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Abstract 8 

Natural gas pipelines are an important source of fugitive methane emissions in lifecycle greenhouse 9 

gas assessments but limited monitoring has taken place of UK pipelines to quantify fugitive 10 

emissions. This study investigated methane emissions from the UK high-pressure pipeline system 11 

(National Transmission System - NTS) for natural gas pipelines. Mobile surveys of CH4 emissions 12 

were conducted across four areas in the UK, with routes bisecting high-pressure pipelines (with a 13 

maximum operating pressure of 85 bar) and separate control routes away from the pipelines. A 14 

manual survey of soil gas measurements was also conducted along one of the high-pressure pipelines 15 

using a tunable diode laser. For the pipeline routes, there were 26 peaks above 2.1 ppmv CH4 at 0.23 16 

peaks/km, compared with 12 peaks at 0.11 peaks/km on control routes. Three distinct thermogenic 17 

emissions were identified on the basis of the isotopic signal from these elevated concentrations with a 18 

peak rate of 0.03 peaks/km. A further three thermogenic emissions on pipeline routes were associated 19 

with pipeline infrastructure. Methane fluxes from control routes were statistically significantly lower 20 

than the fluxes measured on pipeline routes, with an overall pipeline flux of 627 (241 – 1123 21 

interquartile range) tonnes CH4/km/yr. Soil gas CH4 measurements indicated a total flux of 62.6 kt 22 

CH4/yr, which equates to 2.9% of total annual greenhouse gas emissions in the UK. We recommend 23 

further monitoring of the UK natural gas pipeline network, with assessments of transmission and 24 

distribution stations, and distribution pipelines necessary. 25 
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 1.0 Introduction 28 

In the past decade, unconventional natural gas from shale deposits has been increasingly used 29 

as a source of energy, via stimulation through hydraulic fracturing. This technology has raised 30 

numerous environmental concerns, including the fugitive emission of methane (CH4) through pre-31 

production, production and transportation processes. Numerous studies have developed life-cycle 32 

emissions inventories to assess the impact that hydraulic fracturing has on greenhouse gas emissions 33 

(Balcombe et al., 2016; Burnham et al., 2012; Jiang et al., 2011). Incorporated within life-cycle 34 

assessments are transmission and distribution losses, including infrastructure such as pipelines and 35 

compressor stations that pressurize natural gas for transport along pipelines. Howarth et al. (2011) 36 

estimated fugitive emissions from the transmission, storage and distribution phase to total 1.4-3.6%. 37 

The figure of 1.4-3.6% has been disputed as too high (Burnham et al., 2012; Cathles et al., 2012) as 38 

the data used by Howarth et al. was based on Russian pipelines and was not applicable to the USA 39 

(Leliveld et al., 2005); and was based upon unaccounted for gas techniques (the difference between 40 

gas produced and sold) which are known to overestimate fugitive emissions (Burnham et al., 2012). 41 

Weber and Clavin (2012) downgraded the Howarth et al. (2011) loss rate to 0.8-2.2% for transmission 42 

only but cited the same concerns of the above studies; Stephenson et al. (2011) calculated fugitive 43 

emissions using facility-level factors for transmission pipeline from the 2009 API Compendium (API, 44 

2009) and found a loss rate for transmission pipelines of 0.066% over 1440 km transportation 45 

distance. Overall, Weber and Clavin (2012) suggested transmission losses were 1.9 (1.2-2.5) g 46 

CO2e/MJ. While life-cycle emissions inventories provide insights into fugitive emissions of CH4 47 

across the oil and gas sector, it is important to quantify losses based upon observations from 48 

monitoring data including components of the transmission and distribution system.  49 

Numerous studies have reported emissions from pipeline leaks and related infrastructure. 50 

Across the gas transport system in Russia, total transmission, storage and distribution CH4 losses were 51 
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found to be on the order of 1.4%; incorporating just the high-pressure transmission system, pipelines 52 

were estimated to contribute 999 x106 m3 CH4 yr-1, amounting to 6531 m3 km-1 yr-1 (Leliveld et al., 53 

2005). A further study of leaks from pipelines in Russia estimated 381 x106 m3 CH4 yr-1 (11.3% of 54 

total emissions) and emissions from maintenance and repairs to pipelines were estimated at 17.0% of 55 

total emissions (Lechtenbohmer et al., 2007). In the USA, leaks from distribution, transmission and 56 

gathering pipelines were estimated at 1178.1 x106 m3 CH4 yr-1, 5.7 x106 m3 CH4 yr-1 and 186.9 x106 57 

m3 CH4 yr-1 respectively (Kirchgessner et al., 1997). A bottom-up survey of CH4 sources in the 58 

Barnett shale region indicated that gathering and transmission pipelines contributed 940 and 230 kg 59 

CH4 hr-1 (Townsend-Small et al., 2015). Peischl et al. (2013) conducted a top-down atmospheric 60 

survey of CH4 emissions in Los Angeles and attributed 192 ± 54 Gg CH4 yr-1 to natural gas, while 61 

Townsend-Small et al. (2012) confirmed fossil fuels as the major source of CH4 in Los Angeles 62 

through isotopic analysis. Although Townsend-Small et al. (2012) and Peischl et al. (2013) indicated 63 

natural gas pipelines as a likely source of fossil fuel emissions, this was not confirmed through direct 64 

measurements from pipelines.  65 

Natural gas pipelines include gathering, transmission and distribution pipelines that have 66 

different functions and operate at different pressures. Gathering lines transport natural gas from the 67 

wellhead to transmission lines while transmission pipelines transport natural gas from gathering, 68 

processing and storage facilities and operate at high pressure. In the UK, gas is delivered to terminals 69 

from offshore and is transported around the UK using the National Transmission System (NTS), with 70 

23 compressor stations maintaining operating pressures of up to 85 bar (85 x 105 Pa). Distribution 71 

networks operate at lower pressure and include service pipelines that connect to customer’s meter’s or 72 

piping and mains lines that supply more than one service line. Several studies have started to quantify 73 

the scale of natural gas pipeline leaks, though the majority of research has focused on leaks in cities 74 

across the United States. Jackson et al. (2014) measured 5893 natural gas leaks, ranging from 2.5 -75 

88.6 ppmv CH4, from 2400 road km traveled in Washington, DC. Emissions from four street leaks 76 

from natural gas pipelines ranged between 9200 and 38200 L CH4/day. An average loss of 2.7% from 77 

natural gas pipelines, 2-3 times higher than the best state estimates (1.1%) was found in Boston, 78 

Massachusetts using top-down atmospheric measurements (McKain et al., 2015). Lamb et al. (2015) 79 
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measured 230 underground pipeline leaks across the USA to create emissions factors for service and 80 

mains distribution pipelines and suggested that such systems contributed 197 Gg CH4/yr (554 CH4 81 

Gg/yr, 95% upper confidence limit).  82 

The condition of pipelines is an important factor in contributing to fugitive emissions from 83 

natural gas pipelines. Although cast iron and unprotected steel pipes amounted to <10% of all pipeline 84 

length in the USA, they contributed 46% of total emissions from pipelines (Lamb et al., 2015). In a 85 

further study of fugitive emissions from cast iron mains in Boston, MA, just seven leaks were 86 

responsible for 50% of CH4 emissions measured (Hendrick et al., 2016). The estimated emissions 87 

from Lamb et al. (2015) were lower than 2011 USEPA estimates due to the effect of pipeline repairs 88 

and replacements from 1992, increasing plastic mains (+150%) while upgrading cast iron (-38%) and 89 

unprotected steel (-22%) pipes. Gallagher et al. (2015) found that cities in the USA with pipeline 90 

replacement programmes had 90% fewer leaks per mile than cities without, while comparatively few 91 

discrete natural gas pipeline leaks were detected in Los Angeles, where cast iron mains are not present 92 

(Hopkins et al., 2016). Indianapolis was estimated to have 0.08 leaks/km compared to 0.74 leaks/km 93 

in Boston, due to protected steel or plastic mains in Indianapolis and unprotected steel and cast iron 94 

mains in Boston (Lamb et al., 2016). Leaks were small in Ithaca, NY, at <0.24 leaks/km, due to only 95 

2.6% of mains being bare steel or cast iron (Chamberlain et al., 2016).  96 

In the UK, the iron mains replacement programme started in 1977 and has an aim of replacing 97 

the remaining 91 000 km of iron pipes within 30 m of buildings by 2032 (Dodds and McDowall, 98 

2013). The UK distribution networks total 280 000 km of pipeline, with 7600 km of pipes in the NTS 99 

(Dodds and McDowall, 2013). Although there has been an increasing amount of research into leaks 100 

from gas pipelines in the USA, there are a limited number of studies elsewhere. Mitchell et al. (1990) 101 

suggested that for the UK distribution system, low, medium and high leakage rates were 1.9%, 5.3% 102 

and 10.8% respectively and it was argued that leakage rates above 1.9% were more likely. When 103 

assessing fugitive emissions of CH4 from fault zones, Boothroyd et al. (2017) identified natural gas 104 

distribution pipelines as a possible source of thermogenic (-41.2‰ δ13C-CH4) CH4, of up to 10.1 105 

ppmv along non-faulted control routes. However, not much else has been done to monitor fugitive 106 

emissions from pipelines in the UK. Industry estimates (Nelson, 2003) have provided leak rates for 107 
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service and mains distribution pipelines in the UK, but these pipelines could be expected to have 108 

different leak rates and fugitive emissions of CH4 than higher pressure transmission pipelines, for 109 

which no data is currently available.  110 

Isotopic analysis of δ13C-CH4 has been used to identify natural gas sources of CH4 from 111 

pipelines and other natural gas infrastructure. Jackson et al. (2014) reported pipeline leaks across 112 

Washington, DC to have a δ13CH4 isotopic value of -38.2‰, which was statistically indistinguishable 113 

from pipeline natural gas (-39‰). Although thermogenic and biogenic CH4 have ranges of -50 to -114 

20‰ δ13C-CH4 and CH4 -110 to -50‰ δ13C-CH4 (Whiticar, 1999) respectively, the boundaries are not 115 

distinguished as factors such as oxidation and fractionation can affect δ13CH4 composition. Phillips et 116 

al (2013) reported an average δ13C-CH4 of -42.8‰ in Boston, reflecting a natural gas signature that 117 

had been altered by fractionation through transport in soil and mixing with background air. Similarly, 118 

Townsend-Small et al. (2016) noted the effect of natural background air on natural gas signatures 119 

while Arata et al. (2016) observed a mixture of natural gas and biogenic signatures in New Mexico. 120 

Thus, isotope analysis is an important tool to identify the source of CH4 emissions, though source 121 

composition can be more complex than defined thermogenic and biogenic boundaries. 122 

In this study, we investigated fugitive emissions of CH4 from the UK high-pressure NTS. 123 

Methane concentration was detected by driving along roads crossing high-pressure gas pipelines and 124 

non-pipeline control routes. Isotope analysis of δ13C-CH4 was used to identify the source of fugitive 125 

CH4 emissions. As a follow up one high-pressure gas pipeline was selected for a survey of soil gas 126 

measurements. 127 

 128 

2.0 Methodology 129 

2.1 Study areas 130 

 Four high pressure gas pipeline routes were surveyed (Figure 1) in February 2015 and June 131 

2015: the Vale of Pickering (90.7 km pipeline route, 49.8 km control route, 02/02/2015); Durham 132 

(56.7 km pipeline, 50.7 km control, 11/06/2015); Northumberland (66.3 km pipeline and 54.1 km 133 

control, 15/06/2015); and the Vale of Eden (57.7 km pipeline, 41.7 km control, 17/06/2015) – a total 134 



6 
 

of 271.4 km of pipeline and 196.3 km of control. Control surveys were undertaken on the same day in 135 

similar meteorological conditions to pipeline surveys. Control routes were surveyed to determine 136 

natural background levels of CH4 as well as emissions in the study area that were not associated with 137 

natural gas pipeline leaks, such as from biogenic sources like farming. Control routes were selected to 138 

be in areas of similar land use to the pipeline routes, but away from the NTS. On a small number of 139 

occasions, the Northumberland control route bisected the high-pressure pipeline network where road 140 

layouts meant this was unavoidable, but CH4 concentrations did not exceed 1.87 ppmv. Pipeline 141 

routes were longer than control routes due to taking circuits that traversed pipelines and returning 142 

back to cross pipelines as much as possible. Pipeline routes incorporated associated infrastructure to 143 

the high-pressure pipelines, such as gas sites where the high-pressure network transports gas to and 144 

from. Details of each section of pipeline that was bisected at least once are given in Table 1, with 145 

further details provided in the supplementary information. 146 

 147 

 148 

Figure 1. Map of study pipeline and control survey routes. Letters A – D refer to panels in Figure 3. 149 

 150 
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Table 1. High-pressure transmission pipeline network traversed during study. Year Comm = year 151 

commissioned. MOP = maximum operating pressure. 152 

Area Pipe Name 
Year 

Comm 

MOP

(Bar) 

Diameter 

(mm) 

Steel 

Grade 

Wall 

Thickness 

(mm) 

Vale of Pickering 

FM06 - Elton to 

Pickering 
1972 70 750 X60 12.7 

FM06 - Pickering to 

Burton Agnes 
1971 70 750 X60 12.7 

Durham 

FM13 - Cowpen Bewley 

to Bishop Auckland 
1997 70 1050 X60 14.27 

FM13 - Corbridge to 

Bishop Auckland 
1981 84 1050 X60 14.27 

FM13 - Bishop 

Auckland to Yafforth 
1978 75 1050 X60 14.27 

FM07 - Bishop 

Auckland to Sutton 

Howgrave 

1969 75 750 X60 12.7 

FM12  - Longtown to 

Bishop Auckland 
1976 85 900 X60 12.7 

Northumberland 

FM13 - Simprim to 

Corbridge 
1981 84 1050 X60 14.27 

FM10 - Thrunton to 

Saltwick 
1970 70 600 X52 11.91 

Vale of Eden 

FM11 - Carlisle 'A' to 

Grayrigg 
1975 85 900 X60 12.7 

FM11 - Longtown to 

Carlisle 'A' 
1975 85 900 X60 12.7 

FM15 - Plumpton Head 

to Lupton 
1984 85 900 X60 12.7 

FM15 - Longtown to 

Plumpton Head 
1984 85 900 X60 12.7 

 153 

2.2 Gas measurement and analysis 154 

Methane concentration and δ13C-CH4 were measured using a Picarro Surveyor P0021-S cavity 155 

ring-down spectrometer(Picarro Inc, Santa Clara, CA) whilst driving along pipeline and control 156 

routes. The spectrometer has a stated precision of 5 ppb + 0.05% of reading 12C and all results are 157 

expressed as per mille relative to VPDB (Vienna PeeDee Belemnite) based upon a factory supplied 158 

calibration. Sample gas was measured at a frequency of 1 Hz through a sample line attached to the 159 

roof at the back of the survey vehicle (vertical height of sampling was 1.5 m). The Picarro software 160 

mapped wind plumes and identified source areas using wind speed (between 0-60 m/s ± 2% @ 12 161 



8 
 

m/s) and wind direction (0-359° ± 3˚) data from a 2D anemometer (WindSonic, Gill Instruments, 162 

Lymington, UK) attached to the roof the survey vehicle. Measurement location was determined using 163 

a GPS A21 (Hemisphere, Scottsdale, Arizona).  164 

 The raw concentration data was downloaded from the surveyor and converted into ArcMap 165 

(version 10) point shapefiles (Boothroyd et al., 2017). Using the point shapefiles imported into 166 

ArcMap, individual pipeline and control route lengths were calculated by converting points to 167 

polylines (i.e. connecting data points into lines to create the route) and using the measure tool to 168 

calculate the length of the polyline. A total of 467.9 km were traveled along the four pipeline and 169 

control routes. The distance between a given data point and the pipeline was calculated to the nearest 170 

meter using the Near feature in the ArcGIS toolbox. For control routes, a median line (see 2.3.1) 171 

between sections of the route traveled was mapped and the distance between it and the nearest point 172 

of measurement determined so that pipeline and control routes underwent the same treatment. 173 

Elevated CH4 concentrations were identified as discrete peaks greater than the 99th percentile (2.1 174 

ppmv CH4) of all measured data. Although previous research (Boothroyd et al., 2017) used the 95th 175 

percentile to determine peak concentrations, in this study the 95th percentile was 1.94 ppmv CH4 and 176 

so the 99th percentile was chosen to better distinguish higher concentrations of CH4. 177 

Pipeline and control routes were revisited the next day after the initial survey for δ13C-CH4 178 

isotopic measurements. Areas identified as having elevated CH4 concentrations were revisited based 179 

on time constraints and allowing similar numbers of measurements between pipeline and control 180 

routes. To determine isotopic composition, real-time atmospheric measurements were conducted for 181 

ten minutes while the survey vehicle remained stationary at a given location. The isotope composition 182 

of sources was determined using Keeling plots of δ13C-CH4 against the inverse of CH4 concentration, 183 

with the intercept representing the source composition (Pataki et al., 2003). Thermogenic CH4 was 184 

interpreted to be in the range of -50 to -20‰ δ13C-CH4 and biogenic CH4 -110 to -50‰ δ13C-CH4 185 

(Whiticar, 1999), though it is noted that mixing of CH4 sources can occur within these ranges, as 186 

discussed in section 1.0. 187 

 188 
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2.3 Data analysis 189 

Data were censored relative to the wind direction, any data collected whilst the wind was in 190 

opposite half-disk (outside of 90 degrees either side of the data point) from the nearest point on the 191 

pipe or control was removed and was not considered in the analysis of variance (ANOVA) and CH4 192 

flux determination.  193 

For pipeline routes, isotopic data is presented for complete 10 minute analytical periods 194 

described above and data wind-resolved to the direction of the pipeline, wherein data in the wrong 195 

half-disk were removed. Isotopic data was also transformed into 30-second averages for the 10-196 

minute analytical period to reduce natural variation from the atmospheric sampling that reduced the 197 

quality of regression. Isotopic compositions referred to in the text are from 30-second average data 198 

unless otherwise stated. All significant raw data, 30-second average and wind corrected Keeling plots 199 

are shown in Figures S1-3, with a summary comparison and locations given in Table S1. If raw data 200 

plots were not significant, 30-second average and wind corrected plots were not created. Significance 201 

was judged at the 95% probability of the gradient of the Keeling plot being different from zero. Prior 202 

to any analysis, prolonged stationary periods (primarily when changing batteries to the Picarro 203 

Surveyor, which required the machine to be turned off for a short period followed by a warm-up 204 

period) were removed from the analysis, but periods in stationary traffic were not excluded.  205 

 206 

2.3.1 Correcting concentration for distance 207 

As there was no fixed distance from the Target (pipeline or control line), the CH4 208 

concentration would be expected to decline to ambient with distance. Consequently, any difference 209 

between Areas (Vale of Pickering, Durham, Northumberland, and Vale of Eden) or Target could be 210 

ascribed to distance away from the survey line at each point of measurement. The dynamic plume 211 

approach of Hensen and Scharff (2001) was used to control for the distance away from the survey 212 

line. A 3D Gaussian plume model was applied to the data of each pipeline or control survey, where 213 

the concentration of methane (in mg CH4/m3) above the ambient methane concentration (typically 1.5 214 

ppmv – 1.29 mg/m3) at a point away from a source is given by:  215 
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 216 

𝐶𝑜𝑛𝑐. (𝑥, 𝑦, 𝑧) =  
𝑄

2𝜋𝑢𝑥𝜎𝑦𝜎𝑧
𝑒

𝑦2

(2𝜎𝑦)
2

[𝑒
−(𝑧−𝐻)2

(2𝜎𝑧)2 + 𝑒
(𝑧+𝐻)2

(2𝜎𝑧)2 ] (i) 217 

 218 

Where: x = shortest distance from point of measurement to the pipeline (m); y = the perpendicular 219 

distance along the fault of the measurement (zero m in this study); z = the height of the detector above 220 

the ground surface (1.5 m); Q = the source strength (mg/s); u = the wind speed resolved along x (m/s); 221 

H = the height of the source (m); and σy and σz = dispersion terms in the directions y and z. The 222 

dispersion terms are approximated as σy = Iyx, and σz = Izx and in near surface conditions we assumed 223 

that there is no stable stratification and that therefore Iz = Iy = 0.5. Wind speed was resolved to the 224 

shortest distance to the target (ux) by calculating the shortest distance (x) to the pipeline (or control 225 

line) from the point of measurement along with wind speed and direction at height z. Prior to analysis 226 

for pipeline distance, data when the wind direction was from the wrong half-disk was removed. Data, 227 

first recorded as ppmv, were converted to mg/m3 with knowledge of the air pressure and temperature 228 

conditions on the day. No allowance for buoyant lift-off was given as methane release at the source 229 

was assumed to be passive and diffusive, wherein H = 0, meaning the measured concentration above 230 

ambient (C) could be determined having allowed for distance x and angle of the source to the 231 

measurement location. As the source location was assumed to be from a pipeline, data from the 232 

control survey was analysed using the same method, but was corrected using equation (i) to a median 233 

line rather than the pipeline. Consequently, methane concentrations corrected to the pipeline should be 234 

statistically significantly greater than those corrected to a median control line if the pipeline is a 235 

source of methane – i.e. the pipeline was hypothesized to have statistically higher concentrations of 236 

methane compared to background levels and non-pipeline sources of methane in the same study area.  237 

Pipeline and control surveys were also corrected for distance travelled (Table 2). Periods 238 

when the survey vehicle was stationary or slow moving led to multiple measurements at one location 239 

or in close proximity and thus weighting for distance travelled removed multiple measurements from 240 

a given location.   241 
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 242 

Table 2. Sample size (n) and distance travelled (km) for distance corrected datasets. 243 

  
Distance 

corrected 
 

Basin  n Distance 

Durham Pipeline 1327 15.7 

 Control 786 34.3 

Northumberland Pipeline 1904 22.7 

 Control 1635 23.5 

Vale of Eden Pipeline 1645 18.9 

 Control 684 8.6 

Vale of Pickering Pipeline 3946 40.2 

 Control 501 5.5 

Total Pipeline 8822 97.5 

 Control 3606 71.9 

 244 

2.3.2 Analysis of variance 245 

A two factor survey design was adopted, with data assessed using analysis of variance 246 

(ANOVA). The factorial design and use of ANOVA allowed determination of whether pipelines had a 247 

significant impact upon CH4 fluxes and whether there was variation in flux between study areas. The 248 

first factor was the area with four levels (Vale of Pickering, Durham, Northumberland and Vale of 249 

Eden), and the second factor was the nature of the source (target) which had two levels – pipeline or 250 

control. Pipeline and control were replicated across the four study areas. An interaction term between 251 

the two factors allowed assessment of significant differences between each pipeline survey and its 252 

respective control survey.  253 

The data were Box-Cox transformed to assess for outliers and these were removed if present 254 

(Box and Cox, 1964). The data were then tested for normality using the Anderson-Darling test 255 

(Anderson and Darling, 1952) and if necessary the data were log-transformed. The Levene test was 256 

used to test for the homogeneity of variance. The Tukey test was used post hoc to assess where 257 

significant differences lay between factor levels. The proportion of variance explained by factors was 258 

assessed by the generalized ω2.(Olejnik and Algina, 2003). To avoid type I errors all probability 259 

values were assessed as significant if the probability of difference from zero was greater than 95%, 260 

but if the probability was close to this value then it is reported. Results are expressed as least squares 261 

means as these are better estimates of the mean for that factor level (i.e. the mean for the pipeline or 262 
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control or individual mean of the four areas) having taken account of the other factors and interactions 263 

that were included in the analysis.  264 

 The flux from the pipeline and control lines were summed for each area and divided by the 265 

distance over which they were collected. Once ambient-corrected (i.e. calculate the flux of CH4 above 266 

ambient), projected to the proposed source (calculate flux coming from direction of pipeline) and then 267 

distance corrected (distance from survey line) the fluxes were also calculated once significant sources 268 

had been identified. 269 

 270 

2.4 Soil CH4 measurements 271 

 A detailed, follow-up study of the Vale of Pickering pipeline mobile survey was conducted, 272 

with the mobile survey used to determine sections of the Vale of Pickering pipeline that were, a 273 

priori, sections where leaks had and had not been identified. Three sections were chosen, two 274 

identified as having leaks and one with no identified leak.  275 

The approach used for surveying the sites was based on that of Boothroyd et al (2016), which 276 

measured leaks from abandoned oil and gas wells by comparing soil gas CH4 concentrations above 277 

well pads to those from control fields. For each survey line assessed in this study, an agricultural field 278 

containing the NTS pipeline was surveyed, with a neighbouring field of identical land use and soil 279 

type used as the control field. In each of the surveyed fields, soil CH4 measurements were made at 280 

equidistant intervals along a transect line. For the pipeline field the survey transect line was followed 281 

as close to the pipeline as possible (located by the position of gas company’s own field markers). 282 

Readings were taken at an approximately 8-m spacing with locations of measurements confirmed by 283 

GPS. Due to restrictions on identical land use or crops/animals in the fields, neighbouring fields could 284 

not always be used as the control. In these cases, control lines along the far edge of the pipeline field 285 

were used, ensuring the greatest distance between the control and survey lines. In total 18 pipeline and 286 

18 associated control fields were surveyed. 287 

Soil CH4 concentrations were measured in parts per million (ppmv) using an EcoTec TDL-288 

500 portable tunable diode Laser Methane/Gas Analyser with a detection range of 0 - 10000 ppmv 289 
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(Geotechnical Instruments Ltd, Leamington Spa, UK). The measurements were made with a suction 290 

cup, connected to the TDL, and placed onto the soil surface for up to 10 seconds – a time based upon 291 

the tube delay of the instrument. Measurements were made between 09:30 and 19:30. Prior to each 292 

period of data collection the detector was calibrated to a 500 ppmv standard. During soil gas 293 

measurement the air temperature, air pressure, relative humidity and dew point were recorded 294 

(Commeter C4141 digital Thermo-Hygro-Barometer, Comet System, the Czech Republic).  295 

All data from the survey were considered relative to their control, which were considered as 296 

ambient CH4 conditions under the soil and land use for the weather conditions on the sample day. 297 

Pipeline data was ratioed to the average of the CH4 soil gas concentration for its respective control 298 

field and was therefore a relative percentage of the ambient control concentration, i.e. values above 299 

1.0 were interpreted as a leak. 300 

The relative concentration data from the survey was considered as a two-factor ANOVA. The 301 

first factor was whether the survey line was a priori considered as containing leaks or not, this factor 302 

had two levels (leak or no leak). The second factor was the difference between the survey lines which 303 

had 18 levels, one for each survey line measured (i.e. the 18 pipeline and control fields). Data 304 

underwent the same treatment as outlined above, with Box-Cox transformation and the normality and 305 

Levene tests. The ANOVA was first applied without any covariates and then the ANOVA was 306 

repeated using air temperature, air pressure, relative humidity and dew point as covariates - all the 307 

covariates were tested for normality and transformed as required. All results from ANOVA are 308 

presented as least squares means and post-hoc analysis was performed using Tukey’s pairwise 309 

comparisons at 95% probability, this was taken as the detection limit within the experimental design 310 

which in turn was used to estimate a determination distance, i.e. the maximum horizontal distance 311 

along the soil surface for which a significant leak could have been detected.  312 

To assess the magnitude of fluxes for those leaks detected from the soil gas survey the 313 

diffusion modelling approach developed by Boothroyd et al (2016) was used. To model the fluxes 314 

from measured leaks, Fick’s first law of diffusion was applied. This first law assumes a steady state 315 

diffusive flux from a region of high to low concentration proportional to the concentration gradient, 316 

which in 2-dimensions can be expressed as: 317 
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 318 

 (ii) 319 

 320 

Where: J = the diffusive flux (mg CH4/m2/s); D = diffusion coefficient (m2/s); and φ = the 321 

concentration of CH4 in soil (mg CH4/m3). Equation (i) was solved assuming that the flux was at 322 

steady state over time in 2-dimensions using an explicit finite difference method with Δx and Δy = 0.1 323 

m and a distance 3 m either side of the pipe was found to be sufficient to capture the variation back to 324 

an ambient concentration.: the boundary conditions were chosen such that φ was at the ambient CH4 325 

concentration as measured for the control field. The pipeline was located at the centre of the base of 326 

the grid and the central grid cell was given a concentration equivalent to that in the pipeline at a depth 327 

of 1.2 m below soil surface. Firstly, the model was developed fitting the observed values of φ 328 

assuming observed values for equivalent to φ at 10 cm depth; the concentration in the pipeline was 329 

taken as the maximum value observed in the field measurements; and using D as a fitting parameter. 330 

Secondly, the value of D was set based upon the approach proposed by Ridgwell et al. (1999). 331 

Initially the flux model fitted the ambient CH4 soil concentration seen in the control field (φ); the 332 

pipeline concentration value was taken as a relative to the ambient, with the fitting parameter the 333 

diffusion coefficient (D). The approach used to set the value of D was that proposed by Ridgwell et al. 334 

(1999) using the equations: 335 

𝐷𝑠𝑜𝑖𝑙 = 0.196(1 + 0.0055𝑇𝑠𝑜𝑖𝑙)𝑓
4
3 (

𝑓𝑎𝑖𝑟

𝑓
)

1.5+3
𝑏
   (iii) 336 

                                                   (iv) 337 

where Tsoil [K] is the ambient temperature (˚C), f the fractional total porosity, fair the fractional air-338 

filled porosity and fclay the fraction of clay-sized particles present in the soil. The ambient temperature 339 

(Tsoil) was taken as the average temperature measured on the sampling day by the Thermo-Hygro-340 

Barometer. The value of fclay used (0.3) was taken from Avery (1980) with the soil being a mineral 341 

loam soil, standard for the UK having a total porosity of 0.52. The concentration in the pipeline was 342 
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taken as 100% methane. Using equations (2) and (3) the calculated value of Dsoil = 0.086 cm2/s; this 343 

single value was used throughout the diffusive modeling process. 344 

 345 

3.0 Results 346 

3.1 Methane peaks and isotopes 347 

Time series plots of each survey are displayed in Figure 2, showing wind corrected pipeline 348 

measurements, and control measurements. The change in the control dataset following wind 349 

correction to the median line is also displayed to show the effect of dataset treatment. The Vale of 350 

Pickering had 15 pipeline peaks (2.13 – 2.95 ppmv CH4) with a mean of 2.49 ± 0.07 ppmv. There 351 

were four peaks on the control (2.11 – 2.91 ppmv CH4), reduced to three when wind corrected. A peak 352 

of 2.48 ppmv was recorded 28 m from the pipeline adjacent to a natural gas processing facility 353 

(Figure 3A) but the isotopic analysis (Vale of Pickering – Pipeline 1, full data -63 ± 6‰ δ13C-CH4, 354 

Figure S1) was not from the direction of the pipeline and indicated biogenic CH4 (Table S1). Of the 355 

15 pipeline peaks, the Keeling plot regression was either insignificant in the 30-second average 356 

dataset or unsampled for 10 peaks, with biogenic CH4 at Vale of Pickering – Pipeline 2 (Figure S2), 357 

applicable to five of the measured peaks. One thermogenic signature was identified on the control, 358 

Vale of Pickering – Control 1 (-38 ± 3‰ δ13C-CH4, Figure S2). 359 
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 360 

Figure 2. Time series methane concentrations for Vale of Pickering, Durham, Northumberland and 361 

Vale of Eden pipeline surveys. Wind corrected pipeline, complete control and wind corrected control 362 

surveys displayed. Inset wind corrected control plots are at the same scale as the complete control 363 

time series as way of comparison to show where data has been retained or removed. Times are GMT. 364 

Start times for each survey differ due to different travel distances on day of sampling; and Durham, 365 

Northumberland and Vale of Eden sampling was conducted during British Summer Time (GMT+1). 366 

 367 
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 368 

Figure 3. Methane concentrations for pipeline routes: (A) Vale of Pickering; (B) Durham; & (C) & 369 

(D) Northumberland. A, B, & D wind corrected; C not wind-corrected. Locations of panels A - D 370 

given in Figure 1. © Crown Copyright and Database Right [2016]. Ordnance Survey (Digimap 371 

Licence). Gas pipe data from National Grid (Grid, 2014).  372 

 373 

The Durham pipeline had 15 peaks on the pipeline route, ranging from 2.12 – 5.60 ppmv CH4 374 

(mean 2.8 ± 0.3 ppmv CH4). There were two peaks on the control route, 2.25 – 2.35 ppmv CH4. Peaks 375 

of 5.60 ppmv and 2.71 ppmv (Figure 3B) were thermogenic, with isotopic compositions of -39 ± 2‰ 376 
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δ13C-CH4 (Durham – Pipeline 1, Figure S2) and -38 ± 3‰ δ13C-CH4 (Durham – Pipeline 2, Figure 377 

S2). A further thermogenic source of CH4 was identified (-37 ± 1‰ δ13C-CH4) next to a local 378 

distribution gas pipe (Durham – Pipeline 4). Three of the pipeline peaks were associated with 379 

biogenic CH4 (Durham – Pipeline 3, two peaks, -57.2 ± 0.6‰ δ13C-CH4; Durham – Pipeline 5 -66 ± 380 

2‰ δ13C-CH4, Figure S2). The isotopic composition for ten of the peaks was either insignificant or 381 

not sampled for isotopes. 382 

On the Northumberland route, a 2.46 ppmv peak of CH4 was recorded 12 m from the pipeline 383 

and although the data was not in the wind-corrected dataset, it incorporated an offtake station (Figure 384 

3C), where the high-pressure transmission system transports gas to be redistributed to consumers. 385 

Thus, although the wind direction did not cover the high-pressure pipeline, it nonetheless incorporated 386 

infrastructure connected to it. The isotopic analysis confirmed a thermogenic CH4 source 387 

(Northumberland – Pipeline 1, -39.1 ± 0.5‰ δ13C-CH4, Figure 4). From the wind-corrected dataset, 388 

four peaks were identified ranging from 2.43 – 4.80 ppmv CH4 (mean 3.4 ± 0.6 ppmv CH4.). There 389 

were three peaks on the control route (2.14 – 2.15 ppmv CH4), reduced to two in the wind-corrected 390 

dataset. One of the pipeline peaks was biogenic but may indicate some mixing with background air 391 

(Northumberland – Pipeline 3, -53.0 ± 0.4 ‰ δ13C-CH4, Figure S2), while a 4.8 ppmv peak (Figure 392 

3D) was thermogenic (-38.3 ± 0.6‰ δ13C-CH4, Northumberland – Pipeline 2, Figure 4). Further 393 

pipeline isotopic locations (Table S1) were from peaks not from the direction of the pipeline. 394 

 395 
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 396 

Figure 4. 30-second average Keeling plot of δ13C-CH4 from Figure 3C (Northumberland – Pipeline 2) 397 

and Figure 3D (Northumberland – Pipeline 1). Source composition is from y-intercept. N = sample 398 

size. P value refers to regression.  399 

 400 

Only one CH4 peak (2.20 ppmv) was above 2.1 ppmv on the Vale of Eden pipeline route, with 401 

an unsampled isotopic signature. Of the eight locations analyzed on the pipeline and control for 402 

isotopic composition, one was thermogenic (Vale of Eden – Pipeline 2, -38 ± 1‰ δ13C-CH4, Figure 403 

S2), 34 m from the pipeline. Although excluded as not from the correct wind direction on the pipeline 404 

sampling day, the location’s isotope data was from the direction of the pipeline and had a maximum 405 

concentration of 10.18 ppmv CH4 in the isotope raw data. The control route had nine peaks (2.13 – 406 

2.76 ppmv CH4, mean 2.25 ± 0.07 ppmv), reduced to five in the wind-corrected dataset.  407 

To summarise, six thermogenic methane sources were identified on the pipeline routes, three 408 

of which were associated with peaks above 2.1 ppmv CH4 from the pipeline sampling data (a peak 409 

density of 0.03 thermogenic peaks/km, Table 3). One thermogenic peak was identified on control 410 

routes. Thirty-five pipeline peaks were observed at a density of 0.31 peaks/km (Table 3). Excluding 411 

peaks identified as biogenic (from farm yards and arable land) on wind corrected pipeline routes, 26 412 

peaks were observed, at 0.23 peaks/km traveled, ranging from 0.05 peaks/km on the Vale of Eden 413 

route to 0.76 peaks/km on the Durham route (Table S2). Control routes had 0.09 peaks/km from the 414 
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full dataset and 0.11 peaks/km from the wind-corrected data. Wind-corrected control routes ranged 415 

from 0.04 peaks/km for the Durham route to 0.25 peaks/km for the Vale of Eden route, with two 416 

having a greater peak density than their respective pipeline routes. When accounting for the number 417 

of peaks observed on the control, the overall peak density from pipelines was 8 peaks at 0.07 418 

peaks/km. Accounting for peaks from wind-corrected control data, the total number of pipeline peaks 419 

was 14 at a density of 0.12 peaks/km. 420 

 421 

Table 3. The number of peaks >2.10 ppmv CH4 observed from pipeline and control routes. Pipeline 422 

peaks disseminated into pipeline minus biogenic and pipeline minus biogenic & full control peaks. 423 

Note distances are different to flux calculations that remove ambient measurements. 424 

Area Target Peaks Distance (km) Peaks/km 

 
Pipeline 35 114.6 0.31 

 
Pipeline - Biogenic 26 114.6 0.23 

All Pipeline - Biogenic & Control 8 114.6 0.07 

 
Full Control 18 196.3 0.09 

  Wind Corrected Control 12 113.1 0.11 

All Thermogenic Pipeline 3 114.6 0.03 

 425 

3.2 Flux from pipeline survey 426 

Methane flux for each pipeline survey was scaled having accounted for the flux from its 427 

respective control survey. The greatest flux was from Northumberland pipeline and the smallest from 428 

the Vale of Eden pipeline (Table 4). For two pipelines the IQR included zero, and it may be 429 

concluded that there was no flux from these pipelines.  430 

 431 

Table 4. Pipeline flux having accounted for control routes. IQR = inter-quartile range. 432 

Area Median (tonnes CH4/km/yr) IQR (tonnes CH4/km/yr) 

All 627 241 - 1123 

Durham 206 50 - 348 

Vale of Eden 121 0 - 383 

Northumberland 1763 1147 - 2699 

Vale of Pickering 397 0 - 707 

 433 
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 The flux of methane from the seven sites identified with having a thermogenic methane 434 

composition was also calculated from the 10 minute isotope analytical periods. The pipeline sites had 435 

a mean of 33.2 ± 20.7 tonnes CH4/yr with a range of 0.1-131.9 tonnes CH4/yr (Table 5). Included 436 

within this was the Durham – Pipeline 4 thermogenic measurement, though this was likely from a 437 

mains service/distribution pipeline rather than from the high pressure network and thus the flux 438 

calculated to the nearest high pressure pipeline may be inaccurate as a consequence. The flux for the 439 

control (103.1 tonnes CH4/yr) is greater than the mean for the pipeline fluxes and all but one of the 440 

individual measurements. The control flux was calculated to the median control line, a distance of 508 441 

m, but was recorded on a housing estate and most likely represents a natural gas leak from a 442 

service/distribution pipeline from a much closer distance than >500 m. Thus, in reality, the control 443 

flux is likely to be much smaller than when projected to the median line. If the individual pipeline 444 

fluxes are scaled to the 97.5 km (Table 2) from distance corrected datasets, this gives a flux per km 445 

range of 1-1352 kg CH4/km. When the flux rates are upscaled to the 7600 km of total NTS pipeline, 446 

this gives a range of 6.0 – 10278.5 tonnes CH4/yr across the NTS, with a mean of 2588 ± 1614 tonnes 447 

CH4/yr. Given however that the six pipeline fluxes represent all potential thermogenic CH4 detected 448 

from the NTS during the survey, the total methane flux would be 199.2 tonnes CH4/yr at 2043 kg 449 

CH4/km across the 97.5 km surveyed. When applied to the entire NTS network, the annual flux from 450 

all the detected thermogenic fugitive emissions equates to 15530.4 tonnes CH4/yr (12665.7 tonnes 451 

CH4/yr excluding Durham – Pipeline 4). The control line applied to the same distance of 7600 km 452 

would give 10901.4 tonnes CH4/yr but as stated, the flux is inflated by distance to the median line 453 

compared to the actual location of the CH4 source. The flux from the control does reflect uncertainty 454 

in emissions from across the natural gas transportation sector, given it is a representation of mains and 455 

service distribution fugitive emissions. 456 

 457 

 458 

 459 

 460 

 461 
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Table 5. Methane flux from thermogenic CH4 sources. 462 

Site Target 
Distance 

(m) 

CH4 flux 

(mg/hr) 

CH4 flux 

(tonnes/yr) 

Durham - Pipeline 1 Pipeline 154 224187 2.0 

Durham - Pipeline 2 Pipeline 259 3099164 27.1 

Durham - Pipeline 4 Pipeline 244 4195301 36.8 

Northumberland - Pipeline 1 Pipeline 9 8831 0.1 

Northumberland - Pipeline 2 Pipeline 272 15052842 131.9 

Vale of Eden - Pipeline 2 Pipeline 34 163793 1.4 

Vale of Pickering - Control 1 Control 508 11773219 103.1 

 463 

3.3 ANOVA 464 

Anderson-Darling test showed that log-transformation was sufficient to normalise the data 465 

and the Box-Cox transformation showed that only 5 out 12445 data were removed. The ANOVA of 466 

the projected fluxes showed that both factors and the interaction term were significant. The most 467 

important factor was the target with the control lines significantly lower than the pipelines, where the 468 

least squares mean for pipelines was 2770 ± 84 mg CH4/m3/s whereas for the control it was 903 ± 46 469 

mg CH4/m3/s. There were significant differences between all areas with the largest least squares mean 470 

being for the Vale of Pickering and the lowest being for Durham. Differences between areas can be 471 

ascribed to differences between days of sampling as well as the differences in the background for each 472 

area. The difference between areas does not necessarily represent the differences between the 473 

pipelines but this can be estimated from the significant interaction term (Table 6). 474 

 475 

Table 6. The least squares means of the target and area*target terms. 476 

Area Target Least squares mean (mg CH4/m3/s) 

Durham Pipeline 1198±100 

 Control 474±50 

Northumberland Pipeline 5778±357 

 Control 811±59 

Vale of Eden Pipeline 2639±191 

 Control 793±59 

Vale of Pickering Pipeline 3225±132 

 Control 2190±279 

Total Pipeline 2770±84 

 Control 903±46 

 477 

 478 
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3.4 Vale of Pickering soil CH4 479 

In total 1209 soil CH4 measurements were taken, with 631 CH4 measurements in pipeline 480 

fields and 578 in control fields. The mean value of pipeline soil gas measurements in Pickering was 481 

1.40 ± 0.33 ppmv, with a mean of 1.43 ± 0.38 ppmv for the control fields. The relative concentrations 482 

(i.e. all 18 pipeline measurements in a field were made relative to their equivalent control 483 

measurement) of CH4 in Pickering had a mean value of 0.985 ± 0.225, and were normally distributed. 484 

Of the relative measurements, 324 out of 631 soil gas measurements were lower than ambient with the 485 

smallest relative concentration of CH4 as 0.341. 486 

The ANOVA showed that all factors were significant. Of the 18 survey lines 8 were 487 

significantly greater than the sampling day ambient, 5 significantly lower and 5 with no significant 488 

difference with the greatest being 131% above ambient and the smallest value 56% lower than 489 

ambient. Using post-hoc analysis, the smallest leak detected was 3% above ambient (1.03 relative 490 

concentration). Anything smaller than 1.00 was inferred as no leak and below 1.03 (detection limit) 491 

and 1.00, analytically inferred as ambient. Assuming that the smallest detectable leak (3% above 492 

ambient) was measured directly over the point source of the leak gives an estimate for the smallest 493 

flux detectable by this experimental design in each area. For Pickering, this would be 15.6 kg 494 

CH4/leak/yr. So as to find over what distance it would have been possible within this experimental 495 

design to measure a leak given the detection limit of the equipment it was assumed that the 496 

measurement was directly above the leak in the pipeline. Diffusion modelling given this assumption 497 

of measurement directly over the pipeline shows that there was a detectable concentration of soil CH4 498 

concentration up to 5 m away, therefore, the experimental design was capable of measuring a leak 2.5 499 

metres either side of the point of measurement on the ground. Taking the determination distance into 500 

account with readings every 8 metres means 2860 m actual pipe length was surveyed. Given the 501 

number of leaks detected (i.e. measurements with relative value above 1.03) and the actual distance of 502 

pipeline surveyed (2860 m) then for this pipeline a leak was detected every 9.32 m. The average 503 

length of pipeline (between joints) is 10 metres (Institution of Gas Engineers and Managers), therefore 504 

it can be inferred that this study has detected leaks from all pipeline joints.  505 



24 
 

Figure 5 shows a linear relationship between the relative CH4 concentration and the CH4 flux. 506 

The average flux from soil gas CH4 measurements was 8.24 ± 0.4 kg CH4/km/yr. The Pickering 507 

pipeline is part of the National Transmission System (NTS) of 7600 km of pipeline; the average flux 508 

scaled up for the national pipeline estimates a flux of 62.6 ktonnes CH4/yr. 509 

The cross-sectional area from which CH4 was leaking was estimated using Ramskill’s non-510 

choked mass flow equation (Ramskill et al., 1986): 511 

 512 

𝐴 − 𝑄 (𝐶𝜌𝐴√2𝑃

𝜌

𝑘

𝑘−1
[1 − (

𝑃𝐴

𝑃
)

(𝑘−1) 𝑘⁄

])⁄  (v) 513 

 514 

Where: Q = the mass flow rate (kg/s); C = discharge coefficient, A = discharge hole area (m2), k = 515 

Cp/Cv with Cp and Cv [L2T-2θ-1] the specific heat at constant pressure (p) and volume (v), ρ = real gas 516 

density (kg/m3); PA = the atmospheric pressure (Pa); and P = the absolute upstream pressure (Pa). The 517 

pressure (P) is taken as 85 bar (8.5 MPa) compared to atmospheric pressure (1 bar = 0.1 MPa). 518 

Using the largest leak detected the cross-sectional area (assuming a uniform hole) was 519 

calculated to be 0.0582 mm2 or 5.82 x10-8 m2, just larger than the area of a pixel on a modern 520 

computer display (0.055 mm2), with a diameter of approximately 0.136 mm.  521 

 522 

  523 
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 524 

Figure 5. Pickering CH4 flux calculations. The measured CH4 soil gas concentration measurement 525 

relative to the its control (relative CH4 concentration) for each leak observed in Vale of Pickering 526 

study area in comparison to the CH4 flux for each the leak as calculated by diffusion modelling.  527 

 528 

4.0 Discussion 529 

The use of mobile survey equipment enabled the detection of methane leaks from high-530 

pressure natural gas pipelines and associated infrastructure. Across four distinct areas, 26 leaks were 531 

detected from 114.6 km, having removed data from wind directions away from the pipeline and not 532 

counting confirmed biogenic sources, providing an overall leak detection rate of 0.23/km driven 533 

(range 0.05 – 0.76/km). It is not possible to compare this leak density to other studies in the UK, 534 

either of the National Transmission System or mains and service distribution networks due to an 535 

absence of research into fugitive emissions from pipelines in the UK. However, studies of mains and 536 

service distribution pipelines from the USA have reported leak densities across multiple cities: 537 

Durham, NC, 0.14 – 0.20/km; Cincinnati, OH, 0.29/km (Gallagher et al., 2015); and Ithaca, NY, 538 

0.24/km (Chamberlain et al., 2016) were comparable to the UK NTS leak rate found in this study. 539 

Washington, DC, Boston and Manhattan had higher leak densities of 2.44 – 2.66 leaks/km (Gallagher 540 

et al., 2015; Jackson et al., 2014; Phillips et al., 2013) and consequently the leak density reported here 541 
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for the UK NTS is on the low end of those reported from US studies, with even the highest density 542 

somewhat short of leakage rates where unprotected steel and cast iron mains were monitored. Most of 543 

the leaks reported from the above US studies were classified above 2.5 ppmv CH4, though the Ithaca 544 

study classified leaks above 1.93 ppmv; as such, the leak density for the UK NTS would be expected 545 

to rise relative to this, given that leaks were classified in this study as discrete peaks above 2.1 ppmv. 546 

Furthermore, this comparison is undertaken with available studies on leaks from pipelines but 547 

distribution pipelines in cities compared with high-pressure pipelines in predominantly rural areas 548 

must be considered to be limited as they do not operate under the same pressure. Consequently, it is 549 

difficult to place the results of this study in context for transmission systems, particularly in terms of 550 

UK emissions given that most studies focus upon USA city mains and service distribution systems 551 

that operate at lower pressure and often comprise different construction materials.  552 

The soil gas survey of the Vale of Pickering pipeline gives a very different impression of the 553 

fluxes from pipelines. This walkover survey was, on average, able to detect a “leak” from every pipe 554 

joint. It is perhaps now better to talk not of a leak from a pipeline but that the walkover survey was 555 

measuring the in situ properties of the high pressure transmission network. It should be noted that this 556 

detection rate was only possible because of the experimental design used by the study, i.e. larger 557 

numbers of measurements and only ever judged relative to a control with covariates measured 558 

throughout. However, this more detailed and close up survey was able to give a higher estimate of the 559 

flux from the network than estimated from the drive by survey.  560 

The 7600 km of NTS of which the Pickering pipeline is a part, is estimated to emit a fugitive 561 

CH4 flux from the entire pipeline of 62.6 kt CH4/yr or a CO2 equivalent of 1570 kt CO2eq/yr across the 562 

whole of the UK. The UK Greenhouse Gas inventory calculates emissions from the six direct GHGs 563 

covered under the Kyoto Protocol: carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 564 

hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride (SF6). The inventory 565 

takes into account fugitive emissions from coal mines, oil and gas upstream processing and solid fuel 566 

transformation (DECC, 2014) however does not take into account fugitive emissions from the gas 567 

transmission pipelines. The UK GHG inventory values are stated in CO2eq/yr. The UK 2014 GHG 568 

emissions inventory of total GHG was 557300 kt CO2eq/yr with the CH4 contribution being 53500 kt 569 
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CO2eq/yr (DECC, 2016). Even though the UK GHG inventory does not account for fugitive CH4 570 

emissions, the emissions calculated in this study (1570 kt CO2eq/yr) represents an additional 2.9%. 571 

However, this study only considered the high pressure transmission system in the UK and therefore, 572 

emissions from the rest of the transmission and distribution system all the way to the customer would 573 

have to be better accounted for in the future.  574 

 575 

5.0 Conclusions  576 

This study used two approaches to the measurement of CH4 emissions from high pressure gas 577 

pipelines (70 to 85 bar). Both approaches used demonstrated significant emissions from pipelines 578 

relative to background control. 579 

i) Leak rate from a mobile pipeline survey was 627 (241 – 1123 interquartile range) tonnes 580 

CH4/km/yr. The flux from thermogenic CH4 sources was 199.2 tonnes CH4/yr across 97.5 581 

km surveyed. Scaled up to the NTS, confirmed thermogenic fluxes amount to 15.5 kt 582 

CH4/yr. 583 

ii) A walkover survey of soil gas CH4 found that it was possible to detect elevated CH4 for 584 

every pipeline joint. Scaling results for the entire UK national transmission system 585 

showed a pipeline emission of 62.6 kt CH4/yr or a CO2 equivalent of 1570 kt CO2eq/yr 586 

across the whole of the UK which is 2.9% of total annual greenhouse gas emissions. 587 

iii) Further research is required into the scale of fugitive emissions from pipeline 588 

infrastructure in the UK. Transmission and distribution stations are known to be sources 589 

of CH4, while little research has been conducted in recent years on distribution pipeline 590 

emissions, beyond industry surveys. This study has reported potential emissions from 591 

transmission stations and distribution pipelines and would recommend further work to 592 

better quantify their impact on GHG emissions. 593 

 594 

 595 
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