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We study numerically two-dimensional creeping viscoelastic flow past a biperiodic square array
of cylinders within the Oldroyd B, FENE-CR and FENE-P constitutive models of dilute polymer
solutions. Our results capture the initial mild decrease then dramatic upturn (‘thickening’) seen
experimentally in the drag coefficient as a function of increasing Weissenberg number. By sys-
tematically varying the porosity of the flow geometry, we demonstrate two qualitatively different
mechanisms underpinning this thickening effect: one that operates in the highly porous case of
widely spaced obstacles, and another for more densely packed obstacles, with a crossover between
these two mechanisms at intermediate porosities. We also briefly consider 2D creeping viscoelastic
flow past a linear array of cylinders confined to a channel, where we find that the flow is steady for
all Weissenberg numbers explored.

I. INTRODUCTION

Flows of polymeric melts and solutions exhibit a rich
phenomenology that has been widely studied [1]. Many
such materials exhibit viscoelastic properties which dra-
matically affect their behaviour in processes used in their
industrial application. Examples range from melt extru-
sion through coating process to flow in porous materi-
als. The latter example has particular relevance in the
oil and gas industry where viscoelastic solutions are rou-
tinely employed for enhanced oil recovery, matrix stim-
ulation and fracturing. For enhanced oil recovery, aque-
ous polymer solutions have long been used to control the
Saffman-Taylor instability [2, 3] that results from the dis-
placement of viscous oil by lower viscosity brine within
a porous reservoir rock. Since the earliest experiments
it has been known that for certain polymeric solutions,
even for single-phase flow, an anomalously high pressure
gradient is observed when compared with the flow of an
appropriate equivalent Newtonian solution. Whereas this
phenomenon has been long known, no clear understand-
ing of the root cause of the high observed drag has been
forthcoming. In particular there has been no clear eluci-
dation of the relative contributions of shear, extensional
and elastic stresses. The excess pressure gradient directly
impacts the industrial process by limiting the rate of in-
jection of polymeric solution, where an excessive pressure
gradient will lead to fracturing of the rock in the vicinity
of the injector and to degradation of the polymer.

Experimentally, several authors have studied the flow
of a viscoelastic fluid past a biperiodic array of obstacles
arranged in two spatial dimensions [4–9]. (The upper
panel of Fig. 1 shows a sketch of the simplified cartoon
of such a geometry that we shall study numerically in
this work.) The dominant physical effect consistently re-
ported in these experiments is a dramatic upturn in the
adimensional pressure drop, known as the drag coeffi-
cient, relative to that for a Newtonian fluid of matched
viscosity, for Weissenberg numbers Wi exceeding a criti-
cal value Wic. (The Weissenberg number is the product

of a characteristic shear-rate in the flow and polymer re-
laxation time τ . Later in the text we define three Weis-
senberg numbers suited to the problem at hand.) This
upturn is often also accompanied by the development of
time-dependent flow fields, with crossing streaklines and
structure in the third spatial dimension [4, 6], into the
page in the simplified sketch of Fig. 1. For low Weis-
senberg numbers a subtler effect is sometimes also seen,
in which the pressure drop initially decreases slightly rel-
ative to the Newtonian case [6] before the upturn just
described for Wi > Wic.

Some of these studies [10, 11] correlate the observed
upturn in the drag coefficient (described therein via an
apparent viscosity) found for polymer solution flow in
outcrop rock samples with flows of the same solutions
observed in 2D microfluidic networks. These networks
comprise “pores” and randomly sized “throats” on a grid
rotated 45◦ to the average flow direction. The experi-
ments were subsequently extended [7] to show how the
onset of additional drag depended on solution parame-
ters. In particular, the onset of thickening was found to
be well characterized by a Weissenberg number derived
using a characteristic apparent shear rate proportional
to flow rate together with a molecular relaxation time
(see Fig. 11 in that work). In these studies, the tran-
sition to a time-dependent state resembling turbulence
is marked by the appearance of crossing streaklines, a
3D effect which isn’t possible in the current 2D study.
Nuclear magnetic resonance studies [12] demonstrated
time-dependent flows within a full 3D pore network (a
rock) via an effective diffusion constant measurement.
The analysis developed in the following paper can also
be applied to these geometries at 45 degree orientations.
Our results (not discussed here) suggest that the cylin-
der size has less effect on the flow character q (defined in
Section VI A) than for 0◦ orientations. However we defer
a full study in these rotated geometries to future work.

From a theoretical viewpoint, early attempts to under-
stand flow in porous media adopted a coarse-grained ap-
proach, discarding microscopic details in favour of macro-
scopic properties. For Newtonian flow, Darcy [13] pro-
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posed a relation between the pressure drop per unit
length of material ∆P/L and the mean velocity scale V

∆P

L
=
ηV

K
, (1)

where η is the fluid’s viscosity. The permeability K is
a constant that should depend only on the properties of
the medium, but is unknown a priori. A relation between
the permeability and the medium’s porosity ε (the ratio
of free volume to total volume) was later proposed in
the Blake-Kozeny-Carman equation [14], which proved
successful in describing a range of simple flows. However
the validity of this macroscopic approach remains largely
limited to Newtonian flows.

In theoretically understanding viscoelastic creeping
flows in porous media, much of the progress has been
made computationally [15–21]. Early simulations of
two-dimensional (2D) viscoelastic flow past a bi-periodic
square [15, 16] or rectangular [17] array of cylinders ob-
served a slightly reduced pressure drop at low Weis-
senberg numbers compared to that of a Newtonian fluid
of matched viscosity, as seen experimentally. However
the dramatic upturn in the drag coefficient at high
Wi > Wic, which is the dominant physical effect seen
experimentally, was not captured in these early numer-
ical works, presumably due to the restricted computa-
tional processing power available at the time. It was
however later captured in simulations of the Oldroyd B
and FENE-CR models, also in 2D biperiodic arrays [18].

Alcocer et al. [19, 20] investigated 2D flow of the
FENE-CR model past a biperiodic array of cylinders,
with a particular focus on the dependence of the effective
permeability on the cell aspect ratio, for a fixed area frac-
tion of cylinders. They demonstrated a non-monotonic
dependence of permeability on aspect ratio. For a fixed
aspect ratio and area fraction, they reported in an initial
increase in permeability with increasing Wi, equivalent
to the initial decrease in drag in other studies.

Gillissen [21] simulated 2D flow of the FENE-P model
past a biperiodic hexagonal array of cylinders. This
study convincingly captured both the initial downturn
and then significant upturn in the drag coefficient seen
experimentally as a function of Weissenberg number.
Analysing the flow field as a function of space in terms
of regions of pure shear (which is the same as extension),
simple shear and pure rotation, they demonstrated a pre-
dominance of shear regions at low Wi, with a progressive
increase in elongational regions with increasing Wi. At
high Wi the polymer conformation tensor was found to
be fully extended, showing the importance of finite chain
extensibility in this regime.

De et al. studied 3D flow of a FENE-P fluid past an
array of cylinders (both with and without walls) [22].
They found an elastic instability whereby recirculating
regions in the cylinder wake break symmetry and form a
3D structure, which occurs at a Deborah number De =
τV/R consistent with Ref. [23]. All their simulation runs
attained a time-independent steady-state.

Besides the biperiodic geometries just discussed, sig-
nificant efforts have also been devoted to understanding
viscoelastic flow past a single cylinder or linear array of
cylinders confined to a channel: experimentally [18, 24–
27], by linear stability analysis [23, 28], and by direct
numerical simulation [18, 26, 29–34]. The lower panel of
Fig. 1 shows a sketch of the simplified cartoon of such a
geometry that we shall study numerically in this work.

By studying the flow of Boger fluids past a single cylin-
der in a channel, McKinley et al. [24] observed a transi-
tion from steady 2D to steady 3D flow in the downstream
wake. At higher flow rates, they found another insta-
bility where time-dependent velocity oscillations form in
the wake region. Liu [18] considered flow past a single
cylinder, and widely and closely spaced linear arrays of
cylinders. For the single cylinder, they observed a mild
downturn in the drag at moderate Wi, followed by an
upturn at larger Wi which was accompanied by a tran-
sition from steady 2D to steady 3D flow. In the lin-
ear arrays, the transition was from steady 2D to time-
dependent 3D structure in both cases. Moss and Roth-
stein [25] studied flow of wormlike-micelles (WLMs) past
a single cylinder for several ratios of cylinder diameter to
channel width. They observe a significant decrease in the
normalised pressure drop as a function of Wi which was
attributed to the shear-thinning properties of the fluids.
Of the two fluids tested, only one exhibited an instabil-
ity, which was attributed to breakdown of the WLMs in
the extensional flow in the cylinder wake. Using flow-
induced birefringence measurements, the authors showed
that shear flows at the channel walls were not necessary
to produce the wake instability. Recent experiments on
WLMs [27] found that upstream vortices formed at much
larger Wi ∼ 103, and unsteady flow downstream at even
larger Wi ∼ 104.

Simulations of 2D creeping viscoelastic flow past a lin-
ear array of cylinders confined in a channel [29, 30] cap-
tured an initial mild decrease then subsequent upturn
in the drag coefficient as a function of increasing Weis-
senberg number. All the states observed were however
steady as a function of time. In 2D simulations of flow
past a single cylinder confined in a channel, temporal os-
cillations in the size of a recirculating region that forms
downstream of the cylinder are seen [31, 32], with an as-
sociated slight increase in the drag coefficient compared
with the time-independent state.

Attempts to understand the onset at high Wi of the 3D
time-dependent states seen experimentally for creeping
viscoelastic flow past an array of cylinders in a channel
have been made by performing a linear stability anal-
ysis for the dynamics of small amplitude 3D perturba-
tions to an initially 2D flow state. By such an analysis,
Smith et al. [23] reproduced some of the experimentally
observed characteristics of the instability, in particular
the wavevector of the most unstable mode and the crit-
ical Wi at which the instability first arises. Sahin and
Wilson [28] demonstrated that the wavelength of the in-
stability scales with cylinder spacing for closely spaced
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cylinders, and with the size of the wake behind the cylin-
der for wider cylinder spacing. Both studies warn that
this 3D instability potentially restricts the range of Wi
over which purely 2D simulations might remain valid.
Also we stress that linear stability does not preclude the
existence of nonlinear instabilities, e.g., as discussed by
Pan et al. [35].

Vázquez-Quesada and Ellero performed 2D smoothed
particle hydrodynamics (SPH) simulations of viscoelas-
tic flow past an array of cylinders in a channel [33, 34],
capturing the initial downturn and subsequent upturn in
the drag coefficient as a function of Weissenberg number,
as seen experimentally. At higher Wi the results of this
study departed from other 2D numerical works [18] in
reporting a transition to a time-dependent state, which
the authors interpreted as viscoelastic turbulence. We
do not find this viscoelastic turbulence, and discuss care-
fully the differences between our study and Refs. [33, 34]
that might potentially explain this apparent discrepancy
between the two studies.

Ribeiro et al. [26] studied fully 3D viscoelastic flow past
a cylinder confined to a channel, both experimentally and
numerically, for both a shear thinning and a Boger fluid.
For the shear-thinning fluid they reported an elastic in-
stability setting in upstream of the cylinder at critical
value of Wi that depends on the cylinder height in the
vorticity direction. For Weissenberg numbers just be-
yond onset of the instability, the system’s state is asym-
metric and time-independent. A subsequent transition to
a time-dependent state was reported at larger Wi still.

Among the simulation studies of viscoelastic flow just
surveyed [15–21], each considered one (or in some cases
two) fixed ratio(s) of obstacle size to obstacle spacing,
i.e., a fixed medium porosity. A key contribution of this
work is systematically to vary the medium porosity over
a broad range, from the limit of widely spaced obsta-
cles to ones that nearly touch. In doing so, we shall
demonstrate two qualitatively different mechanisms un-
derpinning the dramatic upturn of the drag coefficient
with Weissenberg number seen experimentally: one at
low obstacle area fraction and another at high area frac-
tion, with a crossover between these mechanisms at in-
termediate area fraction.

In neither case, however, do we find the thickening to
be associated with the onset of a time-dependent flow, as
often reported experimentally. The same is true in the
2D biperiodic simulations in the earlier literature [15–
21]. One possible explanation for this discrepancy is that
the time-dependent state seen experimentally is 3D in
nature, and cannot be captured in purely 2D simulations.

The paper is structured as follows. In Secs. II and III
we introduce the flow geometries and constitutive mod-
els to be studied. The governing parameters and dimen-
sionless groups are summarised in Sec. IV. In Sec. V we
outline our numerical methods, and provide benchmarks
to validate them against known results in the Newtonian
limit. We then present our results for viscoelastic flow: in
Sec. VI for a biperiodic array of cylinders and in Sec. VII

for a linear array of cylinders in a channel.

II. FLOW GEOMETRIES

We shall study two different flow geometries. The first
comprises a biperiodic array of cylinders, sketched in the
upper panel of Fig. 1. The second comprises a linear
array of cylinders in a channel bounded by solid walls,
sketched in the lower panel of the same figure. In each
case the flow cell has length Lx horizontally and height
Ly vertically, and the cylindrical obstacle has radius R.
At the boundaries of the cells represented by dashed lines
all flow variables are ascribed periodic boundary condi-
tions. At the cell boundaries represented by solid lines,
and at the cylinder surface, conditions of no-slip and no-
permeation apply. In each case we assume the flow to
be translationally invariant into the page in Fig. 1, and
simulate the flow in the two dimensions of the page only.

The flow, which we assume to be from left to right, can
be imposed in two different ways. In the first, a given
throughput Q per unit time is prescribed (such that the
characteristic velocity scale is then V = Q/Ly), with the
pressure drop ∆P measured in response. Alternatively,
we can impose the pressure drop ∆P and measure the
resulting throughput Q.

In either case, a key experimental observable is the
drag coefficient

CD =
∆PLy
ηV

, (2)

which measures the pressure drop normalised by the
characteristic velocity scale and the solvent viscosity. In
the limit of Newtonian flow this quantity depends only on
the flow geometry. In non-Newtonian flow it also depends
via the Weissenberg number on the nonlinear constitu-
tive behaviour of the fluid in question. In reporting our
numerical results below we shall typically show the drag
coefficient at any given Weissenberg number, CD(Wi),
normalised by the corresponding value in the Newtonian
limit of zero Weissenberg number, CD(Wi→ 0), defining

χ =
CD(Wi)

CD(Wi→ 0)
. (3)

III. CONSTITUTIVE MODELS

We write the total stress T (r, t) in a fluid element at
position r and time t as the sum of a viscoelastic con-
tribution Σ(r, t) from the polymer chains, a Newtonian
solvent contribution of viscosity η, and an isotropic con-
tribution with a pressure p(r, t):

T = Σ + 2ηD − pI. (4)

The symmetric strain rate tensor D = 1
2 (∇v + ∇vT )

where ∇v|αβ = ∂αvβ and v(r, t) is the fluid velocity
field.
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FIG. 1. Flow geometries to be studied. Upper: Biperiodic
array of cylinders. Lower: Linear array of cylinders in a
channel. Solid lines represent closed walls, and dashed lines
represent periodic boundaries. The flow is assumed transla-
tionally invariant into the page.

Throughout we consider the creeping flow limit of zero
Reynolds number. Here the condition of force balance
requires the stress field T (r, t) to be divergence free:

∇ · T = 0, (5)

such that

∇.Σ + η∇2v −∇p = 0. (6)

The pressure field p(r, t) is determined by enforcing flow
incompressibility:

∇ · v = 0. (7)

The dynamics of the polymeric stress Σ is specified by
a viscoelastic constitutive model. In this work we con-
sider three different phenomenological constitutive equa-
tions: the Oldroyd B, FENE-CR and FENE-P mod-
els [36]. These each describe a dilute polymer solution by
representing each polymer chain as a simplified dumbbell
comprising two beads connected by a spring. The con-
formation tensor W = 〈RR〉 is defined as the ensemble
average 〈〉 of the outer dyad of the dumbbell end-to-end
vector R, which is taken to have unit length in equilib-
rium. The conformation of the polymer chains deter-
mines the viscoelastic stress according to

Σ = G [f(W )W − g(W )I] , (8)

with a constant modulus G. In addition to the spring
force, each bead also experiences viscous drag against
the solvent [36] and stochastic thermal fluctuations. The
conformation tensor is then taken to obey

∇
W = −1

τ
[f(W )W − g(W )I] +

`2

τ
∇2W , (9)

with a characteristic relaxation time τ , where

∇
W ≡ (∂t + v · ∇)W −∇vT ·W −W ·∇v (10)

is the upper convected derivative [36]. We have included
a modification to the original equations by introducing
a diffusive term, where ` is a small lengthscale below
which gradients in W are attenuated. Similar modifi-
cations have been made to the Johnson-Segalman model
in the context of shear banding [37, 38]. Specifically in
the context of porous media, Gillissen included diffusive
terms in his study of a FENE fluid past a biperiodic
array of cylinders [21]. Thomases et al. also recently
showed that a small diffusive contribution can support a
finite polymer stress in a qualitatively similar fashion to
FENE models [39, 40]. Without diffusion included, we
find that the severe space- and time-step requirements
limit the range of Weissenberg numbers that can feasibly
be explored.

Gradient terms in W require a boundary condition
at the walls and at the cylinder surface. For simplicity
we choose zero gradient at the walls ∂yW = 0 (when
present). While the zero gradient condition can also ex-
plicitly be imposed on the cylinder surface1, we find that
our numerical method (which solves for W everywhere
in the computational domain, both inside and outside of
the cylinder) in fact naturally produces an emergent zero
gradient at a typical radius R+ `. We therefore find that
it is sufficient to ensure that ` is small compared to any
other physical lengthscale in the problem: we fix ` = 0.01
in all that follows and we have checked that our results
are qualitatively (and in almost all cases quantitatively2)
unchanged by further decreasing `.

The functions f(W ) and g(W ) in Eqns. 8 and 9 are
different in the three different models. The Oldroyd B
model has f(W ) = g(W ) = 1, which corresponds to
assuming that the spring of each dumbbell is Hookean.
For a sustained imposed extensional strain rate ε̇ > 1/2τ
this model displays an extensional catastrophe in which
the dumbbells stretch out indefinitely and the extensional
stress grows indefinitely.

1 The method is analogous to the procedure used to enforce no-slip
boundary conditions on the cylinder surface, see the discussion
preceding Eq. 15. Essentially, we add a term to restore the gra-
dient normal to the cylinder to zero.

2 The only exception is in the closely spaced cylinders case shown
in Fig. 17 (right) where the drag upturn is slightly less steep for
` = 0.005, 0.0025. The point of upturn in the drag is unchanged
in all cases, and all states remain time-independent.



5

10
-2

10
-1

10
0

10
1

10
2

10
3

γ
.
 τ

10
-2

10
0

10
2

σ/G

10
-2

10
-1

10
0

10
1

ε
.
 τ

10
-2

10
0

10
2

10
4

σ
e
/G

FIG. 2. Upper: Stationary constitutive curves for homoge-
neous simple shear flow in the Oldroyd B model (solid black
curve), the FENE-CR for δ = 0.001 (magenta dotted curve)
and 0.01 (magenta dashed curve) and the FENE-P model for
δ = 0.001 (green dotted curve) and δ = 0.01 (green dashed
curve). The FENE-CR curves are indistinguishable from the
Oldroyd B curve.
Lower: Counterpart stationary constitutive curves for ho-
mogeneous planar extensional flow, for the same parameter
values as in the upper panel, and with the same line key. In
this case, for matched δ, the FENE-CR and FENE-P curves
are indistinguishable from each other (and the two magenta
curves are accordingly hidden by the green ones).

The phenomenological FENE-CR and FENE-P mod-
els regularise this catastrophe by insisting that the ex-
tensional stress of the polymer chains (dumbbells) must
remain finite at all deformation rates. They do so by re-
placing the Hookean spring law by a non-linear law with
finite-extensibility [41]. The FENE-CR model has

f(W ) = g(W ) = α(W ) ≡ 1

1− Tr(W )
Λ2

, (11)

while the FENE-P model has

f(W ) = α(W ) and g(W ) = 1. (12)

The parameter Λ in Eqn. 11 characterises the max-
imum extent to which any dumbbell can be stretched.

We choose to express this in terms of δ = Λ−2, noting
that the limit δ → 0 corresponds to Oldroyd B dynamics
with infinite extensibility.

Under conditions of ideal viscometric simple shear flow,
the imposed velocity gradient tensor in Cartesian (x−y)
coordinates is

∇v|shear = γ̇

(
0 0
1 0

)
. (13)

In steady state under this applied flow, the shear stress
Σxy (which we also denote σ) as a function of γ̇ defines
the fluid’s shear constitutive curve, as shown in Fig. 2 for
the three models considered here. The shear viscosity of
the Oldroyd B and FENE-CR models is constant as a
function of γ̇. The FENE-P model shear thins to an
extent determined by the value of δ.

In an ideal viscometric planar extensional flow, the im-
posed velocity gradient tensor

∇v|ext = ε̇

(
1 0
0 −1

)
. (14)

In steady state, the extensional stress Σxx − Σyy (which
we also denote σE) as a function of ε̇ defines the fluid’s
extensional constitutive curve, as shown in Fig. 2 for the
three models. As can be seen, the extensional constitu-
tive curve of the Oldroyd B model is undefined for flow
rates ε̇ > 1/2τ , consistent with our discussion above of
the chain stretch catastrophe. In contrast, the FENE
models have well-defined constitutive curves at all strain
rates ε̇. Indeed for matched δ the two FENE models
have the same extensional constitutive curves, with a fi-
nite limiting extensional viscosity 2Gτ/δ as ε̇→∞.

IV. PARAMETERS AND DIMENSIONLESS
GROUPS

The eight parameters characterising the fluid, geome-
try, and imposed flow just described are: the solvent vis-
cosity η, the polymer modulus G, the polymer viscoelas-
tic relaxation timescale τ , the polymer finite extensibility
parameter δ, the cell length Lx, the cell height Ly, the
cylinder radius R and the flow’s throughput rate Q.

We are free to choose units of mass, length and time,
leaving five dimensionless groups as follows: the ratio of
cylinder radius to gap height R̃ = R/Ly, the ratio of cell

length to cell height L̃x = Lx/Ly, the ratio of solvent
to total (zero shear) viscosity β = η/ (η +Gτ), the finite
extensibility parameter δ, and a Weissenberg number Wi
characterising the strength of the velocity gradients com-
pared to the inverse of the fluid’s stress relaxation time
τ . (We return below to define Wi precisely.) We drop
tildes hereafter with the understanding that (for exam-
ple) values for R and Lx are always quoted in units of Ly.
To allow benchmarking of our results against the earlier
literature we fix the viscosity ratio β = 0.59 through-
out. Remaining to be explored numerically are then the
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dimensionless cylinder radius R, the dimensionless cell
length Lx, the finite extensibility parameter δ and the
Weissenberg number Wi.

The Weissenberg number is a dimensionless quantity
characterising the scale of velocity gradients in the flow
in units of the inverse relaxation time. On purely dimen-
sional grounds, one simple possible definition is V τ/Ly.
However we have found it more useful to define two dif-
ferent Weissenberg numbers based on a characterisation
of the velocity gradients that actually develop inside the
flow geometry. We shall return to discuss these in Sec. VI
below.

In our studies of the biperiodic geometry we consider a
square cell with Lx = Ly ≡ L = 1.0. For the channel ge-
ometry we take the cylinder spacing Lx as an additional
variable to be explored numerically.

V. NUMERICAL METHODS

We numerically solve the model equations 6, 7, 8 and 9
using a timestepping approach. Each main timestep com-
prises two separate substeps, as follows. In the first sub-
step the viscoelastic stress Σ(r, t) is updated according
to the viscoelastic constitutive equations 8 and 9 with a
fixed velocity field v(r, t). This update is performed in
the whole plane of Fig. 1, even inside the cylinder, where
the velocity is zero to within the accuracy of our numer-
ical approach. For this substep we adopt a method that
we have used in our own previous work [42], to which we
refer the reader for details.

With that newly updated viscoelastic stress field, the
velocity field is then updated in the second substep to
satisfy Eqns. 6 and 7. This substep needs more careful
discussion, because the presence of the cylindrical posts
renders the procedure more complicated than in Ref. [42]
(which considered a rectangular flow cell with no obsta-
cles). In particular, the boundary conditions of no-slip
and no-permeation must be satisfied for the fluid veloc-
ity round the edge of each obstacle. To tackle this we
use an immersed boundary method (IBM)[43–45], which
couples a solution of Eqns. 6 and 7 on a regular Eulerian
grid with an off-grid Lagrangian description of the cylin-
der surface. (We use the term Lagrangian to be consis-
tent with the IBM literature, although in our particular
problem the cylinder doesn’t advect with the flow.)

The cylinder surface is characterised by a one-
dimensional curvilinear Lagrangian coordinate ξ around
it. (Although we use the word cylinder, in our 2D study
it is of course represented by a circular cross section, with
a 1D edge.) The location of a point at the Lagrangian
coordinate ξ is given in the Eulerian frame as X(ξ, t).
A Lagrangian force density F (ξ, t) is then incorporated,
calculated by prescribing the desired location of the cylin-
der X0(ξ), and imposing a Hookean restoring force when
the cylinder deviates from this:

F (ξ, t) = −κ (X(ξ, t)−X0(ξ)) , (15)

where κ is a large spring constant. Given that the de-
sired location X0 is independent of time, differentiating
Eqn 15 with respect to time gives

∂F (ξ, t)

∂t
= −κU(ξ, t), (16)

in which the Lagrangian velocity U at the cylinder sur-
face is calculated from the velocity v(r, t) in the Eulerian
frame as

U(ξ, t) =

∫
Ω

v(r, t)δ(r −X(ξ, t))dx. (17)

Eqn. 16 is evolved at each timestep using an explicit
Euler algorithm. The Lagrangian force density F (ξ, t)
then gives a force contribution in the Eulerian frame of

f(r, t) =

∫
Ω

F (ξ, t)δ(r −X(ξ, t))dξ. (18)

This is incorporated as an additional source term to the
left hand side of the generalised Stokes’ equation 6, which
is then solved on a rectangular Eulerian grid in the full
plane of Fig. 1 using the methods of Ref. [42]. With-
out walls, this can be done either imposing the overall
throughput (and measuring the pressure drop) or impos-
ing the pressure drop (and measuring the throughput),
and we have checked that these are equivalent in all our
biperiodic results presented below. With walls included,
we always impose the latter quantity.

The transfer of information between the Lagrangian
and Eulerian grids in Eqns. 17 and 18 is achieved in nu-
merical practice by approximating the Dirac delta func-
tion δ(r) by a smoothed Peskin delta function δP (r) =
δxP (x)δyP (y), in which [48]

8hδP (r) = 3− 2
|r|
h

+

√
+1 + 4

|r|
h
− 4

(
|r|
h

)2

|r| ≤ h

= 5− 2
|r|
h
−

√
−7 + 12

|r|
h
− 4

(
|r|
h

)2

h ≤ |r| ≤ 2h

= 0 otherwise.

Here h = ∆x = Lx/Nx = ∆y = Ly/Ny is the Eule-
rian grid spacing, given a rectangular grid of (Nx, Ny)
points. The Lagrangian boundary of circumference 2πR
is discretized into M nodes of equal separation ∆s =
2πR/M . The optimal value of the ratio α = ∆s/h is
unknown a priori. Too small a value risks oversampling
the boundary forces, while too large a value risks fluid
leakage across the boundary. We set α = 2, and have
checked that our results are robust to reasonable varia-
tions around this value. We have also ensured that all
our results presented below are converged on the limit of
grid spacing h→ 0 and of timestep ∆t→ 0.

In the numerical solution just described, the methods
employed to update the viscoelastic stress in the first sub-
step of each timestep have been tested and benchmarked
by ourselves in several previous publications [42, 51].
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FIG. 3. Upper: Drag coefficient as a function of cylinder
radius for Newtonian flow in the biperiodic geometry. Dotted
line: analytical prediction in the limit R → 0 [46]. Dashed
line: analytical prediction in limit 2R→ Ly of near-touching
cylinders [46]. Symbols: numerical results using immersed
boundary method (circles), propagator method (squares),
phase field method with l = 0.02 (diamonds) and l = 0.01
(triangles). (See [47] for definition of the parameter l.)
Lower: Streamlines (red lines) and map of velocity magni-
tude |v| calculated using IBM (left) and propagator (right)
methods for a cylinder radius R = 0.25 and overall through-
put rate Q = 1.0.

Therefore we focus here only on benchmarks to validate
the second substep, in which the velocity field is calcu-
lated by solving Eqns. 6 and 7. The presence of vis-
coelasticity in this substep is trivial: it appears only as
a source term ∇.Σ in Eqn. 6). All the issues of principle
are already contained in the solution of Eqns. 6 and 7 for
purely Newtonian flow in the geometries of interest here,
for which known benchmarks exist, as follows.

Sangani and Acrivos [46] derived analytical expressions
for the drag coefficient CD as a function of the cylinder
radius R in Newtonian flow past the biperiodic array of
Fig. 1 (upper), separately for the small cylinder limit
R→ 0, and for the limit R→ Ly/2 = 1/2 (in our units)
in which adjacent cylinders approach contact. These are
shown by the dotted and dashed lines respectively in the
upper panel of Fig. 3. Numerical results obtained us-
ing our IBM method are in excellent agreement with
these predictions, as shown by the circles in the same
panel. Also shown (by the diamonds, squares and tri-
angles) are results for the drag coefficient additionally
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D
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x
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analytical, Faxen (1946)

FIG. 4. Upper: Comparison of the drag coefficient CD as
obtained using IBM in the channel geometry for large cylinder
spacing Lx/Ly = 4 with Faxen’s analytical result for flow past
a single cylinder in a channel [49]. Lower: Map of velocity
magnitude |v| calculated using IBM (left) and from Ref. [50]
(right) for a cylinder radius R = 0.25, cylinder spacing Lx =
0.625 and throughput rate Q = 1.0. The colourscheme of this
flow map is different from that of the others in this manuscript
to match that of the original work [50] against which we are
benchmarking.

obtained in the present study using two different numer-
ical methods that are independent of the IBM described
above: a phase field method and a circular-propagator
method [47]. As can be seen, these numerical results for
the drag coefficient are in excellent agreement between
all our three methods across the full range of cylinder
radii. For one particular value of the cylinder radius, the
full flow field as calculated in a biperiodic array is shown
in the lower panel of Fig. 3: on the left using the IBM,
and on the right using the propagator method. Excellent
agreement is seen between the two methods.

In Fig. 4 (upper), we show that numerical results ob-
tained using our IBM for the drag coefficient as a func-
tion of cylinder radius R for a fixed (wide) horizontal
cylinder separation Lx = 4.0 in the channel geometry of
Fig. 1 (lower) are in excellent agreement with the an-
alytical prediction of Faxen [49] for flow past a single
cylinder in a channel. Fig. 4 (lower) shows that our re-
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FIG. 6. A schematic representation of the three flow types:
left: rotation, middle: simple shear, and right: extension
(which is also called pure shear).

sults for the full flow field in the channel geometry are
in excellent agreement with those of Ref. [50]. Finally,
in Fig. 5 we compare profiles of the polymer stress Σxx
against previous work in the biperiodic geometry [17],
again demonstrating excellent agreement.

VI. RESULTS: VISCOELASTIC FLOW PAST A
BIPERIODIC ARRAY OF CYLINDERS

Having carefully benchmarked our codes against
known results in the literature, we now present our new
results for viscoelastic flow past the biperiodic array of
cylinders as sketched in Fig. 1 (top).

A. Character of the flow field

In Fig. 2 above we presented the stationary constitu-
tive curves of the Oldroyd B, FENE-P and FENE-CR
models, separately for the idealised flow fields of homo-
geneous simple shear and homogeneous planar extension.
A key aim of this work is to examine whether the thick-
ening observed as a function of increasing Weissenberg
number in the flow of a viscoelastic fluid through a porous

medium can be understood in terms of the fluid’s under-
lying constitutive behaviour in those simpler protocols of
homogeneous simple shear and planar extension.

In any porous flow geometry, however, the flow field
will of course vary in space (and sometimes also in time)
in a complicated way, and will in general comprise an
admixture of both shear and extensional components at
any location. To quantify the flow field at any location,
therefore, we write the local velocity gradient tensor ∇v
as the sum of symmetric and antisymmetric contribu-
tions, D = 1

2 (∇v+∇vT ) and Ω = 1
2 (∇v−∇vT ), with

eigenvalues λD =
√

1
2D : D and λΩ =

√
1
2Ω : Ω respec-

tively. Here λD measures the rate of deformation, and
accordingly the strength of the deforming effect that the
flow is expected to have on the polymer chains. λΩ char-
acterises the rate of rotation, which does not deform the
polymers.

Out of these two eigenvalues we also construct the
frame-invariant, rate-independent parameter [5, 21]

q =
λ2
D − λ2

Ω

λ2
D + λ2

Ω

. (19)

This quantifies the nature of the flow field at any loca-
tion, in the following way. A value q = +1 corresponds
to pure extensional flow, which is sometimes also called
pure shear flow (as expressed relative to Cartesian axes
in Eqn 14). For q = −1 the flow is purely rotational, and
will have no deforming effect on the polymer chains. For
q = 0 the rate of straining is equal to the rate of rotation,
giving an equal superposition of rotation and pure shear.
This corresponds to simple shear flow (as expressed rel-
ative to Cartesian axes in Eqn. 13). These three cases
q = −1, 0,+1 are sketched in Fig. 6.

In practice, of course, the flow field in any given geom-
etry will change as a function of Weissenberg number Wi.
Indeed, this effect is fully accounted for in our numerical
studies, as described in Sec. V above. In examining our
numerical results, however, we find that this change is
relatively modest. Because of this, we shall frame the
discussion of our results in trying to understand how the
polymer responds, with increasing Wi, to a velocity field
that is assumed to be unchanged from that at Wi = 0.
Accordingly, we focus the discussion in this section on
the flow field that pertains at Wi = 0.

As can be seen in the left two columns of Fig. 7, the rate
of deformation λD is strongest round the upper and lower
edges of the cylinder for all values of the cylinder radius
R, and is dominated by simple shear. As shown in Fig. 8,
the deformation rate in these regions scales with cylinder
radius R as V L/(L− 2R)2. Because the flux is constant
through any vertical slice, the mean velocity V increases
as it is forced through the narrow vertical gap between
adjacent cylinders, producing an effective velocity that
might be expected to scale as Ve ∼ V L/(L − 2R). A
typical shear-rate in the gap would then be Ve/(L−2R) =
V L/(L − 2R)2. Based on this, we define a Weissenberg
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number

Wi0 =
V Lτ

(L− 2R)2
. (20)

If any regime exists in which the pressure drop is dom-
inated by these regions of simple shear just above and
below the cylinder, we would expect Wi0 to be the rele-
vant Weissenberg number to characterise that regime.

For the low porosity geometries with small R, there
also exists a region of reasonably strong deformation fore
and aft of the cylinder, which is extensionally dominated.
To characterise this, we define a Weissenberg number

Wi1 =
V τ

πR
. (21)

This takes as its characteristic time the residence time
of the polymer near the cylinder, πR/V . The cylinders
are widely spaced in this regime, so we expect the inter-
cylinder spacing to be a less important lengthscale in
comparison. As shown in Fig. 9, this definition provides a
reasonable approximation of the deformation rate in this
region. Therefore in any regime in which the pressure

drop is dominated by these regions of extension fore or
aft of the cylinder, we expect Wi1 to be the relevant Weis-
senberg number to characterise the flow in that regime.
Note that while Wi1 should strictly be labelled as a Deb-
orah number [53], for simplicity here we retain the label
Wi1.

Finally, there exists a region of moderately strong ex-
tensional flow centred around the 45◦ diagonal lines, as-
sociated with the fluid just starting to squeeze into, and
then subsequently move out of, the gap between verti-
cally adjacent cylinders. As shown in Fig. 10, the defor-
mation rate in this region scales as V/(L− 2R). Accord-
ingly, we define a Weissenberg number

Wi2 =
V τ

(L− 2R)
. (22)

In any regime where the pressure drop is dominated by
the squeezing of the fluid through the gap between verti-
cally adjacent cylinders, we expect Wi2 to be the relevant
Weissenberg number to characterise the flow. Note that
while the scalings provided by Figs. 9-10 are taken at
representative points in the fluid, they can only expected
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at a distance r = R + 0.025 horizontally from each cylinder
centre (see red points in schematic in top right). The black
dash-dotted line shows the scaling 2

3
V/ (πR).

to hold to within an order 1 prefactor. However we will
show that each of the Weissenberg number definitions
Eqs. 21,22 accurately captures the onset of thickening in
the regime of R for which it is expected to apply, justi-
fying our choices.

Having discussed the nature of the flow field in the
limit of Newtonian flow, Wi → 0, we now proceed to
describe our numerical results for the flow response of
the Oldroyd B, FENE-P and FENE-CR models as the
Weissenberg number Wi (according, in any regime, to
the most relevant of the above definitions in that regime)
increases with the polymer relaxation time τ .
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FIG. 10. Scaling with cylinder radius of the rate of deforma-
tion λD in a Newtonian fluid in the regions centred along the
diagonal 45◦, i.e., as the fluid just starts to squeeze into (and
subsequently move out of) the contraction between vertically
adjacent cylinders. The plotted values of λD are taken at dis-
tances r = R + d along any diagonal angled at 45◦ from the
cylinder centre (see red points in schematic in top left). All
four points are equivalent due to the symmetry of the Newto-
nian flow field. The black dash-dotted line shows the scaling
2.5V/ (L− 2R).

B. Oldroyd B model

In Fig. 7 we explore the flow response of the Oldroyd B
model as a function of the cylinder radius R (down each
column) and the adimensional polymer relaxation time
τ , proportional to the Weissenberg number (along each
row). (In each case the cell height Ly = Lx ≡ L = 1.0
and the velocity characterising the throughput V = 1.0.)

Shown in each column (beyond the first two) of Fig. 7
is a colourmap of the largest eigenvalue λW of the poly-
mer conformation tensor W , which characterises the de-
gree to which the polymer molecules are deformed by
the flow. (W = δ in a fluid equilibrated at rest.) For
small Weissenberg number (third and fourth columns),
the colourmap of the polymer deformation λW is essen-
tially the same as that of the deformation rate of the flow
field λD (first column), consistent with the fact that the
solution of the Oldroyd B model in the Newtonian limit
τ → 0 is W = δ + 2τD.

Moving rightwards across the montage from the third
column, τ (and so Wi) progressively increases. For each
cylinder radius R (along each row), the first noticeable ef-
fect with increasing τ is that the bright regions of strong
polymer deformation associated with the regions of sim-
ple shear along the top and bottom of the cylinder shift
slightly downstream (rightwards). Given that this shift
is in the direction of flow, one might expect that this
arises due to the increasing influence of the advective
term v.∇W in the polymer constitutive equation with
τ . (In contrast, for τ = 0 the advection term plays no
role and the dynamics are purely local.) The polymer
conformation at any location would then be affected not
only by the flow field at that location, but would also
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receive information about the flow field immediately up-
stream (leftwards).

However, elastic effects arising due to the distortion
term cannot be neglected. In order to quantify the rel-
ative strength of advection and distortion, we first note
that the constitutive equation Eq. 9 can be rewritten in
terms of the polymer stress (as opposed to the conforma-
tion tensor W ). In steady state this reads

(v · ∇) Σ︸ ︷︷ ︸
advection, Ta

= ∇vT ·Σ + Σ ·∇v︸ ︷︷ ︸
distortion, Td

+ 2GD − 1

τ
Σ︸ ︷︷ ︸

remaining, Tr

. (23)

The three tensorial contributions can be contracted to
scalars as

λa =
√
Ta : Ta, λd =

√
Td : Td, λr =

√
Tr : Tr, (24)

and integrated over space to yield a single value for each
term. In Fig. 11 (top) we plot these integrals as a func-
tion of Wi2. This shows that for small to moderate values
of Wi2, the steady-state equation is dominated by distor-
tion rather than advection. This result is reinforced by
the colourmaps in Fig. 11 (bottom) that show that distor-
tion (near the cylinder tops) is stronger than advection
(just before and after the narrowest vertical point). This
suggests that the observed downturn in the drag is mainly
a result of distortion rather than advection. Interestingly,
beyond a certain value of Wi2, the advective term be-
comes comparable to distortion. We will later show that
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FIG. 12. Normalised drag coefficient χ for the Oldroyd B
model in the biperiodic geometry of Fig. 1 (upper) plotted
against (a) the Weissenberg number Wi1 of Eqn. 21, (b) the
Weissenberg number Wi2 of Eqn. 22 and (c) the maximum of
these two Weissenberg numbers. Curves downwards at Wi =
0.1 in each panel correspond to cylinder radii R = 0.05 (red)
→ 0.35 (blue) in increments of ∆R = 0.05. Triangles mark
the point of upturn, defined as the minimum of χ(Wi).

this coincides with the point at which the drag dramati-
cally increases, Wiup

2 (see black triangles in Fig. 12).
Corresponding to the montage of Fig. 7, curves of the

normalised drag coefficient χ as a function of increasing
Wi are shown in Fig. 12, separately for each value of R
(each row of the montage). The signature in the drag
coefficient of the initial slight shift rightwards of the flow
pattern just described is an initial decrease of χ with
Wi, relative to the value χ = 1.0 in the Newtonian limit
Wi→ 0. In the existing literature this effect is sometime
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suggested to stem from a shear thinning effect [21, 54].
However the Oldroyd B model does not shear thin, so
that explanation cannot be valid here. We suggest in-
stead that this initial decrease in drag arises due to the
effect of the elastic distortion terms in slightly (spatially)
‘delaying’ the build-up of viscoelastic stress at any loca-
tion (recall Fig. 11), relative to the Newtonian case. In
this way, the regions of strongest polymer deformation
are shifted slightly away from the regions of strongest
shear rate.

Moving further right across the montage of Fig. 7, more
dramatic changes in the flow field are evident. For small
values of the cylinder radius R, as τ (and so Wi) in-
creases rightwards across the montage, a bright streak
develops in the colourmap of the polymer conformation
tensor, focused in a wake along the centreline aft of the
cylinder. This is due to the region of extensional flow to
the right of the stagnation point at the centre-aft point
of the cylinder edge, which causes a strong extensional
stretching of the polymer molecules as the Weissenberg
number increases. (Recall this region of extensional flow,
q = 1, in the first two columns of the montage for small
R. As noted above, the flow map itself also changes
with Wi, but to a relatively modest extent.) This exten-
sional stretching of the polymer chains manifests itself as
a strong upturn in the drag coefficient following a mini-
mum at Wiup. As can be seen in Fig. 12a), this occurs at
a (nearly) constant value of the Weissenberg number Wi1
for several different (small) values of the cylinder radius
R. This confirms that Wi1, which we recall is defined by
considering the rate of extensional deformation aft (and
fore) of each cylinder, is indeed the relevant dimension-
less rate to characterise the flow in this regime of low
cylinder radius and high medium porosity.

James studied experimentally the flow of a Boger fluid
past a square array of cylinders in this regime of small
R/L = 0.09 → 0.18 [8]. As in our simulations, they

found the flow to be steady (up to values of their defined
Deborah number De ≡ τV/L ≈ 4). They likewise re-
ported only a small downturn in the drag coefficient as
a function of increasing De, before a pronounced upturn
at De = 0.5.

Returning to Fig. 7, for larger values of the cylinder
radius R, the dominant effect as τ increases rightwards
across the montage is that the layers of strong polymer
deformation in the shear fields on the upper and lower
edges of the cylinder intensify, and are supplemented
by the development of secondary ‘layers’ of strong poly-
mer deformation above and below the cylinder (one layer
above the cylinder and one below it). These appear to
originate in the contraction as the flow moves from the
left hand edge of each snapshot into the narrow gaps be-
tween vertically adjacent cylinders, with these secondary
‘layers’ also advected downstream into the vertical gap.
This again manifests itself as a strong upturn in the drag
coefficient following a minimum at Wiup. As seen in
Fig. 12b), this upturn occurs at a constant value of Wi2
for several different values of the cylinder radius R. This
confirms that Wi2 is indeed the relevant Weissenberg
number to characterise the flow in this regime of larger
cylinder radius and smaller medium porosity.

The values of Wi1 and Wi2 at the minima in the drag
coefficient curves of Fig. 12 are plotted as a function of
cylinder radius R in Fig. 13. As can be seen, the upturn
occurs at a roughly constant value of

Wimax = max(Wi1,Wi2). (25)

The crossover between which of Wi1 and Wi2 dominates
at any value of R occurs at Rc = L/(2 + π) ≈ 0.194. For
cylinder radii R < Rc we have Wi1 > Wi2: in this regime,
the effects of the extensional wake in the relatively wide
horizontal gap between horizontally adjacent cylinders
dominate those of shear in the gap between vertically
adjacent cylinders. For R > Rc we have Wi2 > Wi1:
in this regime the squeezing of the fluid into the now
narrower vertical gap between vertically adjacent cylin-
ders dominates any effects in the now smaller horizontal
extensional wake. This effectiveness of Wimax in charac-
terising the flow across the full range of cylinder radii is
also seen via the master plot of the drag coefficient χ as
a function of Wimax in Fig. 12c): the upturn occurs at a
fixed value of Wimax for all values of R.

C. Fene models

We consider now the effect of finite dumbbell exten-
sibility on the phenomena just discussed. In particular,
we shall report the drag coefficient as a function of Weis-
senberg number in each of the FENE-P and FENE-CR
models, for two different values of the cylinder radius:
R = 0.1 < Rc ≈ 0.194 and R = 0.35 > Rc ≈ 0.194. The
case R = 1/2.4 ≈ 0.41 was considered previously [18] for
both FENE models, and our findings for R = 0.35 will
be qualitatively consistent with that study.
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FIG. 14. Drag coefficient as a function of Weissenberg number
Wi2 in the (a) FENE-P and (b) FENE-CR models for δ =
0.0 (solid lines, recovering Oldroyd B behaviour), δ = 0.001
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data are shown for a cylinder radius R = 0.1 < Rc (red
curves) and a cylinder radius R = 0.35 > Rc (blue curves).

Our results for the FENE-P model are shown in
Fig. 14a). We recall from Fig. 2 that, under conditions of
homogeneous viscometric flow, this model thins in both
shear and extension. Consistently, we find that the drag
coefficient is smaller for the FENE-P model (δ > 0) than
for the Oldroyd B model (δ = 0) for both values of R
considered.

Our results for the FENE-CR model are shown in
Fig. 14b). We recall from Fig. 2 that, under conditions
of homogeneous viscometric flow, this model thins only
in extension but not in shear. In the porous geometry
studied here, for a cylinder radius R = 0.1 < Rc the
drag coefficient is lower in FENE-CR (δ > 0) than in
Oldroyd B (δ = 0). This is consistent with the exten-
sional thinning of FENE-CR, and with the fact that the
flow is dominated by the extensional wake aft the cylin-
der for this value of R. In contrast, for a cylinder radius
R = 0.35 > Rc, the drag coefficient is larger in FENE-
CR than in Oldroyd B. Clearly, this observation lacks any

obvious explanation in terms of the homogeneous consti-
tutive curves of Fig. 2. Feasibly, it could arise because the
finite dumbbell extensibility reduces the extent to which
the molecules are stretched and reoriented as they transit
the contraction flow en route into the gap between ver-
tically adjacent cylinders, causing them then to confer a
greater shear stress in that gap. We do not provide any
evidence to support this claim, however.

VII. RESULTS: VISCOELASTIC FLOW PAST
AN ARRAY OF CYLINDERS IN A CHANNEL

We now present our results for the channel geom-
etry sketched in Fig. 1 (lower), comprising a peri-
odic linear array of cylinders bounded by solid walls.
This has been studied widely in the existing literature
[23, 28, 29, 31, 33, 34, 55]. To allow a comparison be-
tween our results and some of those earlier studies we fix
the cylinder radius R/Ly = 0.25, as in Refs. [29, 33].
This leaves the horizontal distance Lx between cylinder
centres as the geometrical parameter to be varied nu-
merically. Noting that Lx = 2R = 0.5Ly corresponds to
touching cylinders and Lx → ∞ to the limit of a single
cylinder, we shall present results for two cases: closely
spaced cylinders with Lx/Ly = 0.625, and widely spaced
cylinders with Lx/Ly = 1.5.

In simulating this channel geometry we impose the
pressure drop ∆P and measure the resulting flux Q.
From these quantities, we can then calculate the nor-
malised drag coefficient in Eqn. 3. In this walled geom-
etry, the pressure drop equates to a sum comprising two
contributions: one stemming from the drag on the cylin-
der plus another stemming from the drag on the wall.
However, many earlier works in the literature report only
the contribution from the drag on the cylinder. To allow
a direct comparison with those works, we shall report
a modified normalised drag coefficient χ̄, removing from
Eqn. 2 the contribution to the pressure drop stemming
from the force on the wall. We adopt from herein the
literature definition Wilit. = τV/R.

Flowmaps for the case of widely spaced cylinders with
Lx/Ly = 1.5 are shown in Fig. 15. As can be seen, the
flow character as quantified by the parameter q shows ex-
tensional regions fore and aft of the cylinder, regions of
simple shear at the channel walls, and regions of sim-
ple shear just above and below the cylinder. As the
Weissenberg number increases from left to right across
the montage, the polymer conformation tensor becomes
strongly deformed in the region of extensional wake aft
of the cylinder. The corresponding normalised drag co-
efficient in Fig. 17 (left) shows similar behaviour as a
function of Weissenberg number as in the biperiodic ge-
ometry, with an initial downturn then large upturn. This
was reported also in the earlier studies of [29, 33].

Flowmaps for the case of closely spaced cylinders with
Lx/Ly = 0.625 are shown in Fig. 16. In this regime, the
region between adjacent cylinders is effectively shielded
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FIG. 16. Left: flow character q and deformation rate λD for Newtonian flow past a periodic array of closely spaced cylinders with
Lx/Ly = 0.625, R/Ly = 0.25. Right: polymer deformation λW for Oldroyd-B model as a function of increasing Weissenberg
number (Wilit. = τV/R = 0.0009, 0.009, 0.074, 0.30, 0.60, 1.41, 2.61 from left to right) in the same geometry.

from the main flow, as can be seen in the colourmap
of λD/λ

max
D and indeed the polymer conformation ten-

sor remains largely undeformed in this region. The flow
character as quantified by q shows pronounced regions
of extensional flow along the lines projecting diagonally
outwards into the fluid from the cylinder centre, in the
region where the fluid just starts to squeeze into (and
subsequently move out of) the vertical gap between the
cylinder and the channel walls. The corresponding drag
coefficient (Fig. 17, right) shows a less pronounced down-
turn as a function of Wi than for the case of widely spaced
cylinders, as also reported in Ref. [29].

After an initial startup transient, all of the states re-
ported in Figs. 15, 16 and 17 reached a time-independent
steady state. While this is consistent with most pre-
vious 2D studies [18, 29, 30], it contradicts recent 2D
works [33, 34] which reported time-dependent, turbulent-
like states in 2D simulations of an Oldroyd-B fluid, in
the same geometry as considered here. We now at-

tempt to understand this discrepancy, first by appeal-
ing to the properties of incompressible 2D flow and then
by discussing in turn the other differences between the
two studies that might potentially explain this, includ-
ing with regards to diffusivity, inertia, and fluctuations.

In Ref. [33], the authors use the rms of the time-signal
〈vy(t)〉 (where the average is taken over all space) as
an order parameter for the transition to time-dependent
states. Here we show that incompressible 2D flow with
no-slip boundary conditions strictly requires 〈vy(t)〉 = 0.
This means that any numerical scheme based on incom-
pressible hydrodynamics (such as that used in this paper)
cannot hope to reproduce the fluctuations of Ref. [33]. In-
tegrating the incompressibility condition along the length
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FIG. 17. Cylinder drag χ̄ for widely spaced (left) and closely spaced (right). Data are for the Oldroyd-B model at two
resolutions (Ny = 512, 768), with R/Ly = 0.25. All states are time-independent.

of the channel gives ∫ Lx

0

∇.v dx = 0,∫ Lx

0

[∂xvx(x, y) + ∂yvy(x, y)] dx = 0,

[vx(Lx, y)− vx(0, y)] +

∫ Lx

0

∂yvy(x, y)dx = 0.

The left terms disappear due to periodic boundary con-
ditions (alternatively because the flux cannot vary with
x), leaving

∂y

∫ Lx

0

vy(x, y)dx = 0∫ Lx

0

vy(x, y)dx = C

where C is a constant independent of y. This integral
must be zero at the boundaries (because vy = 0 at the
walls) so C = 0, meaning∫ Lx

0

vy(x, y)dx = 0

〈vy〉 =

∫ Lx

0

∫ Ly

0

vy(x, y)dxdy = 0.

This can easily be generalised to include solid obsta-
cles such as a cylinder, giving the same result. Therefore
for incompressible hydrodynamics, 〈vy〉 is a quantity that
should be exactly zero, and not used as an order param-
eter. A possible explanation for the results of Ref. [33]
could be that the flow in that case was slightly compress-
ible, and the observed fluctuations (above Weissenberg
numbers of order 1) were in the density.

The above analysis only pertains to fluctuations in the
y-component of the velocity: fluctuations in the flux (and
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FIG. 18. Plot of the standard deviation of the time series
σWi (after discarding the initial transient) against the mean
µWi for two low grid resolutions, for the channel geometry
with Lx/Ly = 0.625, R/Ly = 0.25. For the lowest resolution,
the magnitude of fluctuations is described by the function
0.03(Wi−Wic)

1/2, where Wic ∼ 1 (black dashed line). Inset:
example time-series for a run with fluctuations (Ny = 128).

therefore Wi) are permitted, as are time-dependent cylin-
der drag or lift forces. We now demonstrate that these
allowable fluctuations only arise in our simulations if in-
sufficient numerical resolution is used. (Recall that we
shall also return below to discuss several other possible
sources of the discrepancy between our work and that
of Ref. [33].) Focusing on the closely spaced geometry
with Lx/Ly = 0.625, which produced strongly fluctuat-
ing states in Ref. [33], we repeat the simulations shown
in Fig. 17 at reduced numerical resolution. In Fig. 18
we plot the standard deviation of the time series Wi(t)
against the mean (after discarding the startup transient).
For lowest resolution studied, we observe the onset of
apparent time-dependent behaviour at Wi = Wic ∼ 1.
Similar to the results of Ref. [33], the magnitude of the
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fluctuations approximately scales as 0.03(Wi −Wic)
1/2,

suggestive of a Hopf bifurcation. For the larger resolu-
tion, Ny = 256, we observe no fluctuations across the full
range of Wi shown. However for the largest value of Wi
shown in Fig. 17 (left), even Ny = 256 is insufficient and
similar fluctuations develop (not shown); these fluctua-
tions disappear in our highest resolution simulations at
Ny = 512 and Ny = 768.

Having shown that we do not find viscoelastic turbu-
lence in our simulations, we return to discuss the several
differences between out work and that of Refs. [33, 34]
that might potentially explain this. First the model pre-
sented here includes a diffusive term. As discussed by
Sureshkumar and Beris [56], this can have a stabilising
effect, suppressing possible numerical instabilities. Here
we have made an effort to minimise the effect of such
a term by getting as close as is numerically possible to
the dual limit ∆x,∆y/` → 0, `/Lx, Ly → 0, which en-
sures that the diffusive lengthscale ` is well resolved yet
small compared to any features of the flow field. This ap-
proach suppresses spurious numerical instabilities whilst
keeping physical ones (if present). A second explanation
could be due to the presence of small but non-zero iner-
tia in Ref. [33]. As discussed by Hoda et al. [57], weak
inertial effects can provide a mechanism by which elas-
tic disturbances can be amplified. Finally it is conceiv-
able that the time-dependent states observed in Ref. [33]
are the result of a nonlinear instability. This mecha-
nism has been proposed to explain observed instabilities
in Poiseuille flow of viscoelastic fluids, which are believed
to be linearly stable [35, 58]. A final possibility concerns
spatial resolution. While the number of SPH particles
cannot necessarily be directly compared to the number
of finite-difference grid points, we note that the second
largest particle resolutions in Ref. [33] would roughly
correspond to the lowest resolution grid in Fig. 18 for
which we see fluctuations.

VIII. CONCLUSIONS

In this work, we first studied two dimensional creep-
ing flow of the Oldroyd B, FENE-CR and FENE-P vis-
coelastic fluids past a biperiodic square array of cylinders.
Our aim has been to understand the dramatic upturn re-
ported experimentally in the drag coefficient as a function
of increasing Weissenberg number.

By performing simulations across a wide range of val-
ues of the porosity of the flow geometry, from ‘dilute’
to near-touching cylinders, we have demonstrated two
qualitatively different mechanisms that may separately
underpin this thickening effect. The first operates in the
highly porous case of widely spaced cylinders, and in-

volves a strong stretching of the polymer chains in the ex-
tensional wake aft of each cylinder. The second operates
in the regime of more densely packed obstacles, and in-
volves a strong deformation of the polymer chains as they
squeeze into the vertical gap between vertically adjacent
cylinders. Two different Weissenberg numbers separately
characterise each of these regimes, and we have demon-
strated that the upturn in the drag coefficient occurs at a
fixed value of the maximum of these two numbers across
the full range of medium porosities. We have also stud-
ied the creeping flow of an Oldroyd B fluid past a linear
array of cylinders confined to a channel bounded by solid
walls, where we have found that the flow remains steady
for all Weissenberg numbers explored.

All the simulations in this work have assumed a purely
two-dimensional flow, with translational invariance into
the page in the sketches of Fig. 1. In experimental prac-
tice, the upturn in the drag coefficient is often accompa-
nied by the onset of three dimensional flows (which are
furthermore often time-dependent). To capture these ef-
fects, we would need to perform simulations in fully three
dimensions. The two dimensional results reported here
should clearly be treated with caution for Weissenberg
numbers exceeding O(1), where three dimensional effects
may pertain.

James [9] recently considered the ratio of shear- to
extensionally-induced first normal stresses in viscoelastic
flow past a biperiodic array of cylinders. They demon-
strated an O(1) lower bound on this, implying that shear
generated first normal stresses N1 cannot be neglected.
Wagner and McKinley [59] recently examined the re-
sponse of an Oldroyd-B fluid to a flow with a character-
parameter α(t) varying sinusoidally in time, intended to
mimic the variation experienced by a given fluid element
as it moves through a periodic flow cell of the kind stud-
ied in this work. For large Deborah numbers De (defined
as the ratio of the polymer relaxation time to the time
required to pass one unit cell), they demonstrated that
attempts to predict the first normal stress N1 just above
and below the cylinder using the local Weissenberg num-
ber fails to reflect the previous flow history and drasti-
cally underestimates the value of N1. In view of these
recent works, in future numerical studies of the kind per-
formed here it would clearly be interesting to consider
more explicitly the role of normal stresses.
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