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Abstract

Cosmogenic-nuclide surface-exposure data provigeitant constraints on the
thickness, extent and behaviour of ice massesigdiological past. A number of online
calculators provide the cosmogenic nuclide comnyumith a means of easily calculating
surface-exposure ages. Here we provide a platformldtting and analysing such data. This
paper describes a suite of freely accessible ngaldnols for visualising, evaluating and
correcting surface-exposure data that are usegttmstruct past glacier and ice sheet

geometries.

iceTEA (Tools for Exposure Ages) is available a®aline interface_(http://ice-tea.org)

and as MATLAE code. There are 8 tools, which provide the folloyviunctionality: 1)
calculate exposure ages frdfBe and?®Al data, 2) plot exposure ages as kernel density
estimates and as a horizontal or vertical tran8getlentify and remove outliers within a
dataset, 4) plot nuclide concentrations on a twtese diagram and as a function of depth, 5)

correct exposure ages for cover of the rock surf@ceorrect ages for changes in relative
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elevation through time, and estimate 7) average8amontinuous rates of ice margin retreat
or thinning. Three of the tools (1, 5 and 6) parf@xposure age calculations, which are
based on the framework of CRONUScalc. Results zagadle as printed text, tables and/or
raster (.png) and vector (.eps) graphics fileseddmg on the tool. These tools are intended
to enable users to evaluate complex exposure last@ssess the reliability of exposure ages,
explore potential age corrections, and better @eadynd understand spatial and temporal

patterns within their data.

Keywords: Glaciers and ice sheets, Be-10 and Al-26, TCNhdatDutlier test, GIA and sea

level, Retreat and thinning rates

1. Introduction

Over the last few decades cosmogenic-nuclide sehgaposure dating has become the
principal approach for reconstructing past glaamd ice sheet geometries (Balco, 2011; Ivy-
Ochs and Briner, 2014). Such research has greafiyoved our understanding of global and
regional patterns of ice mass expansion and cditrae.g. Hughes et al., 2016; Solomina et
al., 2015), centennial-scale climate events (echa8fer et al., 2009), topographic controls on
ice dynamics (e.g. Jones et al., 2015), and cautioibs of ice masses to past changes in
global mean sea level (e.g. Alley et al., 2005)sie considerable advances in the
technique, the full potential of cosmogenic-nuchiti#gasets is often hindered by geologic
scatter, an inadequate assessment of uncertaamigiésr limited user expertise in computer

coding for performing analyses.
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Surface-exposure dating exploits the accumulatfaruolides in the Earth’s surface
resulting from interactions with cosmic radiatiendetermine the time at which a rock was
exposed following deglaciation (Gosse and Phill§i¥)1). The exposure history can be
deciphered from analysis of both the nuclide cotre¢inns and the corresponding surface-
exposure ages in a number of ways. The patternridland exposure over glacial-
interglacial cycles can be gauged by evaluatingdhie between two different nuclides (e.g.
Bierman et al., 1999; Lal, 1991; Schaefer et &18). The reliability of an age for a glacial
landform can be assessed with statistical tests asiceduced chi-squared and outlier
analysis of the exposure age dataset (e.g. Baldd,; Rinterknecht et al., 2006; Wendt and
Carl, 1991). Potential effects from cover of thekrsurface or changes in the relative
elevation of the rock surface can be accountedrdrtested (e.g. Cuzzone et al., 2016;
Schildgen et al., 2005). Rates of ice surface lowgeand ice margin retreat can also be
estimated by quantifying the relationship betwdenlbcation and exposure age of samples
within a dataset (e.g. Briner et al., 2009; Johretaal., 2014). While the development of
online exposure age calculators (CRONUS-Earth,Beatal., 2008; CRONUScalc, Marrero
et al., 2016; CREp, Martin et al., 2017) have helfaeilitate the rapid growth of the
application, there is currently no common platfdanquantitatively evaluating exposure age

datasets in the ways described above.

Here we describe iceTEA — Tools for Exposure Agessdite of online tools for plotting
and analysing cosmogenic-nuclide surface-exposateettiat are used to constrain former ice
margins. The paper outlines the systematics oft@e The basis, set up and user-inputs for
each of the tools, and it also highlights poterti@hefits of applying the tools to surface-

exposure datasets.
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2. Description of the numerical tools

2.1 Systematics

The tools of iceTEA are outlined in Table 1. Theynde used via an online interface

(http://ice-tea.org), but are also available as MAB® code with an easy-to-use front-end

script for each tool (see supplementary matenahile the online version performs all
primary analysis and plotting functionality for éaool, the code provides the user with

greater flexibility to apply the tools for specifieeds and also includes some additional

options (e.g. selecting specific samples withindataset to be analysed).

Table 1. Tools of iceTEA

Tool

MATLAB © front-end script

Online stages

1. Calculate ages *

Calc_Plot_age.m

Calculation inputs
Results

Plot settings

Plots

2. Plot ages

Import_Plot_age.m

Data input & Plot
settings
Plots

3. Remove outliers

Calc_Plot_age.m

Analysis inputs
Results

Import_Plot_age.m Plot settings
Plots
_ Data input & Plot
4. Plot two-isotope Plot_concs.m settings
concentrations Plots

5. Correct for surface cover *

Cover_correct_ages.m

Analysis inputs
Results

Plot settings
Plots

6. Correct for elevation
change *

Cover_correct_ages.m

Analysis inputs
Results

Plot settings
Plots

7. Estimate retreat/thinning
rates - linear

Analyse_linear_rates.m

Analysis inputs
Results

Plot settings
Plots

8. Estimate retreat/thinning
rates - continuous

Analyse_continuous_rates.m

Analysis inputs
Results

Plot settings
Plots

* Uses modified version of CRONUScalc calculation framework (Marrero et al., 2016).
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Each tool is comprised of two to four stages, whindhude input parameters, results of
the analysis, plot settings and plotted resultbida). iceTEA requires the details of the
surface-exposure dataset in a Micros@kcef’ or comma-separated values spreadsheet, or
in a tab-delimited text file. The following informman must be included for each sample:
sample name; latitude; longitude; elevation; presgifi known); relative position (if
relevant); sample thickness; bulk density; shigjdactor;'®Be concentration (mean and
uncertainty, if measuredi®Al concentration (mean and uncertainty, if measyngear
collected; and for plotting the nuclides on a twotope diagram, the sample depth and final
mineral weight (see Appendix Al). As with previage calculators (CRONUScalc, Marrero
et al., 2016; CREp, Martin et al., 2017), the nilelconcentrations should be normalised to
07KNSTD for'°Be (Nishiizumi et al., 2007) and KNSTD fBtAl (Nishiizumi, 2004) before
being used with iceTEA (see

http://hess.ess.washington.edu/math/docs/al_beal2i& docs.html for details).

Four tools require exposure ages to be calculagéatd performing analysis and
plotting, while three tools involve the calculatiohexposure ages. The details of each of
these tools are described in the sections belosades where exposure ages are already
known (for example, using a different age calculgberhaps with a local production rate),
the mean age, internal and/or external uncertaintiyprovided production rate scaling model
can be used (see Appendix Al). In cases where axpages need to be computed, a
modified version of the CRONUScalc calculation feamork is used (see Marrero et al.,

2016 for details).

Cosmogenic-nuclide production is computed for sialh, the dominant production
mechanism at the surface, and for muons, whiclngwertant at depth (Gosse and Phillips,
2001). Three principal scaling models for productiy spallation can be used with iceTEA,

which have been shown to best fit production ratdration data (Borchers et al., 2016): 1)
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‘Lm’, the time-dependent version of Lal (1991), ainiuses variations in the dipole magnetic
field intensity (Nishiizumi et al., 1989); 2) ‘LSDthe time-dependent model of Lifton et al.
(2014), which includes dipole and non-dipole mamgfeld fluctuations and solar
modulation; and 3) ‘LSDn’, a version of LSD thatplements nuclide-specific scaling by
incorporating cross-sections for the different tiears (Lifton et al., 2014). The MATLAB
version of iceTEA has options for other time-indagent (St; Stone, 2000) and time-
dependent models (De, Du, Li; Desilets and Zre@832Dunai, 2000; Lifton et al., 2005).
The geomagnetic history used in all of the timeeth&lent scaling models includes the
CALS3k model for 0-3 ka (Korte and Constable, 2(Hdrte et al., 2009), the CALS7k
model for 3-7 ka (Korte and Constable, 2005), th®8I1S-75 model for 7-18 ka (Laj et al.,
2004), and the PADM2M model for 18-2000 ka (Ziegderl., 2011), which is the same as
used in CRONUScalc. Muon flux is scaled using thergy-dependent model of Lifton et al.
(2014). All time-dependent scaling models are caiegbuelative to the year that the sample
was collected, which is a required input for eaamgle. As the production rate is dependent
on any shielding of the rock surface (Dunne etl&l99; Gosse and Phillips, 2001), a
topographic shielding factor is a required inputdach sample; this can be calculated using

the online calculator described by Balco et alO@Qhttp://stoneage.ice-

d.org/math/v3/skyline_in.html), or by using the plgmental tool Topographic_shielding,

which is available in the MATLAB version of iceTEA. Nuclide production is numerlgal
integrated for both time, using the selected sgaiodel, and the depth of the sample, based
on the given sample thickness (see Marrero e2@1.6). The implementation of

CRONUScalc within iceTEA is further described amstdssed in Sections 2.2, 2.6 and 2.7.
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2.2 Calculate ages

iceTEA provides the capability to compute and glatface-exposure ages. The primary
purpose of the ‘Calculate ages’ tool (no. 1) isdmpare the calculated ages with those ages
generated using correction tools (e.g. correctmgfirface cover (Section 2.6) and elevation
change (Section 2.7)), as well as to ages derigad bther calculation frameworks (e.g. the
online calculator formerly known as CRONUS-Eartlald® et al., 2008), CREp (Martin et
al., 2017) and CRONUScalc (Marrero et al., 2018)hile the age calculations in iceTEA are
based on the CRONUScalc framework, exposure adgedai@d using this tool may produce
slightly different results from CRONUScalc for amioer of reasons. Firstly, atmospheric
pressure is calculated based on the location df sample if it is not input by the user. The
ERA-40 atmospheric model (Uppala et al., 2005)»msduto derive pressure, as with CREp
and CRONUScalc, however, an elevation-pressuréaethip (Radok et al., 1996) is instead
used if the sample is from Antarctica (<-60 °S)I@®eet al., 2008; Stone, 2000). Secondly,
exposures ages are calculated here assuming zeidenmheritance, zero surface erosion,
and the top depth of a sample is assumed to bsutifeece (zero depth). Thirdly, the effective
attenuation length cannot be manually set, anasigead calculated dependent on the location
of the sample (Sato et al., 2008); this is the sarathod used by CRONUScalc when the
attenuation length field is missing. Fourthly, uramty is only calculated here based on the
elevation and measurement errors, as well as thbseent in the production rate estimates.
The exclusion of additional uncertainties (e.goagged with the bulk density, sample
thickness, shielding factor, attenuation lengtit arosion rate) reduces computation time
relative to CRONUScalc by approximately a factofafr (based on tests using the St and

LSD scaling models).

Surface-exposure ages are computed using the pebingut data (Section 2.1), and the

outputs can then be plotted based on the usertsngmreferences. The age distributions are
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plotted as kernel density estimates, and age populstatistics are calculated if the dataset is
defined as being from a single feature (describeBction 2.3). When using the MATLAB

version, the production rate through time can blsoutput and plotted.

2.3 Plot ages

The user may wish to plot and evaluate an expcasgyeadataset that was independently
generated using a different calculation progranp(exiously generated with iceTEA). This
tool (no. 2) allows exposure ages to be importedsfeecified in Appendix Al) and then

plotted.

A useful initial approach for evaluating a popuwatiof exposure ages is to look at the
age distribution of the dataset. Ages are plotgdgithis tool as kernel density estimates,
which are estimates for the probability densityction. Details of this method are discussed
in Lowell (1995), however, the version here corsdor the effect in which measurements
with the same relative precision have shorter Kdraghts — appearing less important — as
they get older. The probability distributions amrmalised by the expected kernel heights,
which are calculated as a function of age, assuthiaigall measurements have the same
relative uncertainty (Balco, 2018). Exposure agesarmally distributed around the mean
value, and the type of uncertainty adopted dependbke dataset. External uncertainties
(associated with both the measurement and produrdie) are used to calculate the age
distributions, unless the dataset is identifieth@iag from a single ‘feature’ (e.g. a moraine),
when the internal uncertainties (measurement @arly)jnstead used; for such datasets,
uncertainty introduced due to differences in praiducrate between samples is typically
negligible. Individual age distributions are plattwith the summed age distribution of the

dataset.
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Exposure ages from a feature should ideally reptessingle age population. Statistics
describing the age distribution of the datasetateulated when ‘feature’ is set by the user.
These include the modal age based on the summadisigbution, the weighted mean and
standard deviation, and the reduced chi-squareglwiighted mea(i) and weighted

standard deviatio(¥) of the dataset are calculated as:

/vi
=X (o) % (1)
and
7= (G - @

wherev; is a sample’s analytical age uncertainty ang a sample’s mean age. If preferred,
it is possible to alternatively calculate the anttic (unweighted) mean and standard
deviation (MATLAB® version only). The reduced chi-squarg@)(— often referred to as the
mean square of the weighted deviations (MSWD) mesareas of geochronology (e.g.
Wendt and Carl, 1991) — is a measure of the goadofefst between the weighted mean and

the set of exposure ages. It is calculated asvistio
( (xi-m)?
= —Z =7 3)

where the degrees of freedom is one less thanumber of samplesif. A y2 value of
approximately 1 signifies that the scatter in tatadet can be explained by the measurement
uncertainty of the individual samples alone, pradg@ univariate normal distribution where
the weighted mean and uncertainty appropriatelyesgmt the data. The measurement
uncertainties may have been overestimated if theeva significantly less than 1. For values
larger than 1, the observed scatter of the dateeslscthat predicted by the age uncertainties,

indicating an additional source for variance in dia¢a, most likely from geomorphic factors.
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To test whether the data represent a single feawexuced chi-squared value should fall
within a & envelope (95% confidence), determined by therooitec:

=142 |= 4
K= — (4)
which depends on the degrees of freedom and, tiretghe number of samples (Spencer et
al., 2017; Wendt and Carl, 1991) 4§ < x then there is a >95% probability that the data
represent a single population and it is therefpgr@priate to use the weighted mean as an
age estimate for the feature (Spencer et al., 2@L#)orough evaluation of a dataset from a
single feature should also attempt to identify iewsl, which uses different statistical methods

(see Section 2.4).

For spatially-variable datasets where samples haea collected at a range of locations
relative to an ice margin, it is informative to shexposure ages as a function of their sample
position. If the dataset is identified by the uaem ‘transect’, then exposure ages are
additionally plotted as either a vertical or hontl transect. The relative position is used
from the input data (Appendix Al), which shouldibenetres for a vertical transect and km
for a horizontal transect. If there are no relapesition values entered for samples from a

vertical transect, then the elevation (in metresvatsea level) is used.

A series of plotting options are available. Therusa set the time axis limits (lower and
upper) in thousands of years before present (kal)pasition axis limits (lower and upper) in
metres or km depending on the type of relativetpmsdata (applies only to the transect
plot). In the MATLAB® version, particular samples within the datasettmmselected to plot

(the default is to plot all samples given in thpuhdata).
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2.4 Remove outliers

Glacial chronologies often have a degree of scathere samples do not provide
matching exposure ages. For glacial features, aschoraines or bedrock landforms, a suite
of samples is typically collected to provide anwaate age constraint. While the shape of a
summed probability distribution can be used tocatk potential outliers — a single discrete
peak implies all ages with uncertainties are cdestsvith each other, more than one discrete
peak implies no single consistent age populatiod,apeak with a shoulder peak on one of
its limbs implies something in between — it is @iy subjective. To more robustly identify
whether a dataset represents a single age poputati® dominant age population and an
outlier, statistical outlier tests like the Chauees criterion (e.g. Rinterknecht et al., 2006)
and Grubbs’ Test (e.g. Putnam et al., 2010), asdsasnents of dataset skewness (Applegate

et al., 2010) have been applied.

In this tool (no. 3) we use a two-tailed generalisgtreme Studentized deviate (QESD)
test to statistically identify whether there arg antliers within the dataset (Rosner, 1983).
Similar to the Grubbs’ Test (Grubbs, 1969), it ases that the data can be approximated by a
normal distribution, and is performed iterativeling the difference between the sample’s
mean exposure age and the most extreme data congitlee standard deviation. Unlike the
Grubbs’ Test, the gESD test does not assume aesiglier, and instead uses an upper
bound for the number of possible outliery. (The outliers are calculated from a sequence of

separate tests (1 outlier, 2 outliers,r. outliers):

x|

Rl - s (5)

whereR; is Rosner’s test statistic representing the ex¢r&tudentized deviates from

successively reduced sample$) is the observation with the greatest distance fifoen
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mean of the dataset, amfl’ ands® are the mean and standard deviation of the datattet

the most extreme observations removed. Criticalesall;) for R; are calculated as:

1 = tp,n—i—l(n_i)' (6)

P =
\/(n—i—1+tp,n_i_1)(n—i+1)

wheren is the number of observatiorts, is the Student’s t-distribution for the quantife o
significance level (the default is 0.05; 5% probability of incorrgctejecting the null

hypothesis that there are no outliers), andi — 1 determines the degrees of freedom.

The number of outliers is determined by finding itleeation with the most successively
reduced samples (the largéstlf R; > A; then the most extreme values are outliers. We set
the maximum number of outliers)(asn — 1; by assuming a high number of possible
outliers, we avoid additional outliers influencitige value of the test statistic. The method is
most accurate for datasets with at least 15 samguhesparticularly >25 samples (Rosner,
1983). Datasets with fewer samples require thebetmuch fewer outliers for accurate
detection. For example, at the most extreme, n@ni@n a single outlier could be reliably

identified from a dataset of only 3 samples.

The outlier identification and removal tool is fed differently in the online and
MATLAB © versions of iceTEA. The tool is included withiretage calculation and plotting
tools (Sections 2.2 and 2.3) in the MATLABersion (Table 1). On the web interface it is a
separate tool, requiring sample exposure ages talbalated and included in the input
sample data (Appendix Al). By using the tool, iassumed that the data come from a single
feature (e.g. a moraine or bedrock landform), &ad there should be a consistent age
population for that feature. If a dataset contamatiple features, then the analysis must be
performed separately for each feature, with thetmlata organised accordingly. For a more

thorough assessment of a dataset, the signifidamekfor determining outliersx can be



265  optionally set to 0.01 (default is 0.05), which Wbinstead generate results with a 1%

266  probability of incorrectly rejecting the null hypasis that there are no outliers. Once the

267 outliers have been identified and removed, thecedulataset of the feature is plotted as a
268  kernel density plot with the corresponding modad,ageighted mean and standard deviation,
269 and reduced chi-squared statistic (as in Secti®n Zhe removed outliers can optionally be
270 plotted as grey kernel density estimates. If ndiengtare detected then this plot will contain
271 all original ages within the dataset. The useraationally set the time axis limits (lower and
272 upper) of the plot in thousands of years beforegme(ka), and specify which samples to plot

273 (MATLAB © version only).
274
275 2.5 Plot two-isotope concentrations

276 Multiple nuclides (most commonf/Be and?®Al) are often measured in a sample to
277  better understand the exposure and burial histaly {991), and can be particularly useful
278 in burial dating and for identifying cosmogenic @ntbance in a sample (e.g. Fabel and

279  Harbor, 1999; Granger, 2006). The ‘Plot two-isotopacentrations’ tool (no. 4) enables
280 measured nuclide concentrations to be plottedt@roasotope diagram and optionally as a
281  depth profile, using the information provided i tinput data. It should be noted that the
282  required data are slightly different from that ne@dor the other tools (see Section 2.1 and

283 Appendix Al). The tool is currently only availatite °Be and?®Al data.

284 The purpose of a two-isotope diagram is to compagasured nuclide concentrations
285  with those concentrations that should be expected Eimple pathways of exposure and
286  burial (Figure 1). The concentration of a nuclidk)(during exposure differs between

287  isotopes, owing to nuclide-specific production aeday:
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Ny = /_lkp—fp_g(l —exp [— (xlk + %)] te) (7)

A

whereP, is the nuclide’s production rate (atombay'), 1, is the nuclide’s decay constant
(a), p is rock density (g ci), ¢ is the surface erosion rate (cit)a\ is the attenuation length
(g cm?), andt, is the exposure time (a). For a continuously eggasck surface, the
concentration of°Be increases until it reaches secular equilibriwile the ratio of°Al to
19Be decreases as the lower half-lifé¥#l causes it reach secular equilibrium sooner (top
curve in Figure 1). A rock surface can experienffereént concentration pathways despite
continuous exposure as a result of subaerial evosigecond, lower curve is determined by
calculating nuclide saturation from continuous esgge and a multitude of erosion rates. A
steady-state erosion island (Lal, 1991) — refetodukere as the “simple exposure region” —
represents the area within which a continuouslyosegd surface can exist (Figure 1).
Following exposure, when a surface becomes bunddeotected from cosmic rays, the
concentration of°Al decays more quickly than that ¥Be; the?°Al/*°Be ratio decreases in
line with radioactive decay. Exposure and buriatigones, representing concentrations of

equal exposure() and burial ) time (a), are plotted on the diagram and caledlatith:

Ny = Pkg(l — exp [— (xlk + 3)] te) exp [— (xlk + 3)] ty (8)
P A A

where it is assumed that the surface is buried atfanite depth, with zero production,
following initial continuous exposure rather thaeagly-state erosion. The diagram (Figure 1)
assumes that a sample has primarily experiencéldggaic production, at or near to the
surface, rather than muonic production at greagpthss. In situations where a sample
underwent significantly more production at depth.(below ~5 m) than at the surface — for

fast-eroding settings and/or deep cores — the batimeerf°Al and *°Be would be greater



310

(e.g. Akcar et al., 2017; Granger and Smith, 2@0@) the sample would appear further up

311 the diagram (Fig. 1).

312
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314  Fig. 1. A two-isotope diagram for normalisEBe and?®Al concentrations. During continuous
315  exposure, thé’Be concentration increases until it becomes satdrand is at secular equilibrium
316  (upper black line). Meanwhile, ti8Al/'°Be ratio decreases. Surfaces that are continuewplysed
317  but that undergo different degrees of constani@ndsllow diverging trajectories until saturatidm
318 reached (lower black line). Any rock surfaces witbasured concentrations that fall between these
319 lines —the simple exposure region — are assumedu® been continuously exposed with a “simple”
320 exposure history. Concentrations that plot aboeseHines (in the grey area) are either not feasibl
321  and imply issues with the geochemistry or measun¢iwfea sample, imply that a sample was once

exposed at a higher elevation (larger productite) rand then transported to a lower elevation, or

322
323 indicate that a sample underwent production far@stantially long period at depth (largéil/ *°Be
324  production ratio) before arriving at the surfacen€entrations that plot below the simple exposure
325  region indicate that the sampled surface has beeedowith a “complex” exposure history.
326  Isochrones highlight points of equal exposure tf{meple dashed lines) and burial time (orange dot-

327 dashed lines).
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To allow for comparing samples from multiple siteés$s necessary to normalise nuclide
concentrations. A depth-integrated local presegtptaduction rate of each sample is
calculated and averaged by the mineral weight,enthi mean density and attenuation length
of the samples are used to compute the exposurbuaiad isochrones and lines of
continuous exposure. As the nuclide concentra@masiormalised by the nuclide’s

production rateP, in Equations 7 and 8 becomes equal to 1.

The plot can also be produced for nuclide concéatra from core samples, where some
samples may have been combined for a nuclide measumt. An example is where, at a
particular depth range, two samples were indepetydereasured fot°Be but were
combined for®Al measurement (e.g. Schaefer et al., 2016). Basdgtle sample input data
(see Section 2.1 and Appendix Al), data are auioallgtsorted by finding common depths
between nuclide measurements and then combiningaitmealised concentration meafé.Y

and uncertaintiess{V,) for the depth range:

N Yc(Ns Y ws)

Ne="sswo ©)
and

N Yc(Ns Y ws) 2

oNe = ( ST ws) ) (10)

whereN;, is the normalised sample concentration (with thi¢ heing years, as the

concentration is normalised by the production ratejw; is the weight of each sample (g).

The two-isotope diagram uses a logarithmic axigternormalised®Be concentration
(Nishiizumi et al., 1991) as 1) it reduces clustgrof samples, particularly for lo%iBe
concentrations, and 2) radioactive decay linescamcesponding burial isochrones are near-

straight, allowing for simpler interpretation oftdavith respect to time. Sample
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concentrations are plotted with uncertainty ellgppaad a point mean. The ellipses can be
shown for either 1 or 2 (68% or 95% confidence). The user can also opiisat the
5Al/*%Be ratio andBe concentration axes limits (lower and upper) amthe MATLAB®

version, set the exposure and burial isochronekajrio plot.

Depth profiles can be particularly useful for exaing nuclide production in soils and
bedrock (e.g. Balco and Rovey, 2008; Schaefer.€2@16). This tool provides the option to
additionally plot sample concentrations (in atonisas a function of depth (m), where a box
represents the depth range and the concentratmertamty of each sample, and a line
represents the mean concentration for that sarhpkedepth and concentration axes limits
(lower and upper) can be optionally set when pradythis plot using the MATLAB

version.

2.6 Correct for surface cover

Cosmogenic nuclide production in rock decreasels dépth below the surface as
cosmic radiation is attenuated. The same procesgs®m material overlying the rock
surface — dependent on the thickness and densibyabfmaterial — which can shield the rock
surface from cosmic rays and therefore reduce aeigroduction (Gosse and Phillips, 2001).
The effects of shielding from surface cover are wmmly ignored or considered negligible,
but feasible depths of >16 g @meduce nuclide production by >10%. Two main apghea
can be taken if a study region is suspected to hadesome surface cover (e.g. snowpack,
soil, loess, till, ash, water): 1) a specific saimglstrategy to minimise the effects of possible
surface cover — for example, only the top surfaxddarge boulders could be sampled,
assuming that these would not have been covertthbany material was quickly windswept

(e.g. Balco, 2011; Ivy-Ochs et al., 1999); or 2 thfluence of surface cover on collected



375 rock samples could be evaluated by calculatingasertover shielding factors and resulting

376  exposure ages (e.g. Benson et al., 2004; Schileigah, 2005).

377  Here we provide a tool (no. 5) that calculates sype ages with a correction for material
378  covering the rock surface. The total time-averagi@thce shielding factosy) is calculated

379 from:

380 S =Sy exp (—%) (11)

381  whereS; is the shielding factor from topography (Dunnalet1999), and where shielding

382 from surface cover is determined from the averaghdof surface cover(,,.,, in cm), the

383  average density of that cover.{,.,, in g cm°) and the effective attenuation length,(in g

384 cm?). The topographic shielding factor is taken frdra sample input data (see Section 2.1),
385  while the attenuation length is determined fromgample location (see Section 2.2). A value
386  for cover depth is required, as well as eitheresgt cover type (Table 2) or a manually

387 specified density for the surface cover. Exposgesare then calculated as described in

388  Marrero et al. (2016) and Section 2.2.

Table 2. Preset cover material options and the
corresponding density (p.ver) Used for surface
cover corrections. A user-specified density for

surface cover can alternatively be used.

Cover material Density (g cm )
Ash 0.7
Loess 1.6
Snow 0.27
Soil 1.3%
Till 1.8
Fresh water 0.999°
Sea water 1.027 ¢

& Average of dry mineral soil (~1-1.6 ¢ cm'3); note, a
value for wet soil will be higher.
® Near-surface water (1.1 bars) at 10 °C.
¢ Near-surface water (1.1 bars) at 10 °C with salinity
of 35 g kg™.
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The cover shielding factor computed in this tod isimplified approach to be used to
test the effects from long-term averages of suréaser, as it assumes that surface cover was
of constant depth for the entire period of intergsteality, snow cover at a site likely varied
through time with seasonal fluctuations, water leweuld have varied periodically or
lowered progressively, and till, soil, loess and-Bgpe deposits may have gradually deflated
over time. In locations where snow cover was likaigvalent, there are methods available
that use seasonal changes in snow-depth (Gosdehdhgs, 2001), or an energy balance
model to account for temporal and spatial varigbdf snow shielding (Schildgen et al.,
2005). Ideally, corrected exposure ages shoulagusee-dependent shielding factor,
however this requires estimates of the cover deptt density) through time, which is rarely
possible to approximate. It should also be notaetldhmore complex mass-shielding
approach is possibly required to accurately acctarrgroduction from thermal neutron
capture (Delunel et al., 2014; Dunai et al., 2Aweck et al., 2013) and for variations in

cover density with depth (Jonas et al., 2009).

Results are provided following computation of theekling factor and corresponding
exposure ages for the specified production scatiathod. These results include the surface
cover and total shielding factors, and the corakstaface-exposure ages (mean and standard
deviation). The corrected age distributions ard¢tetbas kernel density estimates (described

in Section 2.3).

2.7 Correct for elevation change

Cosmogenic nuclide production is dependent on giiversc pressure, with greater
production occurring at higher altitudes whereghessure is lower (Gosse and Phillips,

2001; Lal, 1991). An accurate estimate of the aphesc pressure during exposure is,
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therefore, necessary for the calculation of an symage. Typically, it is assumed that the
elevation of a sampled surface relative to sed letlee reference point for scaling
atmospheric pressure — has either not varied awerdr that any effect of elevation change
is negligible. However, while atmospheric pressatrpresent-day sea level was likely similar
to today in the past (Méliéres et al., 1991), wevkriirom models of glacial isostatic
adjustment (GIA) (e.g. Peltier et al., 2015) thaitical deformation of the land varied over
time in response to changing volumes of ice mad§bere a surface-exposure dating site is
located next to the coast, a relative sea-levelechas previously been used to estimate
relative changes in elevation since ice retreataoh that region (e.g. Goehring et al., 2012,
Rinterknecht et al., 2006; Young et al., 2013). Avram the coast and relative sea-level
sites, it is not possible to accurately extrapodate recorded elevation changes, largely
because the local ice loading history and resuljlagial isostatic response vary in space (cf.
Whitehouse, 2018). In such cases, GIA models carsbd to derive exposure ages that are
corrected for isostatic change (e.g. Cuzzone €2@16; Suganuma et al., 2014; Ullman et
al., 2016). Tectonically-driven elevation changd also have an effect on nuclide
production (Dunai, 2010; Riihimaki and Libarkin,®@0. Rock samples that have been
exposed over long timescales, or that are fromsav€eapid uplift/subsidence, may therefore
also require correction of local production rated eesulting exposure ages (e.g. Brook et al.,

1995; Dunai et al., 2005; Schaefer et al., 1999).

In this tool (no. 6), exposure ages are calculatithl corrections for changes in elevation
— derived from either a GIA model or a linear ratplift or subsidence) — through time. The

time-varying €) elevation relative to present-day sea le¥gli¢ determined from:

Em(t) = €pres,m + ediff,m(t)

(12)
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wheree,,. , IS the present-day elevation (m asl) of a sample &ndeg; 7., (t) is the
elevation (metres) of a sample relativeeg, ., at timet. For a given rate (m K,
eqirrm(t) Is computed back to 8160 ka before present (apiertimes the half-life of’Be)
in 100-year intervals. Using a GIA-derived correntiey; s m (t) is the past isostatic
elevation change, interpolated from model outputOéit-year intervalst,, (t) is then
converted to atmospheric pressure, dependent totaton (see Section 2.2). The total

nuclide production is calculated based on the cteteatmospheric pressue (
Ptotal,k(t) = Sel,((p' Rc: t) SS Pref,s,(,k exp (/_\_j) + SS Pu(p' Rc' Z) (13)

whereS,, ¢ is the time-dependent elevation-latitude scalimgdiafor a particular scaling
model ), Ss is the shielding factor from terrain and surfaoeer (see Section 2.&),.f ¢

is the reference spallogenic) production rate (atomga’) at present-day sea-level high-
latitude (wherep = 1013.25) for nuclidek, A, is the effective attenuation length (g &z

is the depth (g cif), andp, is the production rate (aton @*) atz due to muonsy), which

is a function of pressure, depth and the cutoftiiig (R.). Applying a GIA-based correction
to the primary®Be calibration sites of Borchers et al. (2016) éases the time- and site-
averaged production rate by just 0.17% (based ®tQ&-6G ice model and LSD scaling
model), well within the uncertainty of the measuesns and calculation (Jones et al., in
review). The reason for only a minor correctiotaigely because the sites were far enough
away from the centres of past major glacial isastdtange. For long-term subsidence or
uplift, it can be assumed that effects were regipeeific and did not influence production at
the calibration sites. We therefore use the unctecespallogenic production rate of
Borchers et al. (2016) for calculating exposuresafat are corrected for changes in relative

elevation.
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Determination of the time-dependent relative elevebf a sampledy; ¢, (t)) requires
particular inputs based on whether the GIA moddinaar rate approach is used. For the
linear rate method, a rate of elevation changed) is required to generate an elevation
history. A positive rate (e.g. 2 mKawould correspond to lower elevations in the past,
uplifting towards present, and a negative rate da@okrespond to higher elevations in the
past, subsiding towards present. For the GlA-basetthod, either the ICE-5G (Peltier, 2004)
or ICE-6G (Peltier et al., 2015) ice model can éle&ed, which are the only global ice
models currently freely available. Most ice masaesincluded in these models (Antarctica,
Greenland, Laurentide, Cordilleran, Fennoscandaitish-Irish, Patagonian, New Zealand,
and Iceland), but the relatively minor effects frara in the Himalayas, European Alps,
Caucasus and Andes do not feature. There are sifferemnices between the ice models,
particularly in North America, but ICE-6G is conserdd to be more accurate as it is
constrained by modern GPS-measured uplift ratesldition to ice extent and relative sea-
level records. The original ice model data was plealuced for different timescales, with
ICE-5G ice history defined from 122 ka to presént, ICE-6G from just 26 ka. Prior to these
times, the elevation difference for the oldest nhdidee step is used and, therefore, corrected

exposure ages older than 122 ka or 26 ka shouldenotterpreted.

In addition to defining the ice-load history, theeological properties of the Earth must
be prescribed within the GIA model. A three-laypp@ximation of the VM2 Earth model
(5G reference) is used in our calculations. The \li&2th model was developed in
conjunction with the ICE-5G ice model, while theB®G ice model was developed in
parallel with the VM5a Earth model (6G referendé@y15a is simply a multi-layer fit to
VM2, so our 3-layer approximation is appropriatedse with both ice models. Having
defined both the ice model and the Earth modeltithe-dependent elevation relative to

present can be calculated. The spatial resolufitineoGIA model output used within iceTEA
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is 1 geographic degree, meaning that a greateiabpatiability of isostatic effects is
captured towards the poles. The GIA model accdantshoreline migration, rotational
feedbacks, and the gravitational attraction ofmasses (Milne and Mitrovica, 1998;
Whitehouse, 2018). If the sample elevation is betew level for any particular period of

time, then it is assumed that no nuclide productiocurs.

Results are provided following computation of timeg-dependent elevation and
corresponding exposure ages for the specified ptaduscaling method. These results
include the corrected surface-exposure ages (nahstandard deviation) and the mean
offsets from the uncorrected ages (in years arad@scentage), which are exported as an
Excel® spreadsheet or text file. The corrected age Higidns are plotted as kernel density
estimates (described in Section 2.3), and the jpcaluction rates used are plotted as a
function of time. The age axes of the plots, ad a®the production rate axis, can be

optionally set (lower limit and upper limit).

2.8 Estimate retreat/thinning rate — linear approat

Surface-exposure dating is sometimes applied mséets to constrain spatial changes of
the ice margin through time (e.g. Briner et alQ20Cuzzone et al., 2016; Johnson et al.,
2014; Lane et al., 2014; Small et al., 2018). Lima#es of deglaciation can then be estimated
by either calculating the distance and age offsét/ben dated positions, or by performing
regression analysis for a suite of exposure ages/try approximately linearly with their
position. The latter approach has been used toalaxierage rates and corresponding
durations of rapid ice surface lowering in Antazat{Johnson et al., 2014; Jones et al., 2015;

Small et al., accepted), and is adopted here (toF).
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Ice margin retreat or thinning rate estimates ameputed for datasets that form either a
horizontal or vertical transect, respectively. Positions of the samples relative to the ice
margin (in km for horizontal transects and metmgsvertical transects) are used as the
independent variable in the analysis. Least-squaggession is applied randomly to
normally-distributed exposure ages (at)2hrough a Monte Carlo simulation; while 5000 is
the default number of iterations, this value campgonally specified. Linear least-squares

regression predicts the exposure aggfor each sample position regressg:(

Yi = Bo + B14; (14)

wherep; is the Pearson correlation coefficient of the obsg mean exposure ages and
sample positions, multiplied by the standard demmabf the mean ages divided by the
standard deviation of the positions, ghds the mean of the observed ages minus the mean

of the observed sample positions multipliedshy

The approach assumes that 1) the exposure agasi@tguepresent the timing of ice
margin retreat or ice surface lowering at eachtfmwsiwithout any post-depositional
processes or cosmogenic inheritance significarftcing the ages, and 2) retreat/thinning
was approximately continuous over the time perivates are estimated from the distribution
of feasible, positive-sloping linear regressionse Tincertainty of the estimate is generally
reflective of the number and scatter of exposuges @ontributing to each transect, together
with their respective uncertainties. Uncertaintrethe horizontal/vertical positions of

samples are not included in the calculations.

Linear estimates can be computed using either e or weighted regression, where
the weighting is derived from the analytical unagarty of each sample (see Equations 1 and
2). While the weighted method should be used ifesofithe exposure ages have large

uncertainties relative to others in the datasetutmweighted method should be used if
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outliers within the data are suspected, particul@those potential outliers have relatively

small uncertainties.

The computed linear rates are produced as a pidpalistribution, with estimates at
68% and 95% confidence bounds. Estimated ratgslatted as a histogram, highlighting the
modal and median rate, and as a transect, showingdelled linear regressions for the
exposure ages as a function of sample positiontHeolatter plot, the user can specify
whether to show the exposure ages, and can ogdfia®lthe time and relative position axes
(lower and upper limits) in thousands of years beforesent and in metres or km,
respectively. In the MATLAB version, the samples to be analysed within thasgaican

also be specified (the default is to analyse atigas).

2.9 Estimate retreat/thinning rates — continuous aproach

A surface-exposure dataset may record a variatdeoface retreat or thinning during
deglaciation (e.g. Lane et al., 2014; Spector.eRall7). In this case an average rate derived
from a linear regression model (Section 2.8) wilt adequately capture the ice margin or ice
surface elevation changes implied by the dataradtievely, the continuous evolution of such
changes can be modelled to derive rate estimatablirg the magnitude and timing of rate
changes to be identified and datasets from diftdoerations to be compared (e.g. Cahill et

al., 2015).

Here we provide a tool (no. 8) that estimates ratestreat or thinning by fitting a
continuous time-dependent function of ice positioth respect to time. The relative position
(distance from ice margin or elevation above thel@eno ice surface) is modelled using

Fourier Series analysis:
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f(t) = ayg+ Y= a; cos(wti) + b; sin(wti) (15)

wheref (t) is the true relative sample position under theiagdions of the fitted modet,is

the mean age of the mean sample positipandb; are coefficients for the cosine and sine
forms,w is the frequency of the signal, anis the number of terms in the series. The latter
of these parameters can be optionally modified aounally improve the fit of the model to

the data (values are accepted between 1 and &ltisf8); the higher the number of terms
(i), the more sinusoidal the fit. While potentiallyeful, this is a simple approach that 1) uses
only the mean exposure age and position valuegsa®)assume that the exposure ages can
record retreat/thinning and advance/thickening, &nequires the user to decide which

model (determined by the number of terms) bestligsdata.

The MATLAB® version of iceTEA includes an additional, moreusibstatistical approach,
designed for surface-exposure data. In this chseaglative position is modelled using

Bayesian penalized spline regression:

f(t) = Xkeq b (D) (16)

wheret; is the age of the sample position #ifd;) is the true relative position under the
assumptions of the fitted model, refers to spline coefficiert andb, is thekt" B-spline
evaluated at age for k = 1, ..., K. Cubic B-splines (e.g. Eilers and Marx, 2010) wesed

and the first order differences of the spline acefhts were penalized to ensure smoothness
of the fitted curve. As surface-exposure datingiasss continuous deglaciation without
readvance or re-thickening, a further constrairg wgosed on the coefficients so that the
spline-modelled positions decreased over time.mbdel was fitted within a Bayesian
framework using JAGS (just another Gibbs samplemimer, 2003) to provide estimates of
f(t;) with uncertainties, which were incorporated thioag errors-in-variables framework

(Cahill et al., 2015; Dey et al., 2000). For a s&ittransect, both temporal (exposure age)



580 and spatial (elevation) uncertainties are incluaddle just the exposure age uncertainty is

581 used for a horizontal transect.

582 Computed time-dependent estimates are producdddanedian, and 68% and 95%

583  confidence bounds. The fitted age-position prafilplotted together with the rates of change
584  as a function of time, and the minimum and maxinmoedian rates are identified and

585 highlighted. The user can specify whether to shoevelxposure ages, and can optionally set
586 the time, relative position and rate of change dbmger and upper limits) in thousands of
587  years before present, in metres or km, and in ¢hoym yr*, respectively. In the

588  MATLAB © version, the samples to be analysed within thasgatcan be specified (the

589  default is to analyse all samples), and the nurab®tonte Carlo iterations within the

590 Bayesian framework can be set (the default is Z),00
591
592 3. Example applications and outputs

593 The iceTEA tools can be used for mfe and’Al surface-exposure datasets that are
594  used to constrain former ice margins, but the @ofdool depends on the context of the
595 dataset. Each of the tools plot nuclide conceminatiexposure ages, and/or results of an
596 analysis, which are available for download usirgdhline interface or can be automatically
597 saved using the MATLAB code, in both raster-based Portable Network Geapfpng) and
598 vector-based Encapsulated Postscript (.eps) formhats section highlights potential

599  applications for each of the tools and providesaesvs for the graphical outputs of iceTEA.

600 The duration and nature of past ice cover can parapt from nuclide concentrations
601 alone, without the need for calculating correspngdixposure ages. Rock samples that have

602 paired'®Be and®®’Al measurements can be evaluated with the ‘Plotisstope
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concentrations’ tool (no. 4) (Figure 2). Measuredlide concentrations that plot within the
simple exposure region likely record continuousasxpe since first exposed, while
concentrations that plot below this area indichte the sample underwent at least one period
of burial since first exposed. In Figure 2A, theasigred concentrations from a Greenland
bedrock core (Schaefer et al., 2016) — correspgrtditore segments at 0.22-0.99 m and
1.02-1.29 m (Figure 2B) — imply at least ~25-50@ka&xposure and ~700-1600 ka of burial.
Such applications can help reveal the relativetoraf past ice cover and whether the
landscape was covered by cold-based, non-erovgig. Briner et al., 2006), but can also
be combined with numerical modelling approachedéatify potential glacial/interglacial

scenarios (e.g. Schaefer et al., 2016).
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Fig. 2. Nuclide concentrations plotted A) on a twotope diagram (at 1 and 2 sigma), and B) as a
function of depth (at 1 sigma). These are exammieduced by the tool ‘Plot two-isotope
concentrations’, which reproduce previously puldisiplots of-°Be (red) and®Al (blue) nuclide
concentrations that were measured in a bedrock(Sateefer et al., 2016). In this case, those core
segments that were combined for nuclide measureanergutomatically detected based on common
sample depths (linked with a vertical line throdlgé means in B) in order to produce the equivalent

1%Be and®Al nuclide concentrations that are shown in Aslunlikely that samples would be
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combined for surface rock samples, and therefartk sample would be plotted on the two-isotope

plot separately.

Most of the plotting and analysis tools are for wsth surface-exposure ages. The
overall distribution of ages within a dataset carvisualised with a kernel density plot, using
either the ‘Calculate ages’ or ‘Plot ages’ tool.(h@and 2, respectively). For a
geographically-distributed dataset (e.g. sequehasotaines, isolated bedrock features or
glacial deposits), temporal patterns in the chrogplsuch as those across a region of New
Zealand can be identified (Figure 3A). It shouldnos¢ed, however, that such an application
would have to assume that none of the exposurevegresbiased by post-depositional
disturbance or inheritance of nuclides from prigp@sure, making an apparent age younger
or older respectively. For datasets from a vertediorizontal transect, patterns of ice
surface lowering or ice margin retreat can be preted from a plot of the relative positions

against exposure ages (Figure 3B).

The ‘Remove outliers’ tool (no. 3) is for diagnagiexposure ages within a dataset
derived from a single glacial feature. In an exafpdm a moraine in southern Patagonia
(Figure 4A), 14 exposure ages produce a consisteah and modal age for the feature.
However, the spread of ages within the datasettriesa large reduced chi-squared value that
is greater than the chi-squared criterion, theeefimplying that the mean and standard
deviation should not be used to represent the agelation (at 95% confidence). Applied to
this example, four exposure ages are identifieoudigers and are removed from the dataset
(Figure 4B). This results in a much tighter clusitages and a decreased reduced chi-
squared that is indicative of a single age poputatat 95% confidence). Based on both the

reduced chi-squared test and geSD outliers tesgighted mean and standard deviation of



646 14.22 £ 0.5 ka can be used as the age for thisineoraeally, a reason for an outlier should
647 be established whenever one or more are identfied example, evidence that the sample
648 has experienced surface erosion or post-depoditimmaement. Outlier removal approaches
649 rely on the assumption that geomorphic processemtimfluence each sample equally. If

650 such effects did occur equally — for example, poddig from surface erosion if the samples
651 are of the same lithology and approximately theesage — then the mean ages would shift

652  but the scatter of ages within the dataset woutdaaignificant.
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655  Fig. 3. Exposure ages plotted as A) kernel dersitynates for samples from a sequence of moraines
656  (Ohau lI-VI, Lake Ohau, New Zealand; Putnam et20113), and B) a vertical transect recording ice
657  sheet surface lowering (Mt Suess and Low Ridge,Kela&lacier, Antarctica; Jones et al., 2015).

658  These are examples of the plotted outputs fronmidbis ‘Calculate ages’ and ‘Plot ages’, which are

659  able to highlight temporal and spatial pattern$imidatasets.
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Fig. 4. Exposure ages from a moraine plotted asekelensity estimates A) for the initial raw datase
and B) following the removal of outliers. The exdengataset is from Torres del Paine, southern
Patagonia (TDPIIl, n=14; Garcia et al., 2012). dgime ‘Calculate ages’ or ‘Plot ages’ tool, the
probability distribution of each sample is plotiadight red and the summed distribution of the
dataset is plotted as a bold red line. Additionath mode (black dashed line), weighted mean Kblac
solid line) and weighted standard deviation (Slckldotted lines) of the dataset are shown, and the
reduced chi-squaregr§) and associated criterior)(are calculated; if3 < k then there is a >95 %
probability that the data represent a single pdmmgd.f. is degrees of freedom). Four outlierseve
identified (plotted in grey) and removed in thiseple using a generalised extreme Studentized

deviate (QESD) test with the ‘Remove outliers’ tool

Two of the iceTEA tools (no. 7 and 8) estimate satkdeglaciation from a transect of

exposure ages. Average rates of retreat or thintangoe computed using the linear model
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(no. 7) (Figure 5). This approach is best applib&rvthe position-age relationship of a
dataset implies an approximately constant ratetoéat or thinning. In cases where all ages
within a transect have overlapping uncertaintiestantaneous retreat or thinning is feasible,
but the median and range of rates from the regressialysis provide a more probable
estimate based on the age uncertainties (FigureTB)sects of exposure ages that imply a
variable rate (e.g. periods of both gradual andregireat/thinning) are less suited to this
tool, and should instead be used with the Fourepbne based models (tool no. 8) to
compute continuous rates. In Figure 6, modellethsarlowering profiles are plotted for a
vertical transect, as well as the correspondingsraf thinning for the period covered by the
dataset, for both model approaches. The qualithefit may vary between approaches,
dependent on dataset. In this example, the FoBages analysis (number of terms = 3)
indicates that the minimum rate of ice surface lomgewas equal to or less than 0 crit gt
multiple times, with a maximum median lowering rafel4.7 cm yi* at 7.3 ka. Using the
spline-based approach provides an improved fiicatohg that ice surface lowering was
slowest at 10.7 ka, but then accelerated to a maximedian rate of 15.1 cm¥yat 8.1 ka
before becoming more gradual after ~6 ka. Irrespeci the approach used to estimate

deglaciation rates, the effects from potentialietglwithin a dataset should be investigated.
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695 individual linear regressions (grey lines) and 36&o6 confidence bounds (dashed black lines) are
696  shown for a Monte Carlo (MC) least-squares (LS2dinregression analysis on a horizontal transect
697  of exposure ages. The example data is from thed8wdransect of Cuzzone et al. (2016) and
698 references therein (using the weighted mean agssifrdividual sites). B) A histogram showing the
699  corresponding distribution of retreat rates produeg each iteration of the linear regression ansilys
700 C)and D) are the same as A and B, but for a \&rtiiansect of exposure ages from Mackay Glacier,
701  Antarctica (Jones et al., 2015).
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Fig. 6. Example output from estimating continuoagléciation rates using the A) Fourier and B)
spline models. The upper panel is the modelledlprdérived from Bayesian penalised spline
regression for an example vertical transect (SoaitReedy Glaciers, Antarctica; Spector et al.,
2017). The mean exposure ages are also plottedeatangles representing the age and elevation
uncertainties. The lower panel is the corresponditg of change. Maximum and minimum rates, and

their respective timings, are also computed.

Two iceTEA tools (no. 5 and 6) perform age corawdifor a dataset. The ‘Correct for
surface cover’ tool (no. 5) can be used for tedtimgsensitivity of an exposure age dataset if
past cover of rock surfaces is suspected. Figinghlights that the shielding provided by
surface cover causes the resulting exposure adestone older. This effect is greater for a
higher density cover material, such as till relativ snow, and for thicker cover, for example
50 cm relative to 20 cm (Figure 7). While this aggmh is useful for examining the effects of
shielding by surface cover, the true exposure agiealways be uncertain unless the cover

depth and density are confidently known for thé éxjpposure history.

The ‘Correct for elevation change’ tool (no. 6) ¢snused to understand the potential
exposure age effects from either a long-term apprately constant rate of tectonic rock

uplift/subsidence or GIA changes over the lastiglanterglacial cycle. Tectonic impacts
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will unsurprisingly be largest at sites near tdateoboundary, such as in the Himalaya.
Effects from GIA are both spatially and temporal@riable (Jones et al., in review). Broadly,
corrected exposure ages will become older if theydarived from a region of significant
deglaciation (e.g. Norway in Figure 8) due to ghhgostatic depression at the time of initial
exposure, can become younger if located at anaisoaslly elevated, subsiding ‘peripheral
bulge’ region beyond an ice sheet margin (e.g.meastern USA in Figure 8), or could be
relatively unchanged if they are from a region efjiigible surface elevation change (e.qg.
England in Figure 8). The period during which saasglave been exposed will also have an
effect — for example, a sample that becomes expesdy in the deglaciation (e.g. at 20 ka)
will have potentially experienced greater isostatevation change than samples initially
exposed in the Holocene. While applying these ctimes should provide more accurate
exposure ages — particularly for regions with lagggyation changes — these ages are
dependent on the GIA model, including uncertaindi€sociated with both the quantification
of ice sheet change and Earth rheology, or linsamate of elevation change. At any
particular location, the reliability of the corremt also depends on the degree of past
atmospheric pressure change in that region (Staigar, 2007). This tool will be improved

in the future as these effects are better undedstad quantified.
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Fig. 7. Effects on exposure ages from example swenaf material covering sampled rock surfaces.
The raw, uncorrected exposure ages are shown iasl ldEmsity estimates in light red with the
summed density estimates of the dataset as ae@tine. The green curves represent the summed
density estimates for varying degrees of shieltiygverlying materials (individual age distributioon
are not shown for clarity), calculated using ther@ct for surface cover’ tool. The dot-dashed eurv
is cover by 50 cm of snow (assumed density of §.2i°), the dashed curve is cover by 20 cm of till
(assumed density of 1.8 g &nand dotted curve is cover by 50 cm of till. Tyreater the thickness

and density of cover material, the larger the ageection.
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Fig. 8. Effects from GIA. A) The elevation of a gamsite relative to present since first exposed, a
B) the corresponding change in the site-specificipction rate through time. The dashed line
assumes no change in GIA, while the solid linevisexted for GIA effects. The orange site is in a
region of substantial glacial isostatic uplift (beh Norway), the green site was previously
isostatically elevated at a ‘peripheral bulge’ thezastern USA), and the purple site is from aaeqgi
of minor past surface elevation change (centraldmt). The examples were generated using the
ICE-6G ice model and LSD nuclide scaling model. flgh-frequency production rate variability
during the last ~12 ka is from changes in the smldéput; the scaling model uses an average value

prior to this time as any variability is undefin@dfton et al., 2014).
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4. Conclusions

iceTEA is an online and MATLAB based suite of tools for plotting and analysing
cosmogenic-nuclide surface-exposure data from fogtaeier and ice sheet margins. The
tools allow complex exposure histories to be evaldiasing a two-isotope diagram, patterns
within exposure age datasets to be identified fkemmel density estimate and transect plots,
the reliability of exposure ages to be examinedhwetdduced chi-squared and outlier removal
tests, linear and continuous rates of retreationithg to be estimated, and effects from cover
of rock surfaces and time-varying changes in netagievation to be investigated and
corrected ages to be calculated. This paper isteided to be prescriptive in the
approach(es) taken to analysing exposure agesai®us that these tools will allow workers
to explore the spatial and temporal patterns iir thea in a consistent and inter-comparable
way, and also to initiate discussion of further ioyements in the application and analysis of

surface-exposure data.

There is also potential for future iceTEA developm€urrently these tools can only be
used for'®Be and?®Al concentrations and exposure ages, but we interectpand the code so
that it can be used wiflte, **C, *Ne and®®Cl data. The age calculation framework will also
be updated following any important revisions of gxésting geomagnetic databases,
production rates and scaling models. It is alsceddpat production rates which have been
corrected for both time-varying relative elevatanmd atmospheric pressure changes will be

included in the future. We welcome suggestionsfititional plotting or analysis tools.
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Appendix 1. Required sample input data

There are two forms of input data required, whiah be in a Microsoft Excef (.xIsx)
or comma-separated values (.csv) spreadsheetadiaindelimited text file (.txt) without
column headings. The standard type of input datisésl for all plotting and analysis tools
apart from ‘Plot two-isotope concentrations’, with required columns plus an optional 7
columns (22 in total) for importing previously calated exposure ages. For the ‘Plot two-
isotope concentrations’ tool, 17 columns of sandala are required. Templates called
‘input_data_template.xlsx’ and ‘input_data_templatemplex.xIsx’ for the two input types,
respectively, can be found in the supplementarg,dsithin the compiled MATLAB code
and on the iceTEA website. Templates for examplasgds are also available. It is possible
with the ‘Plot two-isotope concentrations’ tooldort and plot bedrock core data where some
sections may have been combined for nuclide meamne In such cases, data should be
entered with each row representing a separatedaucieasurement (see

‘GISP2_input_complex.xIsx’).

Appendix 2. Overview of the iceTEA online interface

The home page of iceTEA features links to eacthefindividual tool interfaces (Figure
Al), while a ‘Documentation’ page provides informaton iceTEA, including the
MATLAB © code and descriptions of the necessary inputfdatsats. On selecting the
desired tool, the user will be taken to an intexféeg. Figure A2). This will include a series
of stages specific to each tool (Table 1), inclgddata, Results, Plot Settings and Plot
Results. The user can advance through the stagesdxting ‘Next’, and will be warned if
necessary information is missing. In the initialadaput stage, sample data in a correctly

formatted input file (Appendix Al) should be uplealdand the tool parameters should be



808  specified. Any results (e.g. calculated ages, ctiors, retreat/thinning rate estimates) will
809 be displayed in the Results stage. Plots will lmwshin the final stage, which can be

810 downloaded as both raster-based .png and vectedbaps files.
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813  Fig. A1l. Home page of iceTEA, which features litk®ach of the tool interfaces.
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816  Fig. A2. An example tool interface. The user cavgpess through each of the stages (e.g. Data to

817  Results to Plot Settings to Plot Results), usirg iext’ button.
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Highlights

e iceTEA (Tools for Exposure Ages; www.ice-tea.org) is a suite of 8 numerical tools.

o Data can be plotted on a 2-isotope diagram, as density estimates and as a transect.
e Exposure ages can be examined with reduced chi-squared and outlier removal tests.
e Exposure ages can be corrected for surface cover and relative elevation change.

e Rates of ice retreat/thinning can be estimated from linear and spline regression.


http://www.ice-tea.org/

