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Abstract – as vehicular communication becomes a widespread 
phenomenon, there will be an increase in spectrum scarcity. 
Cognitive radio provides an effective solution but requires a 
robust sensing mechanism that entails a large overhead; this 
additional sensing data could be detrimental to a system already 
lacking in bandwidth. This paper proposes novel ways of limiting 
sensing overhead by improving upon current methods which use 
cooperative mechanisms and adjustable double thresholds 
(DTHs). Based on a sliding variable, the proposed thresholds can 
react to changes in the environment, providing the required 
primary user detection and false alarm probabilities while limiting 
the number of vehicles reporting sensing data. Three new DTHs 
have been proposed: detection-based DTH, decision-based DTH, 
and independent-threshold DTH. Each has unique properties that 
make it suited for different environments. Simulations were run 
on all proposed thresholds to test their validity and endurance 
under environmental changes. The results indicate that the double 
thresholds would greatly benefit high-contention, dense vehicular 
networks. 
 

Index Terms—Cognitive Radio, Cooperative Spectrum Sensing, 
Dynamic Double Threshold, Exponential Distribution 

I. INTRODUCTION 
UE to recent advances in intelligent transport systems 
(ITSs), interest in vehicular communications research has 

increased. With the ability to ‘extend the horizon’ of drivers and 
on-board computers comes the opportunity to improve road 
safety and organisation [1], reducing congestion, road traffic 
accidents, travelling time and fuel consumption. However, as 
ITSs are deployed, spectrum scarcity is becoming a serious 
challenge, with negative implications for vehicular safety 
applications.  

Vehicular ad-hoc networks (VANETs) generally use the 
IEEE 802.11p Wireless Access in Vehicular Environments 
(WAVE) standard to realise communication between vehicles 
[3]. This standard employs the carrier sense multiple 
access/collision avoidance (CSMA/CA) protocol, meaning 
messages can be subject to collisions and losses when there is 
channel congestion. In an existing study on spectrum scarcity 
[4], it was shown that, at high traffic levels, there was not 
enough bandwidth to maintain a reasonable quality of service. 
This is particularly concerning because safety-related packet 
loss or delay could cause road traffic accidents. Some 
researchers have suggested that non-safety use of the control 
channel (CCH) should be limited during peak hours of traffic 
[5], [6], although this restricts the commercial and coordination 
prospects for ITSs. In response to this problem, the U.S Federal 
Communications Commission (FCC) has allowed secondary 
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use of the broadcast television spectrum through cognitive radio 
(CR) [7]. 

CR uses opportunistic spectrum overlay to gain ITS 
bandwidth. It 1actively seeks out additional spectrum through  
dynamic channel access. Underutilised portions of spectrum are 
reused, with the constraint that spectrum access by an 
unlicensed secondary user (SU) does not interfere with the 
licensed primary user (PU). Spectrum overlay, where ‘white 
spaces’ in the PU spectrum are used [8], is generally preferred 
over underlay, as SUs using underlay are required to keep their 
power below a threshold, so must spread their signals over large 
bandwidths [9].  

 A condition of using spectrum overlay is that a robust 
sensing mechanism is required to ensure no PU interference 
occurs. Changes in PU presence must be detected quickly, 
which requires regular reports from vehicles in the network on 
the state of the PU spectrum [10]. To improve the reliability of 
detection, cooperative spectrum sensing (CSS), where multiple 
vehicles sense the spectrum and combine their information, can 
be employed. However, using CSS requires a significant 
overhead. There is therefore a trade-off between the ‘cognitive 
gains’ of additional bandwidth and the bandwidth lost due to 
spectrum sensing overhead, especially in vehicle-dense 
environments where the channel is highly utilised [11]. This is 
particularly important because the channel through which 
sensing data is sent, the CCH, experiences the most congestion 
and carries safety messages.   

Many cognitive CSS methods for CR have been explored 
previously; authors in [12] and [13] have proposed double-
threshold (DTH) methods for improving detection and false 
alarm reliability. Furthermore, authors in [14], [15] and [16] 
have explored the use of cognitive radio in small cell networks, 
with the aims of reducing power consumption, optimizing 
sensing time, increasing user fairness and limiting interference 
using hybrid spectrum sensing. However, in these papers, the 
primary aim is not to reduce sensing overhead, which is 
addressed as an aside. The key novel contributions of this paper, 
therefore, are: 
• The design of original DTH-CSS models, built with the 

primary aim of use within non-distributed, dense vehicular 
environments. 

• The determination of sensing threshold values that 
explicitly aim to minimise sensing data overhead. 

• The use of expectations of PU presence to build time-
variant expressions to build double thresholds, used in 
conjunction with equations built using the probability of 
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detection and false alarm (DEC-DTH). 
• The determination of an equation for a threshold model that 

minimises the probability of falsely detecting the PU, 
leading to reduced sensing data and more access to the 
cognitive spectrum (previous papers have attempted to 
keep the probability of false alarm below a threshold rather 
than minimising it). 

• The use of two thresholds, each based on independent 
equations, in a DTH-CSS scheme to achieve optimum 
probability of detection and false alarm simultaneously. 

 
In section II, the background and theory will be explained, 

followed by the system model and proposed method in section 
III. Section IV will cover the results and discussion, and section 
V will conclude the findings. 

II. BACKGROUND AND THEORY 

A. Vehicular Network Standards 
75 MHz of dedicated spectrum, from 5.850-5.925 GHz, has 

been assigned for ITS purposes by the FCC [10]. This is divided 
into seven 10MHz channels: six service channels (SCH) for 
general purpose messages, and one control channel, which 
carries safety, coordination and control messages [17]. The 
channel switches between intervals of the CCH and SCH 
intermittently, each with durations of 50 ms [4]. 

B. Double Threshold Cooperative Spectrum Sensing 
CSS uses the temporal and spatial diversity provided by a 

highly mobile vehicular environment to accurately and quickly 
detect the PU [18]. In urban environments, signals encounter 
obstacles (buildings, for example) that cause shadowing, multi-
path fading and Doppler shifts [10]. CSS significantly reduces 
these effects by combining sensing data from multiple vehicles. 
In most CSS cases, each sensor uses the same sensing technique 
for detection. In [10], some local sensing techniques were 
explored, including maximum likelihood ratio detection and 
soft energy detection. Due to its low computational cost and 
simplicity, the most commonly used technique is energy 
detection, which this paper will focus on.  

A DTH censoring method is a way of reducing the number 
of vehicles transmitting sensing data. In conventional energy 
detection CSS, a single energy threshold (STH) determines 
whether the PU is present, whereas in DTH-CSS an upper and 
lower threshold are set. If the energy detected by the SU lies 
between these, the sensing data is not reported. Thus, the 
thresholds determine how many vehicles report. Some papers 
have explored different methods for choosing where the 
thresholds lie; authors in [12] proposed a DTH scheme to 
‘achieve more reliable detection’ in CSS networks, however the 
aim was not to reduce sensing overhead. In [13], a user 
correlation and DTH based CSS was proposed, where a DTH 
based on correlation (among other variables) was used to reduce 
sensing overhead. It achieved a ‘trade-off between sensing 
performance and system overhead’ in dense networks, defining 
equations that governed a sliding DTH. However, although this 
paper addressed the need for a reduction in sensing reports, the 
core goal was to improve the probability of PU detection, and 

not to reduce the number of transmitters.  
This paper will show that it is possible to majorly limit the 

number of vehicles transmitting sensing data while maintaining 
a reasonable PU detection and false alarm probability by using 
novel energy-detection DTH-CSS schemes.  

III. SYSTEM MODEL AND PROPOSED METHOD 

A. System Model 
Vehicular networks are unique in that many of their nodes, 

namely vehicles’ on-board units (OBUs), can be highly mobile. 
Structures for cognitive radio VANETs (CR-VANETs) 
proposed in literature can generally be classified as distributed 
or non-distributed. Although a fully distributed network in 
which no static architecture is needed would work well in rural 
areas where traffic is spread out, a non-distributed architecture 
involving road-side units (RSUs), which aid network formation 
and communication [19], is generally more practical in urban 
environments. The stationary RSU has memory, substantial 
computational capacity and short-range wireless transmission 
capability [20] and acts as a server to provide SUs (in this case, 
the OBUs) with local guidelines for accessing PU white spaces. 
It has the processing power and coordination needed for 
cooperative spectrum sensing and spectrum allocation [4]. 
Moreover, as spectrum scarcity is most common in vehicularly 
dense environments, urban areas will be the biggest benefactors 
of CR technology. This paper will therefore focus on densely-
populated, non-distributed networks involving RSUs. 

In non-distributed networks, once the sensing data is received 
by the fusion center (in this case, a RSU), it is merged to form 
a final decision about the presence of a PU. The fusion method 
chosen in this case is OR-rule fusion, in which only one node 
must detect the PU for the fusion center to decide that it is 
present [13]. 

The system model is shown in Fig. 1. It comprises one RSU, 
acting as the fusion center, one PU, and 𝑁 SUs, each with an 
OBU of low computational capability which can retain 
spectrum sensing information and retransmitting it to the RSU. 

 
Fig. 1.  Schematic of a non-distributed VANET with N vehicles 

The RSU can communicate with every vehicle within its 
range during the 50 ms CCH interval, and is aware of the 
number of vehicles, 𝑁, in its range. Fig. 2 shows the system’s 
timing model. 
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Fig. 2.  Timing model of the PU channel (a) and VANET channel (b) 

During the CCH interval, information can be passed between 
the RSU and OBUs. During the SCH interval, sensing 
information is collected by the OBUs and a decision about the 
PU state is made. This is transmitted to the RSU during the 
following CCH. The SCH therefore comprises the sensing 
duration, 𝑇#, and the CCH the data duration, 𝑇$. The 
transmission duration, 𝑇% = 𝑇# + 𝑇$, is the amount of delay 
expected for the system to react to a change in the environment 
(for example, the PU channel changing its state or the number 
of vehicles changing).  

The PU channel, whose spectrum will be overlaid when the 
PU is absent, alternates between states H1, where the PU is 
present, and H0, where the PU is absent. The durations of PU 
presence and absence, 𝑇1 and 𝑇0 respectively, can be modelled 
as an exponential distribution with expectations 𝐸 𝑇1 = 𝑇1 
and 𝐸 𝑇0 = 𝑇0 [21]. The expectations are assumed to be much 
larger than 𝑇%, so that delays caused by OBU to RSU 
communication are small compared to the PU durations. The 
probability of the primary user’s absence can then be calculated 
as 

𝑃 𝐻0 = 	 ./
./0.1

,                                 (1) 
 
where 𝑃 𝐻1 = 1 − 𝑃(𝐻0).  
The PU signal energy and channel noise energy are modelled, 
as in [13], as 

𝑥6 𝑡 = 			 𝑛6 𝑡
ℎ6 𝑡 𝑠 𝑡 + 𝑛6(𝑡)

					𝐻0𝐻1,                (2) 

 
where 𝑥6 𝑡  is the signal received by sensor 𝑖 (where each 
vehicle has one sensor) at time 𝑡, 𝑛 is the channel noise power, 
ℎ is the channel gain, and 𝑠 is the PU signal. The signal-to-noise 
ratio, 𝛾, at sensor 𝑖 is defined by variance, as 𝛾6 =

=>?@A

?BA
, where 

𝜎#D is the PU signal variance and 𝜎ED is the channel noise 
variance. When the number of samples, 𝑀 = [𝑇#𝑓#]	, where 𝑓# 
is the sampling frequency, is sufficiently large, the test statistic 
for each sensor at the end of the sensing period 𝑇# is defined as 
 

																																															𝑋6 = 𝑥6

K

KL1

, 

 

 
    (3) 

as proved in [22]. This can be modelled, as in [13], as the 
normal Gaussian distribution 

 

𝑋6	~	 			
𝒩 	𝜇/, 𝜎/D

𝒩 	𝜇1, 𝜎1D
						𝐻0
						𝐻1,                     (4) 

 
where  𝜇/ = [𝑀𝜎ED] and 𝜎/D = [2𝑀𝜎ER] are the mean and 
variance under hypothesis H0 respectively, and 𝜇1 = [𝑀 𝜎ED +
𝜎#D ] and 𝜎1D = [2𝑀 𝜎ED + 𝜎#D D] are the mean and variance 
under hypothesis H1. 

After detection, a decision is made by each OBU and the 
results are transmitted to the fusion center. The OR-fusion rule 
is then used to make a final decision, which greatly increases 
the probability of PU detection. 

B. Detection-Based DTH Energy Detection 
To decrease the number of reporting vehicles, a double 

threshold has been proposed. A sliding variable, 𝜏,  is used as 
in [13]. The system can react to changes in the environment by 
building an equation for 𝜏 that includes as many relevant 
environmental factors as possible, and by recalculating	𝜏 after 
each sensing period. The threshold model is shown in Fig. 3.  

 

 
Fig. 3.  Double-threshold model for energy detection with sliding tau 

The variable 𝜆 is defined according to the non-cooperative 
probability of false alarm in an STH case, 𝑃U,1%=, as 
 

𝜆 = 	𝜎ED 2𝑀𝑄W1 𝑃U,XYZ + 𝑀 ,                    (5) 
 
where 𝑃U,XYZ is the maximum allowed probability of false alarm, 
usually set at 0.1. If the noise variance and sampling rate are 
assumed constant with time, 𝜆 will also be constant, and, 
according to (5), greater than 1. This provides an appropriate 
value to build the sliding threshold on. 𝜏 will be calculated by 
the RSU in the OBU sensing duration 𝑇#, and sent to the OBUs 
in the data duration, 𝑇$. In the following sensing period, each 
OBU will make its sensing decision based on the rule    

 

𝐷6 =
0										𝑋6 < λ/τ		

			𝑁𝐷				λ/τ < 𝑋6 < λτ	
1												𝑋6 > λτ		

,                        (6) 

 
where 𝑁𝐷 stands for ‘no decision’ and means that no report is 
made to the RSU. Out of 𝑁 vehicles in the RSU range, 𝑘 will 
report sensing information, where 0 ≤ 𝑘 ≤ 𝑁. The higher the 
number of detected values within in the ‘no decision’ zone, the 
lower the value of 𝑘 and the lower the overall sensing overhead 
in the CCH. 

The non-cooperative probabilities of PU detection and false 
alarm can be calculated, respectively, based on normal 
cumulative distribution functions, as 
 
𝑃$,D%= = 𝑃 𝑋6 > 𝜆𝜏	 𝐻1) = 1 − 𝜙 de	Wfg

?g
= 𝑄 de	Wfg

?g
,  (7) 
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𝑃U,D%= = 𝑃 𝑋6 > 𝜆𝜏	 𝐻0) = 1 − 𝜙 deWfh
?h

= 𝑄 deWfh
?h

,  (8) 
 

where 𝑄 iWf
?

 is the tail probability of the standard normal 

distribution 𝜙 iWf
?

, also known as the Q-function. The 
cooperative decision is made using the OR-fusion rule, based 
on the decisions of the 𝑘 reporting vehicles. As a safety 
measure, the system has been built so that if no sensing report 
is made (for example, if the threshold is made so large that all 
vehicles find 𝐷6 	= 	𝑁𝐷, the fusion centre will decide that the 
PU is present, i.e. 𝐷jkl 	= 	1). Assuming consistent signal-to-
noise ratio throughout the environment, i.e. 𝛾1 = 𝛾D = ⋯	𝛾n, 
the DTH cooperative probability of PU detection and false 
alarm are calculated as 
 

𝑄$,D%= = 1 − 𝑃 𝑋6 < 𝜆	 𝐻1)n + 𝑃 𝑘 = 0  
= 1 − 1 − 𝑃$,D%=

n
+ 𝑃E$,1n , 

 
  (9) 

𝑄U,D%= = 1	 − 𝑃 𝑋6 < 𝜆	 𝐻0)n + 𝑃 𝑘 = 0  
= 1 − 1 − 𝑃U,D%=

n
+ 𝑃E$,/n , 

  
 (10) 
 
 

 

respectively, where 𝑃E$,/ and 𝑃E$,1 are the non-cooperative 
probabilities of the case 𝐷6 	= 	𝑁𝐷 when the PU is absent and 
present, respectively. They are calculated as 
 

𝑃E$,/ = 𝑃 𝐷 = 𝑁𝐷 𝐻0) = 𝑄 d/eWfh
?h

− 𝑄 deWfh
?h

,   (11) 

𝑃E$,1 = 𝑃(𝐷 = 𝑁𝐷|𝐻1) = 𝑄 d/eWfg
?g

− 𝑄 deWfg
?g

.   (12) 
 

Taking into consideration how 𝑄$,D%= and 𝑄U,D%= vary with 
respect to each other with increasing 𝜏, as shown in the 
hysteresis curve in Fig. 4, a better result is found when 𝜏 is 
lower, corresponding to 𝑄U/, where  𝑃(𝑘 > 0) approaches 1 
and 𝑃E$,/ and 𝑃E$,1 can be assumed as 0.  

 
Fig. 4.  Hysteresis curve of cooperative double threshold probabilities for 

increasing tau 

Using this assumption, values of 𝜏 corresponding to the 
required probabilities of PU detection, 𝑄$,XYZ, and false alarm, 
𝑄U,XYZ, are found to be 

 

𝜏$ = 𝑄W1 1 − 1 − 𝑄$,XYZ
g
p ?g

d
+ fg

d
,					𝜏$ ≥ 1,            (13) 

𝜏U1 = 𝑄W1 1 − 1 − 𝑄U,XYZ
g
p ?h

d
+ fh

d
,						𝜏U ≥ 1,           (14) 

 

where 𝜏$ is the maximum allowed value of 𝜏 to obtain a 
detection probability of at least 0.99, and 𝜏U is the minimum 
required value of 𝜏 to ensure a false alarm probability of less 
than or equal to 0.1. To satisfy the detection probability 
requirements, the value must lie between the limits  𝜏U < 𝜏 <
𝜏$. Considering that a maximum 𝜏 is preferred to limit the 
number of transmitting vehicles, 𝜏$ is the limiting factor. 
Hence, this method is named detection-based DTH (DET-
DTH), as the thresholds are determined by the required 
probability of detection. 

During each OBU sensing period (SCH interval), 𝜏$ will be 
calculated based on the last-known value of 𝑁 and 𝛾, and 
transmitted in the next CCH to the OBUs, to be used in the 
following SCH. 

C. Bi-Variable DTH-Based Energy Detection 
Although part B provides a reliable method for obtaining the 

required detection and false alarm probability where possible, 
it is possible to tweak the system by using two variables, so that 
fewer vehicles need to report and the probability of false alarm 
decreases.  

As equations (13) and (14) show, 𝜏$ and 𝜏U1 will have 
different values depending on 𝑄$,XYZ, 𝑄U,XYZ and 𝛾, meaning 
that a system based on only 𝜏$ may not always provide the 
required 𝑄U,D%=. It can be noted that 𝑄$,D%= and 𝑄U,D%= benefit 
differently with respect to 𝜏; although both values eventually 
decrease as 𝜏 increases, the lowest possible 𝑄U is preferred 
(corresponding to a high 𝜏, with as few vehicles reporting as 
possible without no vehicles reporting) whereas the highest 
possible 𝑄$ is wanted, corresponding to a low 𝜏. 

The highest possible 𝜏 that maintains 𝑄$,XYZ is 𝜏$, as in the 
DET-DTH case. However, considering (10), an optimum false 
alarm probability will be found at the minimum point of the 
𝑄U,D%=-	𝜏 curve, between where 𝑃E$,/n  starts increasing (as this 
will yield a false decision 𝐷jkl = 1), and where 1 −
1 − 𝑃U,D%=

n
 falls to its minimum. Although the most accurate 

way of calculating this point would be to set the derivative of 
the cooperative false alarm probability, 𝑄′U,D%=, to zero, the 
complexity of this equation would make it impossible to solve 
without using a numerical method, which would take more 
computational capacity. Therefore, a prediction of this point has 
been made by considering the two points where 𝑃E$,/ and 1 −
1 − 𝑃U,D%=

n
 approach zero. In each case, the desired 

probability of false alarm is set to 0.01, resulting in values of  
 

𝜏sU =
?h
d
𝑄W1 1 − 0.99

g
p + fh

d
,                    (15) 

𝜏E$,/ =
d

?hsvg /./1
g
p 0fh

 .                         (16) 

 

 

The mean of these two values gives an accurate estimate for 
the point at which the minimum false alarm probability occurs. 
This results in a new value, 𝜏UD, defined as 
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𝜏UD =
1
D

?h
d
𝑄W1 1 − 0.99

g
p + fh

d
+ d

?hsvg /./1
g
p 0fh

. (17) 

 

This provides the possibility of greatly reducing the false 
alarm probability while simultaneously decreasing the number 
of reporting vehicles. This value is the highest possible 𝜏U, as, 
although 𝜏 could be increased even further to when it reaches 
0.1 for the second time, as seen in the hysteresis curve in Fig. 
4, increasing it by this much would adversely affect the 
detection probability, making this a safer choice. 

 
1) Decision-Variant DTH 

Generally, the discrepancies between the 𝜏 that provides the 
optimum 𝑄$ and that which corresponds to the optimum 𝑄U can 
be considered as a trade-off problem, and an all-encompassing 
equation for 𝜏 can be found. This not only limits how low the 
false alarm probability can be but means that the value of 𝜏 is 
lower than it needs to be, resulting in more vehicles transmitting 
sensing data. 

Integrating 𝜏U1 or 𝜏UD into the system will solve this problem. 
A simple integration method to adopt is that, once the RSU has 
decided that the PU is present, 𝜏$ is used, and vice versa. This 
behavior can be described as: 

 
𝜏 𝑡 + 𝑇% = 	 𝜏$,				𝐷jkl(𝑡) = 1,                  (18) 
𝜏 𝑡 + 𝑇% = 	 𝜏Ui,				𝐷jkl 𝑡 = 0,                  (19) 

 
where 𝐷jkl 𝑡  is the cooperative decision made at the RSU at 
time 𝑡, and 𝑥 is either 1 or 2, depending on whether (14) or (17) 
is used to calculate 𝜏U. Thus, a more tailored 𝜏 can be used. 
However, this method is problematic because, when the PU 
transitions the system is not ready to react, as the thresholds are 
set for the opposite PU case. To address this problem, a time-
variant method has been developed. 

Considering the system with respect to time, it is possible to 
change the method of calculating 𝜏 depending on how likely it 
is that the PU’s state will transition. Because the durations of 
PU presence and absence, 𝑇1 and 𝑇0 respectively, can be 
modelled with an exponential distribution, the probability of 
transition can be calculated, based on the exponential 
cumulative distribution function, as  

 
𝑃%XwE#,/1 𝑡 = 1 − exp − %W%h

./
,               (20) 

𝑃%XwE#,// 𝑡 = exp − %W%h
./

,                      (21) 
 

where 𝑡 is time since the system initialized, 𝐷jkl 𝑡/ = 0, 
and	𝐷jkl 𝑡/ − 𝑇% = 1 i.e. the probability ‘timer’ only resets if 
the transition from 𝐷 = 1 to 𝐷 = 0 occurs. These probabilities 
can then be used to slide the value of  𝜏U closer to that of 𝜏$ as 
the probability of a transition from 𝐷 = 0 to 𝐷 = 1 increases. 
A time-variant 𝜏Ui is then defined as 
 

𝜏Ui 𝑡 = 𝜏Ui𝑃%XwE#,// 𝑡 + 𝜏$𝑃%XwE#,/1 𝑡 ,       (22) 
 

where the number of vehicles, 𝑁, and 𝛾 can also change with 
time. To keep the probability of detection at a reasonable value, 
the time-variant method will only be used on the thresholds 
while 𝐷 = 0. This is because the probability of detection 
determines the likelihood of PU interference. The final 
decision-variant bi-variable system is therefore defined as 
 

𝜏 𝑡 + 𝑇% = 	 𝜏$				,				𝐷jkl(𝑡) = 1,                  (23) 
𝜏 𝑡 + 𝑇% = 	 𝜏Ui 𝑡 			,				𝐷jkl 𝑡 = 0.                  (24)     

               
The result is a system that has memory and can accurately 

track the PU presence while keeping the sensing overhead low. 
Because the chosen 𝜏 is based on the most recent 𝐷jkl, this 
method is called decision-variant DTH (DEC-DTH). 
 
2) Independent-Threshold DTH 

Although the method outlined in C.1 has the advantage that 
the RSU needs to send only two values, 𝜆 and 𝜏, to the OBUs 
in each CCH interval, a somewhat simpler solution can be 
found by sending two separate values of 𝜏. Instead of changing 
𝜏 based on the most recent cooperative decision, separate upper 
and lower thresholds based on 𝜏$ and 𝜏Ui respectively can be 
defined: 

𝐷6 =
0										𝑋6 < λ/𝜏Ui		

			ND				λ/𝜏Ui < 𝑋6 < λ𝜏$	
1												𝑋6 > λ𝜏$		

.                 (25) 

 
In this case, the two thresholds can change independently of 

each other, making it an independent-threshold DTH (IT-DTH). 
This will require more CCH bandwidth, but should make the 
system much more robust, as it will never have to transition 
between 𝜏$ and 𝜏U. 

IV. RESULTS AND DISCUSSION 
To test the validity of the equations and models developed 

and to compare their performance, simulations were run in 
MATLAB. Unless stated otherwise, the parameters used were 
as shown in Table I.  

 
DET-DTH, DEC-DTH and IT-DTH methods were compared 
using a non-timing model, and a timing model. 

A. Static Model 
Firstly, a model was built that simulated the system without 

considering how the PU would change with time or how the 
sensing system would react to this. This provided the 
opportunity to test how the theoretical, probability-based 

TABLE I 
PARAMETERS USED IN SIMULATIONS 

Parameter Notation Value 

Sensing Duration 𝑇# 50ms 
Data Duration 𝑇$  50ms 

T1 Expected Value 𝑇1}  2000ms 
T0 Expected Value 𝑇/}  2000ms 
SNR 𝛾 -1dB 
Required Probability of PU Detection 𝑄$,XYZ  0.99 
Required Probability of PU False Alarm 𝑄U,XYZ  0.1 
Number of Vehicles 𝑁 100 
Probability of Primary User Presence 𝑃0 0.5 
Number of Samples 𝑀 500 
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equations compared to simulated ones. A Monte-Carlo 
simulation with 1000 iterations was used to generate the 
simulated results. 

DET-DTH, DEC-DTH using 𝜏U1 and DEC-DTH using 𝜏UD 
were tested. A distinction between DEC-DTH and IT-DTH 
cannot be made in these simulations, as they do not consider 
time; both are modelled as DEC-DTH. The results can be seen 
in Fig. 5, where the probability of detection has been omitted as 
it is the same for every case, reaching 0.99 when 5 or more 
vehicles enter the environment. The simulation results closely 
follow the theoretical predictions.  

The DET-DTH method performs well in vehicle-dense 
environments, with a low overhead (see Fig. 5-b) and adequate 
𝑄U after 20 vehicles enter the environment (see Fig. 5-a). 
Nevertheless, this method is not viable in this environment with 
fewer than 20 vehicles, as, although 𝑄$,XYZ is met after 5 
vehicles, 𝑄U,XYZ is too high until 20 vehicles are present. This 
may not be a problem if spectrum sensing is not required below 
this number of vehicles, due to low traffic making the CR-
spectrum unneeded. 

	

(a) 

	

(b) 

Fig 5.  Comparison of three DTH methods with increasing number of vehicles 

The next method, using DEC-DTH with 𝜏U1 (calculated by 
reversing the equation for the probability of false alarm) holds 
𝑄U at approximately 0.1, independently of how many vehicles 
are present. However, the simulation results show that the true 
value may stray from this, and 𝑄U can reach values up to 0.15. 
To compensate for this, 𝑄U,XYZ could be set to 0.05 rather than 
0.1, which would decrease the likelihood of 𝑄$ reaching higher 
than 0.1. 

As Fig. 5-a also shows, using DEC-DTH with 𝜏UD 
determining the thresholds makes it possible to keep the 

average false alarm probability below 𝑄U,XYZ for almost any 
number of vehicles. Fig. 5-b shows that the average percentage 
of vehicles required to report sensing data decreases as the total 
number of vehicles increases, and is lowest for the DEC-DTH 
method using 𝜏UD, making this the method of choice for keeping 
𝑘 and 𝑄U	low while simultaneously keeping 𝑄$ high. This result 
can be explained by considering that, whenever the PU is absent 
(in this simulation this is in 50% of cases), 𝜏UD, which is nearly 
always larger than 𝜏U1 and 𝜏$, is used to limit the number of 
vehicles reporting.  

Comparing the proposed methods and considering overhead 
and PU detection accuracy,  DEC-DTH with 𝜏UD seems the best 
choice for dense vehicular environments. DET-DTH performs 
better than DEC-DTH with 𝜏U1 for environments with more 
than 20 vehicles. However, a benefit of the DEC-DTH method 
with 𝜏U1 is that, by changing the value of 𝑄U,XYZ entered into the 
equation for 𝜏U1, the user has greater control over where they 
want the false alarm probability to lie, as its value is almost 
constant for any number of vehicles in the environment, even 
for low numbers. This could be beneficial if a stable, predictable 
system is required. As the main aim of the paper is to keep 
overhead low, DEC-DTH using 𝜏U1 will not be considered 
further. 

Although the equations and models made were set up to react 
to changes in environment such as number of vehicles and PU-
signal power, they did not consider the transition of the PU from 
present to absent, or vice versa. This was therefore explored in 
a timing model. 

B. Timing Model 
For the next stage of simulations, the MATLAB simulation 

environment was extended to implement the timing 
specifications outlined in the system model (see Section III-A). 
Values of 𝑁 and 𝛾 of 100 and -1 dB were chosen, respectively, 
and kept constant for the sake of clarity. The simulation was run 
for 1 minute. 

Three proposed methods – DET-DTH, DEC-DTH using 
𝜏UD(𝑡), and IT-DTH using 𝜏UD – were simulated. Fig. 6 shows 
how each DTH behaved. Only the test statistics (which 
represent the predicted received PU signal strength for the 100 
vehicles at each time interval) that lie above threshold 1 and 
below threshold 2 in the graphs can determine the final decision 
of the PU presence. 

 Table II shows the data gathered at the end of the simulations 
for each method. 

 

TABLE II 
TIMING SIMULATION RESULTS 

DTH Method Average 𝑄$  Average 𝑄U  Average 𝑘 
(out of 𝑁 = 100) 

DET 0.9895 0.028 16.696 
DEC using 𝝉𝒇𝟐(𝒕) 0.982 0.015 12.160 
IT using 𝝉𝒇𝟐 0.997 0.016 7.105 
 
The DET-DTH results, seen in Table II, match what is 

expected from the time-invariant model. This is because the 
number of vehicles is above 20, and its value of 𝜏 is independent 
of the state of the PU, resulting in time-constant thresholds, as 
seen in Fig. 6-a.  
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Conversely, the threshold values of DEC-DTH using 𝜏UD(𝑡), 
can be seen in Fig. 6-b to be time-varying, changing with the 
PU’s state. Table II shows a low 𝑘 for this method, which can 
be explained by considering the figure, where it is possible to 
see the wider 𝜏UD(𝑡) threshold trapping more vehicles within the 
thresholds than in the DET-DTH case. The high detection 
probability is due to 𝜏UD(𝑡) becoming closer to 𝜏$ with time, 
making the system more prepared to detect the return of the PU. 
A problem with this method arises when a spurious reading, for 
example if none of the PU’s signals are as high as expected, 
occurs. This will cause the system to believe the PU is absent, 
reset the timer and change the thresholds accordingly, making 
it even more difficult to realize the mistake, and causing 
misinterpretations to go unfixed for longer. However, this 
method is appealing because of the very low number of 
transmitters required and the low probability of false alarm. 

 

 

(a) 

 

(b) 

 

(c) 

  
Fig. 6.  Timing model for (a) DET-DTH (b) DEC-DTH using 𝜏UD(𝑡) and (c) 

IT-DTH using 𝜏UD 

The best performing method, however, was the IT-DTH. By 
utilizing two independent thresholds, it out-performed the other 
methods, tailoring its upper threshold, above which the PU 
signal is likely to lie, to provide a probability of detection 
greater than 0.99, and the lower threshold to let through the 
lowest number of detected noise test statistics as possible, 
without blocking all vehicles from transmitting. This results in 
non-time-variant threshold values, like in DET-DTH, as seen in 
Fig. 6-c. Although the difference between DET-DTH and IT-
DTH may seem subtle when comparing Fig. 6-a and Fig. 6-b, 
Table II shows that, on average, over double the number of 
vehicles transmit in DET-DTH compared to IT-DTH. 

To fully test the two highest performing systems - the DEC-
DTH with 𝜏UD(𝑡) and IT-DTH with 𝜏UD - simulations were run 
with time-variable 𝑁 and 𝛾. Table III shows the results. 

 
TABLE III 

SECOND TIMING SIMULATION RESULTS 

Model DTH Method Average 
𝑄$  

Average 
𝑄U  

Average 
𝑘 

Increasing 
𝑁 

DEC using 𝜏UD(𝑡) 0.982 0.004 16.639 
IT using 𝜏UD 0.996 0.019 11.205 

Increasing 
𝛾 

DEC using 𝜏UD(𝑡) 0.988 0.123 13.429 
IT using 𝜏UD  1.000 0.000 6.731 

 
Row one of Table III shows the results of both systems when 

10 vehicles were added every second, starting with 1 and ending 
with 601. Both performed well, showing that they can react well 
to changing 𝑁. However, in terms of 𝑘 and 𝑄$, IT-DTH 
performed better. 
𝛾 was then increased from 0.1 to 0.31. Fig. 7 and row two of 

Table III show the results. 
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(a) 
 

	

(b) 
 

Fig. 7.  Increasing 𝛾 for (a) DEC-DTH using 𝜏UD(𝑡) and (b) IT-DTH using 𝜏UD 

As can be seen in Fig. 7-a, DEC-DTH begins to break down 
at large 𝛾; because the noise signal does not change with 𝛾, 
while the PU-signal strength increases as 𝛾 increases, the 
difference between 𝜏UD(𝑡) and 𝜏$ is too great for large 𝛾. 
Although the detection probability remains high, the false alarm 
probability suffers, as seen in the results, where the average 𝑄U 
is above the threshold. However, the IT-DTH system, seen in 
Fig. 7-b, performs very well, as the independent upper threshold 
can follow the PU signal and the lower threshold can follow the 
noise signal (constant in this case), resulting in a very promising 
performance, with, in this simulation, perfect 𝑄$ and 𝑄U, and 
very low 𝑘. 

Although the IT-DTH method yields better results in terms 
of both detection accuracy and the restriction of vehicle-to-RSU 
transmission, it calls for more information to be sent through 
the CCH from the RSU to the OBU, as both 𝜏UD and 𝜏$ must be 
sent in every 𝑇$ interval. However, its model requires no 
memory, whereas the timing mechanism in the DEC-DTH 
requires at least a counter, and knowledge of the PU expected 
on and off time. Which method is preferable between these two 
would depend on the computational abilities of the RSU and 
OBUs, and how much the additional 𝜏 needed for the IT-DTH 
adds to network contention. 

Comparing the three proposed methods, DET-DTH would 
work best in a situation where it is most important that no PU 
interference occurs, and there are over 20 vehicles present. The 
benefits are that it is a very simple model that requires few 
calculations, so would be easy to implement. DEC-DTH, 
comparatively, would be useful when the number of vehicles is 

lower than 20, although the complexity would be increased. 
However, the IT-DTH method out-performs all other methods 
in terms of detection probability and probability of false alarm 
and will work in an environment with any number of vehicles. 

Further work should be done to implement these methods 
outside of simulations in field tests. For example, 𝑁 mobile 
software-defined radios simulating vehicles and one software-
defined radio acting as a RSU could be set up, controlled by 
software using the proposed thresholds and timing models. This 
could then ideally be extended so that the radios and software 
were integrated into vehicles. Unfortunately, this was not 
possible for this paper due to lack of time and resources, as the 
author graduated university recently after completing this work. 

V. CONCLUSION 
Various solutions have been proposed to solve a problem that 

could become very important as spectrum scarcity in vehicular 
environments increases. Three promising cooperative double-
threshold methods have been developed, which can adjust to 
considerable environmental changes while maintaining a high 
sensing standard. These methods would have the most impact 
in densely populated networks and could be very beneficial in 
saving bandwidth in already-saturated networks. 
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