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Abstract

Mean residual life is a useful dynamic characteristic to study reliability of a
system. It has been widely considered in the literature not only for single unit
systems but also for coherent systems. This paper is concerned with the study
of mean residual life for a coherent system that consists of multiple types of
dependent components. In particular, the survival signature based generalized
mixture representation is obtained for the survival function of a coherent system
and it is used to evaluate the mean residual life function. Furthermore, two
mean residual life functions under di¤erent conditional events on components�
lifetimes are also de�ned and studied.
Key words. Dependence; Mean residual life; Minimal survival signature;

Reliability; Survival signature

1 Introduction

The study of mean residual life of a coherent system has attracted a great deal
of attention in reliability theory. Consider a system with components which has two
possible states; �(x1; :::; xn) = 1 if the system is functioning and �(x1; :::; xn) = 0 if the
system has failed, where xi = 1 if the ith component is functioning and xi = 0 if the
ith component has failed. The function �(x1; :::; xn) is called the structure function.
A system with structure function �(x1; :::; xn) is coherent if it is nondecreasing in
each argument, and each component i is relevant to the performance of the system,
i.e. �(x1; :::; xi�1; 0; xi+1; :::; xn) = 0 and �(x1; :::; xi�1; 1; xi+1; :::; xn) = 1 for some
states x1; :::; xi�1; xi+1; :::; xn of other components 1; 2; :::; i � 1; i + 1; :::; n. Besides
the classical de�nition of the mean residual life, di¤erent mean residual life functions
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have been de�ned and studied in the literature for a coherent system. For a coherent
system with lifetime T and components�lifetimes T1; :::; Tn; the usual mean residual
life is de�ned by E(T � t j T > t): Navarro and Hernandez (2008) studied the
mean residual life function of a system whose reliability function can be written as a
generalized mixture. The mean residual life of a coherent system has also been studied
under di¤erent conditional events, e.g. when all components are functioning at time t.
The latter mean residual life can be de�ned as E(T � t j T1:n > t); where Tr:n denotes
the rth smallest lifetime among T1; :::; Tn (Asadi and Bayramoglu (2006)). See also
Navarro (2016) and Navarro and Durante (2017) for some recent results on the mean
residual functions E(T � t j T > t) and E(T � t j T1:n > t). Asadi and Goliforushani
(2008) studied the mean residual life of a system consisting of n components having
the property that if it is known that at most r components (r < n) have failed, the
system is still operating with probability 1, i.e. E(T � t j Tr:n > t). The concept
of signature (see, e.g. Samaniego (2007)) has been used to evaluate the latter mean
residual life functions.
For a coherent system that consists of exchangeable components, the survival

function can be written as

P fT > tg =
nX
i=1

�iP fT1:i > tg ; (1)

where the vector of coe¢ cients (�1; :::; �n) satisfying
Pn

i=1 �i = 1 is called minimal
signature and only depends on the structure of the system (Navarro et al. (2007)).
The equation (1) is a generalized mixture representation for the survival function of a
coherent system that consists of a single type of components. With a single type, we
mean that all components within the system have a common failure time distribution.
The mixture representation given by (1) is useful to study limiting behavior of the
mean residual life function E(T � t j T > t) (Navarro and Eryilmaz (2007), Navarro
and Hernandez (2008)).
Another well-known representation for the survival function of a coherent system

that consists of single type of components is given by

P fT > tg =
nX
l=0

�(l)P fC(t) = lg ;

where C(t) is the number of working components at time t; and �(l) is the survival
signature de�ned by

�(l) =
rn(l)�
n

l

� ;
where rn(l) denotes the number of path sets of size l (Coolen and Coolen-Maturi
(2012)). A path set is a set of components whose simultaneous functioning ensures
the functioning of the system.
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In this paper, we study mean residual life functions E(T � t j T > t), E(T � t j
T > t; Tr:n > t) and E(T � t j T > t; T (1)r1:n1 > t; :::; T

(K)
rK :nK > t) for a coherent system

which is composed of K � 2 types of dependent components, where T (i)r:ni denotes the
rth smallest among the failure times of ni components of type i; i = 1; :::; K. Under
this general setup, the random failure times of components of the same type are
exchangeable and dependent and the random failure times of components of di¤erent
types are dependent. The concept of survival signature has been found to be very
useful to study reliability properties of such systems (see, e.g. Coolen and Coolen-
Maturi (2012), Samaniego and Navarro (2016)). By utilizing the concept of the
survival signature, we obtain a generalized mixture representation for the survival
function of a coherent system that consists of K types of dependent components.
The obtained mixture representation generalizes the representation given by (1) and
is used to study the limiting behavior of E(T � t j T > t). The survival signature
based representations for E(T � t j T > t; Tr:n > t) and E(T � t j T > t; T

(1)
r1:n1 >

t; :::; T
(K)
rK :nK > t) are also obtained.

Sadegh (2011) extended the results of Asadi and Goliforushani (2008) when the
lifetimes of the system components are independent random variables but not neces-
sarily identically distributed and when the joint distribution of the component life-
times is exchangeable. Zhang and Meeker (2013) obtained mixture representations of
the reliability functions of the residual life and inactivity time of a coherent system
with n independent and identically distributed components, given that before time
t1, exactly r (r < n) components have failed and at time t2, the system is either still
working or has failed. Some recent discussions on the mean residual life of systems can
be found in Navarro and Gomis (2016), Bayramoglu and Ozkut (2016), Bayramoglu
Kavlak (2017).
The paper is organized as follows. In Section 2, we obtain a generalized mixture

representation for the survival function of a coherent system consisting of multiple
types of dependent component. Section 3 is devoted to study di¤erent mean residual
life functions.

2 Minimal survival signature

Consider a coherent system with K � 2 types of n components. Let ni denote the
number of components of type i, i = 1; 2; :::; K; where n =

PK
i=1 ni. It is assumed

that the random failure times of components of the same type are exchangeable and
dependent, and that the random failure times of components of di¤erent type are
dependent. Without loss of generality, the assumption on components�lifetimes can
be written as

(T1; :::; Tn)
d
= (T�(1); :::; T�(n));

for any permutation � such that �(i) 2 f1; :::; n1g for all i 2 f1; :::; n1g ; �(i) 2
fn1 + 1; :::; n1 + n2g for all i 2 fn1 + 1; :::; n1 + n2g ; and so on, where

d
= denotes

3



equality in distribution. It should be pointed out that this is a quite strong assump-
tion.
If Ci(t) denotes the number of components of type i working at time t, then the

survival function of the system can be written as

P fT > tg =
n1X
l1=0

� � �
nKX
lK=0

�(l1; :::; lK)P fC1(t) = l1; :::; CK(t) = lKg ; (2)

where �(l1; :::; lK) represents the survival signature and is de�ned by

�(l1; :::; lK) =
rn1;:::;nK (l1; :::; lK)�
n1
l1

�
:::

�
nK
lK

� ; (3)

(Coolen and Coolen-Maturi (2012, 2015)). In (2), rn1;:::;nK (l1; :::; lK) denotes the num-
ber of path sets of the system including exactly l1 components of type 1, ..., exactly
lK components of type K. The computation of survival signature is a challenging
problem. Reed (2017) proposed an e¢ cient algorithm to compute survival signature
of a system. Patelli et al. (2017) presented a simulation method for system reliability
using the survival signature.
Let T (i)j denote the failure time of the jth component of type i; i = 1; 2; :::; K.

Then from Theorem 1 of Eryilmaz (2017), the joint distribution of C1(t); :::; CK(t)
can be written as

P fC1(t) = l1; :::; CK(t) = lKg =
�
n1
l1

�
:::

�
nK
lK

�
Sn1;:::;nK (t; l1; :::; lK); (4)

where

Sn1;:::;nK (t; l1; :::; lK) =

n1�l1X
i1=0

� � �
nK�lKX
iK=0

(�1)i1+:::+iK
�
n1 � l1
i1

�
:::

�
nK � lK
iK

�
�

P
n
T
(1)
1 > t; :::; T

(1)
l1+i1

> t; :::; T
(K)
1 > t; :::; T

(K)
lK+iK

> t
o
:(5)

We �rst obtain the following generalized mixture representation for the survival
function of a coherent system which will be useful in the sequel.

Theorem 1 The survival function of a coherent system consisting of ni components
of type i, i = 1; 2; :::; K can be written as

P fT > tg =
n1X

m1=0

� � �
nKX

mK=0

��(m1; :::;mK)P
n
min(T

(1)
1:m1

; :::; T
(K)
1:mK

) > t
o
; (6)
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where T (i)1:mi
= min(T

(i)
1 ; :::; T

(i)
mi ); i = 1; :::; K; and

��(m1; :::;mK) =

m1X
l1=0

� � �
mKX
lK=0

(�1)m1�l1+:::+mK�lK
�
n1
l1

�
:::

�
nK
lK

�
�
�
n1 � l1
m1 � l1

�
:::

�
nK � lK
mK � lK

�
�(l1; :::; lK); (7)

and for convenience P
n
T
(i)
1:0 > t

o
= 1:

Proof Let

�l1+i1;:::lK+iK = P
n
T
(1)
1 > t; :::; T

(1)
l1+i1

> t; :::; T
(K)
1 > t; :::; T

(K)
lK+iK

> t
o
;

then from (2), (4) and (5) we have

P fT > tg =
n1X
l1=0

� � �
nKX
lK=0

�(l1; :::; lK)

�
n1
l1

�
:::

�
nK
lK

�

�
n1�l1X
i1=0

� � �
nK�lKX
iK=0

(�1)i1+:::+iK
�
n1 � l1
i1

�
:::

�
nK � lK
iK

�
�l1+i1;:::iK+iK

=

n1X
l1=0

� � �
nKX
lK=0

�(l1; :::; lK)

�
n1
l1

�
:::

�
nK
lK

�

�
n1X

m1=l1

� � �
nKX

mK=lK

(�1)m1�l1+:::+mK�lK
�
n1 � l1
m1 � l1

�
:::

�
nK � lK
mK � lK

�
�m1;:::mK

=

n1X
m1=0

� � �
nKX

mK=0

m1X
l1=0

� � �
mKX
lK=0

(�1)m1�l1+:::+mK�lK
�
n1
l1

�
:::

�
nK
lK

�

�
�
n1 � l1
m1 � l1

�
:::

�
nK � lK
mK � lK

�
�(l1; :::; lK)�m1;:::mK

=

n1X
m1=0

� � �
nKX

mK=0

��(m1; :::;mK)�m1;:::mK

=

n1X
m1=0

� � �
nKX

mK=0

��(m1; :::;mK)P
n
T
(1)
1 > t; :::; T (1)m1

> t; :::; T
(K)
1 > t; :::; T (K)mK

> t
o

=

n1X
m1=0

� � �
nKX

mK=0

��(m1; :::;mK)P
n
T
(1)
1:m1

> t; :::; T
(K)
1:mK

> t
o
;
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where

��(m1; :::;mK) =

m1X
l1=0

� � �
mKX
lK=0

(�1)m1�l1+:::+mK�lK
�
n1
l1

�
:::

�
nK
lK

�
�
�
n1 � l1
m1 � l1

�
:::

�
nK � lK
mK � lK

�
�(l1; :::; lK):�

Clearly, the coe¢ cients ��(m1; :::;mK) in (6) satisfy

n1X
m1=0

� � �
nKX

mK=0

��(m1; :::;mK) = 1;

but they may take negative values. Therefore equation (5) is a generalized mixture
of series systems. Similar to systems with a single type of components, we will call
the ��(m1; :::;mK) minimal survival signature of the system that consists of multiple
types of components.

Corollary 1 If the system consists of independent components such that the com-
mon failure time distribution of type i components is Fi(t); i = 1; 2; :::; K, then

P fT > tg =
n1X

m1=0

� � �
nKX

mK=0

��(m1; :::;mK) �F
m1
1 (t)::: �FmK

K (t):� (8)

The generalized distorted distribution corresponding to n distribution functions
G1; G2; :::; Gn is represented as

FQ(t) = Q(G1(t); :::; Gn(t));

where the increasing continuous function Q : [0; 1]n ! [0; 1] is called multivariate
distortion function and satis�es Q(0; :::; 0) = 0 and Q(1; :::; 1) = 1. For the survival
function we have

�FQ(t) = �Q( �G1(t); :::; �Gn(t));

where �Q(u1; :::; un) = 1 � Q(1 � u1; :::; 1 � un) is called multivariate dual distortion
function. The function �Q is also a multivariate distortion function and it satis�es the
same properties as Q (Navarro et al. (2016)).

Proposition 1 Let Ĉ be a survival copula corresponding to T (1)1 ; :::; T
(1)
n1 ; :::; T

(K)
1 ; :::; T

(K)
nK ;

i.e.

P
n
T
(1)
1 > t

(1)
1 ; :::; T

(1)
n1
> t(1)n1 ; :::; T

(K)
1 > t

(K)
1 ; :::; T (K)nK

> t(K)nK

o
= Ĉ( �F1(t

(1)
1 ); :::; �F1(t

(1)
n1
); :::; �FK(t

(K)
1 ); :::; �FK(t

(K)
nK
)):
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Then the lifetime TS of a coherent system that consists of K types of dependent
components has a generalized distorted distribution whose survival function is

P fT > tg = �Q( �F1(t); :::; �FK(t)); (9)

where the multivariate distortion function is given by

�Q(u1; :::; uK) =

n1X
m1=0

� � �
nKX

mK=0

��(m1; :::;mK)

�Ĉ(u1; :::; u1| {z }
m1

; 1; :::; 1| {z }
n1�m1

; :::; uK ; :::; uK| {z }
mK

; 1; :::; 1| {z }
nK�mK

): (10)

Proof The proof is immediate from (6) since

P
n
min(T

(1)
1:m1

; :::; T
(K)
1:mK

) > t
o

= P
n
T
(1)
1 > t; :::; T (1)m1

> t; :::; T
(K)
1 > t; :::; T (K)mK

> t
o

= Ĉ( �F1(t); :::; �F1(t)| {z }
m1

; 1; :::; 1| {z }
n1�m1

; :::; �FK(t); :::; �FK(t)| {z }
mK

; 1; :::; 1| {z }
nK�mK

):�

Although Navarro et al. (2016) have represented the system�s lifetime distribution
as a generalized distorted distribution when components� lifetimes are dependent,
their representation was implicit. In particular, they noted that

P fT > tg = H( �F1(t); :::; �Fn(t));

where H = �Q is a function which depends on the minimal path sets of the coherent
system structure and on the survival copula Ĉ (see also Navarro et al. (2017), Miziula
and Navarro (2017)). Our representation given by (9)-(10) is explicit as a function
of the survival signature which fully characterizes the system structure and can be
computed through equation (3). As a direct consequence of Proposition 1, for a
coherent system that consists of independent components such that the common
failure time distribution of type i components is Fi(t); i = 1; 2; :::; K; we have

�Q(u1; :::; uK) =

n1X
m1=0

� � �
nKX

mK=0

��(m1; :::;mK)u
m1
1 :::u

mK
K :

In the special case, if the system consists of single type of independent components,
then

�Q(u) =

nX
m=0

��(m)u
m

which has been called domination function by Navarro and Spizzichino (2015).
It should be noted that (10) can be used jointly with the results in Navarro et al.

(2016) to compare di¤erent systems.
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Example 1 Consider the system in Figure 1 which has been considered in Feng et
al. (2016). The system has six components with K = 2 types with n1 = 3 and
n2 = 3: Type 1 and type 2 components are represented respectively by blank
and black boxes. Table 1 displays the minimal survival signature of the system.
Note that the minimal survival signature is computed using the relation (7) and
the survival signature of the system presented in Table 1 of Feng et al. (2016).

Figure 1. System with two types of components

Using the entries in Table 1 and the equation (5), the survival function of the system
can be represented as

P fT > tg
= P

n
T
(1)
1:1 > t; T

(2)
1:2 > t

o
+ 2P

n
T
(1)
1:2 > t; T

(2)
1:2 > t

o
� 2P

n
T
(1)
1:2 > t; T

(2)
1:3 > t

o
+P

n
T
(1)
1:3 > t

o
� 3P

n
T
(1)
1:3 > t; T

(2)
1:2 > t

o
+ 2P

n
T
(1)
1:3 > t; T

(2)
1:3 > t

o
: (11)

Using survival copula, the survival function can be represented as

P fT > tg = �Q( �F1(t); �F2(t));

where the distortion function is given by

�Q(u1; u2) = Ĉ(u1; u2; u2) + 2Ĉ(u1; u1; u2; u2)� 2Ĉ(u1; u1; u2; u2; u2) + Ĉ(u1; u1; u1)
�3Ĉ(u1; u1; u1; u2; u2) + 2Ĉ(u1; u1; u1; u2; u2; u2):

If the components are independent, then the distortion function becomes

�Q(u1; u2) = u1u
2
2 + 2u

2
1u
2
2 � 2u21u32 + u31 � 3u31u22 + 2u31u32:
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m1 m2 ��(m1;m2) m1 m2 ��(m1;m2)
0 0 0 2 0 0
0 1 0 2 1 0
0 2 0 2 2 2
0 3 0 2 3 -2
1 0 0 3 0 1
1 1 0 3 1 0
1 2 1 3 2 -3
1 3 0 3 3 2

Table 1. Minimal survival signature of the system in Figure 1

3 Mean residual life functions

Using Theorem 1, the MRL of the system that consists of multiple types of compo-
nents can be computed from

m(t) = E(T � t j T > t)

=

n1X
m1=0

� � �
nKX

mK=0

��(m1; :::;mK)
1R
0

P
n
T
(1)
1:m1

> t+ x; :::; T
(K)
1:mK

> t+ x
o
dx

n1X
m1=0

� � �
nKX

mK=0

��(m1; :::;mK)P
n
T
(1)
1:m1

> t; :::; T
(K)
1:mK

> t
o :(12)

The following result of Navarro and Hernandez (2008) is useful to examine the limiting
behavior of the MRL function.

Theorem 2 (Navarro and Hernandez (2008)) Let S be a survival function such that

S(t) =
nX
i=1

!iSi(t);

for all t � 0, where S1(t); :::; Sn(t) are survival functions, and !1; :::; !n are real
numbers such that

Pn
i=1 !i = 1: Let mi(t) be MRL function corresponding to

Si(t); i = 1; :::; n; i.e. mi(t) = (Si(t))
�1R1

t
Si(u)du: If

lim
t!1

inf
m1(t)

mi(t)
> 1; lim

t!1
sup

m1(t)

mi(t)
<1;

for i = 2; 3; :::; n, then the MRL function m of S satis�es

lim
t!1

m(t)

m1(t)
= 1:�

9



Because Theorem 1 presents a generalized mixture representation for a coher-
ent system that consists of multiple types of dependent components, Theorem 2
enables us to investigate the limiting behavior of the MRL function for such sys-
tems. Application of Theorem 2 needs a multivariate distribution or survival function
for modeling lifetimes of components. Suppose that the joint survival function of
T
(1)
1 ; :::; T

(1)
n1 ; :::; T

(K)
1 ; :::; T

(K)
nK is given by

P
n
T
(1)
1 > t

(1)
1 ; :::; T

(1)
n1
> t(1)n1 ; :::; T

(K)
1 > t

(K)
1 ; :::; T (K)nK

> t(K)nK

o
=

"
1 + �1

n1X
i=1

t
(1)
i + :::+ �K

nKX
i=1

t
(K)
i

#��
; (13)

for t(j)i � 0, i = 1; :::; nj; j = 1; :::; K; �i > 0; � > 0. It should be noted that the
survival copula corresponding to (13) is

Ĉ(u1; u2; :::; un) =
h
u
� 1
�

1 + u
� 1
�

2 + :::+ u
� 1
�

n � (n� 1)
i��

;

and

P
n
T
(1)
1 > t

(1)
1 ; :::; T

(1)
n1
> t(1)n1 ; :::; T

(K)
1 > t

(K)
1 ; :::; T (K)nK

> t(K)nK

o
= Ĉ( �F1(t); :::; �F1(t)| {z }

n1

; :::; �FK(t); :::; �FK(t)| {z }
nK

);

with �Fi(t) = (1 + �it)��; i = 1; 2; :::; K.
In the following, we present the limiting behavior of (12) for the model (13).

Proposition 2 For the multivariate Pareto model given by (13), letC = f(i1; :::; iK) :
i1 + :::+ iK < j1 + :::+ jK and ��(i1; :::; iK) > 0 for all j1 = 0; 1; :::; n1; :::; jK =
0; 1; :::; nKg : If

v1�1 + :::+ vK�K � i1�1 + :::+ iK�K ; (14)

for all (i1; :::; iK) 2 C; then

lim
t!1

m(t)

1
��1

h
t+ 1

v1�1+:::+vK�K

i = 1: (15)

Proof The MRL corresponding to min(T (1)1:i1
; :::; T

(K)
1:iK
) is

1

P
n
T
(1)
1:i1
> t; :::; T

(K)
1:iK

> t
o 1Z
0

P
n
T
(1)
1:i1
> t+ x; :::; T

(K)
1:iK

> t+ x
o
dx

=
1

[1 + �1i1t+ :::+ �KiKt]
��

1Z
0

[1 + �1i1(t+ x) + :::+ �KiK(t+ x)]
�� dx

=
1

�� 1

�
t+

1

�1i1 + :::+ �KiK

�
;
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for � > 1: For (v1; :::; vK) 2 C satisfying (14), the conditions in Theorem 2 hold
true for the MRL of min(T (1)1:v1

; :::; T
(K)
1:vK

). Thus the proof is complete.�

Example 2 For the system in Figure 1, let

P
n
T
(1)
1 > t

(1)
1 ; T

(1)
2 > t

(1)
2 ; T

(1)
3 > t

(1)
3 ; T

(2)
1 > t

(2)
1 ; T

(2)
2 > t

(2)
2 ; T

(2)
3 > t

(2)
3

o
=

"
1 + �1

3X
i=1

t
(1)
i + �2

3X
i=1

t
(2)
i

#��
:

From Table 1, it is easy to see that C = f(1; 2); (3; 0)g. Thus from Proposition
2, if �1 � �2; then

lim
t!1

m(t)

1
��1

h
t+ 1

�1+2�2

i = 1;
and if �2 � �1; then

lim
t!1

m(t)

1
��1

h
t+ 1

3�1

i = 1:�
It should be noted here that the limiting result in (15) depends on determination

of the coe¢ cients v1; :::; vK de�ned by (14). As it is clear from Example 2, these
coe¢ cients heavily depend on the relation between the parameters �1 and �2:
Consider a coherent system that has the property that if at most r components

(r < n) have failed, the system is still operating with probability 1. Then, the con-
ditional expected value E(T � t j Tr:n > t) represents the mean residual lifetime
function of a coherent system given that at least n� r+1 components of the system
are working at time t (Asadi and Bayramoglu (2006), Sadegh (2011)). For a coher-
ent system that consists of multiple types of components, de�ne the following mean
residual life.

E(T � t j T > t; Tr:n > t) =
1Z
0

P fT > t+ x j T > t; Tr:n > tg dx: (16)

For a coherent system consisting of K � 2 types of components, it is easy to see
that

P fT > t; Tr:n > tg
=

X
� � �
X

l1+:::+lK�n�r+1

�(l1; :::; lK)P fC1(t) = l1; :::; CK(t) = lKg

=
X

� � �
X

l1+:::+lK�n�r+1

�(l1; :::; lK)

�
n1
l1

�
:::

�
nK
lK

�
Sn1;:::;nK (t; l1; :::; lK); (17)

where Sn1;:::;nK (t; l1; :::; lK) is given by (5). In the following Theorem, we present the
conditional survival function of T given fT > t; Tr:n > tg.
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Theorem 3 For a coherent system consisting of ni components of type i, i =
1; 2; :::; K,

P fT > s j T > t; Tr:n > tg

=
1

P fTS > t; Tr:n > tg

n1X
l1=0

� � �
nKX
lK=0

X
� � �
X

(j1;:::;jK)2U

�(l1; :::; lK)N(j1; l1; n1; :::; jK ; lK ; nK)

�P
�
n1 � j1 of T (1)s � t; j1 � l1 of T (1)s 2 (t; s] ; l1 of T (1)s > s;

:::; nK � jK of T (K)s � t; jK � lK of T (K)s 2 (t; s] ; lK of T (K)s > s
	
; (18)

where U = f(j1; :::; jK) : j1 + :::+ jK � n� r + 1; l1 � j1 � n1; :::; lK � jK � nKg,
and

N(j1; l1; n1; :::; jK ; lK ; nK) =

�
n1

n1 � j1; j1 � l1; l1

�
:::

�
nK

nK � jK ; jK � lK ; lK

�
:

Proof By conditioning on the number of working components of each type at time
t and s;

P fT > s; Tr:n > tg

=

n1X
l1=0

� � �
nKX
lK=0

X
� � �
X

(j1;:::;jK)2U

�(l1; :::; lK)

�P fC1(s) = l1; :::; CK(s) = lK ; C1(t) = j1; :::; CK(t) = jKg : (19)

Thus the proof follows noting that

P fC1(s) = l1; :::; CK(s) = lK ; C1(t) = j1; :::; CK(t) = jKg

=

�
n1

n1 � j1; j1 � l1; l1

�
:::

�
nK

nK � jK ; jK � lK ; lK

�
�P

�
n1 � j1 of T (1)s � t; j1 � l1 of T (1)s 2 (t; s] ; l1 of T (1)s > s;

:::; nK � jK of T (K)s � t; jK � lK of T (K)s 2 (t; s] ; lK of T (K)s > s
	
;

for s > t and j1 � l1; :::; jK � lK .�

In equation (19), it is quite interesting to observe that the survival signature
depends on only the number of working components of each type at time s (later time
point) and independent of j1; :::; jK which denote the number of working components
of each type at a previous time point t.

Corollary 2 If the system consists of independent components such that the com-

12



mon failure time distribution of type i components is Fi(t); i = 1; 2; :::; K, then

P fT > s j T > t; Tr:n > tg

=
1

P fT > t; Tr:n > tg

n1X
l1=0

� � �
nKX
lK=0

X
� � �
X

(j1;:::;jK)2U

�(l1; :::; lK)

�
KY
i=1

�
ni

ni � ji; ji � li; li

�
F ni�jii (t)(Fi(s)� Fi(t))ji�li(1� Fi(s))li : (20)

Corollary 3 Let r = 1 in Theorem 3. Then the conditional survival function of the
system under the condition that all components are working at time t can be
represented as

P fT > s j T1:n > tg

=
1

P
n
T
(1)
1 > t; :::; T

(1)
n1 > t; :::; T

(K)
1 > t; :::; T

(K)
nK > t

o n1X
l1=0

� � �
nKX
lK=0

�(l1; :::; lK)

�P fC1(s) = l1; :::; CK(s) = lK ; C1(t) = n1; :::; CK(t) = nKg ; (21)

for s > t:

In the following, we obtain an expression for the joint probability involved in (18)
when K = 2, i.e. the system consists of two types of components. The following
result is useful since it only involves joint survival probabilities.

Proposition 3 For a system that consists of two types of components,

P fC1(s) = l1; C2(s) = l2; C1(t) = n1; C2(t) = n2g

=

�
n1
l1

��
n2
l2

�
[p1(s; t; l1; l2)� p2(s; t; l1; l2)

�p3(s; t; l1; l2) + p4(s; t; l1; l2)] ; (22)

where for s > t;

p1(s; t; l1; l2) = P
n
T
(1)
1 > s; :::; T

(1)
l1
> s; T

(1)
l1+1

> t; :::; T (1)n1
> t

T
(2)
1 > s; :::; T

(2)
l2
> s; T

(2)
l2+1

> t; :::; T (2)n2
> t
o
; (23)

p2(s; t; l1; l2)

=

n1�l1X
i=1

(�1)i�1
�
n1 � l1
i

�
P
n
T
(1)
1 > s; :::; T

(1)
l1+i

> s; T
(1)
l1+i+1

> t; :::; T (1)n1
> t

T
(2)
1 > s; :::; T

(2)
l2
> s; T

(2)
l2+1

> t; :::; T (2)n2
> t
o
; (24)
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p3(s; t; l1; l2)

=

n2�l2X
i=1

(�1)i�1
�
n2 � l2
i

�
P
n
T
(1)
1 > s; :::; T

(1)
l1
> s; T

(1)
l1+1

> t; :::; T (1)n1
> t

T
(2)
1 > s; :::; T

(2)
l2+i

> s; T
(2)
l2+i+1

> t; :::; T (2)n2
> t
o
; (25)

p4(s; t; l1; l2)

=

n1�l1X
i=1

n2�l2X
j=1

(�1)i+j�2
�
n1 � l1
i

��
n2 � l2
j

�
P
n
T
(1)
1 > s; :::; T

(1)
l1+i

> s;

T
(1)
l1+i+1

> t; :::; T (1)n1
> t; T

(2)
1 > s; :::; T

(2)
l2+j

> s;

T
(2)
l2+j+1

> t; :::; T (2)n2
> t
o

(26)

In equations (24)-(26),
Pb

a � 0 if a > b.

Proof Clearly,

P fC1(s) = l1; C2(s) = l2; C1(t) = n1; C2(t) = n2g

=

�
n1
l1

��
n2
l2

�
P
n
T
(1)
1 > s; :::; T

(1)
l1
> s; T

(1)
l1+1

> t; :::; T (1)n1
> t

T
(1)
l1+1

� s; :::; T (1)n1
� s; T (2)1 > s; :::; T

(2)
l2
> s; T

(2)
l2+1

> t; :::; T (2)n2
> t

T
(2)
l2+1

� s; :::; T (2)n2
� s

o
:

De�ne the events

A1 �
n
T
(1)
1 > s; :::; T

(1)
l1
> s; T

(1)
l1+1

> t; :::; T (1)n1
> t
o

A2 �
n
T
(2)
1 > s; :::; T

(2)
l2
> s; T

(2)
l2+1

> t; :::; T (2)n2
> t
o

B1 �
n1[

i=l1+1

n
T
(1)
i > s

o
, B2 �

n2[
i=l2+1

n
T
(2)
i > s

o
:

Then

P fC1(s) = l1; C2(s) = l2; C1(t) = n1; C2(t) = n2g

=

�
n1
l1

��
n2
l2

�
[P (A1 \ A2)� P (A1 \ A2 \B1)

�P (A1 \ A2 \B2) + P (A1 \ A2 \B1 \B2)] :

The proof is now completed using the principle of inclusion-exclusion.�
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As it is clear from Proposition 3, to compute E(T � t j T1:n > t); it is enough to
evaluate the integration in the form

1Z
0

P
n
T
(1)
1 > t+ x; :::; T (1)a > t+ x; T

(1)
a+1 > t; :::; T

(1)
b > t;

T
(2)
1 > t+ x; :::; T (2)c > t+ x; T

(2)
c+1 > t; :::; T

(2)
d > t

o
dx:

For the multivariate Pareto model given by (13), it can be easily seen that the later
integral equals to

1Z
0

[1 + �1((t+ x)a+ (b� a)t) + �2((t+ x)c+ (d� c)t)]�� dx

=
1

�� 1
[1 + t(�1b+ �2d)]

1��

�1a+ �2c
;

for � > 1: Thus, using Proposition 3 the MRL of a coherent system when all
components are functioning at time t can be computed from

E(T � t j T1:n > t) =
1

[1 + �1n1t+ �2n2t]
��

1

(�� 1)

n1X
l1=0

n2X
l2=0

�(l1; l2)

�
�
n1
l1

��
n2
l2

�"
[1 + t(�1(n1 � l1) + �2(n2 � l2))]1��

�1l1 + �2l2

�
n1�l1X
i=1

(�1)i�1
�
n1 � l1
i

�
[1 + t(�1(n1 � l1 � i) + �2(n2 � l2))]1��

�1(l1 + i) + �2l2

�
n2�l2X
i=1

(�1)i�1
�
n2 � l2
i

�
[1 + t(�1(n1 � l1) + �2(n2 � l2 � i))]1��

�1l1 + �2(l2 + i)

n1�l1X
i=1

n2�l2X
j=1

(�1)i+j�2
�
n1 � l1
i

��
n2 � l2
j

�

� [1 + t(�1(n1 � l1 � i) + �2(n2 � l2 � j))]
1��

�1(l1 + i) + �2(l2 + j)

#
; (27)

for � > 1:
Another MRL function that may be of practical interest can be de�ned as

mr1;:::;rK (t) = E(T � t j T > t; T (1)r1:n1
> t; :::; T (K)rK :nK

> t); (28)

for 1 � ri � ni; i = 1; :::; K. The function de�ned by (28) represents the mean
residual life of the system given that at least ni � ri + 1 components of type i are
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working at time t, i = 1; :::; K: Clearly, for s > t,

P
�
T > s; T (1)r1:n1

> t; :::; T (K)rK :nK
> t
	

=

n1X
l1=0

� � �
nKX
lK=0

X
� � �
X

(j1;:::;jK)2U�
�(l1; :::; lK)

�P fC1(s) = l1; :::; CK(s) = lK ; C1(t) = j1; :::; CK(t) = jKg ; (29)

where U� = f(j1; :::; jK) : max(lm; nm � rm + 1) � jm � nm;m = 1; :::; Kg : On the
other hand,

P
�
T > t; T (1)r1:n1

> t; :::; T (K)rK :nK
> t
	

=

n1X
l1=n1�r1+1

� � �
nKX

lK=nK�rK+1

�(l1; :::; lK)P fC1(t) = l1; :::; CK(t) = lKg : (30)

The MRL function de�ned by (28) can be computed using (29) and (30) in

mr1;:::;rK (t) = E(T � t j T > t; T (1)r1:n1
> t; :::; T (K)rK :nK

> t)

=
1

P
n
T > t; T

(1)
r1:n1 > t; :::; T

(K)
rK :nK > t

o
�

1Z
0

P
�
T > t+ x; T (1)r1:n1

> t; :::; T (K)rK :nK
> t
	
dx: (31)

Equation (31) corresponds to E(T � t j T1:n > t) when r1 = ::: = rK = 1.

Example 1 (continued) In Figure 2, we plot m(t) = E(T � t j T > t) (MRL),
m1;1(t) = E(T � t j T1:n > t) (MRL1) and m2;2(t) = E(T � t j T > t; T (1)2:n1

>

t; T
(2)
2:n2

> t) (MRL2) for the system in Figure 1 under the model (13) when
�1 = 1; �2 = 2; � = 2:We have m(t) � m2;2(t) � m1;1(t) with m(0) = m2;2(0) =
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m1;1(0) = E(T ) = 0:4103:

Figure 2. MRL functions of the system in Figure 1.

4 Discussion

This paper has presented general results on survival function and mean residual life
for coherent systems, with multiple types of components, with the only assumption
that the failure times of components of the same type are exchangeable. Hence, such
components can be dependent, and also dependence of components of di¤erent types
is allowed. The use of the survival signature enabled derivation of a general expression
for the mean residual life for such scenarios, in particular through the introduction
of the minimal survival signature for such system, generalizing this concept that was
introduced by Navarro et al. (2007) for systems with a single type of components.
Main future research challenges related to this work include computational issues,
in particular for large real world systems, and the use of the mean residual life for
decision support, where one can think about aspects like maintenance but also issues
of system design.
In addition to the minimal signature, Navarro et al. (2007) also represented the

survival function of a coherent system as a generalized mixture of survival functions
of parallel systems and called the corresponding set of coe¢ cients as a maximal
signature. This concept can be generalized to the maximal survival signature along
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similar lines as the minimal survival signature presented in this paper, and may be
useful for various reliability problems, e.g. stochastic comparison of two di¤erent
systems.
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