Clustering in pursuit of temporal correlation for human
motion segmentation
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Abstract Temporal correlation is an important property of the video sequence. However, most
methods only accomplish the clustering of frames via the measurement of similarity between
frame pair, and the temporal correlation among frames is rarely taken into account. In
this paper, a method for clustering in pursuit of temporal correlation is proposed to
address human motion segmentation problem. Aiming at the video sequence, a one-
hot indicator vector is extracted from a frame as a frame-level feature. The description
of the relationship between the features is formulated as a minimization problem with
respect to a similarity graph. A temporal constraint in the form of a trace is imposed
on the similarity graph to capture the temporal correlation. On the premise of the non-
negative similarity graph, an optimal solution to the graph augments the relationship
between the selected features and their adjacent features, while suppressing its rele-
vance to the features that are far away from it in terms of the time span. Normalized
cut is implemented on the graph so as to give clustering results. The experiments on
human motion segmentation demonstrate the superior performance of the proposed
method in tackling the motion data.
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1 Introduction

Human motion segmentation divides a video sequences into a set of motion segments based on
the types of actions, and obtains a wide range of applications in activity recognition, video
retrieval and imitation learning [13]. At present, the accomplishment of human motion
segmentation is still faced with several challenges such as the lack of well-defined activity
segments and the ambiguity in motion primitives caused by the temporal variability in actions
[22].

Since human motion occurs in the form of consecutive frame samples, the segmentation of
the human motion can be considered as an unsupervised clustering problem concerning the
frames [14, 34]. The clustering largely depends on the relationship among the frames. In
particular, the similarity is crucial to the description of the relationship. As a result, some
methods concentrate on the construction of a similarity graph for the frames [20, 26, 32]. In
general, a graph can be established to express the similarity among the frames, and then the
segmentation on the video sequence is realized through implementing the normalized cut on
the graph. Benefiting from the fact that most of the frames from the same video clip have the
minimal within-cluster variation, the similarity among the frames can be clearly depicted by a
similarity graph, and the normalized cut on the graph thus provides an effective tool for the
solution to the clustering problem.

The construction of the graph has great impact on the segmentation results. Lv et al. take
the possibility of the transition from one frame to another frame as the measurement of the
similarity between frame pair, and further establish a similarity graph for the frames [26].
Vogele et al. introduce a neighborhood graph into the discovery of the self-similarity structure
inherent in the video sequence. The individual diagonal parts of the graph are used to
determine the activities [32]. Li et al. develop a subspace clustering method for the motion
segmentation [20]. The measurement of the similarity is replaced with the linear correlation
among the frames. In addition, a temporal Laplacian regularization with respect to the graph is
added to the solution so as to capture the order in the frames. Li et al. propose to model the
spatial layout of a person with the selected joints, and the variations in Euclidean distance
between joint pair during the movement constitute the graph for a motion segment [19].
Finally, the graph kernel is used to measure the similarity among motion segments, and the
temporal cut points are identified via the mergers of the motion segments.

It is obvious that the clustering on the graph facilitates the efficient identification of motion
segments to a large extent. However, during the construction of the graph, these graph-based
methods mainly focus on the similarity among the frames. It is difficult for them to directly
incorporate the temporal relationship among the frames into the graph. Since the frame
samples are in nature a time series, the frames within the short temporal domain are more
likely to be correlated with each other than within the long temporal domain. Moreover, in
general, an entire motion primitive is only limited to a short temporal domain or an individual
cycle. The frames that are far away from the current temporal domain should be excluded from
the local temporal domain. As a result, most methods employ the strategy of the sliding
window to handle the temporal neighborhood [10, 15]. The temporal cut points are further
determined within the sliding windows. The hard cut of the time windows is prone to
classifying the frames from the same motion primitive into different clusters.

In order to eliminate the error in the segmentation resulting from the lack of the temporal
constraint, we try to combine the measurement of the similarity with the temporal correlation
among frames under a framework. As a result, each entry of the graph not only reflects the
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similarity but also measures the temporal correlation. As opposed to the sliding windows, the
integration of temporal correlation into the measurement of the similarity leads to a soft cut of
the time windows. The determination of the temporal cut points actually results from the
tradeoff between the similarity and the temporal neighborhood. On one hand, with the
constraint of the temporal neighborhood, the clustering on the graph can resist against the
error in the similarities of features to some extent. On the other hand, a closed-form solution to
the graph can be derived under the proposed framework, which enables the efficient repre-
sentation of the relationship among features. To summarize, the contribution of the work falls
into three aspects:

* A one-hot vector is extracted from each frame sample as a frame-level feature. The
similarity among the frames is calculated through a bilinear similarity function with respect
to the one-hot feature vectors.

* A framework for the clustering in pursuit of temporal correlation is devised. Under this
framework, the temporal correlation is formulated as a constraint term in the form of trace
and is enforced on the similarity function.

* In the proposed framework, a graph is derived via the minimization of an objective
function with respect to it. In particular, the graph is given in the form of a closed-form
solution to the objective function. The normalized cut is implemented on the graph so as to
yield the clustering results, which are equivalent to the segmentation results.

The reminder of the paper is organized as follows. The related work is summarized in
section 2. In section 3, the methods for clustering in pursuit of temporal correlation are
presented. The experimental results are reported in section 4 with the conclusion in section 5.

2 Related work

There has been much work in the field of human motion segmentation, and a large number of
attempts are devoted to solving the problem. The human motion segmentation can be regarded
as a frame labeling problem. Among them, Fod et al. proposed to split the arm motion
sequence into video clips at the zero-velocity crossing points [8]. A gesture was defined by
the segmentation of the trajectory data with a set of threshold values [5]. Lin et al. casted the
motion segmentation as a binary classification problem. Each data point belongs to either a
segment point or a non-segment point [23]. Tao et al. devised a maximum correntropy based
image labeling framework for the measurement of the similarity between training images and
test images. According to the similarity, a label is assigned to a test image [28]. Furthermore,
Tao et al. proposed a method for large sparse cone non-negative matrix factorization to learn
the semantic parts of an image. The resemblances of the semantic parts are combined into a
score for a label [29].

How to measure the similarity between the frame pair plays an important part in segmen-
tation. Aoki et al. modeled the motion primitives as a Hidden Markov model (HMM), and then
it was employed to recognize motion segments [1]. Zhou et al. created a generalized dynamic
time alignment kernel as the measurement of the similarity between motion segment pair, and
it is integrated into the kernel k-means framework in order to determine the cluster centers. The
assignment of each motion segment to a cluster interprets the composition of a long motion
[35]. Lan et al. utilized the hierarchical clustering to extract the key poses. Most of motions are
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considered to be composed of these key poses, and they are grouped into the motion primitives
by the latent Dirichlet allocation. The similarity between a segment and a key pose is measured
to detect the segment points [18].

The information about the existing motion segments is beneficial for the segmentation. Lin
et al. roughly identify the motion segments by the velocity features. The HMM is further
utilized to reduce over-segmentation and refine the segmentation [21]. A support vector
machine (SVM) is trained with a group of actions, and then it is used to label the windows
of data. Based on the labeled sequences, a HMM created the motion templates and then
outputs the segment points [31]. Avgerinakis et al. extract the motion boundary activity area
for coarse localization of the activities, and further determine the precise activity boundary via
sequential statistical change detection [2].

The latent structure of the distribution of features is an important property of frames
originating from the same motion. Kruger et al. used region growing to split the video
sequence into distinct activities and then searched for the motion primitives by means of the
neighborhood graph-based similarity [16]. Gong et al. put forward the kernelized temporal cut
for temporal segmentation [9]. Baptisra et al. combined a group of linear state-space models
into a nonlinear system to represent the human motion. The temporal cut points are acquired
via the solution to the model [4]. Recently, the motion data is assumed to reside on a union of
multiple subspaces. If every cluster of frames can be accommodated with a subspace, the
human motion segmentation can be transformed into the subspace segmentation [20], and
subspace clustering methods are able to offer the solutions to segmentation [6, 7, 12, 24].
Especially, some subspace clustering methods were extended to deal with the time series.
Among them, Tierney et al. proposed to enforce a neighborhood penalty on the sparse linear
representation [30]. However, the detection of the difference between data pair is limited to a
pair of data next to each other, and it actually plays a role of one order derivative. It is
equivalent to smoothing over the linear representation in the temporal domain at the cost of
insensitivity to the drastic change in the data. Bahadori et al. introduced the warping-based
alignment deformation operators into the assignment of the data to the subspace [3]. Instead of
the temporal relationship, this method largely focuses on clustering the data in the case of the
deformation that happens to the time series. Tao et al. designed a method for nonnegative
matrix factorization under manifold regularization to explore the neighborhood relationship
among the image regions [27]. Aiming at the human motion problem, we try to exploit the
temporal neighborhood inherent in frames to address the motion segmentation problem under
the graph-based framework.

3 Proposed method

As shown in Fig. 1, our proposed method is composed of two components: (a) Frame-level
feature extraction and (b) similarity graph-based clustering. While the former part is in charge
of the description of frames, the latter part establishes the similarity graph for all frames, and
the motion segmentation is realized via the clustering on the similarity graph.

3.1 Frame-level feature for human motion

For a video sequence containing human motion, the features should be constructed as
the descriptors for frames. Here, a set of temporal words are employed to encode
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Fig. 1 Flowchart of the proposed method. a The binary masks are extracted from all frames. The Euclidean
distance transform is then implemented on the masks. &-means clustering on the results of the Euclidean distance
transform produces the one-hot vectors, which act as the frame-level features. This part is denoted by a red
bounding box. b The similarity graph is established based on the products of the frame-level features. The
clustering on the similarity graph yields the motion primitives. This part is denoted by a green bounding box

frames. First of all, a binary mask is extracted from each frame, and then the
Euclidean distance transform is implemented on these binary masks [11].
Considering the representative ability and the efficiency, k-means clustering is taken
as one-hot encoder. Resorting to k-means clustering, the results generated from the
Euclidean distance transform can further fall into a group of clusters. These clusters
constitute the temporal words. Each frame is assigned to a cluster, which is equivalent
to being encoded with the temporal words. A binary indicator vector labels the
assignment. As a result, these vectors in the form of the one-hot vectors serve as
frame-level features.

The entire procedure of frame-level feature extraction is illustrated by the red
bounding box in Fig. 1. It can be seen that it is mainly made up of three steps:
extraction of binary masks, the Euclidean distance transform over the masks and the
generation of the one-hot indicator vector. Note that each element of the one-hot
vector is either 0 or 1. In detail, a label 1 indicates that the result is classified into the
current cluster, while 0 represents a label that the result is out of the current cluster.
Therefore, it holds true that all frame-level features in the form of the one-hot vectors
are non-negative.

3.2 Measure of similarity
In general, it is taken for granted that the similarity between a pair of frame-level features

represents the correlation. A pairwise similarity function with respect to features can give the
measurement of similarity. Since a similarity function in the bilinear form offers an effective
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metric for the similarity [17], the measurement of similarity can be defined as a pairwise
function s as follows:

S(Xi,xj) :XiT'W'Xj? X;, X_,-eRdX' (1)

Where x; and x; are two arbitrary d-dimensional features. W € RY"*“ is a similarity metric
matrix. Considering that all of the frame-level features are the non-negative binary vectors, it is
reasonable for W to be an identity matrix I. As a result, the function s in Eq. (1) can be further
reduced to a simpler form.

S(xi,xj) :xl.T-I-xj :x,-ij (2)

Suppose that the features X =[x, X,+ 1, """, X;4 ,—1] from #th frame to (¢+ 7 — 1)-th frame are
gathered, the similarity matrix Z can be readily obtained by computing as Eq. (2) on all pairs of
features. Consequently, the similarity among the features can be expressed in the form of a matrix.

Z=X'X, X>0 3)

Due to the non-negative matrix X, Z>0 holds. Here, it is noticeable that Z e R" ™"
constructs a similarity graph that describes the similarity among features. It is illustrated by
the green bounding box in Fig. 1.

3.3 Combination of similarity and temporal correlation

In Eq. (3), it is obvious that the graph Z only takes the similarity of features into consideration,
whereas the temporal correlation is ignored. It is expected that Z not only reflects the similarity
but also incorporates the temporal correlation into itself. Hence, Z should be reconstructed so
as to satisfy the requirement of the combination of the similarity and the temporal correlation.

According to the above requirement of reconstruction, it is essential that a framework for
the combination should be devised. Under the framework, on one hand, the similarity among
the features can be sufficiently approximated by Z. On the other hand, the temporal correlation
among features can be captured through imposing a constraint on Z. Therefore, the require-
ment can be formulated as an objective function J(Z) with respect to Z as follows:

J(Z) = || Z-X"X|[; + \p(Z), s.t. Z>0 4)

Where the first term is an approximation term in the form of ¢, norm, and the second term
(Z) denotes a temporal constraint. A > 0 is a tradeoff parameter. As a result, the obtainment of
Z is converted into a problem defined by the objective function J(Z).

3.4 Temporal correlation

In terms of the time span, the adjacent frames often exhibit stronger correlation than the frames with
great temporal distance. This defines the concept of temporal neighborhood within the sequence. In
our method, the temporal correlation of the features largely concentrates on the temporal neighbor-
hood. Recalling the temporal constraint ¢(Z) in Eq. (4), it is required that the constraint is able to act
as a time window that confines the measurement of similarity to a limited time interval. For the
purpose of the temporal confinement, a simple yet effective way to design the temporal constraint is
proposed here.

p(Z2) = u(AZ) (5)


toby
Rectangle

toby
Rectangle


Where A € R" " is a weight matrix that plays a role as a filter in the temporal domain. The
trace of AZ is actually a summation of the products between the row vectors of A and the
column vectors of Z.

AIZ] A]Z,,
tr(AZ) = trace A2;21 . A2:Z” =Y AZ (6)
AnZI AnZn

Where A; denotes the i-th row vector of A, and Z; denotes the i-th column vector of Z
respectively.

The goal of capturing the temporal neighborhood can be reached by designing an appro-
priate weight matrix A. Hence, in detail, each entry in A should meet the requirement as
follows:

{Ai‘k:_l> I_T/ZSkSl+T/2> s.t. l,k: 1;27”'7’1 (7)

Ay =1, otherwise

Where 7> 0 controls the length of the time interval. As a result, the trace in Eq. (6) can be
further expanded in the form of elements as follows:

i—7/2-1 n i‘“’/z
r(AZ) =Y AZ; = S ( t:l/ Z i+ Yi=itr/2+1 Zfs"_Zz:i—T/z Z,,,-> (8)

Such setting of the temporal constraint paves the way for the subsequent temporal confine-
ment. In the case of non-negative Z, the minimization of Eq. (8) is equivalent to augmenting
the correlation with the adjacent features and suppressing the relevance to the distant features
simultaneously.

Both the minimization of the approximation error and the pursuit of the temporal
correlation can be accomplished simultaneously via the minimization of the objective
function J(Z).

Z = argming J(Z), s.t. Z>0 9)

Hence, the calculation of the matrix Z, which combines the similarity with the
temporal correlation, turns out to be an optimization problem. In detail, it is expanded
as follows.

Z = argming (|Z-X"X|; + Mr(AZ)), s.t. Z20 (10)

It is evident that the objective function J(Z) is a convex function. The derivative of J(Z)
with respect to Z forms a constraint formula for the solution.

dJ(Z) T A
—=7ZX'X+-A= Y 11
5 0, s.t 0 (11)

The solution to Eq. (11) yields Z*.

7" = max <XTX—%-A, o) (12)
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In this way, the solution Z* guarantees the integration of the temporal correlation into the
measurement of the similarity.

To investigate the effect of the temporal correlation on the similarity matrix, the proposed
approach is conducted on a group of frame-level features to obtain a tentative observation. In
detail, three video clips, each of which contains 498 frames, are drawn from Keck dataset.! They
are concatenated into a video sequence. The similarity matrix X”X is shown in Fig. 2(a), while its
counterpart Z~ calculated as Eq. (12) is shown in Fig. 2 (b).

As for the similarity matrix displayed in Fig. 2(a), it can be seen that not only the frames
belonging to the same video clip correlate with each other, but also the frames from different video
clips are strongly relevant to each other. The clustering easily leads to the ambiguity in segmentation.
According to Fig. 2(b), there only exists the correlation between frame pair along the diagonal line.
The temporal constraint enforces the time windows for the pursuit of the correlation to be shrunk
down to a local interval surrounding each frame. Hence, the relationship between a pair of frames
from different video clips can be eliminated, thereby diminishing the false correlations.

3.5 Normalized cut on similarity matrix

From the perspective of graph, Z* actually acts as an affinity graph. Therefore, once that the
similarity graph Z.* is derived, it is straightforward for normalized cut to be implemented on Z*
to get the clustering result.

4 Experiment and analysis

To verify the performance, the proposed method is carried out on the video sequences containing
human motion. At first, we elaborate on the dataset, the parameter setting and the criteria for
evaluation. Subsequently, the experimental results are presented and discussed. Finally, to further
evaluate the performance, our method is compared with several state-of-the-art graph-based clus-
tering methods, including sparse subspace clustering (SSC) [7], low rank representation (LRR) [24],
local subspace analysis (LSA) [33], least square regression (LSR) [25], ordered subspace clustering
(OSC) [30], aligned cluster analysis [3] and hierarchical aligned cluster analysis [17].

4.1 Dataset and implementation detail

As for the dataset, Keck action recognition dataset and Weizmann dataset” are chosen to serve as the
test data. In detail, Keck dataset consists of the actions of three subjects. Each subject performs 14
actions. In Fig. 3, three frames are drawn from three video clips respectively, each of which exhibits
a gesture different from the others. Weizmann dataset comprises the video sequences of 9 subjects.
Among them, each man finishes 10 actions. As a public dataset, it is available for motion
segmentation and action recognition. Likewise, Fig. 4 shows three frames from three different video
clips. These frames represent the components of different actions. To construct the data for test, a
collection of the action video clips are selected from the dataset at random, and they are concatenated
into a long video sequence. The human motion segmentation is implemented on these long video
sequences to discriminate each video clip against the others.

! http://www.umiacs.umd.edu/~zhuolin/Keckgesturedataset.html
2 http://www.wisdom.weizmann.ac.il/~vision/Space TimeActions.html
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Fig. 2 a The similarity matrix. b The similarity matrix with temporal constraint. Each entry of the matrix is
represented with the color to indicate its intensity. The stronger the correlation between feature pair is, the lighter
blue the entry is represented with, and vice versus

As far as the parameter setting is concerned, the dimension of the one-hot vector is 50. It is
equivalent to the number of clusters involved in the &-means. The tradeoff parameter \ is set to be
1.9 in Eq. (4). These parameters are fixed throughout all experiments. In addition, the length of time
interval 71in Eq. (7) has significant influence on the segmentation. As a result, the influence of 7on
the performance is investigated. In order to better evaluate the quality of human motion segmen-
tation, four criteria including the purity, the precision, the recall and F-measure, are introduced into
the evaluation.

4.2 Experimental results

Keck dataset The proposed method is evaluated against the other state-of-the-art work on Keck
dataset. As Fig. 5 shows, it is evident that our method achieves better results than the other methods
in terms of purity, precision and F-measure. In particular, in contrast to most methods, our method
achieves at least 20% improvement in purity. The advantage of the proposed method over the other
methods mainly results from the introduction of the temporal correlation into the graph. The graph
lays the foundation for the identification of the temporal cut points.

In addition, since the performance of segmentation varies with the number of clusters, a
group of video sequences consisting of different number of short video clips are taken as the
test data. In Fig. 5, a quantitative evaluation of the performance with respect to the number of

3 L TR » e S . T
(a) 1st action (b) 5th action (c) 10th action

Fig. 3 Three frames are drawn from the video clips of Keck dataset. These video clips contain different actions
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(a) lyova walk (b) denis wave2 (c) lena bend

Fig. 4 Three frames are drawn from the video clips of Weizmann dataset. These video clips contain different
actions of different men

clusters is also given. It can be seen that, as the number of clusters grows, the performances of
all methods deteriorate. Especially, as the cluster number exceeds 6, the performance of our
method drops dramatically. This is mainly attributed to that the mixture of more motion
primitives tends to cause more ambiguity in the segmentation. Besides, the symmetry gestures
also make it more difficult to segment the actions. However, despite the variation in the
number of clusters, our method can still maintain the advantage over the other methods in
terms of the purity, the precision as well as F-measure.

Weizmann dataset To further validate the clustering performance, our method is also conducted
on Weizmann dataset. Compared with Keck dataset, the actions in Weizmann dataset is more
complicated. Fig. 6 illustrates the quantitative measurements of the clustering performances on
Weizmann dataset. As for the measurement of the purity, our method outperforms the other methods
by a good margin. From the perspective of precision shown in Fig. 6(b), the ambiguities in the
clustering results generated by the other methods are more severe than our method. However, in
Fig. 6(c), it is also noted that, both ACA and HACA are able to achieve comparable higher recall

Ours
SSC

it

LSA

LSR

osc

ACA
0.7§ HACA

4 6 8 10 12
Number of clusters Number of clusters

(a) (©

Purity
Recall

|

i

Precision
F-measure

Number of clusters Number of clusters

Fig. 5 A quantitative evaluation of the performance on Keck dataset. a The purity varies with the number of
clusters. b The precision varies with the number of clusters. ¢ The recall varies with the number of clusters. d F-
measure varies with the number of clusters
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Fig. 6 A quantitative evaluation of the performance on Weizmann dataset. a The purity varies with the number
of clusters. b The precision varies with the number of clusters. ¢ The recall varies with the number of clusters. d
F-measure varies with the number of clusters

than our method. It implies that the proposed method builds up the clusters with more reliable
frames, but at the cost of excluding some frames from its true belonging.

As for the influence of the number of clusters on the performance, it is observed that, as the
number of clusters grows, the tendency of the performance towards degradation also happens
on Weizmann dataset. Nevertheless, like Keck dataset, most of the time, our method still
performs better than the other methods on Weizmann dataset.

4.3 Temporal constraint

To depict the relationship of an arbitrary data pair sampled from the data stream, it is important
that the measurement of relationship strike a balance between the similarity and the temporal
correlation. Under the proposed framework, the temporal correlation in the form of the
temporal neighborhood confines the measurement of the similarity to a local temporal domain.
It only allows the features in the proximity of the current feature to join in the measurement.
Meanwhile, the features that are distant from it are excluded from the measurement. To gain
more insights on the influence of temporal constraint on the segmentation performance, the
temporal constraint term is separated from the objective function in Eq. (9). It is then tested on
Keck dataset and Weizmann dataset respectively in order to give the quantitative evaluations.
In Table 1, the quantitative comparison of segmentation performances on Keck dataset is
given. It can be seen that, no matter how many motion primitives need to be segmented, our
method outperforms the method without the temporal constraint by a large margin.
According to the segmentation results on Weizmann dataset listed in Table 2, in terms of the
accuracy, our method performs better than the method without the temporal correlation.
However, it also deserves attention that, as the number of motion primitives grows, the method
without the temporal constraint is close to or even exceeds our method in terms of recall. Due
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Table 1 A quantitative comparison of segmentation performance on Keck dataset between the clustering
method without temporal constraint and our proposed method. In comparison, the better performance is indicated
with the bold font. (without: the clustering method without temporal constraint, with: the proposed method with
temporal constraint)

Metric Cluster=2 Cluster=4 Cluster =6 Cluster=8
without with without with without with without with
Purity 0.54 1.00 0.30 0.96 0.21 0.98 0.28 0.78
Precision 0.51 1.00 0.25 0.92 0.17 0.97 0.23 0.68
Recall 0.69 1.00 0.56 0.92 0.60 0.95 0.45 0.70
F-measure 0.59 1.00 0.35 0.92 0.26 0.96 0.30 0.69

to the constraint on the temporal coverage of features, in general, the number of features that
needs to be clustered is less than the method without the temporal constraint. In fact, to ensure
the purity of clustering, the frames with low confidences are often assigned to another cluster
that is not consistent with their true cluster. As a result, it is inevitable for our method to incur
the loss of discarding some frames from the same cluster. However, a delicate selection of time
interval can alleviate the loss to some extent.

4.4 Length of time interval

Since the length of time interval 7 plays an important role in capturing temporal correlation, it
is necessary to choose an appropriate 7 for the time interval. Based on the experiments on Keck
dataset and Weizmann dataset, the influence of the change in 7 on the clustering performance is
empirically observed. The corresponding experimental results are shown in Fig. 7. Note that,
instead of the concrete setting of 7, the length ratio 7/n is taken as a measurement of coverage
of temporal neighborhood. According to the experimental results, as far as the clustering
performances are concerned, the short time interval is more competent to pursue the temporal
correlation than the long time interval. This is largely attributed to that the features gathered in
a local temporal domain are more prone to being consistent with each other. The high
coherence of the neighboring features allows for the assignments of these frames to the same
cluster.

In addition, when the number of clusters changes, the influence of 7 on the segmentation is
also different from each other. When the length ratio is small, it is obvious that the accuracy of

Table 2 A quantitative comparison of segmentation performances on Weizmann dataset between the clustering
method without temporal constraint and our method. In comparison, each better performance is indicated with
the bold font. (without: the clustering method without temporal constraint, with: the proposed method with
temporal constraint)

Metric Cluster=5 Cluster=11 Cluster=17 Cluster =23
without with without with without with without with
Purity 0.54 0.91 0.44 0.69 0.29 0.63 0.24 0.50
Precision 0.35 0.85 0.26 0.60 0.10 0.52 0.13 0.40
Recall 0.52 0.75 0.39 0.42 0.39 0.32 0.25 0.23

F-measure 0.42 0.80 0.31 0.49 0.16 0.40 0.17 0.29
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Fig. 7 The measurement of the influence of the time interval on human motion segmentation when facing
different number of motion primitives from Keck dataset. a The purity versus length ratio. b The precision versus
length ratio. ¢ The recall versus length ratio. d F-measure versus length ratio

the segmentation on the fewer actions is higher than more actions. However, as Fig. 8 shows,
the extension of the time interval bridges the gap between the performances on different
number of clusters. Hence, compared with the long time interval, the selection of the short time
interval is in favor of the pursuit of temporal correlation.
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Fig. 8 The measurement of the influence of the time interval on human motion segmentation when facing
different number of motion primitives from Weizmann dataset. a The purity versus length ratio. b The precision
versus length ratio. ¢ The recall versus length ratio. d F-measure versus length ratio
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Table 3 The performance of the motion segmentation on Keck dataset in the case of different setting of the
tradeoff parameter A. (For the simplicity of presentation, “puri” stands for purity, “prec” stands for precision,
“reca” stands for recall, “Feam” stands for F-measure)

Cluster=5 Cluster=9 Cluster= 13

puri  prec reca Fmea puri prec reca Fmea puri prec reca  Fmea

A=04 037 038 065 0.63 053 047 054 054 0.57 050 053 052
A=09 052 049 055 0.63 045 041 054 054 0.57 051 053 052
A=14 059 053 060 0.63 050 050 062 054 063 053 056 052
A=19 059 053 060 0.63 0.67 060 064 054 056 050 053 052
A=24 059 053 0.60 0.63 068 062 064 054 059 048 050 052
A=29 061 054 061 0.63 063 055 057 054 051 045 047 052
A=34 059 052 059 0.63 059 054 059 054 059 049 052 052
A=39 061 053 056 0.63 063 054 054 054 046 039 042 052

4.5 The determination of tradeoff parameter

In Eq. (10), it can be seen that the tradeoff parameter A actually strikes a balance between the
similarity among frame-level features and temporal correlation. A exerts the influence on the motion
segmentation. For the sake of the determination of ), the performance of the segmentation in the
case of different setting of \ is evaluated, and the corresponding results are reported in Table 3 and
Table 4 respectively. Although the criteria such as purity, precision and recall fluctuate with the
change of ), it is noticeable that, regardless of the dataset, F-measure always keeps constant.
Considering that F-measure combines precision and recall, it reflects the overall assessment of the
performance. Hence, when A ranges from 0.4 to 3.9, the different setting of A does not have
considerable impact on segmentation. Besides it, as the number of clusters increases, it can be
observed that, for an arbitrary setting of A, the performance always degrades. Hence, A is not a key
factor for the segmentation performance.

5 Conclusion

A method for clustering in pursuit of temporal correlation inherent in the video sequence is proposed
to tackle the human motion segmentation. A one-hot vector is utilized to characterize a frame as the
frame-level feature. A framework is established to measure the relationship between an arbitrary pair

Table 4 The performance of the motion segmentation on Weizmann dataset in the case of different setting of the
tradeoff parameter A. (For the simplicity of presentation, “puri” stands for purity, “prec” stands for precision,
“reca” stands for recall, “Feam” stands for F-measure)

Cluster=12 Cluster= 18 Cluster = 24

puri prec reca  Fmea  puri prec  reca  Fmea  puri prec reca  Fmea
A=04 0.89 081 0.16 0.16 089 081 0.12 013 078 0.72  0.11 0.11
A=09 090 084 0.18 0.16 0.88  0.81 0.11 0.13 0.84 0.81 0.11 0.11
A=14 093 083 0.16 0.16 0.88 083 0.11 0.13 083 082 0.11 0.11
A=19 090 085 0.15 0.16 091 087 0.11 0.13 0.80 078 0.11 0.11
A=24 090 0.83 0.15 0.16 093 089 0.11 0.13 0.84 077 0.10 0.1
A=29 097 095 0.16 0.16 094 090 0.11 0.13 077 071 0.09 0.11
A=34 089 083 0.15 0.16 094 090 0.11 0.13 084 078 0.10 0.1
A=39 090 085 0.16 0.16 092 089 0.11 0.13 081 077 0.10 0.11
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of features, including the similarity and the temporal neighborhood. In this framework, the temporal
correlation is formulated as a constraint term in the form of trace with respect to the weight matrix. It
equips the similarity matrix with the ability to represent the time series. As a result, the measurement
of the relationship is transformed into an optimization problem with respect to the similarity graph.
The solution to the problem produces a graph, into which the temporal correlation is integrated. The
segmentation is accomplished via the normalized cut on the graph. Finally, the experiments on the
human motion segmentation validate the effectiveness of the proposed methods.

As for the future work, we will seek for a more effective approach to automatically determine the
length of time interval so as to further enhance the accuracy of human motion segmentation.
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