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Abstract 

An important methodological issue in efficiency analysis for incentive-based regulation 

of utilities is to account for the effect of unobserved cost drivers such as environmental 

factors. We combine a spatial econometric approach with stochastic frontier analysis to 

control for unobserved environmental conditions when measuring efficiency of 

electricity distribution utilities. Our empirical strategy relies on the geographic location 

of firms as a source of information that has previously not been explored in the 

literature. The underlying idea is to utilise data from neighbouring firms that can be 

spatially correlated as proxies for unobserved cost drivers. We illustrate our approach 

using a dataset of Norwegian distribution utilities for the 2004-2011 period. We find 

that the lack of information on weather and geographic conditions can be compensated 

with data from surrounding firms. The methodology can also be used in efficiency 

analysis and regulation of other utilities sectors where unobservable cost drivers (such 

as environmental variables) are important, e.g. gas, water, agriculture, fishing. 
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1. Introduction 

Since the 1990s many network utilities are incentive regulated with the aim of 

improving their operating and investment efficiency as well as ensuring that consumers 

benefit from the gains. In many instances, the regulators aim to measure the firms’ 

relative efficiency against those with best practice performance using parametric and 

non-parametric techniques (see Haney and Pollitt, 2013). As regulators reward or 

penalise firms using relative efficiency measures, obtaining reliable (and fair) measures 

of firms’ efficiency requires controlling for the different environmental conditions under 

which each utility operates. This is particularly important in the case of incentive 

regulation and benchmarking of electricity, gas, and water networks where the results of 

efficiency analysis have important financial implications for the firms. 

However, there are many characteristics of the utilities sector (e.g., geography, 

climate or network characteristics) that affect production costs but which are 

unobserved. Statistical methods have recently been developed to address this issue. For 

instance, the True Fixed/Random Effects models introduced by Greene (2005) capture 

the unobserved heterogeneity through a set of firm-specific intercepts. This approach 

only uses the temporal (i.e. within) variation contained in the data to estimate the 

coefficients of other cost drivers. As we will show later, this is quite problematic in our 

application because many important determinants of utility costs such as the energy 

delivered or number of customers, are persistent or slow changing variables. On the 

other hand, possible differences among utilities associated with their use of different 

technologies are also often addressed using simple sample selection procedures, latent 

class models, random coefficients models, or semiparametric models. 

In this paper we advocate using a different empirical strategy to account for the 

unobserved differences in environmental conditions among electricity distribution 
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networks based on their geographic location. The latter presents an invaluable source of 

information that has been ignored in the literature which up to now was dedicated only 

to estimating network technology or the measurement of their relative inefficiency. 

Indeed, as many unobservable variables are likely to be spatially correlated, an 

alternative empirical strategy emerges. Our spatial model is prompted from the fact that 

any (relevant) unobservable cost driver should be correlated with firms’ costs, a variable 

that is observable by the researcher/regulator. The underlying idea of our empirical 

proposal is to use (surrounding) firms’ costs as proxies of the unobserved cost drivers 

that are likely to be spatially correlated, such as weather and geographic conditions, 

population structure, electricity demand patterns, input prices, etc. 

Regarding other popular approaches in the SFA literature to deal with omitted 

variables such as panel data, random coefficient and latent class models, it is surely out 

of the scope of the paper to compare our approach with all other possible methods. As 

all approaches have advantages and disadvantages and rely on different assumptions, 

the results obviously differ in the same fashion as a latent class model provides different 

results than a random coefficients model or a panel data estimator. Note that a common 

feature of the above approaches is that they ignore the spatial structure of the data. This 

distinctive feature makes the paper relevant for researchers working in energy 

economics and other network industries. Moreover, our spatial-based approach can be 

used in panel data settings. Indeed, as they utilise different (spatial vs. temporal) 

dimensions of our data, they can be viewed as complementary approaches to deal with 

unobserved variables. In this sense, we also examine whether there are spatial spillovers 

once we control for firm-specific but time-invariant effects using the true fixed and 

random effects stochastic frontier models introduced by Greene (2005) and Mundlak 

(1978)-type specifications of our pooled SFA model. 
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The main contribution of this paper is to link efficiency analysis methods 

addressing unobserved heterogeneity with spatial econometrics methods commonly 

employed to examine spatial interactions across regions.1 To the best of our knowledge, 

our paper is among the first to apply spatial econometrics in efficiency analysis using 

firm level data. There are no major systemic economic or technical reasons that the 

conditional cost of a firm (i.e. given its own output and price variables), is affected by 

those of adjacent firms to any significant degree.2 In this context, the estimated spillover 

effects in our model are expected to be spurious, i.e. only caused by omitted variables. 

This in turn implies that our spatial specification introduces constraints on the 

parameters, instead of the traditional spatial model. Moreover, the spatial econometric 

models are used (interpreted) here as a means to control for unobserved heterogeneity in 

a standard SFA model measuring firms’ inefficiency.3 

Empirical analysis of efficiency of distribution utilities have, since the 

deregulation and unbundling of the electricity sector, led to a number of studies. Such 

studies initially focused on international comparisons of efficiency and productivity 

                                                           
1 Since the seminal contribution by Anselin (1988) introducing the spatial effects to econometric models, 

researchers have developed several spatial econometric models and estimation methods (see, e.g, Kelejian 

and Prucha, 1998, 2010 and Baltagi and Liu, 2011). For comprehensive reviews of this literature, see 

Arbia (2014) and Elhorst (2014). Regarding our spatial approach, it should be pointed out that this 

literature uses spatial information not only to examine economic-based (causal) spatial spillovers, but also 

to deal with omitted variables that are spatially correlated (see, e.g., LeSage and Pace, 2009). As Elhorst 

(2010) point out a model with spatial autocorrelation in not observable variables (the so-called SEM) can 

be expressed as a Spatial Durbin Model (SDM) with constraints, which is the idea behind our proposal. In 

our case, we do not expect causal spatial spillovers and the unobservable spatial spillovers can be 

estimated using a constrained Spatial Durbin Model. 

2 We are thankful to the NVE staff in charge of network regulation who could confirm this point. 

3 See Glass et al (2016) for a recent application with spatial effects in SFA settings. 
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(e.g., Hattori et al., 2005) then later extended their focus to include quality of service in 

the analysis (e.g., Yu et al., 2009). More recently the scholarly focus has been on the 

efficiency and productivity development of the networks under regulation 

(Dimitropoulos and Yatchew, 2017) and how to take the heterogeneity among the firms 

into consideration (Kumbhakar and Lien, 2017; Orea and Jamasb, 2017).4 The present 

paper falls into latter category of studies. 

The geographic/weather variables might either have a direct effect on costs of 

firms if a deterioration in the environment technically requires the use of more 

(expensive) inputs to provide the same level or quality of service, or an indirect effect 

on firms’ cost through inefficiency if, for instance, it is more difficult to operate in 

regions with adverse weather conditions. Regardless of whether they have a direct or 

indirect effect on costs, firms operating in regions with unfavourable weather conditions 

should not be penalised for their relative poor performance because of environmental 

conditions that are beyond their control. 

Therefore, some regulators control for these conditions in benchmarking or 

revenue cap exercises and often use simpler empirical strategies than in the present 

paper as they also aim to gain acceptance from stakeholders. For instance, cost data of 

firms is often purged by regulators (e.g., by Ofgem in the UK) in order to control for the 

effect of adverse environmental conditions prior to using them in benchmarking 

exercises. Also, the Norwegian regulator uses advanced econometric analysis of the 

data in order to enhance their understanding of the features of the firms and the sector 

prior to benchmarking analysis. 

                                                           
4 See also Kopsakangas-Savolainen and Svento (2011), Growitsch et al (2012), and Kumbhakar et al 

(2015). 
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Other regulators directly examine in DEA or SFA frontier models the role and 

significance of variables related to cables, connections and meters, substations and 

transformers, towers, decentralized generation, injection points, population changes, soil 

types, altitude differences, urbanization, areas etc. The Norwegian regulator has used 

environmental variables such as forest, snow and wind/coast as additional outputs in 

first-stage DEA analysis followed by second-stage analyses to correct the calculated 

DEA efficiency scores for three environmental factors: interfaces, islands and 

distributed generation (see Frontier Economics, 2012). The German energy regulator 

undertakes an extensive second-stage analyses to determine whether some of more than 

200 non-included variables should be included in the analysis. The second-stage 

analyses are typically conducted by regressing the first-stage efficiency scores on 

environmental factors in stage two, or simply using graphical inspection or non-

parametric tests for ordinal differences (see Agrell and Bogetoft, 2013). It is noteworthy 

that these methods require collecting costly environmental data, while our spatial-based 

approach uses the already available cost data. 

The next section presents the spatial econometric model that allows to use data 

from surrounding firms as proxies for the omitted, but spatially correlated, cost drivers. 

Section 3 summarizes the empirical strategy used in this paper to estimate a SFA model 

that includes a generated variable as an additional regressor. Section 4 dwells on the 

data used in the empirical analysis and its sources. In Section 5 we estimate a spatial 

econometric model to compute a proxy variable that will stand in for spatially correlated 

omitted variables. We then estimate a standard SFA model to estimate the inefficiency 

of the firms and to conduct a robustness analyses using the available environmental data 

and panel data estimators. Finally, Section 6 presents the conclusions. 
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2. A Cost Model with (Unobserved) Spatially Correlated Variables 

This section develops a micro-level spatial econometric model that allows us to 

control for unobserved environmental conditions that are likely to be spatially correlated 

when we use a cost function to estimate the firms’ technology. Let us first assume that 

the firms’ cost can be modelled entirely by using the following cost equation: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝑍𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    (1) 

where i stands for firms, t stands for periods, Cit is a measure of firms’ cost, and Xit is a 

vector of k observable cost drivers such as the number of customers, energy delivered, 

network length, and labour and capital prices and Zit represents the unobserved cost 

drivers. This equation includes two error terms, 𝑣𝑖 and 𝑢𝑖. While the former term is a 

symmetric error term measuring pure random shocks, the latter term is a non-negative 

error term measuring firms’ inefficiency. 

As is often the case with observed data,5 some unobserved cost drivers are also 

likely to be spatially correlated. In line with the literature on spatial econometrics, the 

spatial correlation can be modelled as follows: 

𝑍𝑖𝑡 = 𝜆𝑊𝑖𝑍𝑡      (2) 

Here Zt is a vector of Nx1 unobserved cost drivers, Wi is a known 1xN spatial 

weight vector with elements that are equal to zero if a particular firm j is not a 

neighbour of firm i and equal to one if the two firms are neighbours – i.e. the service 

                                                           
5 For illustration purposes, we show several auxiliary regressions in Appendix A where we use equation 

(2) to examine the degree of spatial correlation for some of our observed cost drivers. As expected, we 

find that all variables are spatially correlated to some extent. Therefore, it is reasonable to expect some 

degree of spatial correlation also in unobserved determinants of firms’ costs. 
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areas of the electricity distribution utilities are adjacent. The term  is a coefficient that 

measures the degree of spatial correlation between the unobserved cost drivers. 

Equation (1) cannot be directly estimated as Zit is an omitted variable that, if 

ignored, will bias our efficiency scores because it will be captured by the noise or 

inefficiency terms. We thus propose using an indirect approach to estimate (1). The 

underlying idea behind our proposal is that we could use the (purged) costs of 

surrounding firms as proxies for Zit if the unobserved cost drivers are spatially 

correlated. Hence, our empirical strategy takes advantage of the spatial proximity of the 

networks. 

First, we proceed to replace Zit in equation (1) with equation (2). Thus, equation 

(1) can be alternatively rewritten as follows: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊𝑖𝑍𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    (3) 

This equation again cannot be estimated as the vector Zt is not observed. 

However, note that, by rearranging equation (1), we can obtain: 

𝑍𝑖𝑡 = 𝑙𝑛𝐶𝑖𝑡 − 𝛽𝑋𝑖𝑡 − 𝑣𝑖𝑡 − 𝑢𝑖𝑡     (4) 

This equation simply indicates that, if 𝛽 and both errors terms were observable, 

Zit should be correlated with a purged cost measure. In this sense, the purged costs can 

be interpreted as an “observable” counterpart of Zit. We then replace Zt in equation (3) 

with its “observable” counterpart, obtaining the following model: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊𝑖𝑙𝑛𝐶𝑡 − 𝜆𝛽𝑊𝑖𝑋𝑡 + 𝜀𝑖𝑡   (5) 

where 

𝜀𝑖𝑡 = ℎ𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡     (6) 

and 
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ℎ𝑖𝑡 = −𝜆𝑊𝑖(𝑣𝑡 + 𝑢𝑡)     (7) 

𝐶𝑡 = (𝐶1𝑡, 𝐶2𝑡, … , 𝐶𝑁𝑡) is an Nx1 vector of the observed costs of the firms, 𝑋𝑡 =

(𝑋1𝑡, 𝑋2𝑡, … , 𝑋𝑁𝑡) is an Nx1 vector of firms’ explanatory variables, and vt and ut are 

again Nx1 vectors of the firms’ random terms.  

Several comments are in order with respect to this specification of the firms’ 

cost.  First, if we compare the original model in (1) and the new specification in (5)-(7), 

we notice that: 

𝑍𝑖𝑡 = �̂�𝑖𝑡 + ℎ𝑖𝑡     (8) 

where  

�̂�𝑖𝑡 = 𝜆𝑊𝑖𝑙𝑛𝐶𝑡 − 𝜆𝛽𝑊𝑖𝑋𝑡    (9) 

Equation (8) simply shows that the unobserved cost driver Zit can be 

decomposed into a predictable component �̂�𝑖𝑡 (i.e. the portion of Zit that can be 

predicted with the data of surrounding firms), and an unpredictable component hit. The 

latter term can in turn be interpreted as a measurement error term. As the inefficiency 

term is non-negative, hit is negative on average, and hence our predicted �̂�𝑖𝑡 tends to 

overestimate the true value of the omitted variable Zit. 

Second, in contrast to equation (1), equation (5) is a cost model that now 

includes a set of spatially lagged variables, i.e. 𝑊𝑖𝑙𝑛𝐶𝑡  and 𝑊𝑖𝑋𝑡. Therefore, equation 

(5) resembles a conventional spatial econometric model. However, in our model, only 

one additional coefficient is estimated, and the coefficient of the spatially lagged 

dependent variable should not be interpreted as the effect of neighbours’ costs on the 

cost of a particular firm. Rather,  is measuring the spatial correlation between the 

unobserved or omitted variables in our sample. Our empirical strategy relies on the 

statistical significance of this coefficient as we are unable to use the data of surrounding 
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firms to obtain a proxy for Zit if  =0. Therefore, it is important for our empirical 

strategy to test whether this parameter is statistically significant. 

On the other hand, it is worth mentioning that our spatial specification of firms’ 

costs in equation (5) is similar to the Durbin Stochastic Frontier (SDF) model 

introduced recently by Glass et al. (2016) in which they propose estimating the 

following model: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝜆𝑊𝑖𝑙𝑛𝐶𝑡 + 𝜃𝑊𝑖𝑋𝑡 + 𝜀�̃�𝑡    (10) 

where 𝜀�̃�𝑡 = 𝑣𝑖𝑡 + 𝑢𝑖𝑡. It is easily observable that our spatial model in (5)-(7) and the 

SDF model differ in two important aspects. First, the set of parameters  in the SDF 

model is not restricted to be equal to -. In this sense, our spatial model in (5) is nested 

in the SDF model. However, no spatially correlated omitted (random) variables are 

explicitly modelled in the SDF model. Although Glass et al. (2016) state that their 

approach can be “easily adapted to develop a spatial error stochastic frontier model”, 

they do not include a spatial structure in the error term. In terms of our spatial model, 

this is equivalent to using a zero hit term. The mentioned differences simply indicate 

that our spatial model and the SDF model are non-nested. This is because the spatial 

spillovers in both models are of different nature. While the spatial spillovers in Glass et 

al. (2016) have an economic or causal interpretation, the spatial spillovers in our spatial 

model are simply associated with the omitted variables. Hence the spatial effects 

estimated in our model lack an economic interpretation as they are completely 

“spurious”. 

We next discuss how to estimate our spatial SFA model taking into account that 

it includes two spatially correlated error terms (see equations 6 and 7). If the spatial 

error correlation involves a one-sided error term, this does not prove to be an easy task.  
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In order to gain an idea of this, we rewrite again our spatial model in equations (5)-(7) 

as follows: 

𝑙𝑛𝐶𝑖𝑡 = [𝛽𝑋𝑖𝑡 + 𝜆𝑊𝑖𝑙𝑛𝐶𝑡 − 𝜆𝛽𝑊𝑖𝑋𝑡] + ∆𝑣𝑖𝑡 + ∆𝑢𝑖𝑡  (10) 

where 

∆𝑣𝑖𝑡 = 𝑣𝑖𝑡 − 𝜆𝑊𝑖𝑣𝑡 

∆𝑢𝑖𝑡 = 𝑢𝑖𝑡 − 𝜆𝑊𝑖𝑢𝑡 

It should be pointed out that while ∆𝑣𝑖𝑡 follows a complex multivariate normal 

distribution, the distribution of ∆𝑢𝑖𝑡 (i.e. the difference of, say, two independent one-

sided error terms) is not known, and this prevents using a ML estimator (see Wang, 

2003; and Wang and Ho, 2010). As a fully ML specification of the model is not feasible 

in our case, in the next section we propose a simple procedure that includes �̂�𝑖𝑡 as an 

additional regressor, and controls for hit by using a linear function of its determinants.6 

 

3. Stochastic Frontier Model with Generated Regressor 

Our estimation strategy uses a two-step procedure, advocated for various models 

in Kumbhakar and Lovell (2000). In the first step, equation (5) are estimated ignoring 

the (spatial and frontier) structure of the error term, it. The degree of spatial correlation 

of omitted variables (i.e. parameter ) and other coefficients of the cost frontier are 

estimated using the Generalized Method of Moments (GMM) because the spatially 

lagged dependent variable is endogenous. It is worth noting that, as in previous 

literature on both spatial and SFA models using two-stage procedures, the first-step 

                                                           
6 Areal et al (2012) proposed a comprehensive Bayesian procedure involving the use of a Gibbs sampler 

and two Metropolis-Hastings steps to estimate the spatial dependence of firms’ efficiency. 
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GMM residuals are not used here to estimate the complete structure of the overall term 

it because its distribution is not known. Instead, the first-step estimates aim to obtain a 

prediction of Zit that is used in a second regression as an additional explanatory variable. 

In the second step, the following specification of firms’ cost in equation (1) is 

estimated: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝛾𝑖𝑡�̂�𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    (11) 

where  

𝛾𝑖𝑡 =
𝑍𝑖𝑡

�̂�𝑖𝑡
=

�̂�𝑖𝑡+ℎ𝑖𝑡

�̂�𝑖𝑡
,     (12) 

In order to obtain (11), we have replaced the original omitted variable in (1) with 

its predicted counterpart using equation (9). The ratio it can be interpreted here as a 

firm-specific and time-varying coefficient, that tends to be less than unity because hit is 

on average less than zero. In our empirical application, we will first estimate a common 

 value for all firms, so that the final cost model estimated in our paper is: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + 𝛾�̂�𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡    (13) 

where the common  coefficient can now be interpreted as the average value of it. The 

fact that hit does not appear in (13) does not imply that we are (completely) ignoring the 

spatial part of the composed error term it in (10) because hit is roughly captured (at 

least its average value) by an estimate of  that will depart from the theoretical value of 

unity. 

It should be pointed out, however, that it is a function of hit, which on average 

depends on the number of adjacent firms (i.e. Wi) and the inefficiency level of adjacent 

firms (i.e. the magnitude of ut). Therefore, more accurate estimates can be obtained if 

we model it as a linear function of the number of adjacent firms (Ni) and, if the SFA 
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model is heteroskedastic, the spatial lags of all determinants of firms’ inefficiency 

(Wiqit), that is: 

𝛾𝑖𝑡 = 𝛾0 + 𝛾1𝑁𝑖 + 𝛾2𝑊𝑖𝑞𝑖𝑡     (14) 

Therefore, our preferred specification of the second-step model is: 

𝑙𝑛𝐶𝑖𝑡 = 𝛽𝑋𝑖𝑡 + (𝛾0 + 𝛾1𝑁𝑖 + 𝛾2𝑊𝑖𝑞𝑖𝑡)�̂�𝑖𝑡 + 𝑣𝑖𝑡 + 𝑢𝑖𝑡  (15) 

Finally, note that, conditional on �̂�𝑖𝑡, our new specification of firms’ cost has the 

structure of a conventional SFA model, so it can be estimated using MLE techniques 

once the distributional assumptions concerning the noise and inefficiency terms are 

made. As is common in the SFA literature, we will assume that 𝑣𝑖𝑡~𝑁(0, 𝜎𝑣) and the 

inefficiency term are independently distributed across firms and over time, and follows 

a half-normal distribution, i.e. 𝑢𝑖𝑡~𝑁+(0, 𝜎𝑢).7 As anticipated above, this model can 

accommodate heteroskedastic inefficiency terms simply by making the variance of 𝜎𝑢 

functions of some exogenous variables (qit). Regardless of whether the model is 

homoscedastic or not, efficiency scores are estimated for each firm using the conditional 

distribution of uit given vit+ uit introduced by Jondrow et al. (1982). 

 

4. Data 

We apply our empirical strategy to a balanced set of panel data for the 

Norwegian distribution utilities over the years 2004 to 2011. The data used in this study 

was obtained from the sector regulator, the Norwegian Water Resources and Power 

Directorate (NVE). We specify a simple cost model that uses, in line with the 

Norwegian benchmarking approach, social costs (SCOST) as the dependent variable. In 
                                                           
7 The stochastic frontier model can accommodate heteroskedastic inefficiency terms simply by making 

the variance of 𝜎𝑢 functions of some exogenous variables. 
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addition to operating expenses (OPEX), capital depreciation and its opportunity cost, 

the social costs variable also includes the cost of network energy losses, and the cost of 

energy not supplied (CENS) to different user groups due to service interruptions. The 

cost of network energy losses is obtained by multiplying the units of network energy 

losses with the average system price in NordPool wholesale market in a given year. 

CENS is calculated by multiplying the energy not supplied (KWh) during a specific 

interruption with a unit cost (NOK/KWh) that depends on customer type, duration, and 

whether the interruption was planned or not. 

We follow the previous literature to select the main cost drivers. In particular, all of 

our estimated cost functions include three outputs (CUS=number of customers; 

NL=network length; and DE=delivered energy),, and three input prices (PK= capital 

price, regulated return of capital; PE = energy price, reference system price in NordPool 

Spot; PL= labour price, a wage dominated index).8 We also use the percentage share of 

overhead lines (OH) of the total network length as an additional cost driver. This 

variable is employed to represent the main technical feature in this industry as firms’ 

decisions on, for example, investment and maintenance of overhead and underground 

lines, are different.  

Regarding firms’ inefficiency, we follow Orea and Jamasb (2017) and use the 

percentage of overhead lines (OH), the network length variable (NL) and the number of 

transformer stations (ST) as inefficiency determinants. We include ST and OH as 

efficiency determinant to examine whether it is costlier to manage firms with more 

stations and with higher share of overhead lines. These can also be viewed as measures 

of complexity of networks something that regulatory benchmarking models are 

                                                           
8 Energy Price is used to impose linear homogeneity. Therefore, it will not explicitly appear in our set of 

parameter estimates. 
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currently lacking. Finally, NL allows us to examine whether larger utilities tend to be 

more efficient than smaller utilities. The monetary variables finally used in our 

application are measured in 1000 NOK and have been deflated using the consumer price 

index to express them in 2004 real terms. 

For robustness analyses, we will extend the above set of cost drivers to include 

several geographic and weather (W&G) variables. In particular, in our extended models 

we include six environmental variables: WIND=average reference wind from measuring 

stations; WINDEX=expected extreme wind exposure; and DIS=average distance to 

coast; FOREST=a measure of forest density in the service areas of networks;9 

AVESLOPE=average slope of terrain; and MAXSLOPE=maximum slope of terrain. 

The above geographic and weather variables were obtained from the Norwegian 

regulator. The NVE regulator has access to more than 60 different weather and 

geographic condition variables that can potentially affect the performance of the 

networks. However, for practical reasons only a few of these variables can be included 

in parametric efficiency analysis models. Most of our selected environmental variables 

are considered as relevant by the Norwegian regulator. For instance, the regulator uses 

the ratio of squared wind speed over distance to coast in order to reflect the effect of 

coastal climate and corrosion caused by a combination of wind and salt water on the 

networks. Similar reasons apply to our variables measuring the slope of terrain. 

Moreover, the regulator considers a range of variables in pre-benchmarking analysis to 

account for the effect of different degrees of forestation in the service area, as fast-

growing forest may represent a cost disadvantage due to the added cost of forest 

                                                           
9 The variable Forest is a composite variable computed by principal component analysis of a large set of 

variables measuring different forest types and features. The procedure is carried out after the variables are 

centered with respect to sample mean. Thus it could take both negative and positive values. 
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clearing. We use here an aggregate measure of forestation (FOREST) that has been 

computed using principal component analysis due to we encountered convergence 

problems in Orea and Jamasb (2017) when we included the whole set of variables that 

are available in our data set to account for forest conditions. 

In our study we follow the common approach in the literature for capturing and 

measuring the spatial interdependence using a physical contiguity matrix, W, whose 

elements are one for two bordering areas, and zero otherwise. As a result, the diagonal 

elements of W are null, while its off diagonal entries take a value of 1 for the areas that 

are adjacent and 0 otherwise. Therefore, WX should be interpreted as the sum of the X 

variables for the adjacent areas. The same applies for the WY product. In order to 

include the spatial interactions, we consider the map showing the distribution of service 

areas provided by NVE in October, 2015 (see Figure 1). This map is georeferenced 

using ArcGIS data system. We have used this georeferenced information to identify the 

adjacent distribution areas. 

[Insert Figure 1 here] 

Finally, it is noteworthy that our observations are the service areas of distribution 

utilities. Both the data on firms’ costs and the map provided by the Norwegian regulator 

include the name of the distribution utilities. This information allowed us to match the 

distribution areas with the data of the firms operating in those service areas. The data for 

each distribution area normally coincides with the data of a single firm. However, the 

data for a small number of distribution areas involves more than one firm because they 

were involved in mergers from 2004 onwards and their individual distribution areas are 

not available as the map provided by the regulator only shows the distribution of service 

areas many years later. We only have the overall distribution area of the merged firms in 
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2015. Therefore, we aggregated the data of merged firms from 2004 onwards until the 

merger happened.10  

Table 1 provides a descriptive summary of the variables used in this study. As the 

number of distribution areas in 2015 with available data is 129, the total number of 

observations used in our analysis is 1032. 

[Insert Table 1 here] 

 

5. Results 

5.1. First-stage GMM Regression and Predicted Values of Omitted Cost Drivers 

We first estimate equation (5) using GMM in order to control for the 

endogeneity of the spatial lagged dependent variable. The following strategy is then 

adopted for instrumental variables. Proper instruments should be strong (i.e. highly 

correlated with the endogenous variable) and exogenously determined. The spatial 

lagged dependent variable is a measure of the costs of neighbouring firms, and the main 

cost drivers in the sector are the output variables. Demand for electricity network 

services is exogenous and beyond the control of the firm. Therefore, the output 

variables of the neighbours are both strong and exogenous instruments for the spatial 

lagged dependent variable. We use the spatial lagged number of customers and the 

spatial lag of its square value (i.e. 𝑊𝑖𝑙𝑛𝐶𝑈𝑆𝑡 and 𝑊𝑖𝑙𝑛𝐶𝑈𝑆𝑡
2
) as instruments for 

𝑊𝑖𝑙𝑛𝐶𝑡. We performed the conventional Hansen’s (1982) test, and the F-test for weak 

instruments (Staiger and Stock, 1997) to test for overidentifying restrictions and 

                                                           
10 In previous specifications of our models, we have included a merger dummy variable to control for 

possible aggregation biases. As expected, the coefficient of this variable was not statistically significant 

likely due to the small number of mergers for the period analysed in this paper. 
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strength of the instruments. The results of both tests indicate that the chosen instruments 

are generally valid. 

Table 2 shows the estimated coefficient of this variable. We do not provide the 

other coefficients of the model in this table as they are similar to those obtained in the 

next section, mainly focused on technological characteristics of the cost frontier of the 

firms. 

[Insert Table 2 here] 

We observe that the coefficient of spatial correlation  is positive and 

significant. Hence, we conclude that the unobserved cost drivers are, at least to some 

extent, spatially correlated. This result also indicates that weather and geographic 

conditions, and other spatially unobserved cost drivers (such as the population structure, 

electricity demand patterns, input prices) matter and that they should be included as cost 

determinants.11 

The fact that the coefficient of spatial correlation  is statistically different from 

zero implies that we can use equation (9) and the data of surrounding firms to compute 

a proxy variable for the omitted cost drivers. The predicted values of the omitted cost 

drivers are summarized in Figure 2, where we plot kernel density functions of the 

percentage of cost attributable to (unfavourable) environmental conditions, measured in 

relation to the “average” firm. Figure 2 thus suggests the existence of remarkable cost 

differences between utilities attributable to different environmental conditions. This is 

most probably what regulators wish to control for. 

                                                           
11 Growitsch et al. (2012) have found a similar conclusion using a different approach to control for 

unobserved and observed environmental conditions. 
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[Insert Figure 2 here] 

The firm with the most unfavourable omitted conditions has 33.5% higher costs 

than the representative firm. On the other hand, the firm with the most favourable 

omitted costs has 22.5% less costs than the representative firm. Orea et al. (2015) have 

found similar results using supervised environmental composite variables. For instance, 

their preferred model predicts up to 35% higher costs for utilities operating in areas with 

unfavourable environmental conditions. For utilities operating in good environmental 

conditions, their preferred model predicts up to 44% lower costs. 

Table 3 shows the between and within standard deviations of the predicted 

values of the omitted variables and the main observed drivers of firms’ costs. It is worth 

mentioning that the within-variation of �̂�𝑖𝑡 is only slightly lower than the between-

variation. Thus, our approach based on a spatial econometric model to capture 

unobserved heterogeneity uses both the between and within-variation contained in the 

data of neighbouring firms.  

In contrast, a FE-type estimator only uses the within-variation contained in the 

data to estimate the coefficients of the other cost drivers. If we use one of these 

estimators we will obtain negative and statistically non-significant coefficients for 

delivered energy, number of customers, network length and other crucial determinants 

of utility costs. The low precision of a FE-type estimator in the present application is 

caused by the fact that the within-variations of most of these variables tend to be much 

lower than the between-variation (see Table 3). 

[Insert Table 3 here] 
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5.2. Second-Stage MLE Parameter Estimates 

 

Once we have generated a proxy variable for the omitted cost drivers, we 

proceed to estimate the stochastic cost frontier in equation (15) without the W&G 

variables. The results adding environmental variables are discussed later on. 

In Table 4 we show four alternative specifications of the stochastic cost frontier. 

The simple-SFA model does not include the estimated values for Zit, and it is only 

included for comparison purposes. The next three models include the generated variable 

�̂�𝑖𝑡 as a proxy for the omitted variable 𝑍𝑖𝑡. In this sense, they are labelled as “spatial” 

models. The spatial-SFA1 model only includes the generated variable �̂�𝑖𝑡. The 

subsequent model (spatial-SFA2) adds the number of adjacent firms (Ni) to the 

specification of it. Finally, as the inefficiency term is heteroskedastic, the spatial-SFA3 

model extends the previous one by adding the spatial lags of all determinants of firms’ 

inefficiency. 

[Insert Table 4 here] 

It should be noted that, compared to the simple-SFA model, the simplest spatial 

model that only adds the estimated values for Zit improves the joint significance 

considerably, based on the likelihood function value. The estimated value of 0 is 

smaller than unity, an expected result as �̂�𝑖𝑡 tends to overestimate the true values of 𝑍𝑖𝑡. 

The next two spatial SFA models allow for firm-specific values of it. In this case, as all 

variables are mean-centred, 0 can be interpreted as the sample mean value of it. It is 

worth mentioning that the new spatial models again improve the likelihood function 

values. Interestingly, the estimated value for 0 in both models is now not statistically 

different from unity. This seems to indicate that only controlling for the number of 
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adjacent firms is enough to obtain the unbiased value of it, at least evaluated at the 

sample mean. This supports our empirical strategy based on a linear specification of it 

that takes into account that hit is the sum of several inefficiency terms, so its expected 

value depends on the number of adjacent firms (and their average inefficiency levels, 

which in turn depends on their efficiency determinants). 

As comparing likelihood values is not a satisfactory approach to choose a model, 

Table 4 also provides a set of model selection statistics (the well-known AIC and BIC 

criteria, and some of their variants such as the AICc and HQC criteria), which penalize 

the model as new explanatory variables are added. Thus, these criteria involve 

minimizing an index that balances the lack of fit (too few variables) and overfitting (too 

many variables). Models with lower values are generally preferred. Most model 

selection statistics indicate that more comprehensive models are preferred. Thus, the 

overfitting issue of the most complex models seems less important than the 

improvements in the goodness-of-fit. 

Regarding the parameters of the cost frontiers, generally all the first-order 

coefficients have the expected sign and their magnitudes are also reasonable from a 

theoretical standpoint. The first-order coefficients of all three outputs are positive and 

statistically different from zero.12 A similar observation can be made with respect to the 

coefficients of input prices, which are also positive and statistically significant. The 

                                                           
12 The traditional collinearity between the number of customers and energy delivered in our application is 

not severe (the correlation is 86%). This explains why we found positive and significant coefficients for 

both output variables. Interestingly, while we found a strong correlation (over 97%) for larger firms in the 

sample as in Jamasb et al (2012) using UK data, the collinearity between these two output variables is 

much less for smaller firms. This explains why dropping the energy delivered variable in our model is 

rejected using any model selection test. 



22 
 

frontier coefficient of OH is negative and statistically significant in all models, 

indicating that the larger the percentage of overhead lines, the smaller is the total cost. 

Dimitropoulos and Yatchew (2017) found that underground cables tend to reduce the 

operating costs of firms. These two results together reflect the considerably higher 

capital costs of underground cables. 

The sum of the first-order coefficients of customer numbers and energy 

delivered allows us to measure density economies, associated with vertical output, i.e. 

output expansions that do not require additional network in the existing service areas. 

We find that the elasticity of density evaluated at the sample mean is quite similar in all 

models, i.e. 0.48. The estimated coefficients for these two outputs in Table 4 indicate 

that electricity distribution networks have strong natural monopoly characteristics. In 

contrast, scale economies are associated with horizontal output expansions that require 

enlarging the existing network. These economies can be measured by the sum of cost 

elasticities with respect to customer numbers, energy delivered and network length. The 

elasticity of scale evaluated at the sample mean in both models is about 0.94. This value 

suggests that Norwegian electricity distribution networks still exhibit natural monopoly 

characteristics when the network is expanded to meet new demand.13 

In addition to the frontier parameters, Table 4 displays the coefficients of the 

variables that are related to the inefficiency term. The lack of significance of the 

coefficient of OH seems to indicate that managing firms with a relatively large 

proportion of overhead lines (more likely to be serving rural areas), have been managed 

                                                           
13 These results are in line with the actual features of the Norwegian electricity distribution networks. 

While Norway has one of the highest levels of per capita energy consumption in the world, with the 

exception of a few cities, the number of network utilities is large relative to the population and, on the 

whole, the customer density across the networks is generally low. 
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similarly to those firms with more underground lines (more likely to be serving urban 

areas). 

Following Orea and Jamasb (2017), in addition to the percentage of overhead 

lines, we have included the logs of the network length (NL) in order to capture the size 

effects on firms’ inefficiency, and the number of substations (ST) as a proxy for 

network complexity. As mentioned in our previous paper, we obtain a negative and 

statistically significant coefficient for NL, indicating that larger utilities tend to be more 

efficient than smaller utilities. In contrast, the positive coefficients of ST indicate that it 

is costlier to manage firms with more stations. 

 

5.3. Efficiency Scores 

Table 5 presents the summary statistics of the efficiency scores. The estimated 

efficiency estimates are high, on average about 92% using our preferred model (Spatial 

SFA 3). The high level of efficiency of this industry is attributable to the maturity of the 

regulator’s economic regulation that has consistently been supervising and incentivizing 

the utilities to perform efficiently.14 Similar figures are obtained in Orea et al. (2015) 

using a SFA approach for the period 2004 to 2011, Miguéis et al. (2012) using a DEA 

method for the period 2004 to 2007, and in Growitsch et al. (2012) using a SFA 

approach for the 2001-2004 period. 

                                                           
14 As the efficiency level of the Norwegian networks is high, we have only found a slight improvement in 

the efficiency of the firms over time and some reduction in the dispersion of their efficiency. On the other 

hand, and suggested by an anonymous referee, we have examined whether there is a relationship between 

the firms’ efficiency scores and affluence of the county (or counties) they serve. Using county level data 

from the StatBank of Norway, we have not found a clear relationship between both variables. We found 

that the most inefficient firms are located in medium wealth counties. 
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[Insert Table 5 here] 

On the other hand, it should be pointed out that the estimated efficiency levels in 

the models with spatial interactions (about 92.5%), are slightly higher than those 

obtained using the single SFA model (on average 91.6%), indicating that ignoring the 

omitted variables of a spatially correlated nature tends to underestimate the firms’ 

efficiency scores. However, the small difference found between the single and the 

spatial SFA models might be suggesting that this bias is not severe. We observe in the 

next subsection that this is not the case. 

 

5.4. Complementarities of Spatial and Panel Data Models 

We examine in this subsection the complementarities between our spatial model 

and the panel data models that take advantage of different (spatial vs. temporal) 

dimensions of our data. In particular, we examine whether there are spatial spillovers 

once we control for firm-specific but time-invariant effects in a panel data SFA setting, 

using the TFE and TRE panel stochastic frontiers introduced by Greene (2005) and a 

Mundlak (1978)-type specification of our more comprehensive pooled model in Table 4 

(that we label hereafter as the Pooled model). 

The parameter estimates of these models are shown in Table 6. As expected, the 

TRE model yields similar results as our Pooled model because both models use the 

same variation of the data and are inconsistent if the firm-effects are correlated with the 

regressors. As anticipated in the introduction section, the fixed-effect based estimators 

are problematic in our application due to the presence of slowly changing variables. 

Indeed, both the TFE and the Mundlak specification of our pooled model yield negative 

coefficients for the most important output (i.e. the number of customers) of the cost 
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function of the electricity distribution utilities. The coefficient of the energy delivered is 

still positive, but now it is not statistically significant. For this reason, the results 

(especially the frontier parameters) of these models should be interpreted with caution. 

[Insert Table 6 here] 

Although the frontier results of the panel data models should be interpreted with 

extreme caution, the estimated coefficients of the spatial variables have similar signs to 

those estimated in the pooled models, and many of them are still statistically significant. 

This implies that, conditional on the existence of (fixed or random) firm-specific effects, 

we find that still there are spatially omitted variables, not controlled by the individual 

effects added to the model. This result thus suggests that still there is room for 

unobserved spatial effects in panel SFA models. 

 

5.5. Robustness analysis using weather and geographic data 

One advantage of the present application is that the Norwegian energy regulator 

(NVE) has systematically examined the effects of several environmental factors such as 

geographic and weather conditions on cost and service quality performance of the 

utilities and it has reflected these in the cost efficiency benchmarking models used in 

incentive regulation of these utilities (see, Growitsch et al. 2012; Orea et al. 2015). This 

information is often not available in most countries because collecting the relevant 

environmental data requires a substantial effort and financial resources as well as time. 

Therefore, our results in previous subsections – that, on purpose, ignore weather and 

geographic information - are the likely outcomes that one could expect in other 

applications to electricity distribution, or indeed in other utilities sectors such as gas and 

water, where the regulator does not have access to W&G data. 
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However, in our application, we have the benefit of having data on some key 

environmental factors to test the robustness of our empirical strategy based on spatial 

econometric techniques to capture the effect of omitted variables on the costs of 

neighbouring utilities. Our robustness exercise only attempts to compare the estimated 

spatial SFA models in subsection 5.2 with a simple SFA model that includes a set of 

weather and geographic variables. The complete model (hereafter W&G SFA model) is 

used to produce a type of a counterfactual scenario, which is not readily available in 

many other applications. As many of the W&G variables are spatially correlated (see 

Appendix A), we expect similar efficiency scores using a (non-spatial) model that 

includes W&G cost drivers and a spatial model that “replace” the W&G data (often not 

available) with data from surrounding firms using spatial econometric techniques. 

The parameter estimates of the W&G SFA model are shown in Appendix B. In 

our W&G SFA model, we extend the previous set of cost drivers with several W&G 

variables. In particular, we include three weather variables (WIND, WINDEX, and 

DIS),15 and three geographical variables (FOREST, AVESLOPE, and MAXSLOPE). 

This appendix also includes the results of an extended version of our previous spatial 

SFA3 model where we have now added W&G variables. This model (hereafter W&G 

spatial-SFA3 model), will allow us to examine whether omitted variables that are 

spatially correlated are still present. 

Overall, our new results indicate that weather is an important in determining cost 

efficiency in this sector as the estimated coefficients for the weather variables are 

always significant. For instance, we find that a higher exposure to wind conditions 

                                                           
15 We use the geographic variable (DIS) in order to capture the effect of coastal climate on the networks. 

In Norway, this effect is related to problems with corrosion on network components normally caused by a 

combination of wind and salt water. 
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implies larger costs for the distribution networks. On the other hand, the coefficient of 

the distance to the coast is negative as expected because inland weather conditions are 

likely to be less severe than coastal weather conditions. Our results also indicate that 

some geographic features of the terrain on which the networks are supported (i.e. 

forestry and maximum terrain slope), are also important determinants of cost efficiency. 

Finally, it is worth mentioning that all coefficients associated to �̂�𝑖𝑡, are not statistically 

significant, except for �̂�𝑖𝑡 alone whose coefficient is slightly larger than unity. 

Figure 3 compares the individual efficiency scores that are obtained using the 

four models in Table 4 that do not include any environmental variable (see “dot” 

observations), with the scores that are obtained using the W&G SFA model in 

Appendix B (see “cross” observations), which serves as a benchmark model because it 

includes relevant environmental variables. This figure relates several interesting stories. 

[Insert Figure 3 here] 

First, most observations in Figure 3 are above the bisecting line, indicating that 

the efficiency scores of a simple SFA Model tend to be downward biased if either 

spatial effects or W&G variables are ignored. This result has been partially highlighted 

in the previous subsection. However, Figure 3 now shows that the bias is much larger 

when the efficiency scores are small. This implies that the most inefficient firms in a 

simple SFA specification of firms’ cost would be wrongly penalized in an incentive 

regulated framework. 

The second story has to do with the evolution of firms’ efficiency scores when 

we move from simpler to more comprehensive models. Indeed, it is apparent in Figure 3 

that we move closer to the benchmark efficiency scores when we add spatially 

generated variables as cost determinants. Moreover, the efficiency scores of the Spatial 
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SFA3 model (the yellow dots) are quite close to the efficiency scores of the W&G SFA 

model (see the cross observations). This implies that we have been able to (almost) 

reproduce the same results as a SFA model that includes a set of relevant environmental 

variables that are not available in many cases. This result thus suggests that when W&G 

data are not available, this lack of information can likely be compensated by using data 

from surrounding firms using spatial econometric techniques. 

Finally, in Figure 4 we compare the individual efficiency scores obtained using 

the non-spatial W&G SFA model and the W&G spatial-SFA3 model that extends our 

previous spatial SFA3 model by including W&G variables. We find that both efficiency 

scores are quite similar. This result indicates that, once we have controlled for W&G 

variables, the remainder of the spatially correlated omitted variables are of little 

importance. In other words, most of the omitted information that is spatially correlated 

has to do with environmental conditions. In summary, we have shown that the spatial 

econometric techniques can offer an effective and efficient possibility to control for this 

issue without recurring to the collection of costly weather and environmental data. 

[Insert Figure 4 here] 

 

6. Conclusions 

This paper provides an innovative approach for measuring efficiency when 

spatially correlated omitted variables play an important role in firms’ efficiency. The 

paper also provides an example of its application to the electricity distribution sector. 

However, the proposed method can be applied to measure efficiency in other sectors 

where unobservable cost drivers (e.g., environmental variables) are also very relevant, 

e.g. gas, water, agriculture, fishing. 
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This study combines stochastic frontier and spatial econometric techniques to 

evaluate a firm’s efficiency in the Norwegian electricity distribution sector, taking into 

account spatially correlated omitted variables. In doing so, first we propose estimating a 

spatial econometric model to obtain a proxy for this type of variable by means of the 

available data for neighbouring utilities. Next we plug the variable generated into a 

standard SFA model. We illustrate our approach using panel data for the Norwegian 

distribution utilities for the years 2004 to 2011. In order to implement our empirical 

strategy, we have matched the information on concession areas of distribution utilities 

with the data provided by the Norwegian regulator on firms’ costs. We are not aware of 

other studies that have carried out a similar spatial matching exercise. 

We find that the coefficient of the spatial correlation is significant in our 

auxiliary regression, indicating that the unobserved cost drivers are correlated. This 

result justifies the use of neighbouring firm data in order to control for unobserved cost 

drivers in our application. Next, the estimated stochastic cost frontier that includes our 

generated variable outperforms the model that excludes the omitted cost drivers. In this 

sense, as expected, the firm efficiency scores are larger when we include our proxy for 

the omitted variables, especially for firms that are more inefficient. In an incentive 

regulation framework, the upshot is that the latter types of firms are likely to be more 

severely penalized when the effect of this variable is not taken into account. 

One advantage of the present study is that the Norwegian energy regulator has 

collected data on a set of W&G variables. In many countries, this information is often 

not readily available. As some environmental data is available in our application, we 

have been able to produce a type of a counterfactual scenario to examine the robustness 

of our empirical strategy. We have found that our spatial SFA model is able to roughly 

reproduce the efficiency scores of a more comprehensive model that includes the W&G 
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variables that are not available in many applications. That is, we find that this lack of 

information can likely be compensated with data from surrounding firms using spatial 

econometric techniques. Finally, we have detected that most of the omitted information 

that is spatially correlated has to do with environmental conditions. 

We have also examined the complementarities between our approach that takes 

advantage of the spatial structure of the data to deal with omitted but spatially correlated 

variables, and several panel-data SFA models aiming also to control for unobserved but 

time-invariant variables. We have found that the frontier results should be interpreted 

with caution when fixed-effect estimators are used due to the lack of temporal variation 

of our data. However, the main conclusion that we get from these panel data SFA 

models is that still there are spatially omitted variables not controlled by the firm-

specific effects. 

Our approach is useful in utilities sectors where collecting environmental data 

requires substantial human or financial resources as well as time. However, this 

approach presents some limitations. For instance, our methodology should perform 

better with a large number of distribution service areas or firms as the environmental 

conditions in surrounding areas are likely to be similar, i.e. their spatial correlation is 

likely to be larger than in applications with a small number of firms with large service 

areas (e.g., in the UK and Spain) where environmental conditions within given service 

areas are not homogeneous. On the other hand, the spatial lags can be interpreted as 

averages for the surrounding areas. We use these average values to obtain predictions of 

the underlying environmental conditions that are not observable by the researcher or the 

regulato. Therefore, our predictions should improve as the number of observations used 

to compute the average values (i.e. the number of surrounding firms) increases. The 

methodology is also useful in applications with few firms if data on the distribution 
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units of each firm is available. This is, for instance, the case in Coelli et al (2013) that 

use data on the 92 electricity distribution units operated by ERDF in France. 

The proposed methodology does not likely perform well in cross-country studies 

where utilities may be exposed to different environmental conditions as the spatial 

correlations of environmental conditions across countries tend to be weaker. In this 

regard, we are assuming that the definition of the Z variable in our model is the same for 

all observations and, hence, that the set of environmental conditions captured by Z 

variable in surrounding areas are similar. The main difficulties in cross country analysis 

include currency conversions, different technical as well as economic definition of 

variables, differing regulatory constraints and objectives (Jamasb et al, 2008; Jamasb 

and Pollitt, 2003). 

Finally, this paper opens a new research field in the context of regulated utilities 

if we refocus the model to study different spillovers among utilities. Indeed, as pointed 

out by a former referee, the lack of causal spatial spillovers seems to contradict a body 

of economic and business-strategy literature suggesting that firms benefit from best 

practices implemented in their adjacent firms. This literature is more focused on the 

knowledge and R&D spillovers between firms than in mature and regulated industries. 

These benefits might also have a non-spatial nature. For instance, in an incentive-based 

regulation framework, the benefits from best practices are likely to come from firms that 

are “peers” in a benchmarking exercise. On the other hand, if the peers are not observed, 

the spillovers might stem from firms of similar size, because peers should have similar 

characteristics than the evaluated firm in order to control for differences in scale 

economies. Future research can adapt the spatial nature of our proposed approach to 

study such spillover effects in the utilities sectors. 
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Table 1.  

Descriptive statistics of the data  

 

  Mean St.Dev. Min Max 

SCOST 1000 NOK 92899.7 192397.6 793.4 1797173.2 

CUS Number 21118.5 56320.3 14 552342 

DE 1000 MWh 570990.7 1570418.9 3979 17000000 

NL Km 752.5 1290.7 9 8648 

OH % 0.66 0.20 0.00 0.97 

PK % 0.06 0.01 0.05 0.1 

PL Index 163.86 16.89 139 189.5 

PE NOK/MWh 331.01 73.93 234.6 436.3 

ST Number 948.1 1828.7 8 13525 

WIND m/s 25.5 2.48 22 31 

WINDEX m/s 5.28 1.02 2.71 8.13 

DIS km 53455.3 54567 191 19637 

FOREST Index 0 2.45 -3.21 22.51 

AveSLOPE % 10.13 3.74 2.86 22.22 

MaxSLOPE % 51.09 11.91 19 75 

 

 

 

Table 2.  

First-stage GMM parameter estimates 

 Coefficient Robust-t 

Intercept 10.5699 378.74 

Spatial lag of  the dependent variable (W·lnC) 0.1660 5.69 

Cost drivers:  

Output variables Yes 

Input prices  Yes 

Overhead variable Yes 

Hansen Chi-squared test (df) 0.1332 (1) 

Weak instruments F-test (df in parenthesis) 47.21 (24,1007) 

R-squared 0.9870 

 Notes:  

(a) For more details about the cost drivers and the functional form of the cost function, see Table 4. 

(b) Instruments= all exogenous explanatory variables plus the spatial lag of lnCUS and lnCUS2. 
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Table 3.  

Between and within standard deviations of the main cost drivers 

Variable  Between Within B/W ratio 

�̂�𝑖 0.065 0.045 1.45 

lnCUS 1.454 0.160 9.09 

lnNL 1.162 0.035 32.76 

lnDE 1.404 0.100 13.99 

OH 0.201 0.026 7.83 
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Table 4. Second stage parameter estimates. Cost frontier function 

  Single SFA   Spatial SFA 1   Spatial SFA 2   Spatial SFA 3   

               (Pooled)   

Parameters Estimates t-ratio Estimates t-ratio Estimates t-ratio Estimates t-ratio 

 Frontier coefficients 

Intercept 10.511 677.7 10.518 665.1 10.518 636.1 10.521  745.21  

lnCUS 0.291 10.81 0.273 10.72 0.276 10.74 0.271  10.30  

lnNL 0.549 25.53 0.564 28.06 0.560 27.53 0.561  27.53  

lnDE 0.142 6.01 0.146 6.45 0.147 6.51 0.148  6.55  

OH -0.312 -4.83 -0.298 -4.91 -0.294 -4.80 -0.285  -4.68  

0.5·lnCUS2 0.130 6.46 0.124 5.85 0.120 5.75 0.121  5.67  

0.5·lnNL2 -0.007 -0.08 -0.041 -0.50 -0.036 -0.45 -0.048  -0.60  

0.5·lnDE2 0.196 4.99 0.202 5.24 0.199 5.26 0.204  5.36  

0.5·OH2 0.227 0.40 0.349 0.64 0.445 0.81 0.466  0.86  

lnCUS·lnNL -0.007 -0.18 0.003 0.07 0.000 0.00 0.005  0.14  

lnCUS·lnDE -0.109 -4.42 -0.114 -4.48 -0.110 -4.36 -0.113  -4.51  

LnCUS·OH -0.127 -1.07 -0.145 -1.20 -0.113 -0.94 -0.136  -1.10  

lnNL·lnDE -0.056 -1.22 -0.045 -1.00 -0.046 -1.03 -0.046  -1.02  

LnNL·OH -0.390 -1.87 -0.370 -1.82 -0.395 -1.96 -0.391  -1.94  

LnDE·OH 0.483 3.34 0.492 3.37 0.483 3.34 0.506  3.47  

lnPK 0.277 14.19 0.263 13.99 0.264 13.93 0.263  13.81  

lnPL 0.662 16.89 0.664 17.98 0.663 17.88 0.661  17.79  

Spillover variables         

Z     0.894 11.19 1.034 11.40 0.999  11.18  

Z·N         -0.100 -2.74 -0.150  -3.84  

Z·WlnNL             -0.299  -2.22  

Z·WOH             0.109  0.59  

Z·WlnST             0.229  1.83  

Log of standard deviation of disturbance 

lnv -2.136 -51.02 -2.182 -51.69 -2.184 -49.28 -2.181  -48.51  

Log of standard deviation of half-normal 

lnu -2.376 -11.15 -2.447 -10.79 -2.436 -10.34 -2.463  -10.08  

lnNL -1.623 -3.55 -1.621 -3.56 -1.485 -3.28 -1.497  -3.18  

OH 0.659 1.85 0.064 0.17 -0.004 -0.01 -0.168  -0.45  

lnST 1.012 2.64 1.085 2.84 0.971 2.56 1.008  2.54  

                  

Mean log-likelihood 0.553   0.612   0.616   0.621   

Observations 1032   1032   1032   1032   

LF 570.51   631.72   635.37   640.43   

AIC -1097.0  -1217.4  -1222.7  -1226.8  

BIC -988.3  -1103.8  -1104.1  -1093.5  

CAIC -1096.0  -1216.3  -1221.5  -1225.3  

HQIC -1137.1  -1259.5  -1266.8  -1276.9  
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Table 5. Efficiency scores 

 

 

Mean Std. Dev. Min Max 

Single SFA 0.916 0.064 0.535 0.990 

Spatial SFA 1 0.923 0.058 0.498 0.987 

Spatial SFA 2 0.923 0.057 0.498 0.985 

Spatial SFA 3 0.925 0.055 0.485 0.985 
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Table 6. Second stage parameter estimates. Panel data specifications. 

  Pooled TRE TFE Pooled+Mundlak  

                  

Parameters Estimates t-ratio Estimates t-ratio Estimates t-ratio Estimates t-ratio 

Frontier coefficients 

Intercept 10.521  745.21          10.320  77.81  

lnCUS 0.271  10.30  0.378  30.01  -0.117  -1.21  -0.104  -0.66  

lnNL 0.561  27.53  0.478  42.58  0.242  2.79  0.385  2.31  

lnDE 0.148  6.55  0.105  10.33  0.027  0.68  0.020  0.24  

OH -0.285  -4.68  -0.226  -7.63  -0.503  -3.61  -0.539  -1.92  

0.5·lnCUS2 0.121  5.67  0.086  5.78  -0.009  -0.18  0.002  0.02  

0.5·lnNL2 -0.048  -0.60  0.119  2.87  0.243  1.11  0.186  0.46  

0.5·lnDE2 0.204  5.36  0.184  11.39  -0.009  -0.16  -0.016  -0.11  

0.5·OH2 0.466  0.86  1.629  6.12  1.249  1.60  0.703  0.46  

lnCUS·lnNL 0.005  0.14  -0.028  -1.43  -0.155  -1.38  -0.142  -0.63  

lnCUS·lnDE -0.113  -4.51  -0.061  -5.59  0.000  0.00  -0.011  -0.11  

LnCUS·OH -0.136  -1.10  0.141  2.37  0.407  1.48  0.337  0.62  

lnNL·lnDE -0.046  -1.02  -0.116  -5.11  -0.035  -0.40  -0.016  -0.09  

LnNL·OH -0.391  -1.94  -0.663  -7.12  -0.904  -2.65  -0.723  -1.03  

LnDE·OH 0.506  3.47  0.453  6.56  0.376  1.92  0.389  0.83  

lnPK 0.263  13.81  0.262  27.77  0.218  16.30  0.229  10.65  

lnPL 0.661  17.79  0.661  27.33  0.711  30.51  0.690  18.15  

Spillover variables         

Z 0.999  11.18  0.939  21.34  0.634  7.78  0.784  8.42  

Z·N -0.150  -3.84  -0.065  -3.01  -0.037  -1.07  -0.147  -3.78  

Z·WlnNL -0.299  -2.22  -0.124  -1.82  -0.085  -0.90  -0.351  -2.75  

Z·WOH 0.109  0.59  -0.122  -1.63  -0.115  -0.96  0.228  1.29  

Z·WlnST 0.229  1.83  0.078  1.27  0.046  0.55  0.263  2.23  

Log of standard deviation of disturbance 

lnv -2.181  -48.51  -2.771  -21.07  -2.785  -69.97  -2.197  -49.30  

Log of standard deviation of half-normal 

lnu -2.463  -10.08  -0.063  -0.30  -3.994  -4.33  -2.602  -8.97  

lnNL -1.497  -3.18  0.502  1.83  0.889  0.77  -1.803  -3.18  

OH -0.168  -0.45  -0.624  -2.33  2.198  1.18  1.612  1.91  

lnST 1.008  2.54  -0.636  -2.48  -1.403  -1.04  1.284  2.70  

Random effect         

Mean(i)   10.553  1349.7      

sd(i)   0.114  46.84      

                  

Mean LF 0.621   1.013   1.322   0.659   

Observations 1032   1032   1032   1032   

LF 640.43   1045.44   1364.17   679.77   
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Figure 1: Norwegian electricity distribution service areas 

 

Source: Norwegian Water Resources and Power Directorate (NVE) 

 

 

 

 

Figure 2. Histograms and Kernel density plots of estimated environmental cost 

differences 
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Figure 3. Efficiency scores 

 

Note: Efficiency scores of the Simple SFA model in the horizontal axis. 

 

Figure 4. Efficiency scores using W&G data  

 

 

Note: Efficiency scores of the Simple SFA model in the horizontal axis. 
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Appendix A 

Spatial correlations of the main cost drivers. OLS auxiliary regressions 

  Regression Coef. t-ratio 

Customer numbers     

  Intercept -0.1356*** -2.75 

  Spatial lag 0.0816*** 6.48 

  R2 0.0392   

Network Length     

  Intercept -0.0571 -1.44 

  Spatial lag 0.0443*** 3.41 

  R2 0.0111   

Delivered Energy     

  Intercept -0.0861* -1.89 

  Spatial lag 0.0677*** 5.92 

  R2 0.0329   

Overhead lines (%)     

  Intercept -0.0048 -0.83 

  Spatial lag 0.1482*** 14.43 

  R2 0.1683   

Wind     

  Intercept 26.2482*** 140.30 

  Spatial lag -0.0061*** -4.37 

  R2 0.0183   

Wind Exposure     

  Intercept 5.4931*** 70.78 

  Spatial lag -0.0086*** -3.04 

  R2 0.0089   

Distance to coast (in logs)   

  Intercept 8.3434*** 79.73 

  Spatial lag 0.0328*** 17.60 

  R2 0.2314   

Forest     

  Intercept -0.0367 -0.47 

  Spatial lag 0.0448*** 3.26 

  R2 0.0103  

AveSlope     

  Intercept 6.7957*** 33.00 

  Spatial lag 0.0657*** 18.58 

  R2 0.2512  

MaxSlope   

  Intercept 37.9739*** 50.63 

  Spatial lag 0.0505*** 19.31 

  R2 0.2659  
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Appendix B 

SFA models with W&G variables 

  W&G SFA   Spatial W&G SFA   

Parameters Estimates t-ratio Estimates t-ratio 

Intercept 10.668 101.334 10.595 107.749 

lnCUS 0.295 10.979 0.285 10.954 

lnNL 0.523 22.291 0.539 24.433 

lnDE 0.148 6.143 0.142 6.169 

OH -0.181 -2.923 -0.259 -4.483 

0.5·lnCUS2 0.108 5.117 0.101 4.999 

0.5·lnNL2 -0.108 -1.150 -0.154 -1.730 

0.5·lnDE2 0.193 4.861 0.168 4.659 

0.5·OH2 0.822 1.388 0.548 0.979 

lnCUS·lnNL 0.040 0.980 0.058 1.523 

lnCUS·lnDE -0.123 -4.591 -0.128 -4.902 

LnCUS·OH -0.142 -1.124 -0.194 -1.538 

lnNL·lnDE -0.028 -0.583 -0.002 -0.048 

LnNL·OH -0.365 -1.625 -0.244 -1.163 

LnDE·OH 0.500 3.324 0.449 3.141 

lnPK 0.273 14.427 0.268 14.470 

lnPL 0.667 17.661 0.663 18.500 

Z     1.195 10.512 

Z·N     -0.080 -1.615 

Z·WlnNL     0.050 0.298 

Z·WOH     -0.153 -0.694 

Z·WlnST     -0.051 -0.343 

WIND -0.015 -4.667 -0.014 -4.766 

WINDEX 0.041 4.536 0.045 5.250 

lnDIS -0.017 -4.191 -0.016 -3.965 

Forrest 0.008 2.745 0.008 2.866 

AveSlope 0.002 0.854 0.001 0.224 

MaxSlope 0.003 3.706 0.004 4.493 

          

lnv -2.147 -52.673 -2.235 -52.423 

          

lnu -2.600 -10.736 -2.497 -12.658 

lnNL -2.138 -3.770 -1.847 -3.967 

OH 0.017 0.039 -0.114 -0.300 

lnST 1.602 3.278 1.371 3.383 

          

Mean log-likelihood 0.608   0.668   

Observations 1032   1032   

LF 627.159   689.086   

 


