep.
2016.25, University of Manchester, 2016.

[22] J. Dongarra, J. Hittinger, et al., Applied Mathematics Research for Exascale
Computing, tech. rep., 2014. DOE ASCR Exascale Mathematics Working Group:
http://www.netlib.org/utk/people/JackDongarra/PAPERS/doe-exascale-math-report.pdf.

[23] W. Eckhardt, R. Glas, D. Korzh, S. Wallner, and T. Weinzierl, On-the-fly mem-
ory compression for multibody algorithms, in Advances in Parallel Computing 27: International
Conference on Parallel Computing (ParCo) 2015, G. Joubert, H. Leather, M. Parsons, F. Pe-
ters, and M. Sawyer, eds., vol. 27, IOS Press, 2016, pp. 421–430.

[24] W. Eckhardt and T. Weinzierl, A Blocking Strategy on Multicore Architectures for Dy-
namically Adaptive PDE Solvers, in Parallel Processing and Applied Mathematics, PPAM
2009, R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Wasniewski, eds., vol. 6068 of
LNCS, Springer-Verlag, 2010, pp. 567–575.

[25] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and U. Rüde, WaLBerla: HPC
software design for computational engineering simulations, Journal of Computational Science,
2 (2011), pp. 105–112.

43

[26] P. Ghysels and W. Vanroose, Modeling the performance of geometric multigrid stencils on
multicore computer architectures, SIAM Journal on Scientific Computing, 37 (2015), pp. C194–
C216.

[27] B. Gmeiner, H. Köstler, M. Stürmer, and U. Rüde, Parallel multigrid on hierarchical
hybrid grids: a performance study on current high performance computing clusters, Concur-
rency and Computation: Practice and Experience, 26 (2014), pp. 217–240.

[28] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth, Towards textbook
efficiency for parallel multigrid, Numerical Mathematics: Theory, Methods and Applications,
8 (2015), pp. 22–46.

[29] M. Griebel, Zur Lösung von Finite-Differenzen- und Finite-Element-Gleichungen mittels der
Hiearchischen-Transformations-Mehrgitter-Methode, PhD thesis, TU München, 1990.

[30] , Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen, habilitation the-
sis, TU München, 1994.

[31] M. Griebel and G. Zumbusch, Parallel Multigrid in an Adaptive PDE Solver Based on
Hashing and Space-filling Curves, Parallel Computing, 25 (1999), pp. 827–843.

[32] L. B. Hart, S. F. McCormick, A. O’Gallagher, and J. W. Thomas, The Fast Adaptive
Composite-Grid Method (FAC): Algorithms for Advanced Computers, Applied Mathematics
and Computation, 19 (1986), pp. 103–126.

[33] T. Huckle, Compact fourier analysis for designing multigrid methods, SIAM Journal on
Scientific Computing, 31 (2008), pp. 644–666.

[34] J. King, T. Gilray, R. M. Kirby, and M. Might, Dynamic sparse-matrix allocation on
gpus, in Proceedings ISC High Performance 2016, 2016, pp. 61–80.

[35] C. Lu, X. Jiao, and N. M. Missirlis, A hybrid geometric + algebraic multigrid method with
semi-iterative smoothers, Numerical Linear Algebra with Applications, 21 (2014), pp. 221–238.

[36] S. P. MacLachlan, J. D. Moulton, and T. P. Chartier, Robust and Adaptive Multigrid
Methods: Comparing Structured and Algebraic Approaches, Numerical Linear Algebra with
Applications, 19 (2012), pp. 389–413.

[37] T. Malas, G. Hager, H. Ltaief, and D. Keyes, Multi-dimensional intra-tile parallelization
for memory-starved stencil computations, arXiv:1510.04995, (2015).

[38] J. D. McCalpin, Memory bandwidth and machine balance in current high performance com-
puters, IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
Newsletter, (1995), pp. 19–25.

[39] S. F. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, Frontiers
in Applied Mathematics, SIAM, 1989.

[40] M. Mehl, T. Weinzierl, and C. Zenger, A cache-oblivious self-adaptive full multigrid
method, Numerical Linear Algebra with Applications, 13 (2006), pp. 275–291.

44

[41] J. D. Moulton, J. E. Dendy, and J. M. Hyman, The Black Box Multigrid Numerical
Homogenization Algorithm, Journal of Computational Physics, 142 (1998), pp. 80–108.

[42] B. Reps and T. Weinzierl, A complex additive geometric multigrid solver for the helmholtz
equations on spacetrees, ACM Transactions on Mathematical Software, (2016). accepted.

[43] J. Rudi, A. C. I. Malossi, T. Isaac, G. Stadler, M. Gurnis, P. W. J. Staar, Y. In-
eichen, C. Bekas, A. Curioni, and O. Ghattas, An extreme-scale implicit solver for
complex pdes: Highly heterogeneous flow in earth’s mantle, in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’15, New
York, NY, USA, 2015, ACM, pp. 5:1–5:12.

[44] R. S. Sampath, S. S. Adavani, H. Sundar, I. Lashuk, and G. Biros, Dendro: Parallel
algorithms for multigrid and amr methods on 2:1 balanced octrees, in Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, SC ’08, Piscataway, NJ, USA, 2008, IEEE Press,
pp. 18:1–18:12.

[45] M. Schreiber, T. Weinzierl, and H.-J. Bungartz, Cluster optimization and paralleliza-
tion of simulations with dynamically adaptive grids, in Proceedings Euro-Par 2013, F. Wolf,
B. Mohr, and D. an Mey, eds., vol. 8097 of Lecture Notes in Computer Science, Berlin Heidel-
berg, 2013, Springer-Verlag, pp. 484–496. preprint.

[46] T. Scott, Multi-grid methods for oil reservoir simulation in two and three dimensions, Journal
of Computational Physics, 59 (1985), pp. 290 – 307.

[47] Y. Shapira, Matrix-Based Multigrid, Kluwer, 2003.

[48] K. Stüben, Appendix a: An Introduction to Algebraic Multigrid, in Multigrid, U. Trottenberg,
C. W. Oosterlee, and A. Schüller, eds., Elsevier Science Inc., 2001.

[49] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler, Parallel
geometric-algebraic multigrid on unstructured forests of octrees, in Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and Analysis, SC
’12, Los Alamitos, CA, USA, 2012, IEEE Computer Society Press, pp. 43:1–43:11.

[50] H. Sundar, R. S. Sampath, and G. Biros, Bottom-up construction and 2:1 balance refine-
ment of linear octrees in parallel, SIAM Journal on Scientific Computing, 30 (2008), pp. 2675–
2708.

[51] E. Treister and I. Yavneh, Square and stretch multigrid for stochastic matrix eigenprob-
lems, Numerical Lin. Alg. with Applic., 17 (2010), pp. 229–251.

[52] U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid, Academic Press, 2001.

[53] M. Weinzierl, Hybrid Geometric-Algebraic Matrix-Free Multigrid on Spacetrees, PhD Thesis,
TU München, 2013.

[54] T. Weinzierl, A Framework for Parallel PDE Solvers on Multiscale Adaptive Cartesian
Grids, Verlag Dr. Hut, 2009. PhD thesis.

[55] T. Weinzierl, The peano software - parallel, automaton-based, dynamically adaptive grid
traversals, tech. rep., 2017. arXiv:1506.04496.

45

[56] T. Weinzierl, M. Bader, K. Unterweger, and R. Wittmann, Block fusion on dynam-
ically adaptive spacetree grids for shallow water waves, Parallel Processing Letters, 24 (2014),
p. 1441006.

[57] T. Weinzierl et al., Peano—a Framework for PDE Solvers on Spacetree Grids, 2012.
www.peano-framework.org.

[58] T. Weinzierl and M. Mehl, Peano – A Traversal and Storage Scheme for Octree-Like Adap-
tive Cartesian Multiscale Grids, SIAM Journal on Scientific Computing, 33 (2011), pp. 2732–
2760.

[59] R. Wienands and H. Köstler, A Practical Framework for the Construction of Prolongation
Operators for Multigrid Based on Canonical Basis Functions, Computing and Visualization in
Science, 13 (2010), pp. 207–220.

[60] I. Yavneh, Coarse-Grid Correction for Nonelliptic and Singular Perturbation Problems, SIAM
Journal on Scientific Computing, 19 (1998), pp. 1682–1699.

[61] I. Yavneh and M. Weinzierl, Nonsymmetric Black Box Multigrid with Coarsening by Three,
Numerical Linear Algebra with Applications, 19 (2012), pp. 246–262.

A Spacetree construction, properties and traversal

All cells of a spacetree T with level ` span a grid Ωh,`. Such an Ωh,` can be ragged, but all cells have
exactly the same size. The union of all Ωh,` yields an adaptive Cartesian mesh Ωh. The recursive
construction scheme ensures that the grids Ωh,0 ⊆ Ωh,1 ⊆ Ωh,2 ⊆ . . . ⊆ Ωh are embedded into each
other. These grids carry our shape function weights, i.e. we solve

A`(u` + e`) = b` +A`u` = Rr`+1 +A`Iu`+1

= R (b`+1 −A`+1u`+1) +RA`+1PIu`+1 = R (b`+1 −A`+1(id− PI)u`+1)

=: R (b`+1 −A`+1û`+1) =: Rr̂`+1

on them.
Various efficient strategies for storing and handling spacetrees, i.e., traversing and providing

adjacency information, are known—notably in combination with SFCs: storage within (hash) maps
[31], serialization/linearization of the whole tree [50], which allows us in our code [57] to encode a
tree traversal into a push-back automaton holding all adjacency data [58], on-the-fly computation
of neighbours via Morton codes [13], and so forth. All enlisted variants do not store adjacency
explicitly and thus avoid memory overhead. In the present paper, we do not restrict ourselves to a
particular storage scheme but rely on the generic concept of multiscale element-wise traversals.

Observation 21 The classic depth-first tree traversal yields a multiscale
element-wise traversal of the spacetree’s multiscale grid.

This observation [40, 58] is important as depth-first interweaves the traversal of multiple scales.
Furthermore, a cell is “left” if and only if all of its children have been processed. Such a vertical
integration [1] ensures high temporal and spatial data access locality: The probability that a vertex

46

manipulated by one cell is required soon after again by a neighbouring cell is high—an effect
amplified by the usage of space-filling curves to order the children of any refined tree node. We
obtain excellent cache behaviour [40].

The resulting element-wise traversal facilitates solely point Jacobi smoothers as outlined in
Sect. 3.2. Point Jacobi is a poor choice for many non-trivial parameter combinations in (1). To
facilitate more powerful smoothers without giving up data locality or single touch is our motivation
to generalize the tree traversal by a descend event (Figure 16). In a depth-first traversal code, such
an operation makes a recursive step down within the tree and loads all children of a node before
it continues recursively—a one-level recursion unrolling [24]. Though this technique allows us to
realize inter-grid transfer operators, we stick to vertex-wise transfer operator realizations. Yet, we
use descend to implement block smoothers.

B Review of additive multigrid realisation ideas

Geometric additive multigrid with rediscretization and one Jacobi smoothing step per level fits
into the multiscale element-wise traversal once we shift the standard multigrid cycle by half a grid
traversal (Algorithm 2) and introduce a helper variable d for the correction terms: we switch from
a fine-to-coarse to a coarse-to-fine grid level enumeration plus backtracking of the call stack. All
required matvec entries can be determined on-the-fly per cell. This holds for diag(A`) extracting
diagonal elements from A` too. Let ω be a generic smoothing parameter. In the present paper, we
either use a constant ω or we damp ω exponentially, i.e., we use ω on the finest level, ω2 on the first
correction level, ω3 on the next level, and so forth. Within the spacetree paradigm, the smoothing
factor is decreased with the number of coinciding vertices on finer levels: the coarser the level, the
smaller the smoother impact. Such a vertex count can be realized during the bottom-up steps [42].

Algorithm 2 works out-of-the-box for adaptive grids if we make the operator R affect only
refined vertices and set the nodal value u in any hanging vertex to the d-linear interpolant from
the coarser levels. Any grid region can be refined dynamically. Textbook multigrid requires higher
order interpolation for newly added levels/vertices [52]. We obtain reasonable convergence speed if
we assign newly created vertices the linear interpolant and then immediately apply one undamped
Jacobi step. Removing vertices works without any additional effort. Textbook multigrid typically
demands an exact coarse-grid solve on `max. We either skip exact coarse-grid solves—in this case,
we run one Jacobi step on the coarsest level and have to study the deterioration of the convergence
speed—or we run Jacobi sweeps on the coarsest grid until the residual there underruns 10−12.
Better iterative or direct solvers are more reasonable in many cases. See [5] for a (preconditioned)
CG that fits to the present matrix-free paradigma.

Lines 2–4 of Algorithm 2 translate directly into activities that we perform whenever a vertex is
read for the first time during a grid traversal. The residual accumulations in line 6 are performed as
element-wise operations. All remaining updates must be realized when a vertex is touched for the
last time during a multiscale grid traversal. The recursion and the cell-wise updates are concurrent.
Their evaluation can be permuted. A depth-first spacetree traversal for example intermixes cell
operations with vertex updates on finer levels. Coarse-grid residual evaluations then work with
inconsistent nodal approximations u. Since the fine-grid work updates coarse-grid values during
the computation (last branch), some coarser operator accumulations rely on outdated unknown
values from the previous traversal that are then updated while the residual is computed. This data
inconsistency can be eliminated by an additional helper variable [42].

47

Starting from the additive multigrid, we can write down a BPX variant with a single-touch
policy (Algorithm 3) if we introduce an additional helper variable i carrying an injection of the
fine-grid updates from c-points. A c-point is a grid point that also exists on the next coarser
level. Any refined vertex coincides with at least one c-point. Different to additive multigrid, BPX
automatically keeps all levels consistent, as each unknown always is updated only on the coarsest
grid where a vertex exists. Spatially coinciding vertices on finer levels hold copies of coarse grid
weights. As a result, ω is level-independent. The present realization is introduced in [42]. For
both additive multigrid and BPX, the first grid sweep realizes only a Jacobi smoother on the fine
grid. From the second traversal on, each grid sweep realizes one multilevel update and anticipates
operations from the follow-up iteration.

C BoxMG realisation as one linear equation system solve

The following section discusses the operator P construction. R is constructed accordingly. We

may rewrite BoxMG’s per patch operations into a matrix depending on a vector s ∈ R4d·3d that is

applied to a vector p ∈ R2d·3d . Here, s is a collection of the stencil entries of all vertices within a 4d

patch. The stencil entries are enumerated lexicographically. The vector p contains the prolongation
operator’s stencil entries of the 2d affected coarse grid vertices of one patch. The stencil collapsing
(cmp. Sect. 4.4) ensures that the affected section of the P vectors has only the cardinality 2d · 3d.

d = 1 We start to illustrate our notation and implementational techniques at hands of a 1d setup
where obviously BoxMG’s collapse idea does not kick in. All enumerations start with 0. We study
one patch. Within a patch, we first study the impact of the patch on the prolongation stencil of
the left coarse grid vertex p = [p0, p1, p2, p3, p4]. BoxMG will determine the entries p = [p2, p3, p4],
i.e. only a subset of this stencil is of interest. We reiterate that it yields ones in the centre of the P
stencils, i.e. p2 = 1, so we could reduce the p input further. However, we enforce this central value
manually and thus stick to three output values.

BoxMG’s per-patch method invocation accepts an input vector s ∈ R4·3 holding all the sten-
cils of the patch’s vertices. Different to the original BoxMG paper and the present manuscript’s
construction of BoxMG step by step, our implementation computes all p entries from one equation
system

C(s)p = f, p, f ∈ R3d

with a right-hand side

fi =

{
1 for i = 1 and
0 otherwise

.

The artificial entry 1 will ensure p2 = 1. In classic multigrid manuscripts, the formula for pro-
longation entries p depends on the system matrix A on the next finer level. For our BoxMG
implementation, we use C · A as operator of such a formula where the entries of the matrix A are
determined by the stencils s. It is thus convenient to write C(s) here. We reiterate that C depends
linearly on s and thus is a tensor of third order. However, we here write down the tensor as 2nd
order tensor, i.e. as matrix, where the inner multiplication is explicitly expressed. 1d BoxMG then
reads as

48

 1 0 0
s1,0 s1,1 s1,2
0 s2,0 s2,1

︸ ︷︷ ︸

C(s)

 p2
p3
p4

 =

 1
0
0

 . (5)

Within the patch, we have to determine P entries for the right coarse grid vertex, too. Instead of set-
ting up a separate equation system for the second coarse grid vertex—a process that becomes tedious
for higher dimensions—we mirror all coarse grid computation problems to a reference configuration
where the coarse grid operator affected is tied to the left coarse grid vertex. Before we trigger the
equation system solve, we replace the entries in (5) with si,j 7→ s3−i,2−j , i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2},
i.e. we mirror them within the patch along the x-axis. The indices i ∈ {0, 3} could be omitted here,
but we use them below. After the solve of (5), we mirror the resulting p entries back onto the p
entries of the right coarse grid vertex: pi 7→ p4−i.

For plain BoxMG, stencils in the corners of patches (s0,x and s3,x) do not influence P . They
could be omitted. We however keep them in our code as it allows us to work with a vector of 4d

stencil entries instead of 4d − 2d which simplifies the implementation for d ≥ 2.

d = 2 For two dimensions, our per-patch notation can be written down as id 0 0

Ãγc Ãγγ 0
Aιc Aιγ Aιι

 Pc
Pγ
Pι

u`−1 =: C ·

 Acc Acγ Acι
Aγc Aγγ Aγι
Aιc Aιγ Aιι

 Pc
Pγ
Pι

u`−1 =

 1
0
0

 ,

where C is the collapsing operator acting on the PDE discretization A, and id ∈ R2d×2d is the
identity. We study only the bottom left vertex. Our enumeration is bottom-up, left-to-right for
both the vertices and the stencil entries (Fig. 17). So whenever we write si,j , i is the vertex number
and j is the entry of the vertex’s stencil. For the coarse grid vertex, we can only determine the nine
entries (p12︸︷︷︸

Pc

, p13, p14, p17︸ ︷︷ ︸
Pγ0 ,Pγ1 ,Pγ2

, p18, p19︸ ︷︷ ︸
Pι0 ,Pι1

, p22︸︷︷︸
Pγ3

, p23, p24︸ ︷︷ ︸
Pι2 ,Pι3

).

Since C collapses all stencils along patch boundaries, BoxMG translates the inter-grid transfer
operator computation into a set of small, decoupled linear equation system solves; one solve per
patch. These solves decompose further: For each of the 2d vertices, we have to determine those P
entries that coincide with the patch. These computations are independent of each other.

With a reference configuration at hand, the C matrix for d = 2 and the reference configuration
reads as

1 0 0 0 0 0 0 0 0
s1,0 + s1,3 + s1,6 s1,1 + s1,4 + s1,7 s1,2 + s1,5 + s1,8 0 0 0 0 0 0

0 s2,0 + s2,3 + s2,6 s2,1 + s2,4 + s2,7 0 0 0 0 0 0

s4,0 + s4,1 + s4,2 0 0 s4,3 + s4,4 + s4,5 0 0 s4,6 + s4,7 + s4,8 0 0

0 0 0 s8,0 + s8,1 + s8,2 0 0 s8,3 + s8,4 + s8,5 0 0

s5,0 s5,1 s5,2s5,3 s5,4 s5,5 s5,6 s5,7 s5,8
0 s6,0 s6,1 0 s6,3 s6,4 0 s6,6 s6,7
0 0 0 s9,0 s9,1 s9,2 s9,3 s9,4 s9,5
0 0 0 0 s10,0 s10,1 0 s10,3 s10,4

d = 3 The C matrix for d = 3 is too big to write it down here. All routines are however contained
within one of the toolboxes (function collections) available for the underlying software Peano [57]
from the project’s repository.

49

D Remarks on the shared memory parallelization

Patch-based strategies [25, 26, 56], where patches of regular grids are embedded into cells, have
been applied successfully for spacetrees and facilitate loop parallelism. Such approaches even can
be generalized in a multiscale way, where whole regions are tessellated by a cascade of regular grids
[27, 28]. Alternatively, we may fix the grid, cut the linearized tree into chunks and distribute those
among threads [45].

To obtain reasonable peak performance, such optimizations might become necessary. We do
not study them here as they impose grid regularity constraints. Instead, we focus on a task-based
parallelisation formalism. Combinations of both techniques seem to be promising to obtain high
performance in practice. Furthermore, we note that the mapping of multigrid element activities
onto tasks yields a high theoretical concurrency but also yields high task management overhead. To
reduce this overhead and, hence, to increase the arithmetic intensity, our tasks have to be merged
into bigger task assemblies [45, 56]. The exact choice of the size of such mergers is a non-trivial
task [14].

E Remarks on block smoothers

Block Jacobi can not be used in the coarsening step in the multiplicative algorithm variant as we
fuse the computation of the correction’s right-hand side with a smoothing step on the new coarse
grid. This is possible as the right-hand side on the correction grid is not required to evaluate the
element-wise operators. However, a block smoother on the new coarse grid would require such
information.

This would not hold if we plugged into an ascend operation that integrates into the backtrack-
ing steps within the spacetree. Only offering ascend however would create a twin problem: block
smoothing throughout the coarsening would be possible but block smoothing throughout a prolon-
gation step would become impossible. Combinations of descend and ascend solve the problem but
sacrifice algorithmic simplicity.

BoxMG’s stencil collapsing seems to be a natural candidate to realize better block smoothers:
If we apply collapsing on γ-points, these points can be subject to a Gauß-Seidel smoother along the
ι-points of a patch. Yet, we were not able to identify any significant convergence speedup in our
numerical experiments for such a smoother variant. This might be different for harder problems.

50

[createBoundaryVertex | createInnerVertex]
for all resp. vertices: touchVertexFirstTime

[createCell]

enterCell

descend

[createBoundaryVertex | createInnerVertex]
for all resp. vertices: touchVertexFirstTime

[createCell]

enterCell

[createBoundaryVertex | createInnerVertex]
for all resp. vertices: touchVertexFirstTime

[createCell]

enterCell

[createBoundaryVertex | createInnerVertex]
for all resp. vertices: touchVertexFirstTime

[createCell]

enterCell

leaveCell
for all resp. vertices: touchVertexLastTime

[destroyVertex]

leaveCell
for all resp. vertices: touchVertexLastTime

[destroyVertex]

leaveCell
for all resp. vertices: touchVertexLastTime

[destroyVertex]

ascend

leaveCell
for all resp. vertices: touchVertexLastTime

[destroyVertex]

Figure 16: A simple 1D example for the order of (sequential) events during the spacetree traversal
(from [53]). The left column shows the tree, the middle column the grid, and the right column the
respective events that are called. The current active cell/tree node is highlighted in red. At the
beginning of the traversal beginIteration and at the end endIteration is called. Parallel events and
events concerning hanging vertices are omitted. Square brackets stand for events which only occur
during the setup/cleanup phase or in an adaptive setting.

51

* * 22 23 24
* * 17 18 19
* * 12 13 14
* * * * *
* * * * *

5 6 8
3 4 5
0 1 2

5 6 8
3 4 5
0 1 2

5 6 8
3 4 5
0 1 2

1 2 3

4 5 7

8 10 11

12 13 14 15

Figure 17: Right: Our BoxMG code computes nine entries of the bottom left vertex for d = 2
within descend. Left: All fine grid vertices are enumerated lexicographically starting with 0 at the
bottom left (first index subscript). Each vertex carries a 32 stencil enumerated lexicographically,
too.

52

	1 Introduction
	2 Previous work and shortcomings of present approach
	3 Spacetrees and FAS on generating systems
	4 Solver realizations
	4.1 Geometric multigrid variants
	4.2 Spacetree block smoothers
	4.3 Galerkin multigrid variants
	4.4 BoxMG

	5 Stencil compression
	6 Parallelization
	6.1 Shared memory
	6.2 Distributed memory

	7 Results
	7.1 Diffusion with constant coefficients
	7.2 Jumping and anisotropic material parameters
	7.3 BoxMG
	7.4 Memory consumption
	7.5 Comparisons to PETSc's GAMG
	7.6 Runtime and scalability studies

	8 Conclusion and outlook
	A Spacetree construction, properties and traversal
	B Review of additive multigrid realisation ideas
	C BoxMG realisation as one linear equation system solve
	D Remarks on the shared memory parallelization
	E Remarks on block smoothers

