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Abstract

Two flow configurations, involving bilayers, are explored systematically: through an inclined

channel comprised of two planar surfaces in parallel alignment and down an inclined plane.

Both liquid layers are assumed to be perfectly immiscible and the lower rigid bounding sur-

face contains locally defined steep-sided topographical features – either a step-up/-down or

a trench/peak. A common governing equation-set based on the long-wave approximation and

depth-averaging is derived, embodying the more general case of a system of n-layers, and solved

numerically.

Results for the particular case of flow in a vertically aligned channel are found to be indis-

tinguishable from corresponding solutions in the literature; those for the case of a step-up and

non-zero Reynolds number having not been reported hitherto. New to this, the case of flow in a

inclined channel is investigated as is the situation when, in horizontal alignment, the channel’s

upper planar bounding surface moves with a constant speed inducing a shear flow.

Gravity-driven bilayer film flow reveals a number of interesting features dependent on the

fluid properties, the Reynolds number and the ratio of the upper to lower liquid layer thickness,

with parallels drawn to the practically relevant cascade/slide-coating mode of multi-layer thin-

film deposition. In the limit when both layers have identical properties the corresponding

equivalent single layer solution is recovered exactly.

Keywords: Bilayers, Interfacial and free-surface flow, Topography, Fluid mechanics,

Mathematical modelling, Numerical solution

1. Introduction

Film flow involving one or more contiguously adjacent liquid layers, in the presence of

surface topography, features in numerous processes of industrial relevance. These include, for

example, the manufacture of micro-scale sensors and devices, [1], thin-film transistors, [2],

OLED displays, [3], printed circuits, [4], and the formation of functional coatings comprised of

different layers deposited simultaneously, using slot-die and slide/cascade arrangements, [5]. It

has motivated numerous investigations, experimental and theoretical, over the past 30 years or

so as to the affect of surface topography on thin film flow, directed primarily at understanding
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the gravity-driven flow of single layer films open to the atmosphere and about which much

of the basic physics involved is now well understood. The topography explored include local,

trench/peak and step-up/-down features, and the same repeated periodically; experimental data

has remained scarce, [6–9], while modelling and prediction have relied heavily on lubrication

theory, [10–14], with the odd attempt made to address the problem more generally by solving

the Navier-Stokes equations, [15–17], or Stokes flow, [18–21].

Confined channel flow involving topographical features has received far less attention, yet

it clearly has a lot in common with its free-surface counterpart, particularly for bilayer flow

when the properties of the upper-most layer are negligible relative to the lower layer and thick

enough by comparison; in which case the influence of a planar upper channel surface on the

flow due to the presence of topography on the lower surface is negligible. A rare example of just

such a problem is found in the work of [22] and [23], concerning bilayer flow at the limits when

both layers have the same properties and when the upper one is effectively absent compared to

the lower one.

Lenz and Kumar [22] investigated steady bilayer flow in a channel containing step topog-

raphy on one of the confining surfaces, using lubrication theory to derive a single third-order

partial differential equation in order to describe the behaviour of the liquid-liquid interface.

Solving the equation numerically they found the density ratio and thickness ratio to influence

strongly the interface profile, with viscosity having a less significant effect. Comparison with

equivalent single-layer gravity-driven film flow revealed that capillary features are suppressed

at the interface under certain flow conditions. More recently, [23] extended the above work to

include inertial effects; using a diffuse-interface method. However, the work was only partially

successful in that they were able to explore flow over step-down but not step-up topographical

features. Their reason for this was attributed to either a lack of sufficient numerical resolution

or the choice of initial conditions. For multilayer flow the study of interest is the one by [24]

that considers the instability of thin liquid trilayers in a confined channel. Other related work

includes that of [25], who studied steady bilayer flow in a narrow channel of variable width

revealing that for a converging channel and low viscosity ratio the pressure increases every-

where monotonically with increasing viscosity ratio reaching a maximum before subsequently

decreasing, and of [26] who considered the inverse problem of determining the required channel

geometry to obtain a desired liquid-liquid interface profile.

Compared to the case of gravity-driven single layer films flowing down an inclined plane,

their bilayer counterpart can prove to be unstable, even in the absence of inertia, due to the

liquid-liquid interface present and triggered by the discontinuity in the fluid properties across

it. Sometimes referred to as an inertialess instability, it was first identified by [27], when

studying single layers, and as being related to the presence of a solid boundary close to the

associated liquid-gas interface. Kao [28, 29] was the first to investigate the stability of gravity-

driven bilayer thin films, for liquids having different viscosity, density and thickness, using the

approach adopted by [30]. Two modes of instability were identified: an interface and a free-

surface mode. It was also shown that when the lower layer is less viscous than the upper one

the flow becomes unstable, even at Re = 0. Loewenherz and Lawrence [31] further investigated
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the inertialess instability focussing on the influence of viscosity stratification, assuming both

liquids to have the same density, and arrived at the same conclusion. Subsequently, [32] showed

that instability can arise at any Reynolds number and/or upper layer surface and liquid-liquid

interfacial tension. Hu et al. [33] found, as expected, that when the upper layer is heavier,

the flow is always unstable; [34] subsequently extended these findings to the nonzero Reynolds

number case while [35] included the effect of wall deformability on the interfacial instability of

gravity-driven flow for two superposed Newtonian liquid layers.

More generally but related to the present investigation, [36] explored steady gravity-driven

bilayer thin film flow emerging from a channel and flowing down an inclined flat substrate. The

density of each layer was assumed to be the same, while viscosity and the surface and interfacial

tension were taken as being different. Using the model of [37], with an assumed semi-parabolic

velocity profile, they found that the surface-to-interfacial tension ratio, viscosity ratio and layer

thickness ratio significantly affect the free surface and interface profiles.

The current paper explores the similarities and differences between steady bilayer channel

and free-surface gravity-driven flow over locally specified step-up/-down and trench/peak like

topographical features using a model based on the long-wave approximation and derived in

the general sense for a system of n-layers. Section 2 introduces the flow configurations of

interest, details the mathematical formulation together with further simplifications based on a

depth-averaging approach and describes the associated method of solution. A comprehensive

set of results is presented and analysed in section 3 with comparisons drawn to the work of

others; finally, conclusions concerning the body of work are provided in section 4, together with

suggestions for future investigation.

2. Mathematical Model and Solution Methodology

Although the current focus is continuous bilayer flow, rather than restrict the formulation

of the governing equation set to just two layers, the more general case for n-layers is rigorously

derived. The liquid layers are assumed to be Newtonian and incompressible with constant den-

sity, ρ̂i, dynamic viscosity, µ̂i, and surface tension, σ̂i, where the subscript i = 1, 2....n denotes

the layer number from the bottom-most to top-most. In addition, the liquids are assumed to be

immiscible which, although a reasonable approximation from a modelling perspective, may not

always be the case encountered in practice. To simplify the problem further the selection of ap-

propriate scalings is important in order to obtain a consistent set of non-dimensional equations

of motion and continuity, that capture the key features of the flow. To this end the in-plane

length scale, L0, is taken as being proportional to the capillary length; the normal scale, H0,

is either the inlet thickness of the channel or the undisturbed total height of the contiguous

layers in the case of free-surface flow; the pressure scale is P0 = µ̂1U0L0/H
2
0 , the time scale

T0 = L0/U0 and the velocity scale U0 as provided in Appendix A.

The two-dimensional domains of interest are defined by a Cartesian coordinate system

(x, z); the positive x-axis is in the flow direction and the positive z-axis normal to it; the non-

dimensional time is denoted by t and inclination angle to the horizontal by θ. For illustrative
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purposes, Figure 1 provides cross-sectional, two-dimensional, schematic diagrams for the two

flow configurations explored; CON1 and CON2, for channel and free-surface flow, respectively

– restricted to the case of two layers for the sake of clarity.

The disparity between the in-plane and normal length scales in the form of the small long-

wave ratio ε = H0/L0 << 1, which in turn results in the ratio of the corresponding z- and

x-velocity (W0 and U0) scales being similarly small W0/U0 = ε << 1, can be exploited ad-

vantageously, [38]. In that the scaled governing Navier-Stokes equations can be simplified

considerably by ignoring terms of order O(ε2), reducing the dimensionality by one and making

the problem more tractable computationally. Accordingly, the non-dimensional equations of

motion and continuity for layer-i forming a sequence of n-layers reduce to:

ερiRe

(
∂ui
∂t

+ ui
∂ui
∂x

+ wi
∂ui
∂z

)
= −∂pi

∂x
+ µi

∂2ui
∂z2

+ ρiB sin θ, (1)

∂pi
∂z

+ ρiBε cos θ = 0, (2)

∂ui
∂x

+
∂wi
∂z

= 0, (3)

where ui(x, z, t), wi(x, z, t) are the non-dimensional velocity components in the x− and z-

direction, respectively, pi(x, z, t) is the non-dimensional pressure, ρi = ρ̂i
ρ̂1

and µi = µ̂i
µ̂1

, the ratio

of fluid properties in layer-i to their counterparts in the bottom-most layer; Re =
ρ̂1U0H0

µ̂1

is

the Reynolds number (ratio of inertia to viscous forces), B =
ρ̂1gH

2
0

µ̂1U0

is the gravity parameter

(ratio of gravity to viscous forces) and g is the standard gravity constant.

The upper and lower interfaces bounding layer-i are located at z = fi(x, t) and z = fi−i(x, t),

respectively; its corresponding thickness is hi(x, t) = fi(x, t) − fi−i(x, t) and there is a total

of (n + 1) interfaces, fi, i = 0, 1..n. For both flow configurations, the lower interface of the

bottom-most layer, f0, is a stationary rigid, planar surface that contains a topographical feature

of length lt and depth/height s0, and generally defined by the function f0(x) = s(x), which has

a non-zero value at the topography and zero elsewhere. For CON2 the upper interface of the

top-most layer, fn, is a free surface, while for CON1 it is a rigid planar surface, fn(x, t) = 1,

which can be either stationary or moving with a constant speed ut in the x-direction.

The problem specification is completed via imposition of appropriate initial and boundary

conditions. Initially, the interface separating each liquid layer, and the free surface in the case

of CON2, can be taken to be flat:

hi|t=0 =

{
hi0 − s, i = 1,

hi0, i = 2, 3..n,
(4)

where hi0 denotes the undisturbed uniform thickness of layer-i. Note that
∑n

i=1 hi0 = 1, because

the overall channel thickness or the undisturbed total asymptotic film thickness for free-surface

flow is used as the normal scale.

The inlet, x = 0, is considered to be far enough away from a topographical feature such
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that the flow is unidirectional there, while the liquid-liquid interfaces, and in the case of film

flow the free surface, are flat:

ui|x=0 = ui0 (z) , wi|x=0 = 0, hi|x=0 = hi0; (5)

the velocity profile ui0 (z) is derived as explained in Section 2.1.

Satisfaction of the kinematic and no-slip boundary condition at all internal liquid-liquid

interfaces, z = fi, i = 0, 1..n, requires that:

∂fi
∂t

+ ui|z=fi
∂fi
∂x
− wi|z=fi = 0, (6)

ui|z=fi = ui+1|z=fi , wi|z=fi = wi+1|z=fi . (7)

Note that for both CON1 and CON2, the solid-liquid interface of the bottom-most layer, z = f0,

being a stationary rigid surface, requires that:

u1|z=f0 = w1|z=f0 = 0. (8)

In the case of CON1 only, the upper interface of the top-most layer, z = fn, is also a rigid

surface which, without loss of generality, is taken to be moving such that:

un|z=fn = ut, wn|z=fn = 0, (9)

there; the limiting case of the upper rigid surface at rest being ut = 0.

Finally, balancing of tangential and normal stresses at internal liquid-liquid interfaces, z =

fi, i = 1, 2..n for CON2 and i = 1, 2..n− 1 for CON1, requires:

µi
∂ui
∂z
|z=fi = µi+1

∂ui+1

∂z
|z=fi , (10)

(pi − pi+1) |z=fi = −σi,i+1
ε3

Ca

∂2fi
∂x2

, (11)

where Ca = µ̂1U0

σ̂1
is the capillary number (the ratio of viscous to surface tension forces), σi,i+1 =(√

σi+1 −
√
σi
)2

is the interfacial tension, [39] and [40], and surface tension is scaled with that

of the bottom-most layer counterpart, i.e. σi = σ̂i
σ̂1

. For CON2 the upper interface of the

top-most layer is in contact with air, thus the interfacial tension there is equal to the surface

tension of the top-most liquid layer, σi,i+1 = σi; the air is assumed to have constant ambient

pressure, pn+1 = pA, as well as negligible density and viscosity, i.e. ρn+1 = µn+1 = 0.

For single layer flow, [12] derive the capillary length scale, L0, as proportional to H0

Ca
1
3

by

balancing the capillary and pressure forces. Similarly, for multilayer flow, as discussed in [22],

L0 can be obtained from the normal stress balance, equation (11), being a function of the fluid

properties and thicknesses of all the liquid layers. For simplicity, the expression of capillary

length for single layer flow is adopted in the present work, which for consistency and, when

necessary, comparison with the results of [22], [23] and [7], [14], is defined as L0 = H0

(3Ca)
1
3

and
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L0 = H0

(6Ca)
1
3

for CON1 and CON2, respectively. While these relationships suggest that the

long-wave approximation (H0/L0 << 1) is valid for small capillary numbers, Ca << 1, only,

as demonstrated in [17] good quantitative agreement with corresponding full Navier-Stokes

solutions can be achieved for values of s0 up to 1.

2.1. Depth-averaged form (DAF)

Although the long-wave approximation reduces the complexity of the Navier-Stokes equa-

tions, further simplification still is required to generate numerical solutions to the problems

of interest. A now common approach for this purpose is the integral-boundary-layer (IBL)

approximation, characterised by the assumption of a parabolic velocity profile across the liquid

layer, a method that can be traced back to [37, 41] who used it to investigate solitary waves in

a thin viscous liquid layer on a uniform vertically aligned surface. Subsequently, different vari-

ants of the methodology have appeared and been employed by [42–46] to tackle different thin

film flow problems. Alternatively, but akin to the IBL approach, depth-averaging the reduced

Navier-Stokes and continuity equations, [47], is employed in the present work, with the feature

that inertial effects are embodied as a matter of course. This depth-averaged form (DAF) is

free from the zero Reynolds number limitation imposed by the lubrication approximation, but

shares the same common restriction as the IBL method, in that the velocity across the film is

assumed to have a self-similar quadratic profile.

Integrating the continuity equation (3) for layer-i = 1, 2....n with respect to z from fi−1 to

fi, using Leibniz’s rule and applying boundary conditions (6), leads to the following form of

the mass conservation equation:
∂hi
∂t

+
∂ (hiūi)

∂x
= 0, (12)

where ūi = 1
hi

∫ fi
fi−1

uidz is the depth-averaged x-velocity.

Integration of the w-momentum equation (2) for layer-i = 1, 2..n (or i = 1, 2....n − 1 for

CON1) with respect to z from z to fi and applying boundary condition (11) yields:

pi − pi+1 = −σi,i+1
ε3

Ca

∂2fi
∂x2

+Bε cos θ (ρi − ρi+1) (fi − z) . (13)

Similarly, integrating the u-momentum equation (1) for layer i = 1, 2..n with respect to

z from fi−1 to fi, making use of Leibniz’s rule, the continuity equation (3) and boundary

conditions (6), gives:

ρiεRe
{
∂(hiūi)
∂t

+ ∂
∂x

[
hiū

2
i +

∫ fi
fi−1

(ūi − ui)2dz
]}

=

= −hi ∂pi∂x
+ µi

(
∂ui
∂z
|z=fi − ∂ui

∂z
|z=fi−1

)
+ ρihiB sin θ.

(14)

Knowledge of the velocity profile within the liquid layers is required to determine the disper-

sion,
∫ fi
fi−1

(ūi − ui)2 dz, and the friction,
∂ui
∂z

∣∣∣∣
z=fi

, terms present in equation (14); it is obtained

assuming lubrication like flow, i.e. the flow is slow enough that Re ∼ O(ε). In such cases the
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left hand side of equation (1) can be set to zero, namely:

∂2ui
∂ξ2

i

+ Ai = 0, (15)

where

ξi =
z − fi−1

hi
, Ai =

h2
i

µi

(
ρiB sin θ − ∂pi

∂x

)
. (16)

Equation (15) can now be integrated twice for layer-i with respect to ξi which, together with

use of boundary conditions (7), leads to the following expression for the velocity profile across

the layer:

ui = 6ūiξi (1− ξi) + ci−1 (1− ξi) (1− 3ξi) + ciξi (3ξi − 2) , (17)

written in terms of the average, ūi =
∫ 1

0
uidξi and interfacial, ci = ui|ξi=1 = ui+1|ξi+1=0, x-

velocities, which are related to Ai as follows:

ūi =
Ai
12

+
ci−1

2
+
ci
2
. (18)

The velocity profile (17) essentially assumes uni-directional flow based on a self-similar

quadratic velocity profile. For flow over trench or peak topography, provided the feature is

a simple configuration that does not give rise to a significant underlying eddy structure, this

assumption has been shown to yield accurate solutions, [48]. The approach followed is that

of [14] and [47] as used for single layer free-surface flow over topography and which produces

excellent predictions when compared with experimental and other corresponding numerical

results. Employing this velocity profile, the dispersion and friction terms are obtained as

follows: ∫ fi

fi−1

(ūi − ui)2 dz =
hi
5

(
ū2
i − ūici−1 − ūici +

2

3
c2
i−1 +

2

3
c2
i −

1

3
ci−1ci

)
, (19)

∂ui
∂z
|z=fi −

∂ui
∂z
|z=fi−1

=
6

hi
(ci−1 + ci − 2ūi) . (20)

Applying boundary conditions (8), (9) and (10) to the velocity profile (17) results in the

following tridiagonal linear system of algebraic equations for the interfacial velocities:
c0 = 0,

mici−1 + 2 (mi +mi+1) ci +mi+1ci+1 = 3 (miūi +mi+1ūi+1) , i = 1, 2..n− 1,

cn−1 + 2cn = 3ūn CON2 cn = ut CON1,

(21)

where mi = µi/hi. Solution of the tridiagonal matrix system (21) is readily obtained via

Thomas’s algorithm, [49]; for completeness, Appendix A provides illustrative examples for 1, 2

and 3 layers.

The 3n unknowns, hi, pi, ūi, i = 1, 2..n require 3n equations: for CON2 there are n equations

from each of (12), (13) and (14), while for CON1 there are n equations from (12), (14), n− 1
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equations from (13) and 1 from the presence of a prescribed rigid upper surface:

n∑
i=1

hi = 1− s. (22)

The problem is closed by specifying the inflow condition at x = 0 and assuming fully developed

flow far upstream and downstream of the topography:

hi|x=0 = hi0, ūi|x=0 = ūi0,
∂hi
∂x

∣∣∣∣
x=l

=
∂pi
∂x

∣∣∣∣
x=0,l

=
∂ūi
∂x

∣∣∣∣
x=l

= 0, (23)

where l is the length of the substrate and the inflow averaged velocities, ūi0, are calculated by

solving system (21) together with equation (18) as demonstrated in Appendix A.

Note that due to the rigid nature of the channel’s bounding surfaces, equation (22), it follows

that
∑n

i=1
∂hi
∂t

= 0; thus integrating the sum of the mass conservation equations with respect

to x from x = 0 to x, gives:
n∑
i=1

hiūi =
n∑
i=1

hi0ūi0 = q0. (24)

Accordingly, for flow in a channel the total flow-rate per unit width is constant, that is q0.

Note also that for steady flow the mass conservation equations for each layer-i, equation

(12), can be integrated with respect to x from x = 0 to x, giving:

hiūi = hi0ūi0 = qi0; (25)

hence in the case of steady flow (for both CON1 and CON2) the flow rate per unit width

in each layer is constant, that is qi0. Consequently, the system of governing equations can

alternatively be rewritten in terms of film thicknesses, hi, only. This is achieved by subtracting

the u-momentum equation for layer-(i + 1) from that of layer-i, equation (14), followed by

substitution of the pressure difference equations, (13), and averaged velocities ūi = qi0/hi; see

Appendix B.

2.2. Topography definition

Following previous authors (e.g. [50]; [11]; [12] and [14]), since the topography appears as

a function in the governing equations, it is defined via arctangent functions. Accordingly, one-

dimensional step-up/-down and rectangular trench/peak topographies are defined as follows:

s(x∗) = s0

[
1

2
± 1

π
tan−1

(
x∗

δ

)]
, (26)

s(x∗) =
s0

2 tan−1 lt
2δ

[
tan−1

(
x∗ + lt/2

δ

)
− tan−1

(
x∗ − lt/2

δ

)]
, (27)

where the coordinate system x∗ has its origin at the centre of the topography, x∗ = x−xt and δ

is an adjustable parameter which is used to specify the steepness of the side(s) of a topography.

Note that for CON1 with a step-down topography, in order to facilitate comparison with the
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case of a step-up, the scale H0 is defined as the thickness of the channel at outlet, x = l, rather

than at inlet as stated above; accordingly, the inflow boundary condition (23) is also replaced

with its outflow counterpart:

hi|x=l = hi0, ūi|x=l = ūi0,
∂hi
∂x

∣∣∣∣
x=0

=
∂pi
∂x

∣∣∣∣
x=0,l

=
∂ūi
∂x

∣∣∣∣
x=0

= 0. (28)

2.3. Method of solution

The unsteady DAF equations (12), (13) and (14), subject to the attendant boundary con-

ditions, are solved numerically, using a second-order accurate finite difference scheme on a

computational domain, x ∈ [0, l], subdivided into np staggered grid points and locations for

the different variables, see [51], but also with reference to thin film problems as described in

detail in [47, 52]. The pressure and layer thickness are stored at points in between those of

the averaged velocities. This arrangement is used as a remedy for the well-known checkerboard

instability which arises when the first derivative of pressure and the terms in the continuity

equation are calculated using central differencing when pressure and velocities are collocated,

[53]. A staggered grid system allows differencing of the first order derivatives of pressure, that

are specific to the DAF equations, to be calculated using two adjacent nodes rather than two

alternate ones as would be the case if a collocated mesh is used, [54]. Temporal discretisation

is performed using a fully explicit second-order predictor technique and an implicit β-method,

see [55], with β taken to be 3/4; this value provides a balance between accuracy and stability

as discussed in [47]. An automatic adaptive time-stepping scheme is incorporated into the solu-

tion strategy to optimise the time step selection in order to reduce the computational resource

requirements. The time-stepping procedure adopted uses the local truncation error estimates

(LTEs) obtained from the difference between predictor and corrector stages. Dirichlet bound-

ary conditions are assigned as exact values at the boundary points, whereas Neumann ones are

implemented by employing ghost nodes at the edge of the computational domain. The prin-

cipal overall solution strategy is based on a combination Full Approximation Storage (FAS)

and Full Multigrid methodology, as described in [14, 56], having been employed successfully to

solve several thin film flow problems, [57], [47] and [58], and shown to be accurate, efficient and

robust.

The solutions presented in Section 3, start from the initial condition of a flat free surface

and liquid-liquid interface, together with a fully developed averaged velocity. A typical time

step tolerance of TOL = 10−3 was used to adjust the magnitude of the time increment. A

computational domain of l = 100 is found to be sufficient to ensure fully developed flow far

upstream and downstream of the topography for both flow configurations. In addition, with

the focus being on bilayer flow, to ensure the mesh independence of the results generated,

numerical experiments were performed using different numbers of grid points for reference

cases of channel and film flow, with a step-down topography present, as a bench-mark. For

convenience the liquid properties of both layers were taken to be the same and to have the same

thickness, and |s0| taken to be 0.1 and 0.4. The percentage change in the capillary ridge height

that formed upstream of the topography for each solution was plotted against the number of
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mesh points employed, revealing a solution domain containing np = 1025 equally spaced mesh

points on the finest level of a multigrid hierarchy to be more than sufficient to guarantee mesh

independent results. Multigrid V-cycles with 5 grid levels were performed at each time step

to reduce residuals below 10−5 on the finest grid level. Note too, the topography steepness

parameter is set to 0.001, which in addition ensures solutions independent of δ, [14, 47].

3. Results and Discussion

The equations set and method of solution described in Section 2 enables an in-depth inves-

tigation to be performed of the two flow configurations of interest. As an aid to revealing the

effect of different topography, fluid properties, inertia and layer thickness ratio:

(i) In the main the figures provided do not show the entire solution domain but focus instead

on regions where there is significant free-surface and liquid-liquid interface disturbances

present to be of interest.

(ii) The liquid-liquid interface profile for flow over a step-down topography is characterised

by the presence of a capillary ridge upstream of the step while for flow over a step-up

the interface profile exhibits an upstream capillary trough. The height(depth) of the

capillary ridge(trough), hridge(htrough), is defined/calculated as the difference between the

maximum(minimum) interface height and the reference inlet interface height where the

interface is flat. The same definition/calculation applies to the corresponding free surface

capillary ridge and trough disturbances that arise in the bilayer film flow case.

3.1. Bilayer Channel flow: CON1

The flow depicted schematically in Figure 1(a), is explored first, the main focus being

the influence of inertia and the properties of the upper liquid layer relative to the those of

the lower one – in particular the limiting cases when the upper layer is negligible compared

to the lower one and when both layers have essentially the same properties, consistent with

the investigations of [22] and [23] – in terms of the topography type. In addition to their

investigations, the following scenarios are explored: CON1 when (i) 0 < θ < 90o, (ii) θ = 0 and

the flow is driven by a translating upper channel surface imparting a shearing motion to the

adjacent liquid layer and effectively mimicking what might occur in, for example, a multi-layer

slot coating device. The gravity parameter B =
ρ̂1gH

2
0

µ̂1U0

is calculated using velocity scale U0

(see Appendix A), the long-wave parameter ε is set to 0.1, the dimensionless interfacial tension

σ1,2 = 1 and the capillary number Ca = ε3/3 = 3.33 × 10−4. In this way the chosen value

of Ca ensures the model employed stays true to the underlying assumptions of the long-wave

approximation and is effectively removed from the governing equations, appearing rather in the

definition of the dimensional width of the topography which is measured in units of capillary

length. In the case of step-up and step-down topographies it is completely removed from the

analysis.
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The Reynolds number range investigated is chosen to be in the stable region consistent

with the findings of [59] so as to avoid the possibility of inertial instability. They investigated

the gravity-driven flow of two superposed layers of immiscible Newtonian liquid in a inclined

channel with planar side walls by extending the weighted residual approach proposed by [43] for

single-layer flows and taking into account second order terms in the long-wave expansion. The

work illustrates the complicated interaction between viscosity ratio and lower layer thickness in

determining stability thresholds. Their analysis requires that for neutral stability the critical

ratio

(
cot θ

Re

)
c

is always much smaller than 1.0 except when h10, the lower layer thickness, is

close to unity. Accordingly, the inclination angle of the channel is taken to be θ = 10◦ unless

stated otherwise. The stable Reynolds number range based on this ratio is Re ≤ 150. Note

that the DAF is prone to greater error with increasing Re and/or |s0| that can be quantified by

comparison with the corresponding N-S solutions and is reported for single layer gravity-driven

film flow in [47].

3.1.1. Gravity-driven vertically aligned flow

As a benchmark, the channel flow problem considered by [22] for the case Re = 0 is solved,

with step-down and peak topographical features compared; it is the former topographical fea-

ture that was used as part of the mesh independence study described in 2.3. Since the normal

component of gravity is omitted from their governing lubrication equations the results they

obtained are strictly correct for a channel that is vertically aligned only. Accordingly, the

inclination angle is set to 90◦ for this particular comparison exercise.

Figure 2(a) shows the effect of increasing s0 while keeping h10 = 0.1 for flow with a step-

down topography when ρ2 = 0 and µ2 = 10−3, which [22] refer to as the single-layer limit

because the effect of the upper layer is negligible; in their work, as here, the value of B is taken

to be 12. Each curve in Figure 2(a) represents a particular value of s0, starting at s0 = 0.04

and increasing in intervals of 0.08 to the value 0.6; increasing s0 leads to a monotonic increase

in the capillary ridge height formed upstream of the step-down topography. This behaviour is

similar to that experienced by a single layer thin film flowing down an inclined substrate over

a similar step-down feature, [12], [7] and [14]. Generating results much beyond a step-height of

|s0| = 0.6 is compromised since the single-layer like behaviour of the flow leads to a capillary

ridge with a value exceeding 1.0, noting that the upper rigid surface of the channel is located

at z = 1.

Figure 2(b) considers the case when the top layer has the same properties as the bottom

one, i.e. µ2 = ρ2 = 1. By comparison, a non-negligible upper layer modifies the monotonic

behaviour described above, in that the capillary ridge height first increases with increasing

s0 before decreasing as the gap between the interface and the bounding upper channel surface

becomes smaller and smaller. This effect can be attributed to the large pressure gradient arising

in the upper layer in order to drive the liquid through the narrow gap between the interface

and the upper surface. The capillary ridge height is eventually completely suppressed at large

s0, as shown for the case when |s0| = 0.92, with the presence of a non-negligible upper layer

enabling solutions to be obtained for larger s0 than in the single-layer limit.
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Figure 3(a) shows the change of capillary ridge height with topography height for different

combinations of ρ2 and µ2. Increasing the density or viscosity of the upper layer suppresses

the capillary ridge and in all cases, except the single-layer limit, leads to a growth in capillary

ridge height with topography height, which reaches a maximum before subsequently decreasing.

Figure 3(b) reveals the dependence of the capillary ridge on the height of the step-down for

several values of h10 when ρ2 = µ2 = 1. Each curve shows the same trend for capillary ridge

height, that of increasing to a maximum value with increasing s0 followed by a reduction as s0 is

increased further still. It can be seen that the capillary ridge height is suppressed by increasing

the thickness of the lower layer if |s0| < 0.65; for a topography height, |s0|, above this limit,

the curves for different h10 intersect and the capillary ridge height can become negative. A

negative value does not indicate transition from a ridge to a trough, simply that the interface

position where the capillary ridge occurs is below the upstream reference interface thickness,

h10. The results displayed in Figures 2 and 3 are identical to those obtained by [22].

A direct comparison of the results generated here for Re = 0 with those of [22], is provided

in Figure 4 for the case of flow in a channel containing a peak topography with s0 = 0.48,

widths lt of 2 and 4, when ρ2 = µ2 = 1; note that in this figure, and all those appearing

subsequently, the x-axis is shifted so that the origin is located at the centre of the topography.

It shows that when the topography is sufficiently wide enough the interface behaves as in the

case of flow past two independent topographies; a step-up followed by a step-down.

3.1.2. Gravity-driven inclined flow

It is clear from the above that excellent agreement is obtained between the present model

and method of solution and the predictions of [22], for the particular case θ = 90◦. When the

channel is no longer vertical they will differ. This can be explained in terms of the normal

gravity term in the pressure equation (13), (ρ2− ρ1)ε cos θ
∂(h1 + s)

∂x
, which does not appear in

the [22]’s model formulation; being omitted from their derivation for simplicity. When ρ2 = ρ1

or the channel is vertical this term vanishes but the effect of ignoring it becomes significant

when the inclination angle is small and the two liquids have different densities. Accordingly,

[22]’s results are strictly applicable for vertically or nearly vertically aligned channels only,

being quantitatively inaccurate for small inclination angles; Bertozzi and Brenner [60] arrived

at the same conclusion when comparing theoretical predictions with experiments for film flow

down an inclined plane. This is demonstrated in Figure 5 for flow through a channel with a

step-down of |s0| = 0.1, inclined at angles of θ = 5◦ and 10◦, with the case θ = 90◦ included as

a comparison, when h10 = 0.4, ρ2 = 1× 10−3, µ2 = 1 and B =
12

sin θ
.

While the current focus is gravity-driven flow with zero applied pressure gradient, ∆pi
l

= 0,

when non-zero it arises in the u-momentum equation (14) as a contribution to the streamwise

body force component, ρiB sin θ − ∆pi
l

. Thus applying a negative pressure gradient effectively

acts in the same way as an increase in inclination angle; for example, for the particular case

of vertical flow θ = 90◦ and ρ2 = 1 considered in [22] the gravity-driven interface profiles are

strictly identical to those generated by a pressure gradient provided ∆pi
l

= −B = −12.

Figures 6(a) and (c) show the interface profile generated for flow through a channel for
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step-down values of |s0| = 0.1 and 0.4, respectively, when the upper layer is effectively absent

(ρ2 = 0, µ2 = 1×10−3) and h10 = 0.4. They reveal that far from the topography the liquid-liquid

interface and hence the thickness of the lower layer is unaffected as Re is increased from 0 to 150;

it is approximately the same at the inlet and the outlet of the channel, i.e. h1|x=0 ≈ h10, due to

the absence of any influence from the upper layer. The figure also shows that with increasing

Re the interface exhibits an increasingly more pronounced decaying upstream capillary wave

profile in the vicinity of the topography, instead of a more-or-less single capillary ridge, as in

the case when Re = 0. This behaviour finds support from the work of [61] and [16] for single

layer free surface flow down vertically aligned substrate.

For step heights of 0.1 and 0.8, when the top layer is no longer negligible and has the

same properties as the lower one, (ρ2 = µ2 = 1), Figure 6(b) and (d), respectively, the re-

sulting capillary wave at the liquid-liquid interface on the upstream side is suppressed; the

thickness of the lower layer at inlet is smaller but has the same proportion as at the outlet, i.e.

h1|x=0 = h10 (1− |s0|), which for step heights of 0.1 and 0.8 gives h1|x=0 a value of 0.36 and

0.08, respectively. It can be seen from Figure 6(d) that, for a step height of 0.8, increasing the

Re number has negligible effect on the capillary wave, the effect being transferred to the flank

of the interface on the downstream side producing a widening of the same.

With reference to Figure 6(e), it can be seen that in the single-layer limit the capillary

ridge height increases monotonically with increasing Re or |s0|; a point to note is that as

the step-height becomes more significant, beyond |s0| = 0.3, the capillary ridge begins to

feel the presence of the upper channel surface with increasing Re because µ2 is not exactly

zero. A different trend is observed at the other limit when the fluid properties of both layers

are the same, Figure 6(f). For each of the four Re values shown, the ridge height increases

monotonically to reach a maximum with increasing |s0| before decreasing monotonically beyond

a value of roughly |s0| = 0.45; as noted by [22] in the case of zero inertia, and as observed in

the figure, the ridge height becomes negative at large topography heights.

Inspection of the pressure gradients present in both layers, see Figure 7, provides useful

insight as to the interface behaviour observed above. In the single-layer limit the pressure

gradient is, as one can readily infer, zero in the upper layer; in the lower layer there is a pressure

gradient predominantly in the vicinity of the topography but zero elsewhere. The pressure

gradient reflects a strong Re number dependence; the magnitude of the pressure variations

observed, including a peak corresponding to the presence of a capillary ridge followed by a deep

negative minimum, are amplified as Re is increased. This explains the monotonic growth of

the capillary ridge height with Re and |s0| and the constant value of the lower layer thickness

when the interface is flat. For the case when the upper layer can no longer be considered

negligible, the lower layer displays similar behaviour but with larger variations and a non-zero

but negative pressure gradient in the narrow part of the channel; the upper layer now exhibits

a pressure gradient, the magnitude of its variation increasing with increasing Re. As expected

the pressure is higher in the wider part of the channel, i.e. the outlet, whereas in line with

mass conservation, equation (25), the average speed is lower.

Figures 8(a-d) shows a sequence of interface profiles for flow in a channel with a step-down
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topography for values of h10 from 0.1, in steps of 0.1, for the case of both a negligible and

non-negligible upper layer and when Re = 0 and 150. As expected the single layer limit reveals

the presence of a more pronounced capillary ridge, which is compounded as the Re number

is increased. When both layers have the same fluid properties the effect is greatly reduced

but the interface increasingly feels the presence of the upper surface of the channel the greater

the value of h10. The consequence of these plots is summarised more clearly in Figures 8(e-f).

When Re = 0 it shows, for both scenarios, that there is a monotonic drop in the capillary ridge

height with increasing h10. This can be attributed to the fact that increasing h10, while keeping

|s0| constant, is equivalent to reducing the topography height which is known to reduce the

capillary ridge height, [22] and [12]. Furthermore, for the none single-layer limit case this is

accompanied by a larger pressure gradient in the top layer due to the increasing resistance to

flow caused by reducing the gap between the interface and the upper channel surface.

When Re = 150 the trends are quite different. The two-layer case shows almost no change

in the capillary ridge height with increasing interface height – what is observed is an almost

imperceptible drop in the capillary ridge height in h10 going from 0.1 to 0.2 followed by an

equally gradual increase until the point h10 = 0.5 is reached, following which it continues to

decrease. In the single-layer limit the ridge height similarly decreases, but more so, when h10

is increased from 0.1 to 0.2, after which it grows quickly with increasing h10. This can be

attributed to the fact that the increased inertia of the lower layer in the single-layer limit faces

no resistance from the top layer, while for the two-layer case the inertia of the top layer tends

to suppress what is going on at the interface. This observation might also be a consequence

of the fact that an essentially single layer flow at Re = 150 down a plane inclined at 10◦ to

the horizontal would almost certainly be considered unstable according to established stability

criteria. The effect on the interface profile of varying the density of the upper liquid layer is

shown in Figure 9 with the impact on the trough upstream from the capillary ridge summarised

in Figure 9(c). Increasing the density of the upper layer relative to the lower one reduces the

capillary trough depth whether inertia is present or absent; in the former case the behaviour is

nonlinear while in the latter it is more-or-less linear.

A step-up topography is also investigated, the results of which are shown in Figure 10. As

in the case of the free-surface flow of a single liquid layer down an inclined substrate featuring

a step-up, the interface profiles reveal a capillary trough upstream the topography. For both

scenarios the effect of inertia is the same: a widening and amplification of the interface dis-

turbances. Increasing the step height, |s0|, or Reynolds number, Re, results in a monotonic

increase in the depth of the capillary trough, regardless of the upper layer’s properties, as il-

lustrated in Figures 10(e) and (f). This behaviour is very different from that of the step-down

discussed earlier; c.f. Figure 6. This can be related to the fact that the capillary trough, in

contrast to the ridge associated with a step-down, does not impact on the flow of the upper

layer and hence there is no excessive pressure build-up in the top layer in order to satisfy the

mass balance.

In the context of rigour and for further validation purposes, the equations given in Appendix

B where solved for the above problems using a methodology akin to the one used by [22] and
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[23]. An additional aim being to resolve whether their failure to solve the channel flow problem

with a step-up topography and Re 6= 0 was a consequence of the solver employed. In the present

work this was achieved using the MA42 subroutine (a successor of MA32) from the Harwell

Subroutine Library (HSL) which employs the frontal method variant of Gaussian elimination,

[62]. The MA42 code solves a set of sparse linear equations by building a LU decomposition

of the sparse matrix in order to avoid a large number of operations involving zero terms. The

solution process for the steady-state equation set starts by performing forward elimination

which is followed by a back-substitution step.

For the different channel cases examined above, step-up/-down and trench/peak topogra-

phies, when Re 6= 0, solutions obtained using either method where found to be indistinguishable

from each other suggesting that the failure by [23] to solve the problem of bilayer channel flow

over a step-up topography was not due the solver used; arguably and acknowledged by them,

further investigation of the applicability of the diffuse-interface method they employed for this

flow situation is required to determine the reason for the failure. Another possibility is their

attempt to simulate flows at unrealistically high Reynolds numbers which according to the work

of [59] are prone to inertial instability.

3.1.3. Shear driven horizontally aligned flow

It is possible to drive the flow by shearing the upper layer by moving the upper rigid

surface of the channel at a constant speed, Ut, a requirement being that this layer is other than

negligible; its fluid properties are thus taken to be ρ2 = µ2 = 1. For a horizontally aligned

channel, θ = 0, and in the absence of an imposed pressure gradient, when the flow encounters

a change in the channel height, due to the presence of a topographical feature, a pressure

gradient is generated there; the flow in this region can be thought of as superposition of shear

(Couette) flow and Poiseuille flow generated by an induced pressure gradient. Accordingly, a

shearing speed of Ut =
ρ̂1gH

2
0

6µ̂1

is applied to make sure the average speed (see Appendix A) in

the channel is the same as in the case of the vertically aligned, θ = 90◦, gravity-driven flow

considered above; from which it follows that U0 =
Ut
2

and B = 12.

Figure 11 shows the effect of inertia on shear-driven flow over a step-down of depth 0.1

and 0.8. The effect of increasing inertia, amplifying the capillary ridge and widening the

disturbance, is more pronounced when |s0| = 0.1. When |s0| = 0.8 the capillary ridge effect is

observed to be greatly reduced, the consequence being that the flank of the interface is more

significantly affected; the insert, showing an exploded view, reveals that an increase in inertia

can be sufficient to suppress the capillary ridge and associated trough almost completely as

a consequence of the shearing action - a finding very different to the equivalent fixed upper

surface case, Figure 6(d), in which the effect is smaller and the capillary ridge is suppressed

by increasing inertia. Figure 11(c) and (d) shows in more detail the dependence of capillary

ridge height for a fixed lower layer thickness and varying |s0| and fixed step depth for varying

h10, respectively, at Re values ranging from 0 to 150. The behaviour observed in Figure 11(c)

is similar to that of Figure 6(f) but with the effect of Re more pronounced for |s0| > 0.4;

Figure 11(d) compares well with Figure 8(f) but in the case of shear driven flow both curves
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are monotonically decreasing from h10 = 0.1 to 0.8 – the shear imparted to the flow overcomes

the rise in capillary ridge height observed in going from h10 = 0.1 to 0.2 in the gravity-driven

flow case.

3.2. Bilayer Film flow: CON2

Attention is now directed at the related problem of bilayer film flow as depicted schematically

in Figure 1(b). The effect of inertia and the upper layer properties are explored for different

topographies and comparisons drawn with complementary experimental results and numerical

predictions from the literature. Due to the absence of an explicit inertial stability criteria

for bilayer free-surface flow over topography and to avoid generating results in unstable flow

regimes it was decided to use the inertial stability criterion for single-layer flow down an inclined

substrate as a guide when determining the stable Reynolds number range to be explored.

The well-known stability criterion for gravity-driven flow down inclined substrate requires the

Reynolds number to be smaller than a certain critical value, Recrit. The value of the critical

Reynolds number depends on the inclination angle, θ, of the substrate, [63] and [30], and is

given by:

Rcrit =
5

4
cot θ. (29)

When the density of the upper layer is smaller than that of the lower one, bilayer flow becomes

more stable than its single layer counterpart while a heavier upper layer has a non-stabilising

effect, [29]. Using the above criteria and setting ρ2 ≤ 1 ensures the flow is stable. It is clear

from equation (29) that if the substrate is vertical the flow is unstable for all non-zero Re.

It is worth noting that expression (29) is arguably over restrictive, since recent research has

shown that a surface with periodically repeating topography can have a beneficial effect, over

its flat surface counterpart, on the critical Re at which there is an onset of instability – see

for example [64–69] who show that for film flow over a wavy substrate islands of stability exist

beyond the critical value given by equation (29). The same is demonstrated in the experiments

of [7] for localised steep topography in which the Re involved was beyond the above strict

analytically defined limit.

Due to the lack of numerical or experimental results in the literature for continuous bilayer

flow over topography, the limiting case where both the lower and the upper liquids have the

same properties is used as a test bed, in particular the experimental data of [7]. In order to

make a direct comparison θ is set to 30◦ with the gravity parameter B =
ρ̂1gH

2
0

µ̂1U0

which, using

the velocity scale U0 provided in Appendix A for the case when the upper layer has the same

properties as the lower one, i.e. µ2 = ρ2 = 1, gives B =
2

sin θ
which in turn is in agreement with

the single-layer case from [47]. The dimensionless interfacial tension at the internal liquid-liquid

interface and the free surface (liquid-air interface) is taken to be σ1,2 = 6.4× 10−4 and σ2,3 = 1,

respectively.

Figure 12 shows the comparison for flow over step-up and step-down topographies with

|s0| = 0.20 when ε = 0.128, Ca = ε3/6 = 3.50 × 10−4 and Re = 2.45 and a spanwise trench

with |s0| = 0.19 and lt = 1.51 when ε = 0.132, Ca = 3.86 × 10−4, Re = 2.84 (these quantities
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are based on properties of water as per [7]: ρ̂1 = 1000 kg/m3, µ̂1 = 0.001 Pa.s and σ̂1 = 0.07

N/m). The origin is moved such that it is located at the centre of the topography and the

free-surface location and topography profile are scaled with respect to the height/depth of the

topography, namely s∗ = s/s0 and f ∗
2 = (f2−1)/s0, respectively. For the three cases shown the

model accurately captures the key features of the disturbed free surface profile. These include

the characteristic free-surface trough and capillary ridge just upstream of the step-up and step-

down topographies, respectively, and the free-surface depression characteristic of flow over a

trench, [14]. The plots reveal excellent agreement between the current numerical predictions

and the experimental measurements for all three topographical features – indeed the r.m.s.

deviation between the numerical and experimental results obtained for the free-surface profiles

for all three spanwise topographies is within the experimental accuracy of 2% reported by [7].

The model enables exploration of the influence of the upper liquid layer properties as well as

the height of the lower layer on the free surface and interface disturbance generated. The angle

of inclination is set to θ = 10◦, ε = 0.1 and the capillary number to Ca = ε3/6 = 1.167× 10−4.

Figure 13 illustrates the influence of the upper layer density on the free surface disturbance for

flow over topography when Re = 0. Three topographical features, a step-up, step-down and a

trench with lt = 1.5, are considered when µ2 = 1, |s0| = 0.2 and h10 = 0.5. The investigations

cover only the flow regimes when the presence of the upper layer has a stabilising effect (i.e

ρ2 ≤ 1). The effect of decreasing ρ2 from 1 to 0.1 on the free surface, Figure 13 left column,

for step-up/down topography, is a slight increase in the depth/height of the capillary feature

and to push it away from the topography side wall. The effect on the free surface is more

pronounced for flow over trench topography where the depth of the depression, formed after

the capillary ridge, is reduced by 23%.

The corresponding liquid-liquid interface profiles for the flow configurations mentioned

above, scaled with respect to the height/depth of the topography as f ∗
1 = (f1 − h10)/s0, are

shown in Figure 13, right column. For this figure, as in other subsequent plots, inserts showing

exploded views of the interface profiles formed are provided. These show that what appear as

”kinks” are in fact smooth changes and simply an artefact of the graphical scaling employed.

In general, the interface exhibits a profile similar to that of the free surface. However, it also

shows features similar to those for the gravity-driven channel interface profile discussed above

and also reported by [22]. The step-down flow has a capillary ridge with its peak pushed below

the reference inlet interface which was noted for bilayer channel flow at high |s0| as shown, for

example, in Figure 2(b). The effect of changing density on the interface profile is smaller than

the effect on the free surface.

Changing the inlet thickness of the lower layer, h10 will have an impact on the free surface

disturbance when the two liquids are not the same. Increasing h10 when ρ2 < 1 is expected

to have the same effect as increasing ρ2 while h10 remains constant because both lead to an

increased flow rate. This is confirmed by comparing Figure 14(a), which shows the free surface

and interface profile for flow over a trench for different h10 values when ρ2 = 0.5 and µ2 = 1,

with Figure 13(c) for flow over a trench at different ρ2 values. The two figures show the same

trend, namely that the depth of free surface depression is increased when either h10 or ρ2 are
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increased. The corresponding interface profile behaviour is shown in Figure 14(b) for the cases

h10= 0.2, 0.4 and 0.8. The profile when h10 = 0.2 is very similar to the free surface profile

characteristic of the flow of a single-layer thin film over a wide trench, as described by [18] who

used the boundary element (BE) method to study the Stokes flow of a thin liquid film over a

one-dimensional trench and by [14] who used a finite element method and lubrication theory

to solve the problem of thin film flow over topography. When h10 = 0.8 the interface profile

becomes very similar to that of the free surface.

Next the effect of changing the upper layer viscosity is explored keeping h10 = 0.5 and

ρ2 = 1.0 fixed. Figure 15 shows the influence of µ2 on the flow over step-down and trench

topographies. It can be seen that for the step-down, decreasing µ2 leads to widening of the

capillary ridge at both the free surface and liquid-liquid interface and the movement of the

associated peak upstream of the topography side wall. The flow over a trench shows in addition

a considerable decrease in the depth of the free surface and liquid-liquid interface depression of

14% and 15%, respectively, when µ2 is decreased from 5 to 0.5.

The results shown in Figures 13 and 15 for flow over a step-down topography are informative

from the standpoint of multi-layer cascade/slide coating processes in which films are formed

by fluid pumped through a sequence of die slots with the upper most layer running over of

the next adjacent layer and so on, as captured for bilayer flow in the classical images of [70],

see also [5]. They show quite clearly the importance of the slot exit geometry for avoiding

the presence/occurrence of eddies that can entrap bubbles and debris, and result in streak

line defects; the numerical solutions of the associated governing equations by [71, 72] confirm

the same. Related to this is the Patent filed in 2001 by [73] which sets out the use of very

thin low viscosity carrier layers as an improved means of applying multi-layers to a moving

substrate using slide/cascade coating systems. Subsequent to this [74] reported an extensive

experimental analysis of carrier layers for the same coating arrangement, discovering that the

limit to forming a thin carrier layer is determined at the point of formation and dependent on

whether the layers above invade the slot from which the carrier layer, the last in line, emerges.

It is clear that the bilayer flow explored here is not the same in that it involves two layers

that are already formed meeting a topographical feature rather than the feature itself being part

of the initial film forming process and the complexities that this entails. Nevertheless, what can

be inferred from the current work, remembering that the density of the upper layer cannot be

greater than that of the lower one, is that reducing the dynamic viscosity of the lower layer has

roughly the same effect as increasing the density of the upper layer, on both the free surface

and interface shapes. What the results show in relation to increasing the viscosity of the upper

layer, by a factor of 10 (from 0.5 to 5.0) when ρ1 = ρ2 = 1, is that for flow over a step-down

topography, Figure 15(a) and (b), both the free surface and interfacial disturbance due to the

presence of topography is suppressed. While performing a detailed stability analysis is beyond

the scope of the investigation carried out here it can plausibly be argued that changes to fluid

properties which lead to a reduction in any free-surface and interfacial disturbances that arise

must be advantageous with regard to potentially widening stable operating windows.

The model can be employed to illustrate the evolution of the interface from close to the
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topography when the lower layer is infinitely thin up to the full extent of the film by changing

h10. This is demonstrated in Figure 16 for flow over a trench topography when µ2 = ρ2 = 1

which essentially represents a single-layer flow; h10 takes values from 0.2 to 0.9 and is increased

in increments of 0.1. These interface profiles effectively represent the streamlines of the flow as

there is no flow across them.

The effect of inertia on both the free surface and liquid-liquid interface disturbance is now

investigated further together with the influence of fluid properties, ρ2 and µ2. Figure 17 shows

the free surface and interface disturbance generated for flow over trench topography, lt = 1.5

and |s0| = 0.2. Increasing Re widens and increases the amplitude of the free surface and

interface disturbances. The free surface capillary ridge height, hridge, increases by 76% and

the interface’s by 84% when Re increases from 0 to 30. The same behaviour was noted for

the single-layer limit of channel flow as discussed above and also agrees with the predictions of

[47] for single-layer free-surface flow. The change of hridge with Re for different combinations

of ρ2 and µ2 is shown in Figure 18. For all ρ2-µ2 combinations, increasing Re increases hridge

monotonically due to the increased inertia. The wavy interface seen in the case of bilayer

gravity-driven channel flow at high Re is not observed here as the range of Re is limited due

to stability constraints.

4. Conclusions

Two related bilayer flow problems are investigated numerically: through a channel and

over a plane, both featuring well defined localised topography and inclined at a prescribed

angle to the horizontal. Invoking the long-wave approximation facilitates the derivation of a

common reduced equation set, embodying Reynolds number effects, applicable to the general

case of n-layers. Details of the underpinning flow structure is absent by virtue of the modelling

approach adopted but care has been taken to ensure that the topographical features considered

are consistent with those explored in related single layer film flow problems, for which reduced

models and solutions based on the full Navier-Stokes equations have been shown conclusively

to be in extremely good agreement, even beyond the strict limits imposed by the long wave

approximation. In addition, in the limit when both layers have the same fluid properties the

equivalent single layer solution is recovered exactly.

Comparison is made with the work of others where it exists in the literature, with the mesh

independent results generated for interfacial and free surface shape, both unknown a priori,

found to be in excellent agreement. Furthermore, prior to performing a systematic investigation

of both flow configurations, the validity of the modelling and accompanying method of solution

was established by investigating the vertically aligned channel flow problem considered by [22]

when Re = 0. In all cases, for the same fluid properties and topography types, the results

obtained are found to be indistinguishable.

Next, a detailed systematic investigation of the above problem with the channel inclined at

an angle less than 90o to the horizontal was performed by varying the topography height/depth,

the liquid properties of the upper layer, the liquid-liquid interface height and the Reynolds
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number. In their attempts to explore a related problem, [23], they were unable to obtain a

solution for the case of a step-up topography, attributing this to the solver they employed. In

order to confirm this or otherwise, a method of solution similar to the one used by them was

employed to solve the steady-state version of the equation set derived here. No such difficulty

was encountered in obtaining solutions for the case of a step-up, indicating their inability to

achieve the same outcome arguably stems from a different source. Other means of driving flow

in an channel have been considered, in particular shearing the flow for a channel in horizontal

alignment which results in subtle differences compared to the gravity-driven case.

For the case of bilayer free surface film flow, first of all an assessment of the quality of

the predictions obtained is made by comparing the results for the single-layer-equivalent limit

obtained experimentally by [7] and the associated existing numerical solutions of [47]. For all

three topographical features investigated there is found to be excellent agreement. The model

was used subsequently in a systematic sense to explore parameter space, in a similar way to the

channel flow problem, with and without inertia present. Increasing inertia is found to widen

and enhance the amplitude of free surface and liquid-liquid interface disturbances. Lowering

the density of the upper layer has a strong influence in the case of flow over a trench topography

by producing a notable decrease in the free-surface depression, but less so in terms of the effect

on the capillary trough/ridge for flow over step-up/-down topography, respectively, or for the

capillary ridge for flow over a trench topography. For all three topography types, it is found

that changing the liquid-liquid interface height leads to a similar effect; in the case of flow

over a tench topography, changing the upper layer viscosity has an amplifying effect on both

the free surface depression and the capillary ridge, while for a step-down topography it has a

suppressing effect. For the latter, parallels are drawn with the process of cascade/slide coating

and in particular the practice of using a low viscosity carrier layer to improve the deposition of

multi-layer films onto moving substrate.

The methodology and investigations reported in this paper offer considerable scope for

progessing the work along a number of different and complementary avenues. When deriving

model equation sets based on depth averaging of the Navier-Stokes and Continuity equations it

could well prove worthwhile to explore the use of weighted averaging rather than the standard

averaging employed in the present work; the reason being that the weighted residual approach

has been shown to lead to improved results in the context of determining the inertial stability

limit for single layer film flow, see [43, 44]. In this context the model equations could be used

to generate base solutions from which to explore the stability of multilayer gravity-driven free

surface film flows. Similarly, a complementary investigation could be undertaken into the effect

of non-Newtonian behaviour of the liquids, with either one or more layers being so described;

this could be broadened to explore in more detail the carrier layer problem by widening the

scope of viscosity and lower layer thickness difference. An obvious further extension of the work

would be to the exploration of three-dimensional multilayer free-surface film flows encountering

topography and from a stability perspective; the associated finite difference equations are well

suited to, and would require, a fast, accurate and efficient method of solution based on a

multigrid strategy in tandem with error-controlled automatic time-stepping of the sort described
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in Section 2.3.

Last but not least, the lack of experimental data for bilayer film and, in particular, channel

flow over topography represents a very worthwhile research opportunity in its own right, as

a means of providing benchmark results for comparison with and the validation of theoretical

investigations of the type reported here.
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Appendix A. Interfacial velocities, boundary conditions for averaged velocities and

velocity scale

Velocity scales and examples of the solution of the system of equations for the interfacial

velocities, system (21), together with boundary boundary conditions for averaged velocities

found using equation (18), and velocity scale U0, for both channel and film flow.

Channel flow (CON1)

U0 =
ρ̂1gH2

0

µ̂1B
A10

12
+ Ut

2
(the average velocity for a single-layer flow).

Single layer flow (consistent with Couette flow with gravity and imposed pressure gradient,

[75]):

c1 = ut, ū10 = A10

12
+ ut

2
.

Bi-layer flow (consistent with [22]):

c1 = 3m1ū1+3m2ū2−m2ut
2m1+2m2

, ū10 = A10

12
4m10+m20

m10+m20
+ A20

4
m20

m10+m20
+ ut

2
m20

m10+m20
,

c2 = ut, ū20 = A10

4
m10

m10+m20
+ A20

12
m10+4m20

m10+m20
+ ut

2
m10+2m20

m10+m20
.

Tri-layer flow (consistent with [24]):

c1 =
6m1m2ū1+6m1m3ū1+3m2

2ū2+6m2m3ū2−3m2m3ū3+m2m3ut
4m1m2+4m1m3+3m2

2+4m2m3
,

ū10 = A10

12
4m10m20+4m10m30+m20m30

m10m20+m10m30+m20m30
+ A20

4

2m2
20+m20m30

m10m20+m10m30+m20m30
+ A30

4
m20m30

m10m20+m10m30+m20m30
+

ut
2

m20m30

m10m20+m10m30+m20m30
,

c2 =
6m1m2ū2−3m1m2ū1+6m1m3ū3+3m2

2ū2+6m2m3ū3−2m1m3ut−2m2m3ut
4m1m2+4m1m3+3m2

2+4m2m3
,

ū20 = A10

4
2m10m20+m10m30

m10m20+m10m30+m20m30
+A20

12

4m10m20+m10m30+12m2
20+4m20m30

m10m20+m10m30+m20m30
+A30

4
m10m30+2m20m30

m10m20+m10m30+m20m30
+

ut
2

m10m30+2m20m30

m10m20+m10m30+m20m30
,

c3 = ut,

ū30 = A10

4
m10m20

m10m20+m10m30+m20m30
+ A20

4

m10m20+m2
20

m10m20+m10m30+m20m30
+ A30

12
m10m20+4m10m30+4m20m30

m10m20+m10m30+m20m30
+

ut
2
m10m20+2m10m30+2m20m30

m10m20+m10m30+m20m30
.

Where mi0 = µi
hi0

, Ai0 =
h2i0
µi

(
ρiB sin θ − ∆p

l

)
; ∆p

l
is the non-dimensional imposed pressure

gradient and Ut the dimensional upper surface speed.

Free-surface film flow (CON2)

Single layer flow (consistent with Nusselt flow, [75]):

U0 =
ρ̂1gH2

0

µ̂1B
A10

2
(free-surface velocity), c1 = 3ū1

2
, ū10 = A10

3
.

Bi-layer flow:

U0 =
ρ̂1gH2

0

µ̂1B

(
A10

2
+ A20

2
m10+2m20

m10

)
(free-surface velocity),

c1 = 6m1ū1+3m2ū2
4m1+3m2

, ū10 = A10

3
+ A20

2
m20

m10
, c2 = 6m1ū2+3m2ū2−3m1ū1

4m1+3m2
, ū20 = A10

2
+ A20

3
m10+3m20

m10
.

Tri-layer flow:

U0 =
ρ̂1gH2

0

µ̂1B

(
A10 + A20

2
m10+3m20

m10
+ A30

2
m10m20+2m10m30+2m20m30

m10m20

)
(free-surface velocity),

c1 =
12m1m2ū1+9m1m3ū1+6m2

2ū2+9m2m3ū2−3m2m3ū3
8m1m2+6m1m3+6m2

2+6m2m3
, ū10 = 7A10

12
+ 3A20

4
m20

m10
+ A30

2
m30

m10
,

c2 =
12m1m2ū2+6m1m3ū3+6m2

2ū2+6m2m3ū3−6m1m2ū1
8m1m2+6m1m3+6m2

2+6m2m3
, ū20 = A10+A20

6
2m10+9m20

m10
+A30

2
m10m30+2m20m30

m10m20
,

c3 =
12m1m2ū3+3m1m2ū1+6m1m3ū3+9m2

2ū3+6m2m3ū3−6m1m2ū2−3m2
2ū2

8m1m2+6m1m3+6m2
2+6m2m3

,

ū30 = A10 + A20

2
m10+3m20

m10
+ A30

3
m10m20+3m10m30+m20m30

m10m20
.
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Appendix B. Governing equations for steady-state multilayer flow

The system of governing equations for layer thicknesses, hi, where i = 1, 2..n for CON2 and

i = 1, 2..n− 1 for CON1, for steady-state multilayer flow are:

εRe ρi
hi

∂
∂x

[
6q2i0
5hi

+ hi
5

(
2
3
c2
i−1 + 2

3
c2
i − 1

3
ci−1ci − ci−1

qi0
hi
− ci qi0hi

)]
− 6µi

h2i

(
ci−1 + ci − 2 qi0

hi

)
−

−εRe ρi+1

hi+1

∂
∂x

[
6q2i+1,0

5hi+1
+ hi+1

5

(
2
3
c2
i + 2

3
c2
i+1 − 1

3
cici+1 − ci qi+1,0

hi+1
− ci+1

qi+1,0

hi+1

)]
+

+6µi+1

h2i+1

(
ci + ci+1 − 2

qi+1,0

hi+1

)
= σi,i+1

ε3

Ca
∂3fi
∂x3

+B (ρi − ρi+1)
(
sin θ − ε cos θ ∂fi

∂x

)
.

(30)

Here interfacial velocities ci are determined by solving system (21) where averaged velocities

on the right-hand sides are set to ūi = qi0/hi. Note that CON2 is completed via the conditions

ρn+1 = µn+1 = 0, while CON1 is completed via condition
∑n

i=1 hi = 1− s.
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Figures

Figure 1: Schematic of two-dimensional gravity-driven bilayer flow through a channel (left), CON1, and down
an inclined substrate (right), CON2, inclined at angle θ to the horizontal, showing the associated geometry and
coordinate system for the problem, illustrated for flow past a trench-like topography.

Figure 2: Effect of topography height on the interface profile for gravity-driven channel flow with a step-down
topography when h10 = 0.1, Ca = 3.33×10−4, θ = 90◦. and Re = 0: (a) ρ2 = 0, µ2 = 1×10−3; (b) ρ2 = 1, µ2 = 1.
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Figure 3: Effect of (a) liquid properties for h10 = 0.1 and (b) h10 for ρ2 = µ2 = 1, on the capillary ridge height
in terms of topography height for gravity-driven channel flow with a step-down: Ca = 3.33 × 10−4, θ = 90◦,
Re = 0.

Figure 4: Comparison of current results with those of [22] for gravity-driven flow in channel containing a peak
topography for the case |s0|=0.48 when h10=0.5, Ca = 3.33× 10−4, ρ2 = µ2 = 1.0, θ = 90◦, Re = 0.

Figure 5: Effect of inclination angle, θ on interface shape for gravity-driven flow through a channel with a
step-down of |s0| = 0.1 when h10 = 0.4, Ca = 3.33× 10−4, ρ2 = 1× 10−3, µ2 = 1.0, Re = 0.
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Figure 6: Interface profiles and capillary ridge height as a function of |s0| for gravity-driven flow in a channel
containing a step-down topography in the absence and presence of inertial effects for h10 = 0.4, Ca = 3.33×10−4

and θ = 10◦: ρ2 = 0, µ2 = 1× 10−3 (left column), ρ2 = µ2 = 1.0 (right column), |s0| = 0.1 (top row), |s0| = 0.4
(middle row left), |s0| = 0.8 (middle row right), capillary ridge height (bottom row).
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Figure 7: Pressure gradient profiles for gravity-driven flow in a channel containing a step-down of |s0| = 0.1
when h10 = 0.4, Ca = 3.33 × 10−4, θ = 10◦, with: ρ2 = 0, µ2 = 1 × 10−3 (left column), ρ2 = µ2 = 1.0 (right
column), upper layer (top row), lower layer (bottom row).
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Figure 8: Effect of h10 on the interface shape and capillary ridge height for gravity-driven flow in a channel
with a step-down of |s0| = 0.2 in the absence and presence of inertial effects when, Ca = 3.33× 10−4, θ = 10◦:
ρ2 = 0, µ2 = 1× 10−3 (left column), ρ2 = µ2 = 1.0 (right column), Re = 0 (top row), Re = 150 (middle row),
capillary ridge height (bottom row).
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Figure 9: Effect of density ratio on the interface shape and capillary trough depth for gravity-driven flow in a
channel with a step-down of |s0| = 0.2 when h10=0.4, Ca = 3.33× 10−4 and µ2 = 1.0, θ = 10◦ for: (a) Re = 0;
(b) Re = 150; (c) capillary trough depth as a function of ρ2.
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Figure 10: Interface profiles and capillary trough depth as a function of |s0| for gravity-driven flow in a channel
containing a step-up topography in the absence and presence of inertial effects for h10 = 0.4, Ca = 3.33× 10−4,
θ = 10◦: ρ2 = 0, µ2 = 1 × 10−3 (left column), ρ2 = µ2 = 1.0 (right column), |s0| = 0.1 (top row), |s0| = 0.4
(middle row), capillary trough depth (bottom row).
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Figure 11: Interface profiles and capillary ridge height as a function of |s0| and h10 for shear-driven flow in a
channel containing a step-down in the absence and presence of inertial effects when Ca = 3.33 × 10−4, θ = 0◦

and ρ2 = µ2 = 1: (a)h10=0.4 and |s0| = 0.1, (b)h10=0.4 and |s0| = 0.8, (c)h10 = 0.4 and (d)|s0| = 0.1.
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Figure 12: Comparison between DAF predictions of the free surface disturbance when ρ2 = µ2 = 1 with the
experimental results of [7] for gravity-driven film flow over a substrate containing topography with θ = 30◦: (a)
step-up (height |s0| = 0.2 and Re = 2.45); (b) step-down (depth |s0| = 0.2 and Re = 2.45); (c) trench ( |s0| =
0.19, lt = 1.51 and Re = 2.84).
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Figure 13: The influence of density ratio on the free surface shape (left column) and liquid-liquid interface (right
column) for gravity-driven film flow over a step-up (top row), step-down (middle row) and trench (bottom row)
topography when Re = 0, µ2 = 1.0, |s0| = 0.2, h10 = 0.5, θ = 10◦ and lt = 1.5.
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Figure 14: Effect of h10 on (a) the free surface shape and (b) the liquid-liquid interface disturbance for gravity-
driven film flow over a trench topography, when Re = 0, ρ2 = 0.5, µ2 = 1.0, |s0| = 0.2 and θ = 10◦.

Figure 15: Influence of viscosity on the free surface shape (left column) and liquid-liquid interface disturbance
(right column) for gravity-driven film flow over step-down (top row) and trench (bottom row) topographies,
when Re = 0, |s0| = 0.2 ρ2 = 1, h10 = 0.5 and θ = 10◦.
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Figure 16: Evolution of the liquid-liquid interface profile for different interface heights as a proportion of the
overall bilayer thickness, for gravity-driven film flow over a trench topography when |s0| = 0.2, ρ2 = µ2 = 1 and
θ = 10◦: (a)Re = 0; (b)Re = 15.

Figure 17: Effect of Re on the (a) the free surface shape and (b) the liquid-liquid interface for gravity-driven
film flow over trench topography, when ρ2 = µ2 = 1.0, h10 = 0.5, |s0| = 0.2, lt = 1.5 and θ = 10◦.

Figure 18: Change in free-surface capillary ridge height as a function of Re for gravity-driven film flow over
trench topography for different combinations of ρ2 and µ2, when h10 = 0.5, |s0| = 0.2, lt = 1.5 and θ = 10◦.
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