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1 Introduction

The Ryu-Takayanagi proposal [1] and its generalizations provide a map between quantum

entanglement of spatial regions of a strongly coupled large-N field theory and the spacetime

geometry of its gravitational dual, by relating entanglement entropies to areas of minimal or

extremal [2] surfaces. This has led to explicit progress in bulk reconstruction, particularly

for linearized perturbations of anti-de Sitter space [3–5]. There are also attempts to directly

represent the areas of arbitrary surfaces in asymptotically AdS spacetimes in terms of

new information theoretic observables such as “differential entropy” [6–8]. All of these

efforts explicitly use the geometry and deformations of extremal surfaces of holographic

geometries.

This program is complicated (or enriched, as the reader prefers) by the existence

of entanglement shadows: regions of the bulk spacetime which are not reached by any

minimal or extremal surfaces used to compute entanglement between spatial regions of the

boundary (see, e.g., [9, 10]). Holographic geometries with entanglement shadows require

additional quantities beyond spatial entanglement in the dual field theory for the purpose

of bulk geometry reconstruction.1 Consider, for example, the conical defect spacetimes

describing excitations of AdS3. In this case, non-minimal extremal surfaces enter the

1One might likewise wonder how an entanglement-based program would be extended to the BFSS

model [11], which is a quantum-mechanical model with an 11d holographic dual [12, 13].
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entanglement shadow region, and there is a candidate generalization of spatial entanglement

called entwinement which yields quantities dual to the area of these surfaces [9, 14, 15].

In this work, we will argue that a simple but topologically non-trivial asymptotically

AdS5 × S5 geometry has an entanglement shadow. Our example is one of the “LLM

geometries” [16], which are holographically dual to 1/2-BPS excitations of N = 4 super-

Yang Mills theory. These geometries are smooth but topologically complex, and the map to

the dual field theory state is known precisely. From the perspective of reconstructing bulk

geometry from quantities in the dual field theory, one of the most interesting aspects of

the LLM geometries is that they are inherently 10-dimensional — there is no factorization

into an asymptotically AdS5 part and a compact part. If there were such a factorization,

we could “compactify” the reconstruction problem to one of just recovering the geometry

and fields in the asymptotically AdS factor, but that is not possible here. In fact, it is

known that reconstructing the interior geometry and topology of LLM spacetimes from

the dual field theory using just local operator measurements would require access to trans-

Planckian physics [17, 18]. In particular, around configurations with non-trivial topology

there is entanglement between the effective dynamical degrees of freedom and UV modes

that are beyond the Planck scale [19–21].

We will consider an LLM geometry which is approximately AdS5 × S5 in both the

asymptotic region and a central region in the spacetime. In our geometry, the S3 radial

sections of the asymptotic AdS5 essentially exchange roles with an S3 factor inside the S5

to form the central AdS5 region. In this geometry, we study minimal surfaces anchored

at the equator of the S3 on the spacetime boundary; these are expected to be the deepest

minimal surface probes of the geometry, and compute the entanglement entropy of half

the field theory with the other half. Because of the exchange of the roles of the S3 factors

which we described above, a surface that partitions the boundary of AdS in the asymptotic

region will partition the S5 in the central region. Making some systematic approximations,

we find that in this central region, the minimal surface for a boundary condition which

divides the S5 penetrates into the bulk only for a proper radial distance of order one in the

central AdS factor. At this distance, this surface closes off by reaching the pole on the S5.

From the point of view of the full LLM geometry, this implies that essentially the whole

of the central IR region is not accessed by boundary-anchored minimal surfaces. This is

our shadow region. We then argue that there is an extremal non-minimal surface, also

anchored at the equator of the spacetime boundary, which does enter the shadow region.

This is similar situation as for the conical defects in AdS3 which have an entanglement

shadow which is penetrated by non-minimal, but extremal, surfaces [9].

Unlike in AdS3 [14, 15] we do not yet have a candidate information theoretic quantity

such as entwinement that computes the area of a non-minimal extremal surface from the

perspective of the dual field theory.

The idea in [14, 15] was that non-minimal extremal surfaces (“long” geodesics in that

case) were related to entanglement in a partition of degrees of freedom of the dual field

theory that was not spatially organized. It would be worth understanding whether there

is such an interpretation for non-minimal extremal surfaces in the AdS5 case also. In-

teresting earlier holographic studies of Yang-Mills theory in the Coulomb branch [22–24]

– 2 –



J
H
E
P
1
1
(
2
0
1
7
)
1
5
9

had proposed that a minimal surface which divides the S5 part of the boundary of an

asymptotically AdS5 × S5 spacetime can be identified with the entanglement entropy as-

sociated to a non-spatial division of the field theory degrees of freedom. In the context

of our geometries, the surfaces described by [22–24] can be regarded as extremal surfaces

in the central AdS5 region, which can be extended into the asymptotic AdS5 region to

describe entanglement in a conventional spatial partition of the UV theory. Our analysis

shows that the particular extremal surfaces studied in [22–24] are not, in fact, the minimal

ones that are asymptotic to the equator of the boundary S5. It would be very interesting

to understand what information theoretic quantity is being computed by such extremal

surfaces, and also by the true minimal surfaces with these boundary conditions.

Our paper is organized as follows. In section 2, we briefly review the LLM geometries

first constructed in [16], and introduce the examples we consider. In section 3 we consider

extremal surfaces in the central region of our geometries, and explain the relation to the

earlier work of [22–24]. In section 4, we argue that the boundary-anchored minimal surfaces

in our spacetime close off on the central S5 without penetrating deep into the central

region. Hence these LLM geometries have entanglement shadows. In section 5, we discuss

the extension to other LLM geometries and the interpretation of our results.

2 LLM geometries

The 1/2 BPS solutions found by Lin, Lunin and Maldacena (LLM) [16] provide a rich class

of asymptotically AdS5 × S5 spacetimes where the geometry can be analyzed analytically,

and for which precise field theory duals are known. We will focus on a simple example

in this class, and find the bulk extremal surface whose area computes the entanglement

between halves of the spatial S3, across an equator, in the dual field theory.

The LLM geometries correspond to 1/2 BPS states in N = 4 SYM on S3 × R, where

the energy of the state (∆) is equal to the charge (J) under a U(1) subgroup of the SO(6)

R-symmetry, ∆ = J . The dual geometries should thus be asymptotically AdS5 × S5

solutions preserving half the supersymmetry, the SO(4) rotational symmetry on the spatial

S3, an SO(4) subgroup of the R-symmetry, and a diagonal R group which combines time

translation with the U(1) ∈ SO(6) to leave the state invariant. LLM found that these

restrictions fix the form of the geometry up to a single function of three coordinates,

z(y, x1, x2) [16]. The metric is

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + dx21 + dx22) + yeGdΩ2

3 + ye−GdΩ̃2
3, (2.1)

i = 1, 2, where the functions h and G are related to z by

h−2 = 2y coshG, z =
1

2
tanhG, (2.2)

and Vi is determined by

y∂yVi = εij∂jz, y(∂iVj − ∂jVi) = εij∂yz. (2.3)

– 3 –
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(a) Disk. (b) Annulus.

Figure 1. LLM configurations in the (x1, x2) plane. The configurations describe boundary con-

ditions for the equations of motion on a two dimensional surface in the bulk spacetime, and also

correspond to configurations in a fermionic phase space that completely summarizes the boundary

1/2 BPS state. The black disc boundary condition (a) leads to a pure AdS5 × S5 geometry. We

will show that no entangling surface can probe deeply into the IR region of the geometry given by

the annulus boundary condition (b).

The geometry is supported by a self-dual five-form; the explicit form of the field strength is

not needed here. Note that in these coordinates the length element ds2 has units of length,

as do y, x1, x2, while t is a dimensionless quantity.

The range of the coordinates is y ∈ (0,∞), xi ∈ (−∞,∞), so this is an upper half

space. The metric and five-form give a solution of the supergravity equations of motion if

the function z obeys

∂i∂iz + y∂y

(
∂yz

y

)
= 0. (2.4)

The solutions will be smooth if z satisfies the boundary condition z → ±1/2 as y → 0. The

general solution of (2.4) with such boundary conditions was given in [16]. Hence solutions

are specified by giving a colouring of the x1, x2 plane, specifying regions where z → 1/2,

which we will draw in white, and regions where z → −1/2, which we will draw in black.

The regions where z → −1/2 correspond to the first S3, with metric dΩ2
3, shrinking to zero

as y → 0, while z → 1/2 corresponds to the second S̃3, with metric dΩ̃2
3, shrinking to zero.

Note that the solution is a ten-dimensional geometry, and except in special cases, it

is not possible to straightforwardly perform a Kaluza-Klein reduction to obtain a five-

dimensional description; we really need to think about these geometries using a ten-

dimensional perspective.

2.1 AdS5 × S5

The simplest example is the disc, where z = −1/2 for r < R, and z = 1/2 for r > R, where

r2 = x21 + x22. The configuration is shown in figure 1a. The solution for z is [16]

z =
r2 + y2 −R2

2
√

(r2 + y2 +R2)2 − 4r2R2
. (2.5)

– 4 –
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This corresponds to the vacuum AdS5×S5 solution. If we make the change of coordinates

y = R sinh χ̃ sin θ̃, r = R cosh χ̃ cos θ̃, φ̃ = φ− t, (2.6)

where φ is the angular coordinate in the x1, x2 plane, the metric becomes:

ds2 = R(− cosh2 χ̃dt2 + dχ̃2 + sinh2 χ̃dΩ2
3 + dθ̃2 + cos2 θ̃dφ̃2 + sin2 θ̃dΩ̃2

3). (2.7)

The first three terms describe the metric on AdS5 with AdS radius R; the last three terms

describe the metric on S5 with constant radius R.

In these coordinates, for r < R, y = 0 corresponds to χ̃ = 0, while for r > R, y = 0

corresponds to θ̃ = 0. Thus, the black disc r < R corresponds to the origin in the AdS

factor, with position on the disc mapping to position on the S5. The fibration of S̃3 over

a hemisphere surrounding this disc is topologically an S5, homologous to the S5 factor in

the geometry (2.7).

A partial visualization is shown in figure 2. We can invert the coordinate transforma-

tion to write the AdS radial coordinate in general as

sinh2 χ̃ =
1

2R2

(
y2 + r2 −R2 +

√
(y2 + r2 +R2)2 − 4r2R2

)
. (2.8)

At y2 + r2 � R2, sinh2 χ̃ ≈ (y2 + r2)/R2, so the round hemispheres shown for large r2 + y2

are approximately surfaces of constant radius in the AdS5 factor, but at y2 + r2 � R2,

sinh2 χ̃ ≈ y2/R2, so the planes of constant y are approximately constant AdS radius,

approaching χ̃ = 0 in the black disc.

2.2 Annulus

Perhaps the simplest nontrivial LLM geometry, and the one we will consider, is described

by an annulus in the x1 − x2 plane, with a white disc inside the black one (figure 1b).

That is, we take the boundary conditions for the function z to be z(y = 0, r > R) = 1
2 ,

z(y = 0, R > r > ε) = −1
2 , and z(y = 0, r < ε) = 1

2 . The solution is then

z =
1

2
− y2

π

∫ R

ε

r′dr′dφ′

[r2 + r′2 − 2rr′ cosφ′ + y2]2
(2.9)

=
1

2
+

1

2

r2 + y2 −R2√
(r2 + y2 +R2)2 − 4r2R2

− 1

2

r2 + y2 − ε2√
(r2 + y2 + ε2)2 − 4r2ε2

. (2.10)

The physical picture of this configuration is that it represents the back-reacted version

of maximal giant gravitons [25]. We consider a set of D3-branes wrapping the S̃3 inside

S5 at θ̃ = π/2 where this S̃3 has maximal volume, with angular momentum along φ̃

corresponding to the R-charge. These D-branes dissolve into the backreacted geometry.

Note that because of the angular momentum, the annulus geometry is stationary but not

static.

– 5 –
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Figure 2. A hemisphere over a black disc in the (x1, x2) plane. An S̃3 fibration over this surface

is topologically an S5.

2.3 Approximating the annulus geometry

Extremal surfaces in the annulus geometry are in general complicated, and finding them

involves solving a nonlinear PDE in two variables. To make the problem more tractable,

we will consider the case where ε � R, so that the white hole in the center of figure 1b

is small compared to the area of the outer disk. We will still consider the case that both

radii are large compared to the string or Planck scales. The result is a separation of scales

that leads to a straightforward picture of the geometry.

To begin with, we can consider the coordinates at “large” radius, for which r2 + y2 �
εR. In this case, the white disk in the center will appear small and we expect the geometry

to be a small perturbation of an AdS5 × S5 geometry with radius of curvature R. More

precisely, the last term in (2.10) can be approximated by a series expansion in ε2/(r2 +y2),

which at leading order gives

z ≈ 1

2

r2 + y2 −R2√
(r2 + y2 +R2)2 − 4r2R2

+
ε2y2

(r2 + y2)2
. (2.11)

The corresponding geometry is the AdS5 × S5 metric (2.7) with a subleading correction

which decays at large distances. We call this the “UV AdS region”.

On the other hand, if we consider small distances r2 + y2 � εR, the geometry is well

approximated by a black plane with a white disk in the center. Now the LLM geometries

are symmetric under z = 1
2 → −

1
2 while exchanging S3 and S̃3; thus, the region is well

approximated by AdS5×S5 with radius of curvature ε, which we dub the “IR AdS region”.

More precisely, the second term in (2.10) can be expanded in a series in 1/R2, which gives

z ≈ −1

2

r2 + y2 − ε2√
(r2 + y2 + ε2)2 − 4r2ε2

+
y2

R2
. (2.12)

The final term in (2.12) gives a correction to IR AdS which decays in the interior, and

grows as we move to large distances. The fact that the sign of the leading term in z is

reversed as compared to (2.11) means that S̃3 is now the sphere factor in the IR AdS space,

while S3 is the sphere factor in the S5. If we further adopt the AdS coordinates

y = ε sinhχ sin Θ, r = ε coshχ cos Θ, φ̃ = φ+ t, (2.13)

– 6 –



J
H
E
P
1
1
(
2
0
1
7
)
1
5
9

the leading order metric is

ds2 = ε(− cosh2 χdt2 + dχ2 + sinh2 χdΩ̃2
3 + cos2 Θdφ̃2 + dΘ2 + sin2 ΘdΩ2

3) , (2.14)

making the approximate AdS5 × S5 geometry explicit.

The IR AdS geometry can be thought of as the back-reacted description of the D3-

branes in the giant graviton picture mentioned in section 2.2 above. The D3-branes wrap

the S̃3, so this becomes the spatial directions in the AdS factor in this IR geometry.

One might hope that these two descriptions have an overlapping regime of validity,

where ε2 � r2 + y2 � R2. However, in this intermediate regime,

z ≈ −1

2
+
y2

R2
+

ε2y2

(y2 + r2)2
. (2.15)

The second and third terms are small, but as features of the geometry depend on z + 1
2 ,

we cannot neglect either of them. We therefore need to analyze the behavior in this

region independently. As an indication, consider the volume of the spheres S3, S̃3. The S3

volume is:

yeG ≈ y2

R

√
1 +

ε2R2

(y2 + r2)2
, (2.16)

and the S̃3 volume is

ye−G ≈ R
(

1 +
ε2R2

(y2 + r2)2

)−1/2
. (2.17)

To arrive at these we solved for eG using (2.2) and the approximation (2.15) for z, throwing

out terms that are higher order in ε/R. If y2 + r2 ∼ εR, the terms inside the square roots

in each equation are all of order O(1), and the square roots cannot be approximated as

constants. Thus, this region is not well covered by either the UV or the IR AdS approxi-

mation.

Instead, a natural coordinate system in this region is:

y =
√
εReζ sin Θ, r =

√
εReζ cos Θ, (2.18)

so that y2 + r2 ∼ εR corresponds to ζ near zero. This is essentially a rescaled version of

the IR coordinates (2.13), with eχ =
√

R
ε e

ζ . Then

yeG ≈ εe2ζ sin2 Θ
√

1 + e−4ζ , (2.19)

and the S̃3 volume is

ye−G ≈ R
(

1 + e−4ζ
)−1/2

. (2.20)

The function

h−2 = yeG + ye−G ≈ ye−G = R
(

1 + e−4ζ
)−1/2

. (2.21)

Using (2.15), we find

Vφ =
ε2r2

(r2 + y2)2
(2.22)
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which is order O
(
ε
R

)
. If we further rescale t→

√
ε
R t, then the gtφ terms are of order ε

√
ε
R ,

and the term V 2
φ dφ

2 is of order ε εR ; these can be neglected as the remaining terms are of

order ε.

Thus, using dy2 + dr2 = εRe2ζ(dζ2 + dΘ2), the metric is to order O(ε),

ds2 ≈ − ε√
1 + e−4ζ

dt2

+ε
√

1 + e−4ζe2ζ(dζ2 + dΘ2 + cos2 Θdφ2 + sin2 ΘdΩ2
3)

+R(1 + e−4ζ)−1/2dΩ̃2
3. (2.23)

This metric is static and stationary up to corrections that are down by powers of
√

ε
R . The

approximations leading to this form of the metric hold if ε2 � y2+r2 � R2, so that we can

up to a point take ζ � 0. In this limit, we regain the large χ part of the IR metric (2.14)

plus small corrections. Note the particular simplification in this intermediate region: the

coordinates of the IR S5 are multiplied by the same radial factor, so that the geometry

still has the SO(6)× SO(4) symmetry of the IR region.

Thus, we have three approximate descriptions: the IR AdS description, (2.14), valid for

r2 +y2 � εR, the intermediate description (2.23), valid for ε2 � r2 +y2 � R2, and the UV

AdS description (2.7), valid for r2 + y2 � εR. Between the UV and IR AdS descriptions

there is an exchange of spheres: the S3 in the asymptotic AdS factor exchanges roles in

the IR geometry with an S3 that is the S5 factor of the asymptotic geometry. We will use

these three overlapping descriptions to analyze the minimal surfaces.

3 Extremal surfaces in empty AdS5 × S5

As we have discussed, the annulus geometry for ε� R interpolates between two AdS5×S5

regions, a “UV” region with radius of curvature R, and an “IR” region, with radius of

curvature ε. In this background, we are interested in finding extremal surfaces which are

anchored at the equator of the UV boundary, bisecting the S3 of the asymptotically AdS

factor of the geometry. Because of the symmetry of the problem, and taking θ to be polar

angle on this S3 (Ω3 in the metric (2.7)), there is an extremal surface at fixed t = t0, θ = π
2

which extends from the UV region into the IR region. In the UV region this surface wraps

the S5 factor and bisects the S3 of the asymptotic AdS5. As we discussed above, in the IR

region, the S3 of the asymptotic AdS5 exchanges roles with an S3 inside the S5. Thus, in

the IR region (2.14) a fixed θ = π
2 surface wraps the S̃3 of the AdS factor, while bisecting

the S5 factor.

As we will show, this is not the actual minimal surface for the LLM geometry. To

understand why, it will be helpful to first consider the co-dimension two spacelike minimal

surfaces of empty AdS5 × S5 with boundary conditions that either bisect the AdS5 or the

S5. Extremal surfaces bisecting the S5 of AdS5 × S5 were previously studied in [22–24]

the authors of which were interested in studying non-spatially organized entanglement in

the Coulomb branch of gauge theories. We are interested in such surfaces because in our

LLM setting the obvious candidate minimal surface bisects the S5 of the AdS5×S5 in the

interior of the geometry (the “IR”). We will show that surfaces that occupy a fixed angular

– 8 –
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position on the S5 cannot in fact be a minimal surface; in fact, if we cut off the AdS5 factor

by any amount, a minimal surface that partitions the S5 at the cutoff slips off the sphere

over radial distances of order the cutoff. In our LLM case, this will imply that the minimal

surfaces of interest to us, which bisect the asymptotic AdS5 boundary, will slip off the S5

in the deep interior part of the geometry and thus terminate smoothly before penetrating

this region.

3.1 Minimal surfaces bisecting AdS5

In pure AdS5 × S5 the minimal surface that bisects the boundary of the AdS5 factor

penetrates all the way to origin of the spacetime; hence there is no entanglement shadow.

Because the geometry is factorized we can see this from just the AdS5 part of the full

geometry in (2.7). Let us choose coordinates for the S3 part of AdS5 in (2.7) so that the

metric on this sphere is

dΩ2
3 = dθ2 + sin2 θdΩ2

2 . (3.1)

We want to find minimal spacelike co-dimension 2 surfaces in AdS5 which bound the region

θ ≤ θ0 at the boundary (χ̃ → ∞ in (2.7)); following Ryu and Takayanagi such a surface

should compute the entanglement entropy of the region θ ≤ θ0 in the field theory dual

to the space. We can take the minimal surface to lie t = 0, and specify it by a function

θ(χ̃) with the boundary condition θ → θ0 as χ̃ → ∞. In the LLM coordinates (see the

coordinate transformation (2.6)), the minimal surface is thus specified by θ(r, y) with the

boundary condition θ → θ0 as r2 + y2 → ∞. Note that the function θ is typically not

defined for all r, y; the RT surface will end where θ = 0, that is where it reaches the north

pole on the S3. As we increase θ0, the minimal surface will probe deeper and deeper into

the bulk, and the minimal surface for θ0 = π/2, where we keep half of the boundary, should

be simply θ = π/2 everywhere, slicing the AdS factor in half.

It is obvious by symmetry that θ = π/2 is an extremal surface for the boundary

conditions θ0 = π/2, but it is not immediately obvious in these coordinates that it has

minimal area. This will be an important distinction later, so we note here that we can

make the minimality of the θ = π/2 surface manifest via the coordinate transformation

sinh ρ = sinh χ̃ cos θ, tanh γ = tanh χ̃ sin θ. (3.2)

In these coordinates the AdS5 part of the metric in (2.7) is

ds2 = − cosh2 ρ cosh2 γdt2 + dρ2 + cosh2 ρ(dγ2 + sinh2 γdΩ2
2). (3.3)

The extremal surface at t = 0, θ = π/2 becomes the hyperbolic disc at ρ = 0 in these

coordinates. To see that this surface is in fact minimal we start at the boundary of this

disc (γ → ∞) and observe that if θ were to change from π/2 as γ decreases, the cosh2 ρ

factor (which is 1 when θ = π/2) would increase, and with it the area of the surface.

In this AdS example, we can work with a five-dimensional description, but in general

LLM geometries we need to work in a ten-dimensional geometry. The extension of the

Ryu-Takayanagi prescription to this ten-dimensional setting is to consider a codimension

two spacelike surface in the full ten-dimensional geometry, the area of which is calculated

– 9 –
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in units of the ten-dimensional Newton’s constant [26] (see [27] for a fuller discussion).

In the present case, the minimal surface in the ten-dimensional description is simply the

eight dimensional surface at t = 0, θ = π/2, wrapping the S2 in the S3, the S5, and the

extending along the radial χ̃ direction in the AdS factor. In the LLM coordinates (2.1),

this surface wraps the equatorial S2 ⊂ S3 and the entire S̃3; and it fills the y, x1, x2 space.

3.2 Extremal surfaces bisecting S5

Ref. [22] considered surfaces in AdS5 × S5 which slice the S5 in half, while wrapping the

AdS5 factor. The authors proposed that such surfaces could be interpreted as geometrizing

entanglement between different CFT components on the S5, corresponding to some non-

spatial decomposition of the CFT Hilbert space. This was further investigated in [23, 24],

where it was proposed that it could correspond to decomposing the CFT Hilbert space in

terms of R symmetry representations. The analysis in [22, 24] was mainly based on going

onto the Coulomb branch of the CFT on R4, where one could define a division of the CFT

Hilbert space at low energies into two factors associated with the unbroken gauge group at

low energies. But the relationship of entanglement between these factors and geometrical

surfaces in the bulk remains conjectural.

On the other hand, the extremal surfaces that appear in [22–24] are directly relevant

to the holographic representation of spatial entanglement in the annular LLM geometry

that we are studying here. If we start in the UV region with a spatial decomposition of

the field theory along an equator θ0 = π/2, the symmetries of the theory including t→ −t
imply that the surface t = constant, θ = π/2 is an extremal surface. In the IR region,

there is an effective description in terms of a new CFT dual to the IR AdS geometry. In

this IR geometry, as discussed above, the extension of a surface that is asymptotically at

θ0 = π/2 bisects an equator on the S5. Thus, a surface that bisects the S5 of the IR AdS

space becomes related to a surface that bisects the AdS5 of the UV region and hence to a

spatial decomposition of the UV theory.

Thus, if we understand the details of how the IR CFT embeds in the UV CFT, we

might be able to interpret surfaces of the kind studied in [22, 24]. We will not pursue such

a CFT understanding here. Instead, we will show that in an AdS5 × S5 geometry, the

minimal fixed-t codimension two surface which bisects the equator of S5 at the boundary

of AdS5 does not extend into the interior of the AdS5 factor. Rather, for any radial cutoff,

the surface extends inwards only by an amount of order that cutoff.

Consider AdS5×S5 spacetime with metric (2.14) (i.e. in the coordinates on AdS5×S5

that arise in the IR part of the annular LLM geometry). We can show that in these

coordinates θ = π/2 corresponds to an equator on the S5, by introducing new coordinates

(in analogy to the change to hyperbolic slicing in AdS in (3.2)). To this end, set

cos θ′ = sin Θ cos θ, sin θ′ cosβ = cos Θ, (3.4)

so that the metric becomes

ds2 = ε(− cosh2 χdt2+dχ2+sinh2 χdΩ̃2
3+dθ′2+sin2 θ′(dβ2+cos2 βdφ̃2+sin2 βdΩ2

2)). (3.5)
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The surface at θ = π/2 is at θ′ = π/2, and is nicely exhibited as an equatorial S4 in the

S5 in these coordinates (i.e., the metric dβ2 · · · within the final parenthesis in (3.5)).

In this geometry, this surface is not minimal. This is easily seen by considering a

surface where θ′ is some function of χ: the induced metric on the surface is

ds2 = ε((1 + (∂χθ
′)2)dχ2 + sinh2 χdΩ̃2

3 + sin2 θ′(χ)dΩ2
4), (3.6)

so the area functional is

A = ε4VS4VS3

∫
dχ sinh3 χ

√
1 + (∂χθ′)2 sin4 θ′. (3.7)

We can choose a non-trivial function θ′(χ) satisfying the boundary condition θ′ → π/2 as

χ→∞ which will lower the area; we just need
√

1 + (∂χθ′)2 sin4 θ′ < 1. For θ′ = π/2− α
for small α, this is 1

2(∂χα)2−2α2 < 0. An example of a function of compact support which

makes ∆A < 0 is α = α0(e
−χ+3 − 1) for χ < 3, α = 0 for χ > 3. Thus we know there are

other surfaces with smaller area, before even constructing the minimal surface.

To find the form of the true minimal surface, we turn to the Euler-Lagrange equation

for the action (3.7):

∂2χθ
′ − (1 + (∂χθ

′)2)(−3 cothχ∂χθ
′ + 4 cot θ′) = 0 , (3.8)

or in terms of χ(θ′),

∂2θ′χ+ (1 + (∂θ′χ)2)(−3 cothχ+ 4 cot θ′∂θ′χ) = 0 . (3.9)

There are two possibilities for a smooth surface; either the surface extends to χ = 0, with

some limiting value θ′(0) = θmin, and ∂χθ
′ = 0, or it ends by pinching off at the north pole

θ′ = 0 at some χ = χmin, with ∂χθ
′ → ∞ at χmin. It is convenient to analyse the second

possibility in terms of χ(θ′) rather than θ′(χ), so that the smoothness condition becomes

∂′θχ(0) = 0. Note that if ∂χθ
′ = 0, ∂2χθ

′ ≥ 0, so a smooth function satisfying this equation

can have a maximum but no minima. In particular, if θ′ = 0 at some χmin it must be

monotonic.

We expect the true minimal surface to pinch off by reaching θ′ = 0. The reason θ = π/2

with bisects the S5 is not minimal in this geometry (unlike the surface which bisects the

AdS5 factor) is that the size of the S3 ⊂ S5 is independent of the radial χ direction. Thus,

instead of extending down to the origin in the AdS factor, the surface can reduce its area

by pinching off on the sphere. Since there is no scale to determine the value χmin at which

the pinch-off occurs, it will be determined by the radius at which we cut off the AdS factor.

That is, we expect that over the range between a radial AdS cutoff at some χ = χmax and

χ = χmax −∆χ the minimal surface should move from θ ≈ π/2 to end at θ = 0, where ∆χ

is independent of χmax.

Since χ is expected to remain large over the full range of θ′, we can approximate (3.9) by

∂2θ′χ+ (1 + (∂θ′χ)2)(−3 + 4 cot θ′∂θ′χ) = 0. (3.10)

This is independent of χ, which reflects an invariance of the area functional (3.7) in

this approximation under χ→ χ+a. This is thus a first order equation for ∂θ′χ(θ′), which
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we should solve with the boundary condition ∂θ′χ(0) = 0. We can make this equation look

nicer by writing ∂θ′χ(θ′) = tanα(θ′); then

∂θ′α = 3− 4
tanα

tan θ′
. (3.11)

At θ′ ≈ π/2, we can linearize around π/2 to obtain

θ′ =
π

2
− e−3χ/2

(
a1 cos

(√
7

2
χ

)
+ a2 sin

(√
7

2
χ

))
, (3.12)

so the solution approaches π/2 exponentially; if we want θ′ = π/2−δ at the cutoff χ = χmax,

it will extend to a range of order ∆χ ∼ −2
3 ln δ.

In the limit χmax → ∞ with fixed δ, this surface has infinitely less area than the one

at θ′ = π/2.

4 Shadow region in annulus LLM geometry

We can now address our main question. Consider the entanglement across the equator of

the S3 for super-Yang-Mills on S3 × R, in the state dual to the annulus LLM geometry

with ε � R where ε is much bigger than the Planck and string lengths. What is the

configuration of the extremal surface computing this entanglement, and how far into the

interior does the surface extend?

Since this geometry is not static (though it is stationary), in principle we need to

consider extremal surfaces following the prescription [2]. However, in the UV and inter-

mediate regimes, the metric is static up to corrections of multiplicative order
√
ε/R. If

we approximate the metric as static, we will find that the resulting minimal surface at

t = 0, computed following [1], does not go beyond the intermediate regime into the interior

regime. Thus we can self-consistently use the prescription in [1]. Note also that the surface

at fixed t also respects the t → −t, φ → −φ symmetry of the metric, so it is at least an

extremal surface.

We thus consider a minimal surface dividing the S3 in (2.1) (which is the S3 of the

asymptotic AdS5 factor), and wrapping the S̃3 (which is inside the asymptotic S5 factor),

and filling the y, x1, x2 space at fixed t, possibly up to some terminal 2d hypersurface in

that space where the minimal surface closes off on the S3. The geometry preserves an

extra U(1) symmetry, because we have not broken the rotational symmetry in the x1 − x2
plane. The minimal surface will then be specified by some function θ(y, r) giving the polar

angle of the surface on the S3 at each y and r, with the boundary conditions θ → π/2 as

y2 + r2 →∞, and possibly ending at some hypersurface where θ(y, r) = 0.

By symmetry, one extremal surface in this class will be θ = π/2. But we do not expect

this to be the minimal surface. Recall that in the previous section we found that the

minimal boundary-anchored surface in AdS5×S5 for a boundary condition which cuts the

S5 in half is not the surface θ′ = π/2 which cuts the S5 in half everywhere. We argued that

it is instead a surface which pinches off to θ′ = 0 near the boundary of the AdS factor. Now

recall that in the interior of the LLM geometry the S3 of the asymptotic AdS5 exchanges
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roles with an S̃3 in the asymptotic S5. Since the surface θ = π/2 bisects the S3 along the

equator, in the IR AdS region it bisects the S5 factor. Given our reasoning about surfaces

that bisect the S5 in an AdS5 × S5 geometry, we should expect that we can we can lower

the area in the annulus geometry by allowing our candidate minimal surface to slip off the

S5 before it reaches the deep interior of the IR region.

In practice we need to be more careful; deforming the surface will increase the area

in the UV region (which dominates in volume), so we must take care that this does not

overwhelm the reduction from capping the surface off. To argue this we make use of the

intermediate metric, which has a domain of validity partially overlapping the domains of

validity of the UV AdS and IR metrics. We would expect the capping off to happen in

this “neck” region, where we cross over from the UV AdS where θ = π/2 is minimal,

to the IR AdS where it is preferable to cap off. We will show that there are surfaces

which cap off in the intermediate regime, for which the deviation from θ = π/2 in the UV

region is sufficiently small that the contribution of the UV region to the change in area is

parametrically smaller than the decrease in area coming from the intermediate regime.

The geometry in the intermediate regime preserves the same SO(6)×SO(4) symmetry

as in the IR regime. It is useful to make this symmetry manifest by making the coordinate

transformation (3.4), so that the metric becomes

ds2t=0 ≈ ε
√

1 + e−4ζe2ζ(dζ2 + dθ
′2 + sin2 θ′dΩ2

4) +R(1 + e−4ζ)−1/2dΩ̃2
3. (4.1)

In this coordinate transformation, θ = π/2 maps to θ′ = π/2. (The coordinate β in (3.4)

becomes part of the S4 metric dΩ2
4 in the above.) In the full LLM solution, we would expect

the minimal surface to involve a function of two variables, θ(r, y), which corresponds in

these coordinates to taking θ′(ζ, β). However, the enhanced symmetry in the intermediate

regime suggests that we can find a minimal surface by taking θ′ = θ′(ζ), as in our previous

analysis of the IR regime. We will see below that the corrections from the UV regime for

the surfaces we consider are small, so this should be a good approximation to the actual

minimal surface.

For a surface θ′(ζ), the area functional is

A =
√
ε5R3VS4VS3

∫
dζe5ζ

√
1 + e−4ζ

√
1 + (∂ζθ′)2 sin4 θ′. (4.2)

The resulting equation for the surface is

∂2ζ θ
′ − (1 + (∂ζθ

′)2)

(
−3 + 5e4ζ

1 + e4ζ
∂ζθ
′ + 4 cot θ′

)
= 0. (4.3)

4.1 UV contributions

We expect the minimal surface to approach θ′ = π/2 at large ζ, where we patch on to the

UV region. We therefore first consider a linearized analysis in this regime. The solution

to the linearized version of (4.3) has the form θ′ − π/2 ∼ −δ0e−aζ , with a = 4 or a = 1.

These are fast and slow fall-off branches, analogous to the familiar normalizable and non-

normalizable branches for a mode in AdS. We can expand (4.2) to quadratic order in δ0 to

approximate the gain or loss in area, and compare to the contribution in the UV region.
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If the surface approaches θ′ = π/2 at large ζ with a non-zero coefficient for the a = 1

solution, the integral over ζ is dominated by large values of ζ, and the change in area from

the θ′ = π
2 solution is of the order:

∆Aa=1
int ∼ −

√
ε5R3δ20e

3ζmax . (4.4)

While the solution appears to lower the area, we must also take the contribution from the

UV region into account. If we take y, r ∼ εδR1−δ with 0 < δ < 1
2 , the dominant contribution

comes from a region in which the UV metric is a very good approximation. The angular

deviation in the matching region is δ0e
−ζmax ∼ δ0

(
ε
R

) 1
2
−δ

. The UV contribution will have

the form

∆Auv ∼ cuvR4δ20

( ε
R

)1−2δ
. (4.5)

Here cuv is a constant which will reflect the fact that the matching region y, r ∼ εδR1−δ

corresponds to the range θ̃ − π
2 ∼

(
ε
R

)δ
in the UV metric. This covers a volume fraction

of the UV S5 of order
(
ε
R

)2δ
, from the restricted range of θ̃ and the smallness of the φ̃

direction. If cuv scales with this volume fraction, then

∆Aa=1
uv ∼ c′εR3δ20 � |∆Aint| . (4.6)

If c′ is negative, then we arrive at a contradiction. We can simply cap the surface off at

ζ ∼ 1, with a gain (ε5R3)1/2 � εR3 in area, so that the area remains negative. If we then

deform the metric to the pure AdS solution, the contribution of this cap remains small, and

we have a surface in vacuum AdS with area less than the θ = π/2 surface, contradicting

the discussion in section 3.1. Thus, if a solution exists with the a = 1 behavior in the

intermediate regime, it is not a minimal surface.

Instead, we will consider surfaces which approach θ′ = π/2 at large ζ with the fast fall-

off, that is a = 4. In this case, θ′ = π
2 − δ0e

−4ζ , and the contribution from large ζ in (4.2)

is suppressed. At the matching point eζmax ∼
√

R
ε , θ − π/2 ∼ δ0

ε2

R2 , and the contribution

to the area from the UV region scales as

∆Aa=4
uv = duvε

4δ20 (4.7)

where duv is a positive constant of order 1. This is smaller than the contribution δ20
√
ε5R3

· e−3ζir from the intermediate region, where ζir is the scale where the linearized approxi-

mation breaks down (we will find this happens while the metric is still well approximated

by (4.1)). Thus, for the a = 4 solutions, the contribution from the UV region is negligible,

and we can consistently calculate the change in area in the intermediate region.

One additional caveat, mentioned above, is that we assumed more symmetry in the

intermediate region than we expect the exact solution to have. This allowed us to write θ′

as a function of a single variable ζ. In general, due to the boundary matching that we must

do at large ζ, the solution will have the form θ′(ζ, β) (where β is a coordinate in the S4

with metric dΩ2
4 in (4.1)). However, we expect that this symmetry breaking will increase

the area in the intermediate regime. Thus, since the dominant change in area occurs in

the intermediate regime, and the deviation from θ − π/2 is small at the transition point
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Figure 3. Intermediate regime numerical solutions with varying values of θ′(ζmax), taking ζmax = 4.

The surfaces plotted are the part of the subset that approach the a = 4 linearised solution, such

that they are candidate minimal surfaces. The blue section of a curve shows where the surface

move inwards from ζmax, the red section where it moves outward. Equivalent flipped solutions

θ′ → π − θ′ are not shown for clarity. Orange dashed lines are truncated series solutions of (4.3),

showing the discrete values of θ′(ζmax) for which the surface reaches θ′ = 0. The thickest orange

line hitting θ′ = 0 at ζmin = −1.37, through which one numerical solution passes, shows the true

minimal surface which approaches θ′ = π/2 at large ζ in this LLM geometry.

to the UV metric, the symmetry-breaking component of the true minimal surface will be

suppressed. In other words, if we choose the surface in the intermediate region to only

depend on ζ we get a smaller area, and thus although some β dependence will be induced

by the matching with the UV, it will be suppressed since it is advantageous for the minimal

surface to depend to be a function only, or mostly, of ζ.

4.2 Minimal surface

We can find extremal surfaces by solving the equation (4.3) numerically, with the boundary

condition that we approach the linearized solution with a = 4 at large ζ. We solve for

δ(ζ) = θ′ − π/2, taking the boundary condition (1/δ)(dδ/dζ) = −4 at some large radius

ζmax, and shoot in. The solutions are shown in figure 3.

We find that the solutions have an interesting structure: the solution for generic values

of δ(ζmax) encounters a turning point where ∂ζθ
′ → ∞, and then an extremum where

∂ζθ
′ = 0, and then returns to large ζ with θ′ → π/2. These generic surfaces do not satisfy

our boundary conditions, as they would intersect the boundary twice.
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Those surfaces whose deviation from θ′ = π/2 at ζmax is sufficiently small that they

reach the IR region begin to oscillate around θ′ = π/2 as described by (3.12). The sur-

face’s deviation from π/2 grows exponentially until the linearized solution is invalid. The

candidate minimal surfaces arise for discrete values of the initial conditions, where the first

turning point lies at θ′ = 0 or θ′ = π, and the surface smoothly caps off. If the solution hits

θ′ = 0 at ζ = ζ0, smoothness requires that ζ−ζ0 ∼ (θ′)2+ . . . . Indeed, we can expand (4.3)

about θ′ = 0, ζ = ζ0 to find θ′(ζ − ζ0) ∼ (ζ − ζ0)1/2. Of the solutions which cap off, the

solution with the lowest area caps off at the largest value of ζ, ζ = −1.37.

The minimal surface has an area 1.43
√
ε5R3 less than the θ = π/2 surface. As expected

from the general scaling argument, the reduction in area scales as
√
ε5R3. Thus, from

the analysis in the intermediate regime, which is reliable for the surfaces which approach

θ = π/2 in the UV on the fast fall-off a = 4 branch, we learn that there is a surface in

the LLM annulus geometry which bisects the S3 of the AdS5 factor at infinity at θ = π/2

which has smaller area than the surface that remains at θ = π/2 throughout. The surface

caps off in the intermediate regime, at the edge of the region where the IR AdS metric

begins to be a good approximation. Thus, the minimal surface barely reaches the interior

IR AdS regime.

5 Discussion

We have found new examples of entanglement shadows in LLM geometries. We analysed

a specific example where the geometry is simple enough that we could approximately

determine the location of the minimal surface, but we expect this behavior to be more

general. The essential reason for the change in the minimal surface is that the S3 that our

minimal surface divides goes from having a volume which decreases as we moved inwards

through the UV region, to being essentially constant as we enter the IR region. When the

volume of the sphere is decreasing, the minimal area surface stretches across the ball, as in

flat space. But when the volume of the sphere becomes constant, the minimal surface wraps

around the sphere at nearly constant radius, as on a cylinder. Thus we would expect that

such shadows would be seen in any LLM geometry where the volume of the S3 becomes

approximately constant in the interior. That is, for cases where there are one or more

white regions inside a black region.

Our story is not, however, completely generic. If we consider instead an LLM geometry

with two black discs, when the discs are well-separated we can treat the region near each

disc as an approximate copy of AdS5 × S5, and we would not expect there to be a shadow

region. There is also no reason to expect a shadow for small fluctuations in the shape of

the AdS black disc geometry.

As we vary θ0, the location of the minimal surface jumps at θ0 = π/2 from passing

above the shadow region to passing below it. However, there is an extremal non-minimal

surface at θ = π/2 which passes through the shadow region. Each point in the shadow

region lies on such a surface for some choice of division of the boundary. Therefore it

would be very interesting if this non-minimal surface could be interpreted in terms of a

CFT observable, similar to the entwinement of [9, 14]. One of the advantages of conducting
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the analysis in the LLM context is that the dual CFT states are known precisely, so we

can explore the entanglement structure of these states and see if they lead to interesting

observables. The states correspond to Young tableaux, and it is intriguing to speculate that

the SN structure encoded in these tableaux could play a role here, as the SN symmetry of

the symmetric orbifold did in the entwinement story.

Another possibly related discussion is that in [24], which studies surfaces in a Coulomb

branch geometry in which SU(N) is broken to SU(m)×SU(N−m) where m,N are of similar

order. They construct surfaces that bisect the S5 factor at large radius (scales above the

symmetry breaking scale) and pass between the two IR AdS factors; whether the minimal

surface in this class enters one region, the other, or neither, depends on where one places

the cutoff. They conjecture that surfaces passing between the two factors measure the

entanglement between the light fields associated with each unbroken gauge factor.

As the cutoff is removed, all of these surfaces bisect the S5 at the equator, as proven

in [23]. However, following our discussion above, none of these are minimal for any cutoff;

there are always arbitrarily small extremal surfaces which only extend inward for a small

distance away from the cutoff surface. In figure 3 of [24], these would be surfaces that

pass r = 0 at larger values of y than are shown. Nonetheless, the surfaces studied in [24]

are extremal, and as with the entwinement story there may be a plausible inerpretation in

terms of entanglement explicitly involving the matrix degrees of freedom of the theory.
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