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Abstract In this paper, a new approach is proposed

to extract an ordered sequence of curvilinear structures

in images, capturing the largest and most influential

paths first and then progressively extracting smaller

paths until a prespecified size is reached. The results

are demonstrated both quantitatively and qualitatively

using synthetic and real world images. The method is

shown to outperform state-of-the-art methods for cer-

tain cases of noise, object class, and scale, while remain-

ing fundamentally easier to use due to its low parameter

requirement.

Keywords Curvilinear Structures · Centerline En-

hancement · Graph-based Method · Object Detection.

1 Introduction

Extracting curvilinear structures, or sets of line seg-

ments, in digital images is an important low-level prob-

lem with many applications in computer vision [1]. There

have been many attempts to redefine the ideal centre-

line properties and to develop bespoke algorithms in a

variety of domains, from medicine to engineering [1–3].

Existing methods introduce a wide range of param-

eters that are often difficult to tune and/or unintu-

itive. Furthermore, these parameters often require to

be tuned by the user for each image, resulting in faults

or robustness issues outside the chosen values [4]. Ta-

ble 1 compares the number of required parameters of

some of the most popular centreline extraction meth-

ods. Other approaches [5] harness advances in machine

learning to produce excellent results. The key problem

with these approaches is that they require large train-

ing datasets, which are very expensive in terms of data

acquisition and model training.

In this paper, we introduce a novel approach for

sequential centreline extraction in two stages: (1) en-

hancement of the centreline based on prominent ridge

detection and (2) extraction of the centreline based

on an iterative graph-based optimisation. Graph-based
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centreline extraction approaches [6, 7] are known to be

robust to image noise, but they typically require user-

specified start and end points. This approach searches

through a subset of paths that fall along prominent

ridges, sequentially returning the path with the largest

intensity sum along its profile, and whose union with

previous paths in the sequence maximally contributes

to the output skeleton. Therefore, a user-specified seed

is not required.

The main contribution of the proposed method is

that it only requires a single tunable parameter ε and

two optimisation parameters t1 and t2 without initial-

ization regions or training data. The parameter ε cor-

responds to the length (in pixels) of the shortest lines

to be captured. If the level of imaging noise is known a

priori, ε is set to a slightly larger value than this level.

The two optimisation parameters t1 and t2 are for the

enhancement and extraction optimisation processes, re-

spectively, and do not require tuning on a per-image ba-

sis. Therefore, this proposed algorithm works remark-

ably well as an out-of-the-box solution. The main stages

of our pipeline are shown in Figure 1.

2 Related Work

2.1 Centreline Extraction

Many centreline extraction methods for 2D and 3D im-

ages have been proposed in the literature with applica-

tions in many different fields [1]. A summary is shown

in Table 1.

2.1.1 Edge-based approaches

Simple gradient-based approaches are known to con-

verge on local solutions, such as medial sheets in 3D.

Gradient Vector Flow (GVF) addresses this problem

by using a diffusion of the gradient information [2] in

order to produce smooth centrelines. Smistad [3] com-

bined the GVF, Hessian-based enhancement, and ridge-

traversal. Leng et al. [9] propose enhancing the results

of a simple Canny edge detector by using a voting field

that enhances smooth curves and removes artificial lines

caused by noise. Smistad [3] combined GVF, Hessian-

based enhancement, and ridge-traversal. In order to



2 Shuaa S. Alharbi et al.

x
n̂

l

t1
Iteratively accumulate prominent peaks

ε

t2 Final extraction

a. b. c. d. e.

Ni

Nj

Fig. 1: Workflow of the proposed approach: (a) t1 intensity profiles, defined by random lines parametrized with

random positions x directions n̂ and lengths l, are considered and cast votes at the locations of the maximum peaks

into an accumulative space (b). This is followed by defining a graph G(N,E) used to build a set of t2 shortest

paths between t2 random start and end nodes Ni and Nj (c). Next, the most prominent shortest path in the set

is found (d). The processes (c) and (d) are repeated until the length of the most prominent shortest path is no

longer than ε, see the final extraction (e).

enhance the centreline, a searching algorithm is ap-

plied [10] that finds peaks in the intensity information

along each axis using a sliding-window approach.

2.1.2 Graph-based approaches

Graph-based approaches find the shortest path or sep-

arating cut between intensity or color information. In

particular, Jin et al. [7] find paths in objects with a

tree-structure from a user-specified point, which is used

to find the furthest point and the minimal connecting

path. Similarly, Rouchdy and Cohen [6] consider the

accumulative overlap of shortest paths from the image

boundary towards a user-specified seed, which is shown

to be robust to image noise.

Table 1: Comparison of centreline detection methods.

Representative
Method

Approach Dimensions Notes

Zhang Suen et al.
(Thinning) [8]

Thinning Process 2D
Requires binary

segmentation

Leng et al. [9]
Canny edge and

tensor voting
2D 4 tunable parameters

Smistad et al. [3]
Gradient vector

and Hessian
matrix

3D 9 tunable parameters

Lam et al. [2]
Normalised

gradient vector
field

2D 4 tunable parameters

Shao et al. [10]
Searching
algorithm

2D 3 tunable parameters

Hassona et al. [11] Level set 2D/3D
Requires binary

segmentation

Shen et al. [12] Deep learning 2D/3D
Requires large

datasets and a long
training process

Steger (UDCS) [4]
Ridge

detecting
2D 3 tunable parameters

Sharma et al.
(Voronoi) [13]

Voronoi diagram 2D Sensitivity to noise

Lopez-Molina et
al. (AGK) [14]

Anisotropic
Gaussian kernels

2D 4 tunable parameters

Our method
Sequential

graph-based
extraction

2D/3D
1 tunable parameter
and 2 optimization

parameters

2.1.3 Learning-based approaches

Recent learning-based skeleton extraction methods are

more suitable to deal with the scene complexity prob-

lem in natural images [5, 12, 15, 16]. Sironi et al. [5]

method, learn huge numbers of parameters from large

training datasets based on ground truths. As a result,

their method is well-suited to ill-posed problems, such

as centreline extraction. Recent work by Shen et al.

[12,15] proposed a multi-scaled learning framework that

fuses the final output together. The object skeleton

ground truth is used for certain object scales. The out-

puts from their method is a binary image denoting the

detected skeletons, which are produced by thresholding

a skeleton heatmap. Although the learning-based meth-

ods obtain good results, attaining ground truths can be

expensive in terms of data acquisition and the training

process itself.

2.1.4 Surface-skeleton approaches

Traditional thinning approaches [8] iteratively remove

outer layers of boundary pixels according to local stop-

ping criteria. However, these approaches are sensitive

to surface noise. Similarly, geometric contraction ap-

proaches apply constrained iterative smoothing and/or

merging, shrinking the surface into a thin centreline

[17]. Alternatively, approaches grow or connect paths

from locally centred regions; for instance, using a level

set method propagating and connecting a wave front

seeded from inside the deepest part of the object [11].

2.2 Ridge Detection

Ridges are defined as extrema of the image’s largest

surface curvature direction. Steger proposed a popu-

lar approach for extracting lines using Gaussian masks

to estimate derivatives without bias in asymmetrical
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lines [4]. Another approach by [14] handles crossings,

junctions, and blobs by using anisotropic, multi-scale

Gaussian kernels for second order image differentiation.

In conclusion, there are a large number of relevant

approaches with varying input requirements, such as a

reliance on training data, prior knowledge, or a num-

ber of unintuitive parameters. Graph-based approaches

are shown to be robust to noise, which is often not the

case with gradient-based detectors. Enhancement can

be seen as an important pre-processing step, but it is

difficult to parametrise the models, in particular choos-

ing local orientation and scale.

3 Method

3.1 Overview

Enhancement is investigated based on the algorithmic

definition of geographical prominence in 2D and 3D,

which measures mountains from their summit to sad-

dle points connecting to the next highest peak. Figure 2

shows how this property is desirable in images, whereby

the most prominent peak (green arrow) captures the

underlying object despite severe levels of multi-frequency

inhomogeneous noise with higher local elevations, or

summits, than the object itself.

The proposed method has two main conceptual stages:

1) centreline enhancement with geographical prominence

and 2) sequential extraction of newly contributing bright

paths. During the first step, an accumulative matrix is

constructed using a voting procedure, whereby points

in the matrix are at the index of prominent peaks of

line (2D) or disk (3D) profiles. The second step searches

through a subset of paths according to this matrix, se-

quentially extracting the most prominent paths that
maximally contribute to the output skeleton according

to a simple summation.

signal

prominent peak
prominence

a. b.
Fig. 2: An intensity profile along a random line. (a)

The area of interest in the image has inhomogeneous

backgrounds, highlighted by the red dashed square and

the random line in blue, and (b) an illustration of the

profile that shows prominent peaks compared with the

most prominent peak (green arrow) that captures the

underlying object structure.

3.2 Enhancement Process

In geography, the prominence of a peak in a mountain

range is defined as the difference in elevation between

the summit of the peak and the highest saddle that

connects that summit to any higher area [18]. This al-

gorithm requires no parameters to be tuned.

The proposed enhancement algorithm is formulated

as a voting procedure based on prominence. Let us con-

sider an image I(x) ∈ Rn. If x is a random point in the

image, n̂ is a random unit vector, and l is a random

length between 0 and the size of the smallest dimen-

sion of I, then a random intensity profile along a line

from x to x + ln̂ is defined as:

f = I(x + in̂), ∀i ∈ [0, l], (1)

The intensity profile f is sampled and the index of the

highest prominence peak is found, as in [18], as follows:

j = prom(f), (2)

and its pixel location:

x′ = x + jn̂. (3)

Then, a vote is cast into an accumulative map A:

A(x′) = A(x′) + 1, (4)

as shown in Figure 3a. This process is repeated t1 times,

gradually accumulating more votes along ridge pixels.

The accumulative map A is then normalized to be in

the range [0, 1].

x

n̂̂n

x′

l

a.

n̂

x

x′

l

b.

Fig. 3: An illustration of finding the most prominent

peaks in 2D and 3D images. (a) The proposed method

uses a random line in 2D to find the most prominent

peak x′ and accumulates it into A. (b) The most promi-

nent peak on a random plane in 3D.

3.3 Extraction Process

In order to extract the centreline, an undirected, weighted

graph G(N,E) is constructed, where each pixel position

x corresponds to a node in N . Graph edges E connect

each node N at pixel x to its 8-connected neighbour-

hood of pixels. Graph node costs are defined by 1/A,

such that the prominent ridges are set to small values

and background regions tend to infinity.
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From this graph definition G, a set of t2 random

shortest paths is produced iteratively:

P = {pi}, ∀i ∈ [1, t2], (5)

where each shortest path pi is calculated between two

random nodes using Dijkstra’s algorithm [19].

The most prominent path p̃ is found and stored in

P̃ = {p̃} at each iteration, where p̃ is defined:

p̃ = arg max
p

 ∑
x∈p\P̃

A(x)

 , p ∈ P \ P̃ , (6)

which is the longest segment of the path, from the set

of paths in P , with the highest cost across the accu-

mulative map A, that does not intersect paths found in

previous iterations P̃ . All paths in the set P̃ must be

disjointed (not sharing any pixels with other paths).

Equation 6 is iterated (Figure 4) until the length of

the most prominent path p̃ is shorter than ε.

a. b. c.

Fig. 4: The first three iterations of the sequential ex-

traction process. After these three iterations, there is

a large drop in the length of the next path, which is

captured easily by ε.

3.4 Centreline in 3D Images

The method is easily extensible to 3D images. In the

enhancement procedure, the profile of a random disk
is considered instead of a line. In particular, a random

plane is chosen, parametrized by a point x and normal

n̂ and the single most prominent peak over the set of

lines (of length l) that sweep through 360◦ on this plane

is chosen. Only the most prominent peak from the set

of lines on the plane will cast a vote in the accumula-

tor array, see Figure 3b. In the second step, the graph

edges are defined as the full connectivity between the

current pixel and its 26 neighbours instead of 8 neigh-

bours in the 2D version. The final skeleton is extracted

as described in section (3.2, 3.3).

4 Results and Discussion

This section provides quantitative and qualitative vali-

dations against synthetic and real-world data.

4.1 Synthetic Validation

4.1.1 Noise Sensitivity

The robustness of the proposed method to Gaussian,

salt & pepper and speckle noise types is measured, as

well as its robustness to a structured multi-frequency

noise that simulates intensity inhomogeneity. In partic-

ular, a 2D synthetic image of a curvilinear object with

a known ground-truth is created and the image is cor-

rupted with noise, as shown in Table 3. The synthetic

2D curve is generated with a thickness radius of 3 and

the resulting 2D image (128 × 128) is corrupted with

different levels and types of noise. The Hausdorff dis-

tance is calculated between the extracted curve and its

analytical ground truth (see Figure 5). The results show

that our method remains stable under severe quantities

of noise, heavily corrupting the object to a PSNR of

about 11.
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Fig. 5: The Hausdorff distance between the extracted

curve and the ground truth as shown in Table 3. These

results use the same parameters: t1 = 10000, t2 = 2000,

and ε = 2. The lines show the mean across 100 ex-

periments and the error envelopes (transparent shaded

regions) show the standard deviation.

4.1.2 Parameter Space

In order to understand the effect of the optimization

parameters t1 and t2 in the two stages (Section 3.2,

3.3), the two parameters are varied in 2D space: t1 =

[5, 10000] and t2 = [1, 2000] and the Hausdorff distance

between the ground-truth and extracted curve is plot-

ted, shown in Table 2 (middle). As expected, there is a

large rectangular flat region and increases in t1 and t2
do not produce a significant increase in quality. In par-

ticular, the Hausdorff distance = 2 at the base of the

hill (at the point t1 = 2750 t2 = 1000) implies that t1
and t2 require very little tuning in practice. Generally,

these parameters can be set as high as possible within

the processing requirements.

4.1.3 Comparison with The Existing Methods

The proposed method is also validated against a wide

range of centreline extraction methods using synthetic

2D data. In particular, we show (1) a modified tradi-
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Table 2: Illustration of the Hausdorff distance (middle) and method runtime (right) with varying optimization

parameters t1 = [5, 10000] and t2 = [1, 2000]. We set the tunable parameter ε = 2. The Hausdorff distance is

computed between the analytical ground-truth (blue curve, left-upper) and the extracted curve (red curve, left-

lower). The dashed red lines show the point where the method completes at 5.7s with a Hausdorff distance of 2

pixels. The flat region (middle) shows the stability of these parameters.
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Table 3: Comparison between the extraction centerline obtained from the proposed method and the-state-of-art

methods for different noise types. The parameters for each method are tuned across all 6 scenarios and tuned

manually per-image.

Ground truth
Parameters tuned per-image Parameters tuned across all images & held constant

Thinning [8] UDCS [4] AGK [14] Thinning [8] UDCS [4] Voronoi [13] AGK [14]
Our method

(no tuning)

Salt & Pepper
(PSNR 10)

a

Speckle
(PSNR 5)

b

Multi-frequency
(cloud)
(PSNR 15)

c

Gaussian
(PSNR 12)

d

Salt & Pepper
(PSNR 10)
on circular
object

e

Gaussian
(PSNR 5)

f

Table 4: The Hausdorff distance measures corresponding to the images are shown in Table 3. The last two rows

show the means and standard deviations of the Hausdorff distance across state-of-the-art methods.

Image
Parameters tuned per-image Parameters tuned across all images & held constant

Thinning [8] UDCS [4] AGK [14] Thinning [8] UDCS [4] Voronoi [13] AGK [14]
Our method
(no tuning)

a 4.24 3.16 9.49 75.5 71.02 29.99 9.49 3.67
b 4.78 5.10 6.93 50.21 5.05 46.75 8.06 3.60
c 43.68 4.24 34.83 84.9 26.17 36.98 40.4 4.48
d 5 3.49 8.94 28.03 4.74 75.35 15.11 7.07
e 1.41 1.9 12 78 74.73 60.8 12 3
f 48.08 49.51 34.55 76.22 69.38 68.97 51.95 58.01

Mean (pixel) 17.86 11.23 17.79 65.48 41.85 56.37 22.83 13.30
Std (pixel) 21.78 18.78 13.19 21.84 33.67 18.21 18.60 21.95
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a. b. c. d. e. f. g.

Fig. 6: A selection of images in the Ghent University Fungal Images (GUFI-1) dataset [14, 20] alongside the

ground truth centrelines and extracted curves from multiple methods. (a) Original image, (b) Ground truth, (c)

Thinning [8], (d) UDCS [4], (e) Voronoi [13], (f) AGK [14], and (g) our method

tional thinning approach [8], which has been improved

with both median and Gaussian filtering, and then thresh-

olded to give a fair chance of success, (2) ridge detecting

using Steger’s popular approach of unbiased detector of

curvilinear structures (UDCS) [4], (3) a Voronoi skele-

ton approach [13], and (4) the recent anisotropic mul-

tiscale Gaussian kernels (AGK) [14]). The results are

shown in Table 3. Furthermore, the methods with their

tuned parameters are compared across all 6 scenarios

and are tuned manually on a per-image basis. In ad-

dition, the Hausdorff distance between our extracted

curve and the ground truth is calculated for these 6

scenarios. The results are presented in Table 4.

Our proposed approach succeeds under severe lev-

els of noise where other approaches fail. The extracted

centreline is robust, well-centred, and homotopic to the

original object. However, it is not as smooth as with

methods that use a Gaussian approximation of the deriva-

tives. In other approaches, the tuning of parameters re-

quires significantly more effort. In particular, the AGK

method utilizes 11 different configurations to determine
the set of parameter values. The UDCS method [4]

gives excellent results when the parameters are care-

fully tuned on a per-scenario basis, but the method fails

when the parameters are held constant. However, even

simple approaches, such as thinning, outperform other

methods when tuned on a per-image basis using differ-

ent filtering techniques. In contrast, our method does

not require such tuning.

4.2 Real-World Validation

Our method was evaluated with the Ghent University

Fungal Images dataset 1 (GUFI-1) [14, 20], which is a

popular and varied biological dataset with images of

fungi growing in vitro. Each image has a resolution

of 300 × 300 pixels and is accompanied with manu-

ally labelled ground truths for use in evaluating cen-

treline extraction methods. These images contain a va-

riety of ridges, different degrees of contamination, fre-

quent overlaps and junctions, and large regions with-

out edges and the dataset is therefore considered to

be rather challenging. The ground truth centrelines are

not always thin (with 1 pixel width) and, therefore,

the ground truth was manually altered to ensure the

required thinness. The ground truth has been estab-

lished independently by two experts and the Hausdorff

distance was then calculated between the two sets in or-

der to ensure the validity of proposed ground truth. The

mean Hausdorff distance is 0.86 pixels, where the stan-

dard deviation is 0.54 pixels. The ground truths were

revised by two other experts. The proposed method

was evaluated alongside a variety of other methods, cal-

culating the Hausdorff distance between the extracted

skeletons and the ground truth. The results are shown

in Figure 6 and Table 5. The results show that our

method comes closest to the ground truth across the

dataset, however certain features are missing which may

be better captured by other methods [4,8,14]. However,

unlike other methods, our approach tends to be cleaner

and results in fewer artifacts, such as spurious branches.

Therefore, it is inferred that the proposed method is

beneficial in the task of collecting reliable metrics across

a large dataset, but, for some specific analyses of in-

dividual images, it is recommended to consider more

sensitive methods, such as [4].

Table 5: Comparing the proposed method with the-

state-of-the-art methods in term of the Hausdorff dis-

tance using the GUFI-1 dataset.

Method
Mean
(pixel)

Std
(pixel)

Thinning [8] 77.95 51.98

UDCS [4] 81.99 50.83

Voronoi [13] 87.13 56.72

AGK [14] 66.87 45.18

Our method 56.74 56.67

The proposed method is also validated qualitatively

against several 2D and 3D real world images and the

results are shown in Tables 6 and 7, respectively. Im-

ages showing dark objects on bright backgrounds are

inverted before processing. In the 3D validation, the

extracted curve is compared with the thinning method

[21], which has a publicly available 3D implementation.



Sequential Graph-based Extraction of Curvilinear Structures 7

Table 6: Results for different 2D real-world images: (a) wires, (b) spirillum [22], (c) straight hair [23], (d) retina

networks [24], (e-f) treponema [25,26], (g) telomeric DNA from HeLa cell clone [27], and (h) electron microscopic

image of isolated mouse circular mtDNA [28].
Original Output Original Output

a b

c d

e f

0.033”

g

1µm

h

5.0kb

Table 7: Comparison between our method and topological thinning [21] using 3D images of: neocortical axon trees

(a) [29], olfactory projection neuron tree (b) [29], and visual cortical trees (c) [29].
Topological thinning [21] Our method

a

50µm 50µm

b

50µm 50µm

c

15µm 15µm
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5 Future work

In our implementation1, the performance of the algo-

rithm may be significantly improved by removing low-

weighted edges in the graph according to a thresholding

parameter with very little impact on quality. Indeed,

this is especially useful for segmenting large 3D images.

In this paper, we have explored the performance of the

proposed algorithm and the optimisation of our method

is left as an area of future work.

Although the proposed method gives good 2D/3D

results for biomedical and non-biomedical images, there

is room for improvement. In particular, the enhance-

ment process should be removed and the graph cost

function should be extended in order to ensure cen-

teredness in flat intensity distributions, as well as the

better handling of junctions. This extension could also

consider a distance metric that gives preference to net-

work growth, penalising the creation of disconnected

branches in distant regions.

6 Conclusion

A novel approach is described which searches through a

subset of paths that fall along prominent ridges, sequen-

tially returning the most prominent path that maxi-

mally contributes to the output centreline. The method

is evaluated against real-world images and is shown to

be comparable to the state-of-the-art with extracted

centrelines that are close to the ground truth. In par-

ticular, the method has different strengths and weak-

nesses, such as its ability to bridge inhomogeneous gaps

(Table 7b) and to handle complex/busy backgrounds.

Furthermore, the method requires little tuning and works

well as an out-of-the-box solution in medical (e.g., blood-
vessel extraction) and biological (e.g., plant roots and

neural networks) imaging applications.
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5. A. Sironi, E. Türetken, V. Lepetit, and P. Fua, “Multi-
scale centerline detection,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 38, no. 7,
pp. 1327–1341, 2016.

6. Y. Rouchdy and L. D. Cohen, “Geodesic voting for the
automatic extraction of tree structures. methods and ap-
plications,” Computer Vision and Image Understanding,
vol. 117, no. 10, pp. 1453–1467, 2013.

7. D. Jin, K. S. Iyer, C. Chen, E. A. Hoffman, and P. K.
Saha, “A robust and efficient curve skeletonization algo-
rithm for tree-like objects using minimum cost paths,”
Pattern Recognition Letters, vol. 76, no. 1, pp. 32–40,
2016.

8. Y.-S. Chen and W.-H. Hsu, “A modified fast parallel al-
gorithm for thinning digital patterns,” Pattern Recogni-
tion Letters, vol. 7, no. 2, pp. 99–106, 1988.

9. Z. Leng, J. R. Korenberg, B. Roysam, and T. Tas-
dizen, “A rapid 2D centerline extraction method based
on tensor voting,” in IEEE International Symposium on
Biomedical Imaging: From Macro to Nano, (Chicago,
IL), pp. 1000–1003, Mar 2011.

10. Y. Shao, B. Guo, X. Hu, and L. Di, “Application of a
fast linear feature detector to road extraction from re-
motely sensed imagery,” IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing,
vol. 4, no. 3, pp. 626–631, 2011.

11. M. S. Hassouna and A. A. Farag, “Variational curve
skeletons using gradient vector flow,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 31,
no. 12, pp. 2257–2274, 2009.

12. W. Shen, K. Zhao, Y. Jiang, Y. Wang, X. Bai, and
A. Yuille, “Deepskeleton: Learning multi-task scale-
associated deep side outputs for object skeleton extrac-
tion in natural images,” IEEE Transactions on Image
Processing, vol. 26, no. 11, pp. 5298–5311, 2017.

13. O. Sharma, D. Mioc, and F. Anton, “Voronoi diagram
based automated skeleton extraction from colour scanned
maps,” in International Symposium on Voronoi Dia-
grams in Science and Engineering, (Banff, Canada),
pp. 186–195, Jul 2006.

14. C. Lopez-Molina, G. V.-D. de Ulzurrun, J. M. Baetens,
J. Van den Bulcke, and B. De Baets, “Unsupervised ridge
detection using second order anisotropic Gaussian ker-
nels,” Signal Processing, vol. 116, no. 1, pp. 55–67, 2015.

15. W. Shen, X. Bai, Z. Hu, and Z. Zhang, “Multiple in-
stance subspace learning via partial random projection
tree for local reflection symmetry in natural images,”
Pattern Recognition, vol. 52, no. 1, pp. 306–316, 2016.

16. W. Shen, K. Zhao, Y. Jiang, Y. Wang, Z. Zhang, and
X. Bai, “Object skeleton extraction in natural images by
fusing scale-associated deep side outputs,” in IEEE Con-
ference on Computer Vision and Pattern Recognition,
(Las Vegas, Nevada), pp. 222–230, Jun 2016.

17. C. G. Willcocks and F. W. Li, “Feature-varying skele-
tonization,” The Visual Computer, vol. 28, no. 6-8,
pp. 775–785, 2012.

18. A. Helman, The finest peaks: Prominence and other
mountain measures. Victoria, Canada: Trafford Publish-
ing, 2005.

19. E. W. Dijkstra, “A note on two problems in connex-
ion with graphs,” Numerische Mathematik, vol. 1, no. 1,
pp. 269–271, 1959.

20. “Fungal images,” 2014. http://www.kermit.ugent.be/

software.php?navigatieId=135&categorieId=43.

http://www.kermit.ugent.be/software.php?navigatieId=135&categorieId=43
http://www.kermit.ugent.be/software.php?navigatieId=135&categorieId=43


Sequential Graph-based Extraction of Curvilinear Structures 9

21. M. Kerschnitzki, P. Kollmannsberger, M. Burgham-
mer, G. N. Duda, R. Weinkamer, W. Wagermaier, and
P. Fratzl, “Architecture of the osteocyte network corre-
lates with bone material quality,” Journal of Bone and
Mineral Research, vol. 28, no. 8, pp. 1837–1845, 2013.

22. “Spirillum oil bacterium,” 2004. http://w3.marietta.

edu/~spilatrs/biol202/labresults/spirillum_oil.

jpg.
23. C. G. Willcocks, P. T. Jackson, C. J. Nelson, and

B. Obara, “Extracting 3D parametric curves from 2D
images of helical objects,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 39, no. 9,
pp. 1757–1769, 2017.

24. M. Niemeijer, J. Staal, B. van Ginneken, M. Loog, and
M. D. Abramoff, “Comparative study of retinal ves-
sel segmentation methods on a new publicly available
database,” in Image Processing in Medical Imaging, (San
Diego, CA), pp. 648–657, May 2004.

25. “Treponema pallidum bacterium,” 2016. https://phil.

cdc.gov/phil/details_linked.asp?pid=2333.
26. “Treponema bacteria,” 2004. http://w3.marietta.edu/

~spilatrs/biol202/labresults/treponema.html.
27. J. D. Griffith, L. Comeau, S. Rosenfield, R. M. Stansel,

A. Bianchi, H. Moss, and T. De Lange, “Mammalian
telomeres end in a large duplex loop,” Cell, vol. 97, no. 4,
pp. 503–514, 1999.

28. J. H. Sinclair and B. J. Stevens, “Circular DNA filaments
from mouse mitochondria,” Proceedings of The National
Academy of Sciences, vol. 56, no. 2, pp. 508–514, 1966.

29. K. M. Brown, G. Barrionuevo, A. J. Canty, V. De Paola,
J. A. Hirsch, G. S. Jefferis, J. Lu, M. Snippe, I. Sugihara,
and G. A. Ascoli, “The DIADEM data sets: representa-
tive light microscopy images of neuronal morphology to
advance automation of digital reconstructions,” Neuroin-
formatics, vol. 9, no. 2-3, pp. 143–157, 2011.

http://w3.marietta.edu/~spilatrs/biol202/labresults/spirillum_oil.jpg
http://w3.marietta.edu/~spilatrs/biol202/labresults/spirillum_oil.jpg
http://w3.marietta.edu/~spilatrs/biol202/labresults/spirillum_oil.jpg
https://phil.cdc.gov/phil/details_linked.asp?pid=2333
https://phil.cdc.gov/phil/details_linked.asp?pid=2333
http://w3.marietta.edu/~spilatrs/biol202/labresults/treponema.html
http://w3.marietta.edu/~spilatrs/biol202/labresults/treponema.html

	Introduction
	Related Work
	Method
	Results and Discussion
	Future work
	Conclusion

