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Antimicrobial action of the cationic peptide, Chrysophsin-3: A 
coarse-grained molecular dynamics study  

 

Andrea Catte,a Mark R. Wilson,b Martin Walker b and Vasily S. Oganesyana* 

 

Antimicrobial peptides (AMPs) are small cationic proteins that are able to destabilize a lipid bilayer structure through one or 

more modes of action. In this study, we investigate the processes of peptide aggregation and pore formation in lipid bilayers 

and vesicles by the highly cationic AMP, Chrysophsin-3 (chrys-3), using coarse-grained molecular dynamics (CG-MD) 

simulations and potential of mean force calculations. We study long 50 µs simulations of chrys-3 at different concentrations, 

both at the surface of dipalmitoylphosphatidylcholine (DPPC) and palmitoyloleoylphosphatidylcholine (POPC) bilayers, and 

also interacting within the interior of the lipid membrane. We show that aggregation of peptides at the surface, leads to 

pronounced deformation of lipid bilayers, leading in turn to lipid protrusions for peptide:ligand ratios > 1:12. In addition, 

aggregation of chrys-3 peptides within the centre of a lipid bilayer leads to spontaneous formation of pores and aggregates. 

Both mechanisms of interaction are consistent with previously reported experimental data for chrys-3. Similar results are 

observed also in POPC vesicles and mixed lipid bilayers composed of the zwitterionic lipid 

palmitoyloleoylphosphatidylethanolamine (POPE) and the negatively charged lipid palmitoyloleoylphosphatidylglycerol 

(POPG). The latter are employed as models of the bacterial membrane of Escherichia coli. 

 

Introduction 

Antimicrobial peptides (AMPs) are small proteins that can be 

found in the majority of living organisms. They play an essential 

role in an organism's first-line immune response.  Different 

AMPs have been found to be active against Gram-negative and 

Gram-positive bacteria, and in some cases are active against 

fungi, yeasts, and viruses 1, 2. Due to their strong antimicrobial 

activity, there is currently great interest in AMPs, in the design 

of novel antibiotics 3-5. AMPs have also been proposed as novel 

therapeutic agents for cancer treatment 6-10. 

Different mechanisms of interaction between AMPs and cell 

membranes are possible depending on the types of peptide and 

lipids present in the system 11, 12. Some AMPs are believed to 

insert into lipid bilayers and create pores using a mechanism 

defined as the barrel-stave model, in which peptides orient 

perpendicularly to the lipid membrane surface to form 

cylindrical pores 13. However, many AMPs are able to generate 

toroidal pores, in which the pore edges consist of peptides and 

lipid head groups that bend continuously from the top bilayer 

leaflet to the bottom bilayer 14. The disruption of cell 

membranes operated by AMPs may also involve their 

adsorption to the lipid surface and the formation of lipid-

peptide particles, which lead to lysis of the membrane, in a 

mechanism known as the carpet model 15, 16. Secondary 

structure, charge, and hydrophobicity of AMPs all play a 

significant role in determining the mechanisms of action on a 

cell membrane. Increased α-helical content in AMPs can be 

correlated with their increased antibacterial activity, although 

molecular flexibility is also known to play a role in enhancing the 

ability of AMPs to kill bacteria 17.  

While erythrocyte plasma membranes are composed of 

zwitterionic lipids, Gram-positive and Gram-negative bacterial 

membranes (as well as fungal cell membranes) are 

characterized by comparably large amounts of negatively 

charged lipids, in addition to zwitterionic lipids 18. Hence, 

cationic AMPs are known to interact strongly with these 

membranes 19. Chrysophsin-3 (chrys-3) is a recently discovered, 

highly cationic 20-amino acid AMP, derived from the gills of the 

red sea bream, Chyrsophrys major 20. It has an unusual C-

terminal domain (RRRH sequence) that contributes to a  net 

positive charge of + 5 (fractional charge of 3.2 at pH 7), is 
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amphipathic 21 and assumes a α-helical structure when in 

contact with a biological membrane. While the positive charge 

is concentrated near the C-terminus, the rest of the peptide is 

significantly hydrophobic, as measured by both the Urry and 

Eisenberg scales. A consequence of this structure is that chrys-

3 has the possibility of lipid bilayer insertion as a single molecule 

or as an aggregate 20, 22. As expected, the removal of the C-

terminal sequence RRRH increases the peptide’s affinity to 

neutral and cholesterol-rich membranes as confirmed by 2H, 15N 

and 31P solid-state NMR 23. Moreover, this truncated form of 

chrys-3, which has a reduced α-helical content, is less effective 

in the formation of pores and less harmful to eukaryotic cells 22, 

23.  

AMPs derived from fish have become increasingly popular 

due to their prominent role as pharmaceuticals with important 

medical applications 24. Chrys-3 has recently been shown to kill 

the sporulated, germinated and vegetative stages of Bacillus 

anthracis and to penetrate and kill the spores without full 

germination 25 Chrysophsin-1 (chrys-1), an isoform of chrys-3 

with 25 amino acids and the same C-terminal RRRH sequence, 

is a promising protecting agent in oral disease treatment 

because of its ability to kill the cariogenic pathogen 

Streptococcus mutans 26. Moreover, chrys-1 has also shown 

antitumoral activity by both inhibiting the growth of, and killing, 

the cancer-derived cell line HT1080 in RAW264.7 cells 27. 

Antimicrobial surfaces with immobilized chrys-1 peptides show 

an antibacterial activity capable of killing around 82% of E. coli 

bacteria 28. Recently, the GXXXXG motif of chrys-1 has been 

studied by replacing glycine residues with alanine, valine and 

proline residues, showing that proline-substituted chrys-1 

peptides exhibited significantly reduced cytotoxicity towards 

mammalian cells 29.  Interestingly, in the development of self-

decontaminating coatings, the antimicrobial activity of chrys-1 

and chrys-3 has also been shown to be severally reduced (chrys-

1) or abolished (chrys-3) by the removal of the C-terminal RRRH 
30.  

Recently, Wang et al. have employed a quartz crystal 

microbalance with dissipation monitoring (QCM-D) to study the 

interactions of chrys-3 and other AMPs with a membrane model 

containing egg PC in a solid supported lipid bilayer (SLB) 21. The 

main lipid component of egg PC is the zwitterionic lipid 

palmitoyloleoylphosphatidylcholine (POPC). The authors have 

observed that chrys-3 peptides show three modes of interaction 

with the lipid membrane, namely, membrane insertion, pore 

formation and surface adsorption. 

Molecular dynamics (MD) simulations provide a powerful 

technique for studying the action of AMPs on membranes. All-

atom (AA) MD simulations of magainin-H2 have shown that its 

interaction with dipalmitoylphosphatidylcholine (DPPC) lipid 

membranes involves both adsorption on the lipid bilayer 

surface and the formation of disordered toroidal pores, in 

agreement with NMR experiments 31. Sengupta et al. reported 

AA MD simulations of melittin peptides interacting with DPPC 

lipid bilayers showing the formation of disordered toroidal 

pores above a critical peptide to lipid ratio 32. The authors also 

found that, in the absence of counterions, pores form more 

rapidly leading to the rupture of the lipid membrane. AA MD 

simulations of melittin in water, in methanol and in a 

dimyristoylphosphatidylcholine (DMPC) lipid bilayer have 

shown the partial unfolding of the peptide in solution 33. In a 

recent study Irudayam et al. have observed that the binding of 

melittin to a POPC lipid bilayer involves the folding of the 

peptide to adopt a “U-shaped” conformation, which facilitates 

the formation of pores 34. A combination of coarse-grained (CG) 

and AA MD simulations has also been used to show the 

formation of disordered pores and peptide aggregates by 

alamethicin peptides interacting with DMPC lipid bilayers 35. 

This diversity of alamethicin structures within a lipid bilayer is in 

agreement with solid-state NMR experiments. CG MD 

simulations were also employed to study the interaction of 

maculatin 1.1 with DPPC lipid bilayers and a POPC liposome at 

different peptide:lipid (P:L) molar ratios 36. At low P:L molar 

ratios maculatin 1.1 interacted mainly with the surface of lipid 

membranes, while at higher P:L molar ratios it formed 

aggregates containing a minimum of four peptides in lipid 

bilayers. In addition to the formation of peptide aggregates, 

maculatin 1.1 induced major structural changes in the POPC 

vesicle, implying that changes in the membrane curvature might 

play a key role in cell lysis. Rzepiela et al. employed a similar 

approach to study the interaction of magainin-H2 with DPPC 

lipid bilayers observing that the disordered nature of the 

toroidal pore is conserved during both CG and AA MD 

simulations 37. Recently, Yoo et al. have observed through CG 

MD simulations the formation of lipid protrusions in POPC lipid 

bilayers and vesicles interacting with ionic liquids (ILs) 38. CG MD 

simulations of pores formed by two different AMPs in DPPC lipid 

membranes have also highlighted that magainin-H2 forms large 

sized disordered toroidal pores while melittin assembles in 

small pores with peptides adopting a “U-shaped” conformation 
39.  

In the current study, we perform long CG MD simulations to 

uncover the mechanisms of interaction of the highly cationic 

chrys-3 AMP with DPPC, POPC and POPE:POPG lipid bilayers and 

also with POPC vesicles. We simulate peptide aggregation at the 

membrane surface and within bilayers; analysing the structure 

of pores that form. We show that both peptide aggregates and 

peptide disordered toroidal pores form in lipid bilayers and in 

vesicles. We find also that at, sufficiently high concentrations, 

chrys-3 peptides in water will aggregate at the surface of a 

bilayer (or vesicle), causing disruption to the bilayer structure 

through formation of lipid protrusions. Both mechanisms 

appear to be important in the anti-microbial action of this highly 

cationic AMP.  

This paper is organised as follows. Firstly, MD computational 

protocols are described. Secondly, results are presented 

showing aggregation of peptides at the bilayer surface and in 

the centre of the membrane, for both lipid bilayers and vesicles. 

Thirdly, we analyse the structures of the pores that form (noting 

the preferential interaction of chrys-3 with anionic lipids); and 

carry out potential of mean force calculations to characterise 

the free energy changes associated with the peptide moving 

from water to the surface adsorbed state and into a peptide 

pore. Finally, conclusions are presented. 
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Computational 

The simulations in this work are carried out at a coarse-grained 

molecular level, using the MARTINI force field 40 (as discussed in 

detail below).  MARTINI uses a mapping of four heavy atoms to 

one CG interaction site and has been parametrized with the aim 

of reproducing thermodynamic properties (transfer free 

energies between different environments). Full details of each 

of the simulation components are given below. 

Chrys-3 peptide 

The monomer of chrys-3 was built with the protein builder of 

VMD version 1.9.1 41 using the amino acid sequence 

FIGLLISAGKAIHDLIRRRH. The peptide has six positively charged 

amino acids, which are represented by one lysine, two 

histidines and three arginines, and one negatively charged 

amino acid, which is represented by one aspartic acid residue. 

The native form of the peptide has its C-terminus amidated and 

is modelled with a net charge of +5. Based on conclusions from 

previous experimental studies in trifluoroethanol and model 

membranes 20, 23, the secondary structure assigned for the 

starting configuration of chrys-3 was almost completely α-

helical but with the charged N- and C-termini in a random coil 

conformation. We note in passing that while we expect 

MARTINI to be able to model aggregation behaviour well 

(because of its original parametrisation in terms of transfer free 

energies), we do not expect MARTINI to be able to model any 

changes in peptide secondary structure arising from changes in 

the dielectric environment. Hence, we are effectively using the 

same secondary structure throughout the simulations. 

DPPC, POPC and POPE:POPG lipid bilayers and 
POPC vesicles with chrys-3 peptides 

Table 1 provides a summary of each of the CG MD simulations 

carried out with chrys-3 peptides in lipid bilayers and vesicles. 

Thirteen separate systems were studied in all, using either 

surface or transmembrane peptides. The lipid composition of 

the POPE:POPG lipid bilayer systems (systems 7-10) were 

designed to be similar to that found in the bacterial membrane 

of Escherichia coli, namely 90% POPE:10% POPG and 80% 

POPE:20% POPG in outer and inner leaflets, respectively 42, 43 

(see Table 2). CG DPPC, POPC and POPE:POPG lipid bilayers 

were generated with the CHARMM-GUI membrane builder 44-47. 

In our initial CG-MD simulation work, we used the MARTINI 

force field with single CG beads to represent water molecules. 

By convention for MARTINI, approximately 5% of CG beads are 

replaced by antifreeze water particles 48 to prevent the 

crystallization of water 49. We also carried out calculations with 

the newer polarizable MARTINI water model 50.  Aggregation 

behaviour for chrys-3 in both models was found to be very 

similar. Results presented below, for systems 1-10 in Table 1, 

use the polarizable water model. Owing to very large system 

sizes, simulations of the vesicle systems (systems 11-13 in Table 

1) are carried out only using the conventional none-polarizable 

MARTINI water model. 

The standard cut-offs for the MARTINI force field were used 

for non-bonded interactions, the Lennard-Jones potential was 

shifted to zero between 0.9 and 1.2 nm, and the Coulomb 

potential was shifted to zero between 0 and 1.2 nm with a 

relative dielectric constant of 2.5 for polarizable water (15 for 

none-polarizable water). The time step used was 20 fs, and the 

neighbour list was updated every 10 steps 49. Initially, CG DPPC, 

POPC and POPE:POPG lipid bilayers containing 1200 lipids were 

subjected to 5 µs CG-MD simulations at 310 K and 1 atm using 

the CG MARTINI force field for lipids 48 and Gromacs (version 

4.5.5) simulation suite 51, prior to production runs (see below). 

In all simulations, any close molecular contacts were initially 

removed by energy minimization, followed by pre-equilibration 

with the Berendsen thermostat and barostat. Thereafter, 

equilibration and production runs were carried out in the 

constant-NpT ensemble at 310 K, representing physiological 

temperature and successfully employed previously in the 

MARTINI model 40, and 1 atm using a Nosé-Hoover thermostat 
52 and a Parrinello-Rahman barostat 53, respectively. 

All CG lipid systems were solvated with at least 30 water 

molecules per lipid and ionized with a suitable amount of Na+ 

and Cl- ions to reach a physiological ionic strength of 150 mM. 

In the systems containing polarizable CG water the total 

number of beads, including water and ions, was approximately 

50,000 for every lipid bilayer.  

Suitable starting structures that included chrys-3 molecules 

were generated by the following procedure involving all-atom 

models back-mapped from the coarse-grained lipid models:  i) 

All-atom models of DPPC, POPC and POPE:POPG lipid bilayers 

were generated from the final structures of the 5 µs CG runs 

using the back-mapping tool of the MARTINI force field, which 

involves the use of a library of mapping definitions encoding the 

geometric reconstruction, energy minimization and MD 

simulations based relaxation 54. ii) Fine-grained structures of 

chrys-3 peptides were inserted into the all-atom simulations 

and close contacts were removed. iii) These starting systems 

were coarse-grained using the CGTools Plugin version 0.1 of 

VMD 55, 56.   Two main starting models were generated using 

different P:L molar ratios: a) chrys-3 peptides were inserted 

close to the lipid surface with random parallel or antiparallel 

orientations relative to each other (as shown in Fig. 1a); b) 

chrys-3 peptides were inserted into the lipid membrane at 

transmembrane positions with the same randomly distribution 

of parallel and anti-parallel orientations (Figs. 1b and 1c).  

The final CG models of DPPC, POPC and POPE:POPG lipid 

bilayers containing different peptide:lipid molar ratios were 

subjected to at least 50 µs of CG MD simulations at 310 K and 1 

atm using the CG MARTINI force field for lipids 48 and proteins 
57 and Gromacs version 4.5.5 51 on 32 processors of a 302 node 

cluster. 

CG POPC vesicles containing 2422 lipids were generated via 

CG MD simulation of a POPC lipid bilayer 58. CG chrys-3 peptides 

were docked to the surface of the vesicle to generate systems 

with different P:L molar ratios (Fig. 1d). Insertion of 

transmembrane chrys-3 peptides into the vesicles was achieved 
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by initially fine graining the CG POPC vesicle, inserting peptides, 

and deleting any lipid within 0.3 Å of any inserted peptide atom. 

This resulted in a final P:L molar ratio of 1:21 (Fig. 1e). This 

starting system was coarse-grained using the CGTools Plugin 

version 0.1 of VMD 55, 56.  

 

Table 1 Summary of CG MD simulation systems studied. 

s: surface chrys-3 peptides;  tm: transmembrane chrys-3 peptides. 

 

Table 2 Lipid compositions of model E. coli bacterial membranes composed of 

POPE:POPG mixtures (systems 7-10 in table 1). 

aNumbers in parentheses refer to the systems with transmembrane peptides  

 

All CG lipid vesicles with surface and transmembrane chrys-3 

peptides were solvated with a large amount of regular MARTINI 

CG water (at least 300 water molecules per lipid in order to 

avoid the interaction between periodic images of the vesicle) 

and ionized with a suitable amount of Na+ and Cl- ions to reach 

a physiological ionic strength of 150 mM. The largest CG POPC 

vesicle reached a total number of approximately of 230,000 

beads (~1,135,000 atoms), including waters and ions.  

Potential of mean force calculations for chrys-3 
peptide with POPC bilayers 

In order to calculate approximate Gibbs’s free energy of 

insertions for a chrys-3 peptide into a POPC lipid bilayer, the 

potential of mean force (PMF) for the insertion of a chrys-3 

peptide was calculated using umbrella sampling. Here, two 

systems were studied. In the first, a single peptide was initially 

equilibrated within the aqueous component of a solvated POPC 

bilayer to provide a starting geometry. In the second, a starting 

configuration was obtained from the endpoint of a 50 µs CG-

MD simulation of a lipid bilayer containing 271 POPC lipids and 

5 peptides forming a pore. The pull code of Gromacs was used 

to generate umbrella sampling windows using a force constant 

of 2200 kJ mol-1 nm-2. For the first system, pulls were carried out 

with the pulling distance measured relative to the centre of the 

membrane (defined by the mean position of the terminal 

aliphatic beads for each lipid chain). For the second system, a 

pull was started from an initial structure in which the pulling 

distance was defined as the inter-helical distance between the 

peptide that was subjected to the pulling force and a reference 

peptide from the pore 59. In the latter, the initial reference 

distance was 1.6 nm. Initially, 29 windows with a spacing of 0.1 

nm were created to cover the range from 1.6 to 4.5 nm. Twenty-

five additional windows were also generated using a force 

constant of 500 kJ mol-1 nm-2 and spacing values of 0.1, 0.05 and 

0.025 nm to improve the sampling at inter-helical distances in 

which the transitions from transmembrane orientation to 

surface-adsorbed and from surface-adsorbed to solution state 

take place. A pulling rate of 0.0001 nm ps-1 was used for both 

force constants. In the additional windows, we used an 

umbrella potential with a force constant of 1000 kJ mol-1 nm-2 
60. Each window was equilibrated for 2 µs and subjected to a 20 

µs production run at 310 K and 1 atm. The first 2.5 µs of each 

production run were not used for analysis. The weighted 

histogram analysis method (WHAM) was used to unbias the 

umbrella window potentials 61.   

Analysis of simulation runs was performed using the utilities 

of Gromacs version 4.5.5, with additional TCL scripts written for 

VMD version 1.9.1 41, over the last 40% of each simulation 

trajectory. Images of all simulated structures and movies were 

generated with VMD version 1.9.1. 

Results and Discussion 

Aggregation of chrys-3 peptides on the surface of 
lipid membranes  

Initial, CG MD simulations were performed for peptides 

positioned close to the membrane surface. In all simulations, 

regardless of lipid composition or peptide concentration, we 

observe adsorption of peptides on the membrane surface with 

subsequent formation of peptide surface aggregates, as shown 

in Fig. 2. In none of these simulations were we able to observe 

spontaneous insertion of peptides into bilayers, even for 

extremely long simulation times exceeding 50 µs. The results 

indicate that the surface-bound state of the peptide is very 

stable within the MARTINI parameterisation.  

 
 

 

 

System Lipids Peptides P:L Time (µs) 

1. DPPC 1200 40s 1:30 30 

2. DPPC 1200 50tm 1:21 50 

3. DPPC 1200 100s 1:12 50 

4. POPC 1200 40s 1:30 45 

5. POPC 1058 50tm 1:21 50 

6. POPC 1200 100s 1:12 30 

7. POPE:POPG 1209 25s 1:48 50 

8. POPE:POPG 1209 75s 1:16 50 

9. POPE:POPG 1209 100s 1:12 50 

10. POPE:POPG 1057 50tm 1:21 50 

11. POPC ves0 2422 81s 1:30 20 

12. POPC ves1 2422 205s 1:12 44 

13. POPC ves2 2139 100 tm 1:21 50 

model Eschechia coli membrane POPG POPE 

outer leaflet 62 (56)a 542 (477) 

inner leaflet 124 (103) 481 (421) 
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Figure 1 Top and side views of different CG starting structures of lipid bilayers and vesicles with chrys-3: (a) DPPC lipid bilayer with surface peptides; (b) POPC lipid bilayer with 

transmembrane peptides; (c) POPE:POPG lipid bilayer with transmembrane peptides; (d) two views of POPC vesicle with surface peptides; and (e) two views of POPC vesicle with 

transmembrane peptides. In both d) and e) the inner and outer leaflets diameters of the vesicles are shown. Phenylalanine and the rest of chrys-3 amino acid residues are shown in 

purple and green, respectively. DPPC, POPC, POPE and POPG polar head groups are shown in orange, yellow, cyan and red, respectively. DPPC, POPC, POPE and POPG hydrophobic 

tail groups are shown in red, skyblue and magenta, respectively. POPC phosphate beads of the inner leaflet are shown in red. Water and ions are not shown. 

In POPE:POPG lipid bilayers similar results are observed 

together with a clustering of negatively charged POPG 

molecules around the positively charged surface-adsorbed 

chrys-3 peptides (see Fig. 2b and c where the head groups of 

POPG are represented by red spheres). It is worth noting that 

when the P:L molar ratio reaches a value of 1:12 the formation 

of differently sized lipid protrusions are observed in every 

simulated lipid bilayer (Fig. 3 a-c). In this respect, chrys-3 

peptides act rather like detergents extracting lipid molecules 

from the membrane, as previously observed experimentally for 

other antimicrobial peptides 23, 62-65. The formation of these lipid 

protrusions has been monitored also by plotting x and y 

dimensions of the box, and the product of the x and y 

dimensions of the box versus the time of simulation (see Fig. 

S1). These plots clearly show that lipid protrusions are formed 

within the first 20 µs of simulation for POPC and POPE:POPG 

lipid bilayers, while it takes about 27.5 µs of simulation before 

a plateau is reached in each subplot of Figure S1 for the DPPC 

lipid bilayer. 

At low P:L molar ratios, the interaction of surface chrys-3 

peptides with POPC vesicles leads to similar results to the 

bilayers, with strong surface-adsorption and some clustering of 

peptides (Fig. 3d). An increase in the P:L molar ratio induces a 

significant deformation of the POPC vesicle (Fig. 3e), which 

appears to be an initial staging point prior to the rupture of the 

vesicle. This  is in good agreement with mechanisms seen in 

previous computational studies of other AMPs 36. Interestingly, 

in the current system, a significant lipid protrusion is observed 

after 20 µs of simulation (Fig. 3f) showing the detergent-like 

behaviour of chrys-3 in contact with lipids. Similar behaviour 
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has been reported previously for apolipoprotein A-I (apoA-I) 

and other amphipathic peptides interacting with lipid bilayers 

and vesicles 58. The growth in the size of the lipid protrusion, as 

the simulation time increases (Fig. 3f), suggests that this 

behaviour could lead to the formation of lipid particles similar 

to those observed experimentally 21.

  

                  

Figure 2 Side views of CG lipid bilayers with surface chrys-3 peptides: (a) DPPC (top) and POPC (bottom) simulated for 30 µs and 45 µs, respectively; (b) 50 µs structures of POPE:POPG 

with 25 (top) and 75 (bottom) peptides. (c) Top view of the POPE:POPG lipid bilayer with 75 peptides.  

 

 

Figure 3 50 µs structures of CG (a) DPPC, (b) POPC and (c) POPE:POPG lipid bilayers with surface chrys-3 peptides (P:L=1:12) showing the formation of different sized lipid protrusions. 

CG POPC vesicles with surface chrys-3 peptides: (d) 20 µs structure (P:L=1:30); (e) 11 µs structure (P:L=1:12). Note the deformation of the vesicle in (e) at the highest P:L molar ratio; 

(f) 20 µs, 24 µs, 34 µs and 44 µs structures (P:L=1:12) show the formation and the growth of a lipid protrusion (from left to right). 

Aggregation of chrys-3 peptides within lipid 
membranes  

Starting from initial transmembrane arrangements of peptides, 

simulations demonstrate peptide aggregation within the 

transmembrane region of the lipid bilayer. A range of aggregate 

sizes is seen, as discussed in detail below.  

At a low P:L molar ratio of 1:45, regardless of their relative starting 

orientation or lipid composition, peptides adsorb at the bilayer 

surface within the first 40 ns of a simulation (see Fig. S2) and remain 

there for the remainder of the simulation. However, at a P:L molar 
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ratio of approximately 1:21 the formation of disordered toroidal 

pores and transmembrane peptide aggregates is observed. Here, a 

disordered toroidal pore is defined by a local reorganisation of the 

lipid membrane, whose leaflets curve to have some lipid headgroups 

entangled with peptides, while a peptide aggregate is constituted by 

a cluster of transmembrane peptides (which may or may not be 

aligned) without any lipid headgroups between them. Here, during 

the first 40 ns of the simulation, the lateral diffusion of peptides leads 

to the formation of small aggregates. Typical behaviour is illustrated 

by the POPC system in Fig. 4a. Within the POPC bilayer, small peptide 

clusters form, then grow in size, and during the first 5 µs form pores 

of different sizes and also a larger aggregate. During the next 45 µs 

of simulation time, only minor structural rearrangements of pores 

and the larger aggregate are observed, indicating the stability of 

these peptide structures (Fig. 4b). The timescale required for the 

formation of small pores containing 3-4 peptides varies between 100 

and 200 ns 32. Interestingly, a single pore containing 3 peptides is not 

particularly stable with two peptides becoming surface adsorbed 

after about 500 ns. For the POPC system, there are also 9 peptides 

that undergo a fast transition from the transmembrane state to the 

head-group localized state and remain in that state for the remainder 

of the 50 µs simulation. The complete formation of larger disordered 

toroidal pores containing 9 and 13 peptides is associated with longer 

times of 1.7 µs and > 25 µs, respectively. For instance, one of the two 

larger pores is formed by merging two smaller ones containing 7 and 

6 peptides, respectively. The fusion of the two pores starts at about 

23.5 µs and is completed within 27 µs of simulation time. Once the 

formation of the pores and the transmembrane aggregate are 

completed, they remain stable through the remaining time of the 

simulation. In order to estimate the sizes of the formed pores we 

have fine grained the system using the last frame of the 50 µs 

structure according to the reverse coarse graining procedure of VMD 

described in 66 and applied the HOLE program 67. The estimated 

average radii were 1.08, 1.96 and 2.30 Angstroms for the pores 

containing 4, 9 and 13 peptides, respectively. For the original 

MARTINI model, as discussed previously in 35, pores tend to be dry, 

i.e. water is not transported. However, for the polarizable MARTINI 

model used here, we do see evidence for water diffusing through the 

pores. We illustrate this with the snapshot in Fig. S9. In addition, for 

the pore with 9 peptides we have estimated the water permeability 

coefficient which was P = 8.4 10-17 cm3/s. The calculation of this 

coefficient was performed according to the procedure described in 

the literature 68-70 and was based on the last 40% of the 50 µs 

trajectory.     

The observation of the formation of peptides pores and an aggregate 

are in agreement with experimental QCM-D results reported recently 

by Wang et al. 21. The close packing of peptides on aggregation was 

monitored by analysing the radial distribution function (RDF) of 

peptide backbone beads (shown in Fig. 4c). The peptides have initial 

distances of 2.7, 3.2 and 3.8 nm from the starting configuration, but 

the presence of peaks at 0.52, 0.78, 1.0, 1.24 and 1.44 nm that 

increase in intensity over the course of the simulation indicate the 

formation of peptide aggregates.  

Results for DPPC lipid bilayers are very similar to those seen 

(above) for POPC (see Fig. S3). In addition, Fig. 5 shows results 

for a POPE:POPG system, designed as a model for the bacterial 

membrane of E. coli. Here, transmembrane chrys-3 peptides 

again form pores and aggregates similar to those observed in 

POPC and DPPC lipid bilayers (Fig. 5 top). Interestingly, for this 

system, pores containing 4, 5 and 7 peptides and an aggregate 

composed of 5 peptides are observed, suggesting that the 

formation of smaller sized pores and aggregates are favoured in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4 (a) Top views of different snapshots of the 50 µs CG MD simulation of a POPC 

lipid bilayer with transmembrane chrys-3 peptides. (b) Side view of the 50 µs structure 

(top: coarse grained, bottom: fine grained) showing pores with 4 (orange), 9 (cyan) and 

13 (skyblue) peptides and an aggregate with 13 peptides (green). Peptides adsorbed on 

the membrane surface are shown with phenylalanine and the rest of chrys-3 residues in 

red and blue, respectively. Phenylalanine residues of peptides belonging to the pores 

and the aggregate are shown in red and purple, respectively. (c) Radial distribution 

functions (RDFs) of peptide backbone beads after 50 ns (purple), 100 ns (green), 1 µs 

(red) and over the last 20 µs (blue) of the simulation.    

 

POPE:POPG lipid bilayers (Fig. 5 top). A similar formation of 

peptide pores and aggregates is confirmed by the CG MD 

simulation of transmembrane chrys-3 peptides in a POPC 

vesicle (Fig. 5 bottom), with similar pore and aggregate sizes as 

seen in POPC bilayers. 

 

 

Peptide-lipid interactions 

The effect of the interaction of peptides with lipid molecules 

can be monitored by measuring the order parameters of bonds 

along the sn-1 and sn-2 acyl chains of lipid molecules. The 

second-rank order parameter, P2 = <1/2(3cos2θ - 1)>, in which θ 
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is the angle between the direction of the bond and the bilayer 

normal, has been calculated for consecutive bonds starting 

from the glycerol backbone beads. Here, we differentiate 

between two groups of lipid molecules, one within the 

immediate environment of chrys-3 and the second representing 

the rest of the lipids. We define peptide-interacting lipids as 

those lipid molecules that have at least one CG bead within a 

distance of 0.52 nm (the first peak of the RDFs shown in Fig. 4c) 

from any peptide bead. The lipids outside a cutoff of 0.52 nm 

are defined as “bulk lipids”. The calculated order parameters for 

both groups of lipids are shown in Fig. 6a from left to right for 

pure POPC, and for POPE and POPG lipids in the POPE:POPG  

 

 

Figure 5 (top) side view of the 50 µs structure of a CG POPE:POPG lipid bilayer with 

transmembrane chrys-3 peptides showing pores with 4 (orange), 5 (yellow) and 7 

(seagreen) peptides and an aggregate with 5 peptides (magenta). Peptides adsorbed on 

the membrane surface are shown with phenylalanine and the rest of chrys-3 residues in 

purple and green, respectively. Phenylalanine residues of peptides belonging to the 

pores and the aggregate are shown in blue and purple, respectively; (bottom) section of 

the 50 µs structure of a CG POPC vesicle with transmembrane chrys-3 peptides showing 

pores with 4 (orange), 6 (magenta), 7 (skyblue), 9 (cyan) and 11 (seagreen)  peptides and 

an aggregate with 32 peptides (green). Peptides adsorbed on the membrane surface are 

shown with phenylalanine and the rest of chrys-3 residues in purple and blue, 

respectively. Phenylalanine residues of peptides belonging to the pores and the 

aggregate are shown in purple. Lipids acyl chains, water and ions are not shown for 

clarity.  

   

bilayer, respectively.  The results among all three types of 

phospholipids clearly show that the order parameters for both 

sn-1 and sn-2 acyl chains are significantly lower for peptide-

interacting lipids compared to bulk lipids. The latter exhibit  

values comparable to those found in pure lipid membranes 40.  

Similar results are seen for an analysis of the DPPC simulations 

(Fig. S4).    

The decreased ordering of lipids in the vicinity of peptides 

can also be appreciated from 2D plots representing the average 

order parameter of lipid acyl chains, shown in Fig. 6b, from left 

to right for pure POPC lipids and POPE and POPG lipids in the 

POPE:POPG bilayer, respectively. These plots show the 

distribution of the order parameter for different lipids across 

the membrane plane, showing the lower lipid acyl chains order 

parameters that occur in the regions of peptide pores and 

aggregates.  Also, the formation of disordered toroidal pores of 

different sizes as well as peptide aggregates affects other 

bilayer structural characteristics such as the layer thickness (Fig. 

6c) and the area per lipid (Table 3).       

 

The observed thinning of the POPC lipid membrane in the 

proximity of chrys-3 peptides is in good agreement with a 

previous computational study of WALP23 peptide 59 in a DOPC 

lipid bilayer. We observe that the decrease in the values of the 

order parameters for POPG molecules is significantly stronger 

compared to both POPE and POPC molecules. This can be seen 

from the 2D plots in Fig. 6b, and also from the comparison 

between POPE and POPG order parameters of peptide-

interacting lipids given in Figure 6d.  From Fig. 6d it is also seen 

that the decrease in order is more pronounced in the region of 

the acyl chains that is closest to the bilayer surface.  

   

 

 

 

Table 3       Average area per lipid from CG MD simulations of lipid bilayers in the presence 

and absence of chrys-3 peptides. 

                                        Area per lipid (nm2)a 

Lipid Outer leaflet Inner leaflet 

DPPC 0.608 ± 0.004 0.608 ± 0.004 

DPPC + chrys-3 0.563 ± 0.005 0.587 ± 0.006 

POPC 0.653 ± 0.002 0.651 ± 0.002 

POPC + chrys-3 0.620 ± 0.005 0.625 ± 0.005 

POPE 0.612 ± 0.003 0.617 ± 0.004 

POPE + chrys-3 0.588 ± 0.006 0.600 ± 0.007 

POPG 0.607 ± 0.018 0.615 ± 0.012 

POPG + chrys-3 0.450 ± 0.020 0.465 ± 0.015 

a The area per lipid is averaged over the final 40% of each trajectory and the errors 

are standard deviations. 
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Figure 6 Analysis of order parameter distributions and bilayer thicknesses from simulations 5 and 10 of Table 1, for POPC and POPE:POPG mixtures, respectively. (a) Sn-1 

(blue) and sn-2 (red) lipid acyl chain order parameters of bulk lipids are compared with sn-1 (green) and sn-2 (purple) order parameters of peptide-interacting lipids. 

Peptide-interacting lipids are defined as those lipids with at least one bead within 0.52 nm of any peptide bead. (b) Time average order parameter for the acyl chains of 

lipids, plotted in the x,y plane of the bilayer. In both (a) and (b) results for POPC, POPE and POPG are shown from left to right, respectively; (c) Lipid bilayer thickness around 

chrys-3 peptides in POPC (left) and POPE:POPG (right), plotted in the x,y plane of the bilayer. (d) Comparison between order parameters of POPE and POPG peptide lipids.    

Figure 7 Partial density profiles from 50 µs CG MD simulations of POPC (a) and POPE:POPG (b) lipid bilayers containing 50 chrys-3 peptides. POPC and POPE phosphate and 

glycerol densities are shown in blue and red, respectively. POPC and POPE palmitoyl and oleoyl chains densities are shown in dark purple and orange, respectively. POPG 

phosphate and glycerol densities are shown in magenta and purple, respectively. POPG palmitoyl and oleoyl chains densities are shown in cyan and skyblue, respectively. 

Chrys-3 peptides density is shown in green.  
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Figure 8 RDFs of peptide backbone beads interacting with a) phosphate beads and b) 

terminal beads of palmitoyl (dashed lines) and oleoyl (straight lines). (c) Average number 

of contacts of amino acid residues of chrys-3 peptides with lipids per peptide-interacting 

lipid (within a contact cut-off of 0.52 nm). (d) transmembrane chrys-3 peptide (yellow) 

interacting with two POPC molecules (skyblue). Backbone beads of chrys-3 are shown in 

purple. Choline, phosphate, terminal palmitoyl and oleoyl chains beads of POPC are 

shown in blue, orange, red and green, respectively. The numbers represent characteristic 

distances in nm.  

 

The average area per lipid of POPC, POPE and POPG 

molecules is reduced in the presence of chrys-3 peptides (Table 

3) with the POPG lipids again experiencing the strongest effect, 

confirming that the interaction of cationic chrys-3 peptides with 

the anionic POPG lipids is stronger than that with the neutral 

POPC and POPE lipids. 
These computational findings are broadly in agreement with 

previous experimental results reported for different AMPs in 

lipid bilayers containing POPG molecules 71-74, indicating the 

crucial role played by favourable interactions, between 

positively charged chrys-3 peptides and negatively charged 

POPG lipids, in terms of disruption to bilayer structure.  

Figure 7a presents partial density profiles calculated for chrys-3 

peptides and POPC acyl chains. The partial density of chrys-3 

peptides is distributed between the POPC glycerol backbone 

(surface adsorbed) and the POPC acyl chains (transmembrane 

orientation). The latter points towards the interaction of 

transmembrane chrys-3 peptides with POPC acyl chains at the 

centre of the lipid bilayer. By comparison, in the POPE:POPG 

lipid bilayer (Fig. 7b) the shift of the partial density of chrys-3 

peptides towards the lipids’ acyl chains is less pronounced.  

 

The interaction between chrys-3 and lipid molecules has 

been monitored also by means of pair RDFs. Here, we calculate 

RDFs between peptide backbone beads and the beads 

representing phosphate groups (Fig. 8a) and terminal beads of 

lipid acyl chains (Fig. 8b). The highest intensity peak at ~0.5 nm, 

in Fig. 8a is associated with close packing of peptides with lipid 

phosphate groups (see, for example, the snapshot in Fig. 8d 

showing a typical peptide-lipid interaction). Both RDF plots 

show that the interaction of chrys-3 peptides with POPG 

molecules is much stronger (i.e. more localized) than with POPE 

and POPC lipids, due to the strong electrostatic interaction of 

positively charged peptides with the overall negatively charged 

head group of POPG. The presence of two additional peaks with 

lower intensities at 0.8 and 1 nm supports the strength of this 

interaction. The RDFs arising from peptide backbone beads 

interacting with the terminal hydrophobic beads of the 

palmitoyl and oleoyl chains indicate that this interaction is not 

localized (Fig. 8b). Fig 8b, confirms also the strong preference 

for chrys-3 peptides to exhibit closer interactions with POPG in 

preference to either of the zwitterionic lipids, POPC and POPE.  

Additionally, we performed analysis of the interaction of the 

lipids with individual amino acid residues of chrys-3, averaged 

over the last 40% of the simulation, by measuring the average 

number of contacts between them. A contact is counted when 

at least one bead of the amino acid residue is within 0.52 nm of 

any bead of the lipid molecule. Contacts are normalised for each 

amino acid since the number of peptide-interacting lipids is 

different in the POPC and POPE:POPG systems. The results are 

presented in Fig. 8c. They show that for all three phospholipids 

there is a preferential interaction with hydrophobic residues of 

chrys-3 such as phenylalanine (PHE) and to a slightly lesser 

extent leucine (LEU) and isoleucine (ILE). These findings are in 

good agreement with experimental results by Wimley and 

White 75. However, we see a significant number of contacts with 

a wide range of amino acids, including, alanine (ALA), serine 

(SER) and glycine (GLY), and even hydrophilic residues such as 

histidine (HIS). Asparagine (ASP) though has a low number of 

contacts with lipid molecules. As expected, the number of 

contacts, indicate that both hydrophobic and  hydrophilic amino 

acid residues of chrys-3 have stronger interactions with POPG 

compared to POPC and POPE. This conclusion is further 

supported by a relatively large percentage of POPG lipids (57 ± 

3%) that are in close contact with at least one chrys-3 molecule,  

compared to POPE (26 ± 1%) and POPC (24 ± 1%) (see Fig. S5) 

and also by Voronoi diagrams comparing the distribution of 

lipids in the absence and presence of chrys-3 peptides (Fig. S6). 
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Figure 9 PMF of insertion of a chrys-3 peptide into POPC lipid bilayers.  The chrys-3 

peptide shown in blue is subjected to different pulling forces in order to sample the 

different states of the peptide. Top: the pulling distance, r, is measured for a single chrys-

3 molecule relative to the centre of the membrane. Bottom: The pulling distance (inter-

helical distance) is calculated between the centres of masses of the blue and cyan 

(reference) peptides (see text) for a peptide pore within a POPC membrane. 

 

Free energy of insertion of a chrys-3 peptide into 
the POPC lipid bilayer 

 

In order to determine the free energy involved in the transition 

from the aqueous solution, via the surface adsorbed state, to 

the transmembrane state of the peptide, we calculated the free 

energy profile (potential of mean force (PMF)) for the insertion 

of a chrys-3 peptide into the POPC lipid bilayer within the 

coarse-grained MARTINI model.  

       Here, we carry out the calculation for two cases, 

corresponding to pulling (out of the bilayer) i) an isolated chrys-

3 peptide located in the membrane, and ii) a selected chrys-3 

peptide belonging to a small disordered toroidal pore (Fig. S7). 

The PMFs for these processes, shown in Fig. 9, were calculated 

using the WHAM method employing 63 and 45 different 

windows, for cases i) and ii), respectively. Case ii) is illustrated 

in Fig. S8. In both cases the reference free energy of the peptide 

assumed to be zero. High resolution in energy states in the PMF 

plot have been achieved by extensive sampling using relatively 

long (17.5 µs) trajectories of CG MD simulation for each window 
60.  

From Figure 9, the PMF for the single chrys-3 molecule 

shows two energy minima corresponding to the surface-bound 

and transmembrane states (Fig. S8) identified above.   These are 

separated by a sufficiently high energy barrier of ca. 20 kJ mol-1 

to make it difficult for peptides to spontaneously jump between 

these two states on the 50 µs time-scale. The surface-bound 

state for the peptide is lower in energy by  85 kJ mol-1 

compared to the peptide in aqueous solution, indicating a very 

strong driving force for surface adsorption of peptides.  

Formation of a peptide pore however dramatically changes 

the PMF, leading to a three potential wells, the lowest 

corresponding to the transmembrane state where the chrys-3 

molecule is fully bound to other pore-forming peptides. A 

potential well is also seen between the surface adsorbed and 

transmembrane states, where the peptide partially interacts 

with both the surface and other pore forming peptides. The free 

energy difference for transition from the fully solvated peptide 

in its preferred transmembrane state in the pore (i.e. in 

association with other peptides within the transmembrane lipid 

environment) is ca. -110 kJ mol-1, though a large component of 

this is the free energy change from solution to the surface 

adsorbed state (-80 kJ mol-1). In future, it would be interesting 

to compare these data with an atomistic simulation of this 

process, similar to the one reported by Rzepiela et al. (37), 

though this will be extremely computationally demanding for 

the current system.  
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Conclusions 

We have performed CG-MD simulations in order to investigate 

the interaction of chrys-3, a highly cationic peptide, with 4 

positively charged amino acids at the C-terminus, with lipid 

bilayers and vesicles. By employing long, 50 µs, CG-MD 

simulations we observe both the formation of peptide 

aggregates and peptide disordered toroidal pores in lipid 

bilayers and vesicles. We see also surface-adsorption of 

peptides, followed by aggregation and abstraction of lipids from 

bilayers and vesicles, leading to lipid protrusions. It has 

previously been hypothesised 15, 16, that these mechanisms may 

be important in anti-microbial action. Both mechanisms are  

consistent also with experimental QCM-D studies of the 

behaviour of chrys-3 peptide and both are likely to play crucial 

roles in cationic AMP-mediated cell lysis.  

We have observed similar behaviour for chrys-3 with 

different types of lipid bilayers and with a model vesicle system. 

In particular, we note the ability of chrys-3 to interact with, and 

disrupt, a POPE:POPG lipid bilayer, which acts as a model for a 

Gram-negative bacterial membrane. For this system, it is 

observed that the average size of pores and aggregates formed 

are smaller than the ones in pure POPC and DPPC lipid 

membranes. We observe also preferential interactions of chrys-

3 with the anionic lipid, POPG, in comparison to the zwitterionic 

POPC and POPE lipids, suggesting that electrostatics interaction 

play a significant role in the antimicrobial activity of cationic 

AMPs 64, 65.  

PMF calculations show that the initial adsorption, and 

subsequent insertion, of chrys-3 into a POPC lipid bilayer are 

associated with favourable free energy changes. At high 

concentration of peptide within the bilayer, the PMF for 

insertion is significantly perturbed, leading to the formation of 

three potential wells, the deepest of which corresponds to the 

transmembrane state where the peptide forms part of a 

membrane pore.  

The formation of multiple pores by chrys-3 can be 

considered as one of the main steps leading to the disruption of 

a bacterial lipid membrane.  In addition, the prediction that 

chrys-3 induces lipid protrusions in membranes might have 

important implications for its antimicrobial function.  In 

summary, our results provide detailed structural and dynamical 

insights into chrys-3:lipid systems, paving the way for future 

studies of how changes in AMP structure can influence cell lysis.  
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