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ABSTRACT
We build a full spectral-timing model for the low/hard state of black hole binaries assuming
that the spectrum of the X-ray hot flow can be produced by two Comptonization zones. Slow
fluctuations generated at the largest radii/softest spectral region of the flow propagate down
to modulate the faster fluctuations produced in the spectrally harder region close to the black
hole. The observed spectrum and variability are produced by summing over all regions in the
flow, including its emission reflected from the truncated disc. This produces energy-dependent
Fourier lags qualitatively similar to those in the data. Given a viscous frequency prescription,
the model predicts Fourier power spectral densities and lags for any energy bands. We apply
this model to archival Rossi X-ray Timing Explorer data from Cyg X-1, using the time-averaged
energy spectrum together with an assumed emissivity to set the radial bounds of the soft and
hard Comptonization regions. We find that the power spectra cannot be described by any
smooth model of generating fluctuations, instead requiring that there are specific radii in
the flow where noise is preferentially produced. We also find fluctuation damping between
spectrally distinct regions is required to prevent all the variability power generated at large
radii being propagated into the inner regions. Even with these additions, we can fit either
the power spectra at each energy or the lags between energy bands, but not both. We conclude
that either the spectra are more complex than two zone models, or that other processes are
important in forming the variability.
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1 IN T RO D U C T I O N

Black hole binaries (BHBs) show variability on a wide range of
time-scales. Over days, months and years, mass accretion rate
changes drive changes in the energy spectrum. The most dra-
matic example of this behaviour is the spectral transition from the
Comptonization-dominated (low/hard) spectra seen at low lumi-
nosities to the disc-dominated (high/soft) spectra at high luminosi-
ties (see e.g. Remillard & McClintock 2006). This has a very natural
interpretation from the two stable solutions to the accretion flow
equations: one which is hot, optically thin and geometrically thick
(advection dominated accretion flow, ADAF; Narayan & Yi 1995)
which can exist only at low-mass accretion rates, and one which
is cool, optically thick and geometrically thin (Shakura–Sunyaev
disc, SS; Shakura & Sunyaev 1973). The observed switch in spec-
tral properties can therefore be explained by a switch between these
two solutions at the maximum ADAF luminosity (Esin, McClin-
tock & Narayan 1997; Done, Gierliński & Kubota 2007; hereafter
DGK07).

There is also more subtle spectral evolution within the low/hard
state. This can be explained by combining these two solutions into
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a composite structure, where the outer SS disc truncates at some
radius to be replaced by a hot flow interior to this (truncated disc/hot
flow models). In this geometry, decreasing the truncation radius as
the mass accretion rate increases results in more disc seed photons
incident upon the flow. This leads to more efficient Compton cooling
of the flow, and naturally produces the softer Comptonized spectra
with increasing luminosity, as observed (DGK07).

However, the broad-band spectra show more complexity than the
contributions from a simple truncated disc, a single-temperature
Comptonization region and its reflection from that disc. This com-
plexity can be fit by assuming that the Comptonization is not at
a single temperature, but instead is radially stratified. Simple in-
homogeneous flow models consisting of a truncated disc and two
Comptonization components can broadly fit the 0.2–200 keV spec-
tra seen in the low/hard states of Cyg X-1 (Gierliński et al. 1997;
Di Salvo et al. 2001; Makishima et al. 2008; Yamada et al. 2013;
Basak et al. 2017).

Alternatively, the additional X-ray component in low/hard state
spectra can instead be modelled by a jet contribution (Markoff,
Nowak & Wilms 2005; Nowak et al. 2011), or using the completely
different geometry of an untruncated disc with highly relativis-
tic reflection from a point-source on the spin axis of the black
hole (e.g. Rykoff et al. 2007; Reis, Fabian & Miller 2010; Fabian
et al. 2014). Variations on the theme of the truncated disc/hot
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flow model where some of the hot flow electrons have a hybrid
(thermal/non-thermal) electron distribution have also successfully
fit the spectra (e.g. Poutanen & Coppi 1998; Ibragimov et al. 2005;
Makishima et al. 2008; Poutanen & Vurm 2009; Nowak et al. 2011).
However, the fast timing (0.01–100 s) properties can break some of
these spectral degeneracies by giving additional information on the
source geometry. In particular, the evolution of the power spectral
density (PSD) of the fast timing variability in the low/hard state
strongly supports the truncated disc/hot flow geometry (Ingram &
Done 2011, hereafter ID11). The PSD of the Compton-dominated
X-ray emission shows band-limited noise between low (fb) and high
(fh) frequency breaks, often accompanied by a strong low-frequency
quasi-periodic oscillation (QPO) at fqpo. Both fb and fqpo increase
together as the spectrum softens towards the transition (Wijnands
& van der Klis 1999; Klein-Wolt & van der Klis 2008; Rapisarda,
Ingram & van der Klis 2014), indicative of the decreasing charac-
teristic radius predicted by the truncated disc models.

This geometry can be incorporated into a full timing model by
assuming that density fluctuations are generated at all radii in the
hot flow by the turbulent magnetic dynamo (magnetorotational in-
stability: MRI, Balbus & Hawley 1998). These fluctuations prop-
agate inwards on the viscous time-scale, so that slow fluctuations
stirred up at large radii modulate the faster fluctuations generated at
smaller radii (Lyubarskii 1997). This process can reproduce the ob-
served double-broken power-law shape of the low/hard state PSD,
while Arévalo & Uttley (2006; hereafter AU06) also show that this
behaviour is necessary and sufficient to produce the observed lin-
ear rms–flux relation. The correlated QPO can also be produced
from the same geometry if the entire hot flow undergoes Lense–
Thirring precession due to its misalignment with the black hole spin
axis (Fragile & Meier 2009; Ingram, Done & Fragile 2009; Liska
et al. 2017). These propagating fluctuation/Lense–Thirring preces-
sion models have quantitatively fit the data from XTE J1550−584
during its spectral transition, with the inner radius of the thin disc
changing from ∼60 to 12Rg (ID11; Ingram & Done 2012a, here-
after ID12a), while also correctly predicting the modulation of the
iron line energy on the QPO period (Ingram & Done 2012b; Ingram
et al. 2016).

Thus, the overall properties of the power spectra already strongly
favour the truncated disc/hot flow geometry for the low/hard state,
but they do not break the degeneracies between the different models
for the X-ray emission within this framework. However, frequency-
dependent time lags are also observed between high and low-energy
X-ray bands (Miyamoto & Kitamoto 1989; Nowak et al. 1999).
These were first discovered in data above 2 keV, so they directly
probe the structure of the hot flow rather than the disc emission.
The lags show that flux variations are seen first in the softer X-rays,
and later in the hard X-rays (hard lags), after a lag time which
depends on the fluctuation frequency. This frequency-dependence
rules out a simple light travel time origin for the signal, such
as the delay between successive Compton scattering orders, as
this would produce a constant, very short hard lag (Miyamoto &
Kitamoto 1989; Nowak et al. 1999). The light travel time between
the source and disc in the reflection dominated spectra is also ruled
out as the source of the hard lag, as this process results in only a
constant, very short soft lag.

Instead, the observed frequency-dependent hard lags can be qual-
itatively explained by the propagation of fluctuations through an
inhomogeneous hot flow such as the one we have described, where
the Compton spectrum is harder closer to the black hole (Kotov,
Churazov & Gilfanov 2001). This results in a coupled spectral-
timing model, where slower fluctuations are produced at larger

radii, so have softer spectra. These fluctuations propagate down
to smaller radii, modulating the harder spectra from these regions.
The lag time for this propagation encodes the viscous time-scale
between the radii. Faster fluctuations are produced at smaller radii,
so they have a shorter distance to propagate before they modulate
the hardest spectra from the innermost region, giving the frequency
dependent lag time (AU06). By contrast, in a model where the
soft X-rays are from the jet, fluctuations would propagate down
through the accretion flow, which produces hard Comptonization,
and only then propagate up into the jet, which produces soft X-ray
synchrotron. This would instead predict a soft lag, contrary to what
is observed.

Hence, the spectral lags impose additional constraints on the
physical nature and geometry of the hot flow. Here, we build a
fully energy-dependent spectral-timing model of the simplest pos-
sible inhomogeneous hot flow interior to a truncated disc, where
the flow is composed of only two Comptonization regions of differ-
ent temperature and optical depth. We quantitatively compare the
predictions of this model to the best fast spectral-timing data cur-
rently available: the archival Rossi X-ray Timing Explorer (RXTE)
observations of Cygnus X-1 in the low/hard state (see Section 2),
as used by Nowak et al. (1999). The data span an energy range of
3–30 keV, so they are dominated by the emission from the hot flow
and exclude the truncated disc emission.

Model fitting to X-ray lags has only recently become possible,
and our approach is complementary to the few papers produced so
far on this. Rapisarda et al. (2016, hereafter R16) use lower en-
ergy data (0.5–10 keV) from Swift to model the power spectra in a
soft and hard band, and the lags between them for the BHB MAXI
J1659−152. This lower energy band means that they consider the
intrinsic disc emission and its variability (Uttley et al. 2011) and
how this propagates into the hot flow, which they assume is homoge-
neous. This model is adequate to describe that data set as it does not
extend above 10 keV. However, the same disc and homogeneous
hot flow model fails to fit the RXTE data from XTE J1550−564
(Rapisarda, Ingram & van der Klis 2017, hereafter R17), poten-
tially because the higher energy range (2–30 keV) of these data
mean that the cross-spectral properties are sensitive to the structure
within the hot flow, and such structure is not incorporated into their
model.

We describe the data we compare to in Section 2, while Sec-
tion 3 briefly details the single zone propagating fluctuation model.
In Sections 4–9, we systematically build our procedure to predict
frequency-dependent time lags, by applying different spectral com-
ponents to different radial ranges in the propagating fluctuations
model. Finally, in Section 10, we discuss the successes and failures
of our model prescription and directly tie these back to the nature
and geometry of the X-ray emission region close to the black hole.

2 O B S E RVAT I O N S O F C Y G N U S X - 1 IN TH E
HARD STATE

Cygnus X-1 is typically the brightest low/hard state source, and
so gives the best data for studies using high time resolution. The
archival data from RXTE remains the best publicly available data for
studying the Comptonization lags, due to its high effective area in
the 3–30 keV bandpass. Many of the RXTE observations were taken
in a mode with limited spectral resolution below 10 keV. However,
there are six data sets taken in the ‘Generic Binned’ mode, which
has 15.6 millisecond time resolution with 64 energy bins across the
entire RXTE Proportional Counter Array (PCA) energy bandpass
(standard channels 0-249; B_16ms_64M_0_249 configuration)
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giving reasonable spectral resolution in the 3–10 keV band, which
allows the broad iron line to be resolved (Revnivtsev, Gilfanov &
Churazov 1999; Gilfanov, Churazov & Revnivtsev 2000).

We use three of these observations taken consecutively dur-
ing 1996, with simultaneous data from the PCA and the High
Energy X-Ray Timing Experiment (HEXTE; ObsIDs: 10238-01-
08-00, 10238-01-07-000, 10238-01-07-00, hereafter observations
1–3). We choose these as they have very similar time averaged
spectra, with hardness ratios between the 6–10 and 3—6 keV bands
of 0.9151 ± 0.0003, 0.9149 ± 0.0004 and 0.9148 ± 0.0003, re-
spectively. The remaining three observations in this mode are all
somewhat softer, so we exclude them. All five Proportional Counter
Units (PCUs) of the PCA were active during these epochs. Each ob-
servation is background-subtracted (using background on 16 s time
binning), Poisson noise is removed, and dead-time corrections are
applied according to the standard procedure of Nowak et al. (1999).

Observations 1–3 also have statistically consistent power spectra
at the 1σ level across the entire frequency range, so we co-add
these observations to give 22.5 ks of data for the timing analysis.
However, we use only Observation 1 for spectral analysis, as the
co-addition of spectral data with slightly different response matrices
can lead to artefacts.

Even amongst observations restricted to the hard state, a range of
‘sub-states’ are seen in both the variability and the spectra (e.g. the
hard-intermediate state; DGK07). We would therefore like to place
our observations in the wider context of states seen from Cygnus
X-1. Grinberg et al. (2014; hereafter G14) fit all the Cyg X-1
data taken during the lifetime of RXTE with a phenomenological
model of tbabs*(Gaussian + highecut*bknpower),
where the bknpower component approximates the Comptonized
emission as a broken power law, parametrized by ‘soft’ and ‘hard’
photon indices, �1 and �2, respectively. Our data has a ‘soft’ pho-
ton index of �1 = 1.65 ± 0.01, which is the minimum �1 found
by G14, showing that this is one of the hardest states of Cyg X-1
observed by RXTE. This extreme hard state is confirmed by the
high fractional root-mean-square variability (Muñoz-Darias, Motta
& Belloni 2011; Heil, Vaughan & Uttley 2012) in the 2–15 keV
band of 26.3 ± 0.5 per cent.

For our analysis, we use light curves in three energy bands:
Low (3.13–4.98 keV), Mid (9.94–20.09 keV) and High (20.09–
34.61 keV). We extract these using SAEXTRCT, ensemble averaging
over 174 segments of 128 s length to derive power spectra and
time lags which are far better constrained at high frequencies than
previous model-comparison studies (R16; R17).

3 TH E P RO PAG ATI N G FL U C T UAT I O N S
M O D E L

The MRI threading the flow generates fluctuations in all quanti-
ties and on all time-scales (Balbus & Hawley 1998). The stochas-
tic variations in mass accretion rate propagate down through the
Comptonizing region, modulating all the faster fluctuations pro-
duced further in. We simulate a Comptonization region extending
from the thin disc truncation radius, ro, to the inner edge of the hot
flow at ri, where all size scales are in units of Rg = GM/c2. The
flow is split into annuli, characterized by radius rn and width drn,
logarithmically spaced such that drn/rn is constant (ID11).

The largest amplitude fluctuations produced by any given radius
have size ∼h, where h is the thickness of the flow. For r ∼ h,
this sets the local viscous time, tvisc(r), as the shortest time-scale on
which density fluctuations are generated at r; fluctuations on shorter
time-scales than this are damped by the response of the flow. This

results in a break in the power spectrum of mass accretion rate
fluctuations generated at r of fvisc(r) = 1/tvisc(r) (Kotov et al. 2001).
The largest radius in the flow generates the slowest fluctuations, so
the low-frequency break in the observed PSD is fvisc(ro).

However, translating this to an outer radius requires a func-
tional form for the viscous time-scale. This form is not yet clear.
General Relativistic Magneto-Hydrodynamical (GRMHD) simula-
tions of the MRI currently predict that fluctuations can be gen-
erated on ten times the Keplerian time-scale, ∼10tkep(r) (Hogg
& Reynolds 2017). However, this predicts that the typical low-
frequency break seen in hard-state power spectra at ∼0.1 Hz is
produced by material at large distances, of order several hundred
Rg. This is in tension with results from spectral fitting to the iron
line profile, which generally point to ro � 50 (Kolehmainen, Done
& Diaz Trigo et al. 2014; Basak et al. 2017). This inconsistency
is likely due to the limited physics currently incorporated into
the GRMHD simulations. Typically, these neglect radiative pro-
cesses and the interface between the disc and hot flow (e.g. Liska
et al. 2017). Until better simulations are available, we instead use a
parametrized prescription where fvisc(r) = Br−mfkep(r) (ID11). For
a thin SS disc, m = 0 and B = α(h/r)2 (with h/r � 1) while a self-
similar ADAF adheres to the same scalings but with h ∼ r. More
complex flows have m �= 0, for example, when including transonic
effects in an ADAF (Narayan, Kato & Honma 1997) or in full MRI
simulations (Fragile & Meier 2009).

We follow ID11, who determine B and m from fitting to the
well-known relationship between fqpo and fb (Wijnands & van der
Klis 1999). This gives B = 0.03 and m = 0.5, assuming that the
QPO is indeed from Lense–Thirring precession of the entire hot
flow and that fb ≈ fvisc(ro). This is a simpler prescription than using
a GRMHD surface density to derive fvisc(r) as in ID12a and R16/17,
and avoids the associated simulation uncertainties.

We assume that these stochastic mass accretion rate fluctuations
are generated at each radius rn with random phase, but with a well-
defined power spectrum that is a zero-centred Lorentzian with a
cut-off at fvisc(rn),

| ˜̇m(rn, f )|2 ∝ 1

1 + [f /fvisc(rn)]2

[
sin(πf dt)

πf dt

]2

, (1)

where a tilde denotes the Fourier transform. The sinusoidal term on
the right-hand side describes the suppression of variability due to
the time binning. The normalization of our Lorentzian is selected
such that all ṁ(rn, t) have a mean of μ = 1 and fractional variability
σ/μ = Fvar/

√
Ndec, where Ndec and Fvar are the number of annuli

and fractional variability generated per radial decade respectively.
Beginning at the outermost annulus, r1 = ro, we generate mass

accretion rate fluctuations in the time domain, ṁ(rn, t) using the
algorithm of Timmer & König (1996). For the outermost annulus,
we designate the accretion rate across the annulus as Ṁ(r1, t) =
Ṁ0(1 + ṁ(r1, t)), where Ṁ0 is the mean mass accretion rate. These
fluctuations propagate in to the next annulus, travelling a distance
dr1, which takes a time dτ 1 = dr1/[r1fvisc(r1)].

The response of the flow acts to smooth fluctuations on the lag
time-scale. We implement this via a moving average over the lag
time across the light curve, such that the smoothed mass accretion
rate is

Ṁsm(rn, t) =

t+dτn/2∑
ti=t−dτn/2

Ṁ(rn, ti)

dτn/dt
. (2)
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Figure 1. The assumed geometry. The green region emits the soft spectral
shape, S(E), and the cyan region emits the hard spectral shape, H(E). The
direct contribution from the thermal disc (red) is neglected. Fluctuations are
generated throughout the flow on the viscous time-scale, tvisc(r), and prop-
agate down towards the compact object at a local velocity, v(r) = rfvisc(r).

Taken together with time lags, the total propagated mass accretion
rate function in the nth annulus is then

Ṁ(rn, t) = Ṁsm(rn−1, t − dτn−1)[1 + ṁ(rn, t)], (3)

until the Nth annulus, which is ri. These mass accretion rate func-
tions are the fundamental quantity in several previous studies (e.g.
AU06; ID11; ID12a), which accurately replicate the broken power-
law shape in BHB power spectra.

These works conventionally convert the mass accretion rate
curves into light curves via dL(rn, t) = 0.5Ṁ(rn, t)ε(rn)rndrnc

2,
where ε(rn) is the emissivity at annulus rn which can be parametrized
in a number of ways depending on the assumptions made regarding
energy dissipation. Instead, a key extension of our work is that the
total energy dissipation is set by the gravitational energy release,
with the photon energy dependence set by the different spectra
generated at different radii.

4 IN C O R P O R ATI N G EN E R G Y D E P E N D E N C E

4.1 Spectral decomposition

The standard propagating fluctuations model assumes a constant
spectral energy distribution (SED) across the entire hot flow. It is
only the normalization of this SED that varies in time according to
the variability of the flow at each radius, while the shape is assumed
to be invariant. However, physically there is more energy from
gravitational heating of the flow at smaller radii, and fewer seed
photons cooling it, so we expect the inner regions to have higher
temperatures and hence harder spectra (Poutanen & Veledina 2014).
Since the viscous frequency is also a function of radius, this couples
the spectral and timing properties so that the cross-spectral statistics
can be derived. This allows us to jointly compare the PSDs and time
lags as a function of energy band as described by the propagating
fluctuations model, simultaneously with the time-averaged SED.

The simplest multicomponent flow is described by two main
Comptonization regions: one softer component close to the
disc, and one harder close to the black hole (see Fig. 1).
We therefore fit the time averaged SED, with 0.5 per cent sys-
tematic errors, in XSPEC (version 12.9.1; Arnaud, Borkowski
& Harrington 1996) with two Comptonization components de-
scribed by tbabs*(nthcomp+nthcomp) (Zdziarski, John-
son & Magdziarz 1996), and the combined reflection of these,
tbabs*(kdblur*xilconv*twocomp). Here, twocomp is a

Figure 2. The decomposition of Observation 1 (ObsID: 10238-01-08-00)
used to augment the standard propagating fluctuations model. Shown are the
total energy spectrum (black), the hard Compton component (H(E), cyan),
the soft Compton component (S(E), green) and the reflection component
(R(E), magenta). Filled circles show the PCA (red) and HEXTE (black)
data. The red, green and blue bands denote the Low (3.13–4.98 keV), Mid
(9.94–20.09 keV) and High (20.09–34.61 keV) energy ranges, respectively.

Table 1. Fit parameters for the spectral model shown in Fig. 2, with the re-
flected emission from the sum of the two Comptonization components:
tbabs*(nthcomp+nthcomp+kdblur*xilconv*twocomp). The
electron temperatures (kTe) of both Comptonization components are tied.
The fixed parameters in our fits are the Galactic absorption column density
(0.6 × 1022 cm−2), the seed photon temperature (0.2 keV), the kdblur
index (3.0), the inclination angle of Cyg X-1 (27o), the inner disc radius
(10Rg) and the xilconv iron abundance (1.0).

Component Parameter Value

nthComp � 1.795+0.001
−0.005

kTe (keV) 44+1
−2

norm 2.2+0.7
−0.2

nthComp � 1.25+0.02
−0.01

kTe (keV) 44+1
−2

norm 0.07+0.03
0.01

xilconv relative refl norm −0.254 ± 0.003

log(xi) 3.001+0.007
−0.005

local model that adds the Comptonization components together, so
that reflection is explicitly calculated from the composite spectrum.
Such a decomposition is motivated both by model simplicity, and
by similar successful fits to Cyg X-1 spectra (Gierliński et al. 1997;
Di Salvo et al. 2001; Makishima et al. 2008; Basak et al. 2017). We
also follow Makishima et al. (2008) and assume that both Compton
components have the same electron temperature. The data and best-
fitting model are shown in Fig. 2, with full parameters detailed in
Table 1. The softer and harder Comptonization components, S(E)
(green) and H(E) (cyan), originate from the outer and inner regions
of the flow, respectively. Also included is the total reflection from
the disc, R(E), but we do not include the intrinsic or reprocessed
disc emission as the energy of this is too low to make a significant
contribution to the RXTE data above 3 keV.
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Table 2. Parameter values for all models shown in this work.

PSDs Lags γ b(r) B m ro ri rSH rα rβ Fvar(r �= rα , rβ ) Fvar(rα) Fvar(rβ ) D
Fig. 3 – 4.5 1 0.03 0.5 14. 2.5 3.1 – – 0.45 1 1 –
Fig. 5(a) Fig. 6(a) 3. SF 0.03 0.5 14. 2.5 5.4 – – 0.59 1 1 –
Fig. 5(b) Fig. 6(b) 3. SF 250.00 3.95 14. 2.5 5.4 – – 0.74 1 1 –
Fig. 5(c) Fig. 6(c) 3. SF 94.87 1.21 140. 6. 16.0 – – 0.49 1 1 –
Fig. 7(a) Fig. 7(b) 3. SF 2π× 51.83a 3.35 14. 2.5 5.4 – – 0.69 1 1 –
Fig. 8(a) Fig. 8(b) 3. SF 0.03 0.5 14. 2.5 5.4 5.5 – 0.52 14 1 –
Fig. 9(a) Fig. 9(b) 3. SF 0.03 0.5 14. 2.5 5.4 5.5 2.7 0.52 9 166 –
Fig. 10(a) Fig. 10(b) 3. SF 0.03 0.5 14. 2.5 5.4 5.5 2.6 0.54b 35 660 60

Notes. aThis particular case decouples the fluctuation-generator and propagation time-scales so that we still have dτ n = drn/[rnfvisc(rn)] but now equation (19)
describes the generator Lorentzians.
bInstead this is F S

var(r �= rα) as described in the text of Section 9.

4.2 Spectral-timing model

In all simulations, we assume that Cyg X-1 has a black hole of mass,
MBH = 15 M	, and a dimensionless spin parameter of a∗ ∼ 0.85
(Kawano et al. 2017). The inner radius is set to the approximate
ISCO size implied from the spin of Cyg X-1, so that ri = 2.5.

The time-averaged spectrum, F̄ (E, rn), emitted from each radius
is given by the expression

F̄ (E, rn) =
⎧⎨
⎩

S(E)
[
1 + R(E)

S(E)+H (E)

]
if rn > rSH,

H (E)
[
1 + R(E)

S(E)+H (E)

]
if rn < rSH.

(4)

rSH here is the transition radius between the soft and hard Comp-
tonization regions. This is analytically derived from an assumed
emissivity, ε(r) ∝ r−γ b(r), where b(r) is an inner boundary con-
dition, such that the luminosity ratio between the two components
matches that observed, such that∫

E
S(E)dE∫

E
H (E)dE

=
∫ rSH

ro
ε(r)2πrdr∫ ri

rSH
ε(r)2πrdr

. (5)

The light curves produced by the standard propagating fluctu-
ations model at each radius are then made energy-dependent and
renormalized such that their time-average is the flux for that energy
bin and radius, yielding

dF (E, rn, t) = F̄ (E, rn)Ṁ(rn, t)
ε(rn)rndrn∑

region
ε(rn)rndrn

. (6)

The summation limits implied by ‘region’ are{ro to rSH} for rn > rSH

and {rSH to ri} for rn < rSH. This normalization guarantees that
if equation (6) is time averaged and summed over all radii, the
observed energy spectrum is reproduced.

We match our spectra to the data as closely as possible by con-
verting these fluxes into count rates using the detector effective
area Aeff(E) and Galactic absorption NH(E). The count rate is then
expressed

dC(E, rn, t) = dF (E, rn, t)Aeff (E)e−NH (E)σT , (7)

where σ T is the Thompson cross-section.
In practice, equation (7) describes a three-dimensional matrix,

which can be operated on in different ways to obtain a variety of
statistics. For instance, the total count rate in each energy band can
be obtained by summing the matrix in equation (7) over all radii,
and over the energy band of interest, yielding

Cband(t) =
Emax

band∑
E=Emin

band

ro∑
rn=ri

dC(E, rn, t). (8)

Figure 3. PSDs for the data and for the energy-dependent ID11 model
with γ = 4.5, b(r) = 1. The shaded regions are the 1σ error regions of the
Low (pink), Mid (green) and High (blue) energy bands from the data. The
solid lines show the Low (red), Mid (green) and High (blue) energy model
outputs.

We use this quantity to produce the model power spectral and cross-
spectral statistics, which we then fit to their analogues from the data.

We first use the viscous model of ID11, i.e. a frequency prescrip-
tion with B = 0.03 and m = 0.5 as discussed in Section 3. Tying the
viscous frequency at the outer radius to the low-frequency break in
the data so that fvisc(ro) = 0.3 Hz ≈fb, we obtain an outer radius of
ro = 14, which is consistent with the range of disc truncation radii
found from spectral fitting of 13–20Rg (Basak & Zdziarski 2016;
Basak et al. 2017). The fiducial model of ID11 had an emissiv-
ity described by γ = 4.5 and a stressed inner boundary condition,
b(r) = 1. Coupling this with our decomposition of the time averaged
spectrum through equation (5) gives rSH = 3.1.

We calculate the light curves on a time binning of dt = 15.6 ms
(matched to the timing mode resolution of RXTE) and simulate
T = 128 s for each realization, ensemble averaging over M = 64
realizations. All simulations use Nr = 50 radial bins, and we require
Fvar = 0.45 in order to match the slope and amplitude of the low-
frequency break. A summary of all parameter values used in the
simulations in this paper can be found in Table 2.

Fig. 3 shows the model PSD from this simulation, where it is
clear that this a poor match to the data. Overall, all energy bands
show far too little high-frequency power. The model also predicts
that the PSDs of all energy bands are similar, while the data show
that the Low band dominates at all frequencies below 8 Hz. We
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(a) (b) (c) (d)

Figure 4. Panel (a): Dashed lines are rms-normalized generator PSDs from separate annuli, log-spaced within the flow. Only five are shown for graphical
clarity. Green colour denotes those from the outer region (rn > rSH). Cyan colour denotes those in the inner region (rn < rSH). Solid lines are the rms-normalized
PSDs of the outer (green) and inner (cyan) regions. Here, we have γ = 4.5, b(r) = 1. Panel (b): simulation and analytic prediction for γ = 4.5, b(r) = 1
emissivity, showing Low (red), Mid (green) and High (blue) bands. Solid lines denote the simulation output. Dashed lines denote an analytic prediction. Panel
(c): as in panel (a), but with γ = 3, b(r) = 3(1 − √

ri/r). Panel (d): as in panel (b), but with γ = 3, b(r) = 3(1 − √
ri/r).

analytically explore the factors determining the shapes of these
PSDs below.

5 A NA LY TIC POW ER SPECTRAL MODELS

The pioneering work of Ingram & van der Klis (2013, hereafter
IK13) show how the PSD can be analytically calculated by con-
sidering how propagated PSDs are constructed in Fourier-space,
and how they are weighted by the emissivity in calculating the fi-
nal count spectra. We will now adapt their procedure to reflect our
simulations, including the light-curve weightings according to the
energy spectrum.

In the following, we denote the PSDs generated in annulus rn,
as Pgen(rn), while those which are propagated from all outer annuli
down to rn are denoted Pprop(rn). Propagation causes the noise in r2

(closer to the black hole) to be modulated by the noise in r1, lagged
by the viscous time-scale. Since this lag time is small compared to
the generator time-scale in r1, then it is almost perfectly coherent
between r1 and r2 so that the power is additive, and Pprop(r2) ≈
Pgen(r1) + Pgen(r2). Generalizing this, the propagated PSDs are
described by

Pprop(rn, f ) =
n∑

m=1

Pgen(rm, f ), (9)

where the assumed self-similar nature of the fluctuations means
that all the individual Pgen(rn, f) have the same amplitude. Fig. 4(a)
(dashed lines) shows the generator PSDs of the individual annuli,
with the soft region in green and the hard in cyan. The solid green
and cyan lines show the propagated PSDs of the total soft and
hard regions, respectively. This shows the clear difference in high-
frequency extent of the PSDs of the two regions, with the hard
region producing substantial additional power above 1 Hz.

Our mass accretion rates are converted into counts in a given
band using the emissivity prescription and SED decomposition de-
scribed in Section 4.1. This effectively weights the propagated mass
accretion rate from each annulus by a factor, w band

n , given by

w band
n (rn) = ε(rn)rndrn∑

region
ε(rn)rndrn

Emax
band∑

E=Emin
band

F̄ (E, rn)Aeff (E)e−NH (E)σT .(10)

The count spectrum for that band can then be written as

Cband(t) =
N∑

n=1

w band
n Ṁ(rn, t). (11)

Since the mean count rate of Ṁ(rn, t) is normalized to Ṁ0, the mean
count rate in a given energy band is then

μC =
N∑

n=1

Ṁ0w
band
n . (12)

We now drop the superscript on wband
n for notational convenience,

and take the rms-normalized PSD:

Pband(f ) = 2dt2

μ2
CT

|C̃band(f )|2

= 2dt2

μ2
CT

N∑
l, n=1

wnwl
˜̇M(rl, f )∗ ˜̇M(rn, f ). (13)

Including decoherence due to the propagation lag results in the
full PSD expression of

Pband(f ) = 1

μ2
C

N∑
n=1

[
w2

nPprop(rn, f )

+ 2
n−1∑
l=1

wlwncos(2π
τlnf )Pprop(rl, f )
]
, (14)

where the weights now have a spectral dependence in our case. The
second term in equation (14) arises since the propagated noise at rn

interferes with the propagated power spectra found at all outer radii.
If this noise were not lagged between radii, this interference would
be purely constructive and the cosine term would reduce to unity for
all frequencies. However, the time lag causes a component of the
PSDs to interfere destructively, and this suppression is expressed
by the lag-dependent cosine factor. Here, 
τ ln is the total time lag
between two annuli so that


τln =
n−1∑
m=l

dτm =
n−1∑
m=l

drm

rm

tvisc(rm) = dlog(r)
n−1∑
m=l

tvisc(rm), (15)

where the second equality comes from the fact that the radial bin
size is logarithmic and dlog(r) is therefore a constant.

Equation (14) shows that each band-specific PSD is a weighted
combination of the propagated PSDs in the outer and inner regions,
where the weighting factor depends on the fraction of hard and
soft spectral components in that band. Fig. 2 shows that the hard
spectrum contributes more to the higher energy bands but is always
a fairly small fraction of the total emission. Hence in Fig. 4(b)
(dashed lines), the analytic PSD of each band is dominated by the
soft region. This results in band-dependent PSDs, which are highly
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Figure 5. Model and data PSDs. Colours as in Fig. 3. Left panel (a): Fiducial model. As in Fig. 3 only now the emissivity prescription has been modified
to γ = 3 and b(r) = 3(1 − √

ri/r). Middle panel (b): Viscous frequency parameters altered so that fvisc(ri) is now 3 × 103 Hz, allowing a match to the
high-frequency power. Right-hand panel (c): Parameters have been set such that the size scale is drastically different to panel (b) but the same PSD shape is
found, illustrating the degeneracy between the frequency prescription and the radial range of the flow.

similar, with very little high-frequency power. We also show the
full simulation output as the solid lines for comparison. Smoothing
has been included in the simulations but is neglected in the analytic
form, but the good agreement below 10 Hz indicates that this effect
is negligible.

It is clear that this combination of spectral decomposition, emis-
sivity and viscosity will be unable to produce PSDs in each band,
which are close to the observations. Since the SED decomposition
is fit prior to the spectral-timing model, we now explore how a better
match to the power spectra can be achieved by varying the emissiv-
ity and viscous frequency prescription. We will start by reproducing
the low-frequency Lorentzian hump at 0.2 Hz.

6 VA RY I N G T H E E M I S S I V I T Y A N D V I S C O U S
FREQUENCY PRESCRIPTION

6.1 A physically motivated emissivity

Gravity gives an expected emissivity with γ = 3, while the inner-
most stable circular orbit motivates a stress-free (SF) inner boundary
condition, which we approximate as b(r) = 3(1 − √

ri/r). Together
with the standard B = 0.03 and m = 0.5 viscosity prescription, we
will hereafter refer to this parameter set as the fiducial model. In
Figs 4(c) and (d), we show the effect on the PSDs of applying this
new emissivity, with a new rSH = 5.4 set by the integrated SED com-
ponents via equation (5). It is clear when comparing Figs 4(a) and
(c), that power at high frequencies has been suppressed in both the
soft (green) and hard (cyan) bands. This is because the new emis-
sivity weights the emission to larger radii, so the high-frequency
contribution to the variability from the smallest radii is decreased.
We also see that the simulated soft region power is now even lower
than that from the hard region, even at frequencies below 0.3 Hz.

In Fig. 5(a), we fit the model with this new emissivity to the data,
using Fvar = 0.59 to match to the low-frequency break amplitude,
but keeping all other parameters the same. This matches very well to
the low-frequency PSD hump in the Mid and High bands, although
it does not match the significantly higher amplitude of the Low band
since this remains a total propagation model. However, the rest of the
power spectrum is completely unmatched as the new, less centrally
peaked emissivity means that more of the emission arises from larger
radii, so the PSD is weighted more to lower frequencies. In effect,
the emissivity defines an envelope that suppresses all power above

0.5–1 Hz (see the appendix of AU06 for an energy-independent
treatment).

6.2 Different viscous frequencies, same radial range

The viscous parametrization of ID11 assumed so far gives a maxi-
mum possible peak frequency of fvisc(ri) = 8.5 Hz, although the finite
width of the Lorentzians means that there is some power of even
higher frequency generated near ri. However, this high-frequency
variability is suppressed, as the emissivity profile prevents these
radii from producing a significant proportion of the total luminos-
ity.

Increasing the maximum viscous frequency associated with the
flow from ri would instead allow the PSD to extend to higher fre-
quencies, while maintaining a gravitational emissivity. By diverging
from B = 0.03 and m = 0.5, we will break the fQPO–fb relation, but
we nevertheless explore this in order to better understand the effects
of varying the viscous frequency prescription.

We first maintain the size scale of the region (ro = 14, ri = 2.5)
and emissivity (γ = 3 with the SF boundary condition) so rSH stays
constant at 5.4, but we now fit B and m such that the PSD amplitudes
at f > 8 Hz are approximated. This yields B = 250.00 and m = 3.95.
This keeps fvisc(ro) tied to fb, but now gives fvisc(ri) = 3 × 103 Hz.
We see in Fig. 5(b) that, although it cannot match the peak structure
seen in the data, this viscosity prescription can produce the observed
high-frequency power. However, it has no physical motivation.

6.3 ADAF viscous frequencies, large radial range

The transonic ADAF models do make physical predictions about
fvisc(r), predicting B = 94.87 and m = 1.21 for α = 0.1 (Narayan
et al. 1997). The very high ion temperature of the ADAF means that
the sound speed and hence the radial velocity is high, so a much
larger radial scale is required to produce the low-frequency break
observed. We find a best fit of ro = 140 and ri = 6, which gives
rSH = 16. The PSDs produced by this very different parameter set
(Fig. 5c) are indeed equivalent in all essential features to those of the
standard size scale assumed in Fig. 5(b), due to the similar viscous
frequency ranges spanned by the models.

This is a key degeneracy. Without any external information to set
the viscous frequency prescription (such as assuming that the QPO
is set by Lense–Thirring precession) then the size scale of the region
cannot be determined from the PSD. The data do show time lags
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Figure 6. High–Low band time lags for the data (crosses) and models (circles). Green (red) crosses indicate the High band lagging the Low band (or vice versa).
Black (purple) circles indicate the High band lagging the Low band (or vice versa). Solid magenta lines indicate the analytic prediction for the low-frequency
lag detailed in the text. Left-hand panel (a): Fiducial model with γ = 3 and b(r) = 3(1 − √

ri/r). Corresponding PSDs in Fig. 5(a). Middle panel (b): Viscous
frequency parameters have been altered so that fvisc(ri) is now 3 × 103 Hz, allowing a match to the high-frequency power. Corresponding PSDs in Fig. 5(b).
Right-hand panel (c): Viscous parameters set such that the size scale is drastically different to panel (b) but the same PSD shape is found, illustrating the
degeneracy between the frequency prescription and the radial range of the flow. Corresponding PSDs in Fig. 5(c).

between bands, however, so we now explore whether those time
lags can break this degeneracy.

7 TIME LAG S

So far we have only investigated which elements of the observed
PSDs can be replicated by this energy dependent model. However,
cross-spectral statistics including time lags can also be extracted
from our simulations. These give additional information to that
contained in the power spectrum; a good match to the PSDs does
not necessarily imply a good fit to the cross-spectral lag (and vice
versa), so any complete energy-dependent model must match both
the power spectra and energy spectrum simultaneously with the
time lags.

Figs 6(a)–(c) show the time lags for each of the three power
spectra shown in Figs 5(a)–(c), all of which used the physically
motivated emissivity with γ = 3 and the SF inner boundary condi-
tion. It is striking that the fiducial prescription (panel a: B = 0.03,
m = 0.5, ro = 14, ri = 2.5), which has an excellent match to the
low-frequency Mid- and High-band power spectra (Fig. 5a), also
has an excellent match to the low-frequency lags (Fig. 6(a)). This
frequency prescription came from fitting the fQPO–fb relation in
ID11, so the good match to the low-frequency lag amplitude there-
fore provides additional support for the assumed Lense–Thirring
origin of the QPO. However, this model completely fails to match
the lags above 2 Hz, because frequencies with f > fvisc(rSH) ≈ 2 Hz
are produced only in the hard region. For frequencies above 2 Hz,
the variability contribution in both bands therefore comes entirely
from the hard region, so there are no spectral lags even though the
fluctuations themselves are lagged.

Conversely, the viscosity prescription that gives higher frequen-
cies over the same size scale can mostly match the PSD (Fig. 5b)
but underpredicts the lags at all frequencies (Fig. 6b). This under-
prediction in the lag occurs because the viscous speed in the flow
goes as v(r) = rfvisc(r). Compared to the fiducial prescription, fvisc(r)
is now higher (so v(r) is faster) for all r, resulting in shorter lags.
This prescription does produce significant lags up to a higher fre-
quency, however. This is because we now have fvisc(rSH) = 50 Hz,
so fluctuations slower than this are found in both the soft and hard
regions, giving measurable lags at these frequencies.

The larger size scale ADAF model (Fig. 6c) produces very similar
lags to those of Fig. 6(b), highlighting the fact that degeneracies
on size scale can remain even when incorporating time lags. We

illustrate here why this occurs using a physically intuitive derivation
of the maximum lag between the High and Low bands, but in
Appendix A we extend this to all frequencies using the formalism
of IK13.

The radial velocity v(r) is not constant, so the raw time lag,
τ 0 �= rRg/fvisc(ro). The lowest frequency component, fo = fvisc(ro),
propagates down through the entire flow. Light curves are calculated
by weight-summing over the flow, and all fluctuations therefore
appear to initiate at some radius 〈rS〉 as seen in the Low band, and
arrive some time later at some radius 〈rH〉 as seen in the High band.
〈rS〉 and 〈rH〉 are the emissivity-weighted averages of all radii in the
soft and hard regions, respectively, so that

〈rS〉 =
∫ ro

rSH
r2ε(r)dr∫ ro

rSH
rε(r)dr

, 〈rH〉 =
∫ rSH

ri
r2ε(r)dr∫ rSH

ri
rε(r)dr

. (16)

The maximum raw lag is then the propagation time between these
radii

τ0 =
∫ 〈rS〉

〈rH〉

dr

rfvisc(r)

= 2πRg

Bc

[ 〈rS〉m+3/2

m + 3/2
− 〈rH〉m+3/2

m + 3/2
+ 〈rS〉m

m
− 〈rH〉m

m

]
. (17)

This lag is then diluted by the soft SED contribution in the High band
and the hard SED contribution in the Low band (Uttley et al. 2014),
so we obtain

tan[2πfoτdil] = sin(2πfoτ0)(1 − XLXH)

XH + XL + cos(2πfoτ0)[1 + XLXH]
, (18)

where XH is the ratio of integrated soft flux to integrated hard flux
in the High band, and XH is the ratio of integrated hard flux to
integrated soft flux in the Low band. The predicted τ dil values for
the maximum lags in Figs 6(a), (b) and (c) (indicated by the solid
magenta lines) are 0.09, 0.009 and 0.009 s, respectively, which are
generally consistent with the simulation results. Higher frequencies
demand a full cross-spectral treatment since they are more prone to
interference (see appendix A and IK13); however, this simple result
confirms that two very different size scales/viscosity prescriptions
can predict indistinguishable lags.

Fundamentally, the larger size scale and higher velocity of the
ADAF prescription (Fig. 6c) is degenerate with the smaller size
scale and lower velocity of the Fig. 6(b) prescription, as both are
tuned to match the breaks in the PSD. This is a direct consequence
of assuming that the fluctuations are generated and propagated on
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the tvisc(r) time-scale. However, there are some models that do not
require that the propagation and generation time-scales are the same.
We explore these below.

7.1 Decoupling the time-scales of propagation and generation

So far, we have assumed that fluctuations are produced on the same
time-scale at which they propagate. We now decouple the generating
time-scale from the propagation time-scale in order to determine the
effect this has on the time lags. Section 3 argued that the largest scale
coherent fluctuations are generated over distances h ∼ r, so that the
maximum coherent time-scale was tvisc(r). However, considering the
flow over all azimuths means that a better estimate for the generating
time-scale would be the time-scale of fluctuations with are coherent
around the entire annulus, i.e. 2πtvisc(rn) = 2π/fvisc(rn), rather than
1/fvisc(rn) as assumed thus far. equation (1) then becomes

| ˜̇m(rn, f )|2 ∝ 1

1 + [2πf /fvisc(rn)]2

[
sin(πf dt)

πf dt

]2

, (19)

while the propagation time-scale remains dτ n = drn/rnfvisc(rn).
We assume the fiducial source size with ro = 14, ri = 2.5 and

rSH = 5.4, and attempt to find a viscosity prescription, which re-
covers a PSD similar to that in Fig. 5(b) (which has B = 250 and
m = 3.95). As the generating frequency is now fvisc(rn)/2π, instead
of fvisc(rn), we start by dividing B by 2π and leaving m unchanged,
but the altered effect of smoothing means that there is a better
match for slightly different parameters, with B = 2π × 51.83 and
m = 3.35 and Fvar = 0.69. Fig. 7 shows the PSD and lags from this
model. Interestingly, this has an even worse match to the observed
lags than Fig. 6(b), because the lags are even shorter relative to the
generating time-scale than before.

An alternative approach one might consider would be to gener-
ate fluctuations on the 10tkep(r) time-scale suggested by GRMHD
simulations (Fragile & Meier 2009; Hogg & Reynolds 2017), while
still propagating on tvisc(r) set by the fQPO–fb relation. However, gen-
erating on a 10tkep(r) time-scale would require an inner flow radius
much smaller than the ISCO size of 2.5Rg in order to produce the
required high-frequency power, so we do not explore this here.

In summary, the only case that approaches both the low-frequency
PSD and low-frequency lags is the fiducial model in Figs 5(a)
and 6(a), whereby the generating and propagation time-scales are
set equal to tvisc(r), derived from assuming that the QPO originates as
Lense–Thirring precession of the hot flow. However, this model fails
to explain the observed power at higher frequencies. This higher
frequency power is also concentrated in a distinct ‘hump’ around
2 Hz, unlike the smooth PSD produced in the propagation models
with faster viscous time-scales. Pure propagation models with self-
similar fluctuations cannot produce such humps, and neither can
they explain how the Low-energy band can have more power than
the Mid and High bands at most frequencies. We now explore a new
family of models, which allow the fractional variability to vary with
radius, to see whether these can reproduce those essential features
of the data.

8 VA R I A B I L I T Y A S A F U N C T I O N O F R A D I U S

The power spectra of the data are inherently ‘bumpy’, and this is
a generic feature in both Cyg X-1 (Churazov, Gilfanov & Revnivt-
sev 2001; Axelsson et al. 2008; Torii et al. 2011; G14) and other
sources, such as GX 339-4 (Nowak 2000). Veledina (2016) proposes
an idealized model to explain the bumpy PSDs from the interfer-
ence of two radially separated, lagged Compton continua. However,

(a)

(b)

Figure 7. Comparison to data for model where the time-scale for fluc-
tuations generation is 2πtvisc(rn) instead of the usual tvisc(rn), while the
propagation time remains dτ n = tvisc(rn)drn/rn. Top panel (a): High, Mid
and Low band PSDs. Colours as in Fig. 5. Bottom panel (b): High–Low
band time lags. Colours as in Fig. 6.

our results so far have shown that it becomes much more difficult
for interference to produce the observed peaks if we consider the
extended nature of the source and the generation of fluctuations at
all radii. Alternatively, R16 suggest that the hump structure can be
produced by considering fluctuations in the truncated thin disc at ro.
However, the frequencies of these humps at 0.2 or 2 Hz are not easily
consistent with any expected thin disc time-scale. Instead the hump
frequencies are more compatible with the viscous time-scale within
the flow itself. We therefore adapt our radially stratified model to
allow enhanced variability at specific radii in the flow, in order to
reproduce the observed PSD structure.

We keep the fiducial prescriptions for the viscous frequency
(B = 0.03, m = 0.5, ro = 14, ri = 2.5), and emissivity (γ = 3
and the SF boundary condition) as these match well to the observed
low-frequency hump. Fvar is then allowed to vary with radius, so
that the additional variability can be incorporated.

We first assume that there is enhanced turbulence at a specific
radius rα , and derive this radius from the viscous frequency of
the second peak in the PSD, i.e. fvisc(rα) = 2 Hz. From this we
obtain rα = 5.5, placing it at the inner edge of the soft region since
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(a)

(b)

Figure 8. The fiducial model (B = 0.03, m = 0.5, ro = 14., ri = 2.5
γ = 3 and the SF inner boundary), with additional variability at rα such that
Fvar(rα) = 14. Top panel (a): High, Mid and Low band PSDs. Colours as in
Fig. 5. Bottom panel (b): High–Low band time lags. Colours as in Fig 6.

rSH = 5.4. All annuli in the flow apart from the one containing
rα have Fvar(r �= rα) = 0.52. The one that contains rα requires
Fvar(rα) = 14 in order to match the amplitude of the 2 Hz peak in
the Mid-band PSD.

Fig. 8(a) shows that this additional power produces a divergence
of the PSDs in different energy bands, reaching a maximum ampli-
tude difference at fvisc(rα) = 2 Hz. However, it is worth noting that
since this is a log–log plot, the Mid and High bands are actually
much less distinct than the Low. The divergence arises because rα

is situated close to rSH, so only a small fraction of the soft region
is affected by this additional variability, whereas it all propagates
through the hard region. The Mid and High bands sample mostly
from the hard region, while the Low band samples mostly from the
soft region, resulting in this deficiency in power at high frequencies
in the Low band.

Adding variability at rα also does not reproduce the desired
‘hump’ structure at 2 Hz. Instead the model PSDs are smooth from
fb to 2 Hz. This is due to propagation, since the noise generated in
the soft region propagates coherently to rα , and so adds construc-
tively to the additional noise. To obtain the observed decrease in the
PSD from 0.3–1 Hz requires that fluctuations are damped as they

(a)

(b)

Figure 9. The fiducial model (B = 0.03, m = 0.5, ro = 14., ri = 2.5 γ = 3
and the SF inner boundary), with additional variability at rα and rβ , such
that Fvar(rα)=9 and Fvar(rα)=166. Top panel (a): High, Mid and Low band
PSDs with colours as in Fig. 5. Bottom panel (b): High–Low band time lags
with colours as in Fig. 6.

propagate, even more strongly than the smoothing in equation (2)
(see also R17).

The enhanced fluctuation power at rα also underpredicts the high-
frequency power above 2 Hz, which rises to a third hump at 8 Hz.
This third Lorentzian peak is commonly seen in the power spectra
of Cyg X-1 (Pottschmidt et al. 2003; Axelsson et al. 2008; Axels-
son & Done, in preparation), and potentially in other sources (e.g.
GX 339-4; Nowak 2000) indicating that the process driving this
additional noise may be a fundamental physical mechanism in the
Comptonizing region.

We therefore add a second enhanced variability component at rβ

with amplitude Fvar(rβ ) to match the third Lorenzian peak at 8 Hz.
However, rβ cannot now simply be derived from fvisc(rβ ) = 8 Hz
due to the increased effects of interference. Instead we fit for this,
and find a best fit to the Mid-band PSD for these parameters of
Fvar(rβ ) = 166 and rβ = 2.7. The resulting PSDs are shown in
Fig. 9. The Mid-band power spectrum is now fairly well matched
(apart from the dip between 0.3–1 Hz), as are the lags, but the Low-
and High-energy PSDs are far from the observed data.
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These results collectively support a model, which relies on addi-
tional turbulence at characteristic positions in the flow to produce
the high-frequency observed power. However, certain key features
have yet to be reproduced. The models so far have assumed that all
variability from the outer regions is propagated, uninterrupted, into
the inner regions such that equation (3) is applicable throughout the
flow. However, the observed drop in power in the 0.3–1 Hz requires
damping of the fluctuations. We now explore whether this can also
finally reproduce the dominance of the Low-energy power spectrum
over the High and Mid bands, whilst maintaining the lags of Fig. 9.

9 DAMPED SOFT VARIABILITY

The observed dominance of the Low-energy power has been seen
in previous studies of Cyg X-1 (G14), as well as in other BHBs,
including SWIFT J1753.5-0127 and GX 339-4 (Wilkinson &
Uttley 2009), so it is a generic feature of the data.

Total propagation has so far prevented the Low-energy band from
having more variability power at any frequency than the High band,
since the low-frequency variability power dominating the Low band
modulates the high-frequency power, which dominates the High
band. To suppress the transfer of low-frequency power into the
High band then requires that some fraction of the variability power
in the soft region fails to propagate into the hard region. However,
we also require that the coherence between the fluctuations in each
region is maintained. The soft variations must therefore map on to
the inner-region variability after propagation, although with smaller
amplitude and a time delay.

Physically, unpropagated noise could arise if part of the variability
comes from disc seed-photon fluctuations. If the soft Comptoniza-
tion region becomes optically thick then it would shield the hard
Comptonization region from this variability component. Alterna-
tively, part of this seed photon variability could be produced by
a turbulent, clumpy transition between the truncated disc and hot
flow, perhaps induced by instabilities in a shearing layer between
the Keplerian disc and sub-Keplerian flow. These clumps might then
evaporate or be shredded by the MRI turbulence as they propagate
inwards.

We model these effects generically by suppressing the amplitude
of the propagated fluctuations by a factor, D, at rSH, and assume that
the generated fluctuations within the hard region are also smaller by
this factor than those generated in the soft region. For annuli without
enhanced variability (r �= rα , rβ ), we therefore have F H

var = F S
var/D.

We use the fiducial frequency prescription (B = 0.03, m = 0.5)
and size scale (ro = 14, ri = 2.5) as this was the case that best approx-
imated the observed lags. Fig. 10 shows the best fit found when the
model is extended to include the free parameter,D. An optimal frac-
tional variability of F S

var = 0.54 is found on a simulation which also
has additional variability at the two characteristic radii of rα = 5.5
and rβ = 2.6 where F S

var(rα) = 35 and F H
var(rβ ) = 660. The optimal

suppression factor is found to be D = 60. In Fig. 11, we display the
best-fitting Fvar profiles of Sections 8 and 9 for ease of comparison.
Using this parametrization, we find the best approximation yet for
the relative amplitudes and shapes of the PSDs in each energy band,
although the difference in low-frequency power between the Low
and Mid/High bands is still slightly underestimated.

However, Fig. 10(b) shows that the simulated lags are now
a poor match to the data, severely underestimating those which
are observed, particularly at low frequencies. This is because the
low-frequency fluctuations are now highly damped, so they do not
propagate sufficiently into the hard region for the cross-spectral

(a)

(b)

Figure 10. Model as in Fig. 9, now with additional soft-component vari-
ability, which is suppressed upon propagation. See the text and Table 2 for
parameters. Top panel (a): High, Mid and Low band PSDs. Colours as in
Fig. 5. Bottom panel (b): High–Low band time lags. Colours as in Fig. 6.

lags to be significant. However, this prescription does reproduce the
shape of the 2 Hz ‘step’ in the lags, further suggesting the presence
of specific radii in the flow, which produce enhanced variability.

The other key shortfall of this model lies in the magnitudes of
F S

var(rα) and F H
var(rβ ). Large magnitude variabilities such as these

cause the corresponding light curves to become negative in some
cases, which is clearly unphysical. Instead future models (as in
Mahmoud & Done, in preparation), will incorporate smaller en-
hanced Fvar values and an adapted emissivity so that this smaller
variability can be transmitted into the simulated light curves. How-
ever, the results we have shown here stand as a proof of concept
that a non-uniform variability profile is a key element in the timing
behaviour of BHBs.

1 0 C O N C L U S I O N S

We build a full spectral-timing model of fluctuations propagating
down through a two component Comptonization region in the BHB
low/hard state. We systematically explore the effects of changing
the model parameters on the energy dependent PSD and lags, and
compare these to some of the best available data from Cyg X-1. We
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Figure 11. The absolute fractional variability profiles used in the models
for Figs (8)–(10). The green and turquoise shaded regions denote the soft and
hard radial ranges of the flow, respectively. The dashed red line denotes the
Fvar profile of the model with enhanced variability only at rα (Fig. 8). This
radius is fixed such that fvisc(rα) = 2 Hz, at the second hump in the observed
PSD, while Fvar(rα) here is a free parameter. The dotted purple line denotes
that for the model with enhanced variability at rα and rβ (Fig. 9). For this
case, rα , rβ and their amplitudes, Fvar(rα) and Fvar(rβ ), are allowed us to
be free due to the complications of interference. The solid black line is the
Fvar(r) profile for the model of Fig. 10, with rα , rβ , Fvar(rα) and Fvar(rβ ) all
set free. This model also includes damping of soft fluctuations propagating
into the hard region and suppression of variability in the hard region, by a
factor D, also a free parameter.

have fit to data only above 3 keV so that it is dominated by the flow,
not by the intrinsic disc emission. The main results of this study can
be summarized as follows:

(i) The viscous frequency parametrization is degenerate with the
radial size scale of the Comptonizing region. Time lags do not break
this degeneracy without some external constraints from estimates
of the truncated disc radius e.g. from spectral fitting of the broad
iron line, a Lense–Thirring origin of the QPO and/or light travel
time lags. All of these support the ID11 prescription with B = 0.03
and m = 0.5, and so require that the low/hard state modelled here
has an inner disc truncation radius of ∼14Rg.

(ii) Coupling this to a standard emissivity with γ = 3 and an
SF inner boundary condition alone cannot produce the observed
PSD using these parameters from a self-similar propagation model.
This emissivity weights the observed power strongly to larger radii
and hence lower frequencies, such that the significant variability
observed above 0.5 Hz cannot be produced by this viscosity pre-
scription alone.

(iii) Additional high-frequency power can only be produced in
these models by assuming that there is enhanced turbulence within
the flow, varying as a function of radius. This is also likely required
to replicate the ‘steps’ in the lag-frequency spectrum.

(iv) The PSD shape at all energies is emphatically non-
monotonic, with a distinct dip in variability power between a low-
frequency peak at 0.2 Hz and one at 2 Hz in these Cyg X-1 data.
This distinct dip cannot be produced in any pure propagation model,
and requires that variability from the outer flow is damped at some
characteristic radius (or radii; see also R17).

(v) The commonly observed low/hard state feature of Low-
energy band dominance of the PSD at low frequencies requires
that damping is included in the physical model. Some of the turbu-
lence generated in the outer regions of the flow is not propagated

down into the inner regions of the flow. However, this damping also
suppresses the lags.

Our work adds to a growing understanding that the Comptoniz-
ing region found in hard-state BHBs – far from being spectrally-
homogeneous and smoothly variable – is almost certainly stratified
in both its spectrum and its variability (Wilkinson & Uttley 2009;
Veledina 2016; Basak et al. 2017; R16; R17). Clearly there are
specific radii in the flow at which the fluctuations are enhanced
and/or damped. These could be physically associated with the bend-
ing wave radius from a misaligned spinning black hole (Fragile &
Meier 2009; Ingram et al. 2009), and/or the radius at which the jet
is launched. A better understanding of the PSD and lags mean that
we should be able to observationally trace the radii at which this
physics operates.

However, even with these additional model features, the energy-
dependent PSDs and lags cannot be fit simultaneously with a two-
Compton component spectral decomposition. None the less, what
we develop here is a flexible framework in which to construct a full
spectral-timing model for the data. In future work, we will modify
this model to include more detailed spectral decompositions with
three Compton components, which have been suggested by the
most sophisticated spectral fits (Yamada et al. 2013). We will also
explore the effect of introducing a distinct fluctuation time-scale at
the disc-flow interface, to better approximate the variability in the
potentially unstable disc-flow transition layer.
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Di Salvo T., Done C., Życki P. T., Burderi L., Robba N. R., 2001, ApJ, 547,

1024
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APPENDIX A : G ENERALISED LAGS

IK13 show that the PSD form in equation (14) can be adapted to
yield an analytic form for the cross spectrum between a low and high
band, �LH(f). For Ṁ(rn) with a mean of Ṁ0 and rms-normalization,
ignoring smoothing, this form becomes

�LH(f ) = 1

μHμL

N∑
n=1

[
w H

n w L
n PSDprop(rn, f )

+
n−1∑
l=1

(
w L

l w H
n e2πi
τlnf + w H

l w L
n e−2πi
τlnf

)

× PSDprop(rl, f )

]
, (A1)

Figure A1. Analytic (dashed blue line) comparison to simulated time lags
for unsmoothed total propagation model with B = 0.03, m = 0.5, ro = 14,
ri = 2.5, γ = 3, b(r) = 3(1 − √

ri/r).

where

μL =
ro∑

rn=ri

Ṁ0w
L
n and μH =

ro∑
rn=ri

Ṁ0w
H
n . (A2)

The real and imaginary parts are, respectively then

Re[�LH(f )] = 1

μHμL

N∑
n=1

[
w H

n w L
n PSDprop(rn, f )

+
n−1∑
l=1

cos(2π
τlnf )
(
w L

l w H
n + w H

l w L
n

)

× PSDprop(rl, f )

]
(A3)

Im[�LH(f )] = 1

μHμL

N∑
n=1

n−1∑
l=1

[(
w L

l w H
n − w H

l w L
n

)
× sin(2π
τlnf )PSDprop(rl, f )

]
. (A4)

From these components the time lag is computed in generality
as

tan(2πf τmeas) = Im[�LH(f )]

Re[�LH(f )]
. (A5)

We show an example of this analytic lag in Fig. A1. Inconsistencies
with the simulation output arise from the finite number of simulation
realizations and the spatial resolution of the simulations.

APPENDI X B: A NA LY TI C CASE W I TH
SUPPRESSI ON OF SOFT VARI ABI LI TY

In the case of damping of the amplitude of the variability on prop-
agation from the soft to the hard region, equation (14) modifies
to

Pband(f ) = 1

μ2
C

N∑
n=1

[
w2

n

Pprop(rn, f )

d2
n

+ 2
n−1∑
l=1

wlwn

dldn

cos(2π
τlnf )Pprop(rl, f )

]
, (B1)

where

dm =
{

1 if rm < rSH,

D if rm > rSH.
(B2)
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The cross spectral components of equations (A3) and (A4) also
become

Re[�LH(f )] = 1

μHμL

N∑
n=1

[
w H

n w L
n

PSDprop(rn, f )

d2
n

+
n−1∑
l=1

cos(2π
τlnf )
(
w L

l w H
n + w H

l w L
n

)

× PSDprop(rl, f )

dndl

]
, (B3)

and

Im[�LH (f )] = 1

μHμL

N∑
n=1

n−1∑
l=1

[ (
w L

l w H
n − w H

l w L
n

)

× sin(2π
τlnf )
PSDprop(rl, f )

dndl

]
, (B4)

respectively.
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