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Abstract The strong coupling constant αs is determined
from inclusive jet and dijet cross sections in neutral-current
deep-inelastic ep scattering (DIS) measured at HERA by
the H1 collaboration using next-to-next-to-leading order
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(NNLO) QCD predictions. The dependence of the NNLO
predictions and of the resulting value of αs(mZ) at the Z -
boson mass mZ are studied as a function of the choice of
the renormalisation and factorisation scales. Using inclusive
jet and dijet data together, the strong coupling constant is
determined to be αs(mZ) = 0.1157 (20)exp (29)th. Comple-
mentary, αs(mZ) is determined together with parton distri-
bution functions of the proton (PDFs) from jet and inclu-
sive DIS data measured by the H1 experiment. The value
αs(mZ) = 0.1142 (28)tot obtained is consistent with the
determination from jet data alone. The impact of the jet data
on the PDFs is studied. The running of the strong coupling
is tested at different values of the renormalisation scale and
the results are found to be in agreement with expectations.

1 Introduction

The strong coupling constant is one of the least well known
parameters of the Standard Model of particle physics (SM)
and a precise knowledge of this coupling is crucial for preci-
sion measurements, consistency tests of the SM and searches
for physics beyond the SM. It has been determined in a large
variety of processes and using different techniques [1,2]. Jet
production in the Breit frame [3] in neutral-current deep-
inelastic ep scattering (NC DIS) is directly sensitive to the
strong coupling and has a clean experimental signature with
sizable cross sections. It is thus ideally suited for the preci-
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sion determination of the strong coupling constant αs(mZ) at
the Z -boson mass mZ .

Cross section predictions for inclusive jet and dijet pro-
duction in NC DIS are obtained within the framework of per-
turbative QCD (pQCD) [4], where for the past 25 years only
next-to-leading order (NLO) calculations have been avail-
able [5,6]. Continuous developments enabled the advance-
ment of these calculations [7–10], and next-to-next-to-
leading order (NNLO) predictions for jet production in
DIS [11,12] and hadron-hadron collisions [13,14] have
become available recently. The theoretical uncertainties of
the NNLO predictions are substantially reduced compared
to those of the NLO predictions. It is observed [11,12,15]
that the NNLO predictions and the current experimental data
are of comparable precision for large parts of the measured
phase space.

Measurements of inclusive jet and dijet cross sections in
NC DIS have been performed at HERA by the H1 [15–24]
and ZEUS [25–32] collaborations during different data tak-
ing periods and for different centre-of-mass energies. In gen-
eral, the predictions in pQCD provide a good description of
these data.

The strong coupling constant has been determined from
jet cross sections in DIS at NLO accuracy [15,17,21–
24,27,30,33–35] and the precision of αs(mZ) of these deter-
minations is typically limited by the scale uncertainty of the
NLO calculations. Only recently an αs determination was
performed using inclusive jet cross sections, where NLO cal-
culations have been supplemented with contributions beyond
NLO in the threshold resummation formalism, and a moder-
ate reduction of the scale uncertainty was achieved [36].

Measurements of jet production cross sections in pro-
cesses other than NC DIS, such as photoproduction [37,38]
or in e+e− [39–44], p p̄ [45–47] and pp collisions [48–52],
have also been employed for the determination of the strong
coupling constant. The corresponding predictions were at
NLO accuracy in most cases, possibly supplemented with 2-
loop threshold corrections or matched with next-to-leading
logarithmic approximations (NLLA). An exception are 3-jet
observables in e+e− collisions using predictions in NNLO
accuracy [42], which are also matched to NLLA contribu-
tions [43,44]. In contrast to variables such as hadronic event
shape observables [53,54] where only limited regions of
the corresponding distributions are described by fixed order
pQCD calculations, jet observables such as their transverse
momenta typically are well described by such calculations
over the full experimentally accessible range.

The presence of a proton in the initial state in lepton-
hadron or hadron-hadron collisions complicates the deter-
mination of αs(mZ) and therefore αs(mZ) is often deter-
mined together with parton distribution functions of the pro-
ton (PDFs). Such simultaneous determinations of αs(mZ) and
PDFs were performed using jet cross sections in DIS [17,

55,56] or jet cross sections at either the LHC or Tevatron
[50,52,57–59]. However, the absence of full NNLO correc-
tions for jet production cross sections limited the theoretical
precision of these approaches.

This article presents the first determination of αs(mZ)

making use of the recent calculations of jet production at
NNLO [11–14]. These calculations are also used in this
paper for the first time for the determination of PDFs. The jet
cross section calculations are performed using the program
NNLOJET [11,12,60].

Two strategies for the extraction of αs(mZ) are investi-
gated. First, described in Sect. 3, the value of αs(mZ) is
determined in NNLO from inclusive jet and dijet cross sec-
tions [15,17,21,23,24] using pre-determined PDFs as input.
In a second approach described in Sect. 4, the value of
αs(mZ) is determined together with the PDFs. This approach
is denoted as ‘PDF+αs-fit’ in the following and uses inclusive
DIS data [61–66] in addition to normalised jet cross section
data [15,21,24], both measured by the H1 experiment [67–
70].

2 Cross section measurements

For the present analysis, measurements of jet cross sections
and inclusive DIS cross sections in lepton-proton collisions
performed by the H1 experiment at HERA are exploited.

Jet cross sections Cross sections for jet production in lepton-
proton collisions have been measured by H1 at two differ-
ent centre-of-mass energies using data from different peri-
ods of data taking. In the present analysis, inclusive jet and
dijet cross sections measured in the range of negative four-
momentum transfer squared 5 < Q2 < 15 000 GeV2 and
inelasticities 0.2 < y < 0.7 are considered. An overview
of the individual measurements [15,17,21,23,24] is given in
Table 1. Common to all data, jets are defined in the Breit
frame [3] using the kt clustering algorithm [71] with a reso-
lution parameter R = 1. The jet four-vectors are restricted to
the pseudorapidity range −1 < η

jet
lab < 2.5 in the laboratory

frame. The data sets ‘300 GeV’, ‘HERA-I’ and ‘HERA-II’
correspond to different data taking periods and are subdivided
into two kinematic ranges, the low-Q2 (Q2 � 100 GeV2) and
high-Q2 (Q2 � 150 GeV2) domains, where different com-
ponents of the H1 detector were used for the measurement
of the scattered lepton.

The inclusive jet cross sections are measured double-
differentially as functions of Q2 and the jet transverse
momentum in the Breit frame, P jet

T , where the phase space is

constrained by Q2, y, η
jet
lab and P jet

T , as specified in Table 1.
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Table 1 Summary of the kinematic ranges of the studied inclusive jet
and dijet data sets. The ep centre-of-mass energy

√
s and the integrated

luminosity L are shown. Kinematic restrictions are made on the neg-
ative four-momentum transfer squared Q2, the inelasticity y and the
jet transverse momenta P jet

T as indicated. Common to all data sets is

a requirement on the pseudorapidity of the jets, −1 < η
jet
lab < 2.5,

not shown in the table. Dijet events are defined by extra cuts or on the
average jet transverse momentum 〈PT〉 or the invariant mass of the two
leading jets m12. The asterisk denotes a cut not present in the original
work [23] but imposed for the present analysis

Data set [ref.]
√
s [GeV] L [pb−1] DIS kinematic range Inclusive jets Dijets njets ≥ 2

300 GeV [17] 300 33 150 < Q2 < 5000 GeV2 7 < P jet
T < 50 GeV P jet

T > 7 GeV

0.2 < y < 0.6 8.5 < 〈PT〉 < 35 GeV

HERA-I [23] 319 43.5 5 < Q2 < 100 GeV2 5 < P jet
T < 80 GeV 5 < P jet

T < 50 GeV

0.2 < y < 0.7 5 < 〈PT〉 < 80 GeV

m12 > 18 GeV

(〈PT〉 > 7 GeV)∗

HERA-I [21] 319 65.4 150 < Q2 < 15000 GeV2 5 < P jet
T < 50 GeV −

0.2 < y < 0.7

HERA-II [15] 319 290 5.5 < Q2 < 80 GeV2 4.5 < P jet
T < 50 GeV P jet

T > 4 GeV

0.2 < y < 0.6 5 < 〈PT〉 < 50 GeV

HERA-II [15,24] 319 351 150 < Q2 < 15000 GeV2 5 < P jet
T < 50 GeV 5 < P jet

T < 50 GeV

0.2 < y < 0.7 7 < 〈PT〉 < 50 GeV

m12 > 16 GeV

Table 2 H1 jet cross section
measurements. Normalised dijet
cross sections and statistical
correlations between inclusive
and dijet measurements are
available only for the most
recent measurements [15,24]

Data set [ref.] Q2 domain Inclusive
jets

Dijets Normalised
inclusive jets

Normalised
dijets

Stat. corr.
between
samples

300 GeV [17] High-Q2 � � – – –

HERA-I [23] Low-Q2 � � – – –

HERA-I [21] High-Q2 � – � – –

HERA-II [15] Low-Q2 � � � � �
HERA-II [15,24] High-Q2 � � � � �

For dijets at least two jets must be identified in the
η

jet
lab range above the relevant P jet

T threshold. The double-
differential dijet cross sections are measured as functions
of Q2 and the average transverse momentum of the two
leading jets, 〈PT〉 = (P jet1

T + P jet2
T )/2. In order to avoid

regions of phase space where the predictions exhibit an
enhanced infrared sensitivity [72,73], the phase space defini-
tions impose asymmetric cuts on the transverse momenta of
the two leading jets [12]. Such an asymmetric cut may also
be obtained by choosing 〈PT〉 larger than the minimum P jet

T .
For this reason, data points with 〈PT〉 < 7 GeV are excluded
from the HERA-I low-Q2 data set (Table 1).

Data from different periods and Q2 ranges are statistically
independent, whereas dijet and inclusive jet data of the same
data set are statistically correlated. These correlations have
been determined for the HERA-II data sets [15,24]. Differ-
ent data sets, as well as inclusive jet and dijet data of the
same data set, may furthermore share individual sources of
experimental uncertainties [15,56] and thus correlations are
present for all data points considered.

Normalised jet cross sections The more recent data sets [15,
21,24] also include measurements where the jet cross sec-
tions are normalised to the inclusive NC DIS cross section
of the respective Q2 interval, as indicated in Table 2. Cor-
relations of systematic and statistical uncertainties partially
cancel for the ratio of jet cross sections and inclusive NC
DIS cross sections. Therefore, normalised jet cross sections
are ideally suited for studies together with inclusive NC DIS
data.

Inclusive DIS cross sections In order to constrain the param-
eters of the PDFs in the PDF+αs-fit, polarised and unpo-
larised inclusive NC and CC (charged current) DIS cross
sections [61–66] measured by the H1 experiment are used in
addition. Data taken during different data taking periods and
with different centre-of-mass energies are considered and a
summary of these measurements is given in Table 3. This
data sample is identical to the one used in the H1PDF2012
PDF fit [65], where correlations of experimental uncertain-
ties have been quantified. Inclusive DIS and jet cross sections
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Table 3 Summary of the inclusive NC and CC DIS data sets. The
lepton type, the ep centre-of-mass energy

√
s and the considered Q2

range are shown. The numbers in parenthesis show the whole kinematic
range of the data prior to applying the Q2 cut specific for this analysis.

The check-marks indicate the available measurements. The last col-
umn indicates cross sections determined with longitudinally polarised
leptons

Data set [ref.] Lepton type
√
s [GeV] Q2 range [GeV2] NC cross

sections
CC cross
sections

Lepton beam
polarisation

Combined low-Q2 [64] e+ 301,319 (0.5) 12–150 � – –

Combined low-Ep [64] e+ 225,252 (1.5) 12–90 � – –

94–97 [61] e+ 301 150–30 000 � � –

98–99 [62,63] e− 319 150–30 000 � � –

99–00 [63] e+ 319 150–30 000 � � –

HERA-II [65] e+ 319 120–30 000 � � �
HERA-II [65] e− 319 120–50 000 � � �

are statistically and experimentally correlated. These corre-
lations are taken into account by using normalised jet cross
sections.

3 Determination of αs(mZ) from H1 jet cross sections

The strong coupling constant αs(mZ) is determined from
inclusive jet and dijet cross sections in NC DIS measured
by the H1 collaboration and using NNLO QCD predictions.

3.1 Predictions

The cross sections for inclusive jet and dijet production for
a given phase space interval i (for instance a ‘bin’ in the rel-
evant physical observables) are calculated [4,74] as a con-
volution in the variable x of the PDFs fk and perturbatively
calculated partonic cross sections σ̂i,k ,

σi =
∑

k=g,q,q

∫
dx fk(x, μF)σ̂i,k(x, μR, μF) · chad,i , (1)

where the sum runs over all parton flavours k. The cal-
culations depend on the renormalisation scale μR and the
factorisation scale μF. The factors chad,i account for non-
perturbative effects (hadronisation corrections).

Both the fk and the σ̂i,k are sensitive to the strong cou-
pling. The partonic cross sections are given in terms of the
perturbative expansion in orders of αs(μR)

σ̂i,k =
∑

n

αn
s (μR)σ̂

(n)
i,k (x, μR, μF). (2)

For high PT jet production in the Breit frame the lowest
order is n = 1. The hard coefficients σ̂

(n)
i,k are calculated for

the expansion up to O(α3
s ) taking into account properties of

the jet algorithm in the integration over the phase space. The
renormalisation scale dependence (‘running’) of the coupling

satisfies the renormalisation group equation

μ2
R
dαs

dμ2
R

= β(αs). (3)

The QCD beta-function β is known at 4-loop accuracy [75,
76]. The strength of the coupling thus may be determined
at an arbitrary scale, which is conventionally chosen to be
the mass of the Z -boson, mZ = 91.1876 GeV [2]. Here, the
calculations are performed in the modified minimal subtrac-
tion (MS) scheme in 3-loop accuracy and using 5 flavors,
αs(μR) = α

(5)

MS
(μR).

The PDFs fk exhibit a dependence on αs(mZ), which orig-
inates from the factorisation theorem [74]. This dependence
can be schematically expressed as [77–79]

μ2
F
d f

dμ2
F

= P(αs) ⊗ f (4)

with P being the QCD splitting kernels and the symbol ‘⊗’
denoting a convolution. After fixing the x-dependence of the
PDFs fk at a scale μ0 and setting μR = μF, the PDF at any
factorisation scale μF is calculated as

f (x, μF, αs(mZ)) = � (μF, μ0, αs(mZ)) ⊗ fμ0 (x) (5)

with � being the evolution kernel which obeys Eq. (4). It
is here calculated in NNLO, i.e. in 3-loop accuracy [80,81],
with five active flavours.

The evolution starting scale is chosen to be μ0 = 20 GeV.
This is a typical scale of the jet data studied. As a conse-
quence, the influence of the evolution of Eq. (5) on the αs

determination is moderate, because μF ≈ μ0. The PDFs at
that scale are well known, in particular the quark densities.
Moreover, the latter are to a large extent insensitive to the
assumption made on the strong coupling αPDF

s (mZ) during
their determination, because in leading order QCD inclusive
DIS is independent of αs Ṫhe gluon density is constrained
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Fig. 1 Relative change of jet
cross section as a function of a
multiplicative factor applied to
the renormalisation and
factorisation scale for four
exemplary data points of the
HERA-II phase space. The bin
definitions are displayed in the
respective panels. The left
panels show inclusive jet cross
sections, and the right panels
dijet cross sections. The full line
shows the cross section
dependence for the NNLO, the
dashed line for NLO and the
dotted line for LO calculations.
For better comparison, all
calculations are performed with
the same PDF set (NNPDF3.1
NNLO). For all panels, the cross
sections are normalised to the
respective NLO cross section
with unity scale factor. The
filled area around the NNLO
calculation indicates variations
of the factorisation scale by
factors of 0.5 and 2 around the
chosen value for μR

2
T+P2Q / 
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R
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)
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+P2
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R
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μ
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(
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0.5
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2.0

NNLOJET and H1

 < 50 GeVT 30 < P
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2〉TP〈+2Q / 
R/F

μ

0.50.2 1 2 4

NNLO NLO LO
(0.5,2) variation 

F
μNNLO

 < 50 GeV〉TP〈30 < 
2 < 700 GeV2400 < Q

due to QCD sum-rules and the precisely known quark densi-
ties. In the vicinity of a scale of 20 GeV threshold effects from
heavy quarks are not relevant. The PDFs at μ0 = 20 GeV are
provided by the NNPDF3.1 PDF set [82] which was obtained
with a nominal value of αPDF

s (mZ) = 0.118. The influence
of those choices is quantified in Sect. 3.3.

The scales μR and μF are chosen to be

μ2
R = μ2

F = Q2 + P2
T , (6)

where PT denotes P jet
T in the case of inclusive jet cross

sections and 〈PT〉 for dijets. Previously, a variety of dif-
ferent scale definitions have been employed by H1 [15,
17,21,23,24,33–35,83], ZEUS [26,27,29–32,55] and else-
where [18,72,84–89]. The choice adopted here was already
suggested and discussed earlier [25,28,90,91]. Advantages
of the scale defined in Eq. (6) are in its simple functional
form and in the fact that it remains non-zero in either of
the kinematical limits Q2 → 0 GeV2 and P2

T 
 Q2. This is
particularly important here, since low- and high-Q2 domains
and a large range in PT are considered.

The inclusive jet and dijet NNLO predictions as a function
of μR and μF are studied for selected phase space regions
in Fig. 1. The dependence on the scale factor is strongest for
cross sections at lower values μR, i.e. lower values of Q2 and
PT . The NNLO predictions depend less on the scale factor
than the NLO predictions. Other choices of μR and μF are
studied with the αs fit in Sect. 3.3.

The dependence of the inclusive jet and dijet NNLO pre-
dictions on αs(mZ) is displayed in Fig. 2, where the two
contributions to the αs(mZ) dependence, σ̂ik and fk , are sep-
arated. The predominant sensitivity to αs(mZ) arises from
σ̂i,k .

The hard coefficients σ̂
(n)
i,k are calculated using the pro-

gram NNLOJET [11,12,60], which is interfaced to
fastNLO [92] to allow for computationally efficient, repeated
calculations with different values of αs(mZ), different scale
choices and different PDF sets. The PDFs are included in the
LHAPDF package [93]. The evolution kernels are calculated
using the program APFEL++ [94] and all results are validated
with the programs APFEL [95] and QCDNUM [96,97]. The
αs evolution is calculated using the APFEL++ code and val-
idated with the CRunDec code [98], and the running of the
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Fig. 2 Relative change of jet
cross section as a function of
αs(mZ) for four exemplary data
points of the HERA-II phase
space. The bin definitions are
displayed in the respective
panels. The left panels show
inclusive jet cross sections, and
the right pads dijet cross
sections. The full line indicates
the cross section dependence as
a function of αs(mZ), while the
dotted line illustrates the
dependence where αs(mZ) is
varied only in the partonic cross
sections and the dashed line
illustrates a variation only in the
PDF evolution starting from
μ0 = 20 GeV. The cross
sections are normalised to the
nominal cross section defined
with αs(mZ) = 0.118 )
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electromagnetic coupling with Q2 is calculated using the
package EPRC [99,100]. The fits are performed using the
Alpos fitting framework [101].

3.2 Methodology

The value of the strong coupling constant is determined in
a fit of theory predictions to H1 jet cross sections with a
single free fit parameter. The goodness-of-fit quantity, which
is subject to the minimisation algorithm, is defined as

χ2 =
∑

i

∑

j

(log ςi − log σi ) (Vexp + Vhad

+ VPDF)−1
i j (log ς j − log σ j ), (7)

where ςi are the measurements and σi the predictions
(Eq. (1)). The covariance matrices express the relative uncer-
tainties of the data (Vexp), hadronisation correction fac-
tors (Vhad) and the PDFs (VPDF). The underlying statistical
model is that the logarithm of each measurement is normal-
distributed within its relative uncertainty, or equivalently the
measurements follow log-normal distributions. The fit value
is found using the TMinuit algorithm [102,103]. Correlations

of the uncertainties among the different data sets and run-
ning periods are considered [15,56]. The hadronisation cor-
rections and their uncertainties have been provided together
with the jet cross section measurements [15,17,21,23,24].
The PDF uncertainties were provided by the authors of the
respective PDF set.

To each data point a representative scale value μ̃ is
assigned, which is calculated from the geometric mean of
the bin boundaries (denoted as ‘dn’ and ‘up’) in Q2 and PT ,

Q2
avg,i =

√
Q2

dn,i Q
2
up,i and PT,avg,i = √

PT,dn,i PT,up,i ,

(8)

together with the definition of the scales in Eq. (6) as

μ̃2
i = Q2

avg,i + P2
T,avg,i . (9)

Effects from heavy quark masses become important at lower
scales, while the NNLO calculations are performed with
five massless quark flavours. Unless otherwise stated the
data are selected with the condition μ̃ > 2mb, with mb =
4.5 GeV [56] being the mass of the b-quark.
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The uncertainty calculated by TMinuit contains the exper-
imental (exp), hadronisation (had) and PDF uncertainties
(PDF). The breakdown of the uncertainties into these three
components is obtained from repeated fits with Vhad and/or
VPDF set to zero. Further uncertainties are defined in Sect. 3.3
and will be denoted as PDFset, PDFαs, and scale uncertain-
ties. The theory uncertainty (‘th’) is defined as the quadratic
sum of the PDF, PDFset, PDFαs, hadronisation and scale
uncertainties, and the ‘total’ uncertainty considers addition-
ally the experimental uncertainty.

The value of αs(mZ) is determined separately for each
individual data set, for all inclusive jet measurements, for all
dijet measurements, and for all H1 jet data taken together.
The latter is denoted as ‘H1 jets’ in the following. In the case
of fits to ‘H1 jets’, dijet data from the HERA-I running period
however are excluded, since their statistical correlations to
the respective inclusive jet data are not known (Table 2).

3.3 Sensitivity of the fit to input parameters

Sensitivity to αs(mZ) The sensitivity of the data to αs(mZ)

and the consistency of the calculations are investigated by
performing fits with two free parameters representing the
two distinct appearances of αs(mZ) in Eq. (1), i.e. in the
PDF evolution, α�

s (mZ), and in the partonic cross sections,
ασ̂

s (mZ ). The cross sections with the αs contributions iden-
tified separately are schematically expressed by

σi = f
(
α�

s (mZ)
) ⊗ σ̂i

(
ασ̂

s (mZ )
)

· chad,i , (10)

where αs(mZ) as of Eq. (5) is denoted as α�
s (mZ), and αs(mZ)

as of Eq. (2) is denoted as ασ̂
s (mZ ). The result of such a fit

performed for H1 jets is displayed in Fig. 3. Consistency is
found for the two fitted values of αs(mZ), where the resulting
α�

s (mZ) tends to be larger than ασ̂
s (mZ ). It is observed that

the predominant sensitivity to αs(mZ) arises from the σ̂i,k , as
was already suggested by the jet cross section study (Fig. 2).
The ellipses obtained using PDFs determined with values
αPDF

s (mZ) of 0.116, 0.118 and 0.120 are consistent with each
other. In the following, all fits are performed using a single
fit parameter αs(mZ).

Dependence on the choice of PDF Values of αs(mZ) are
determined for other PDF sets and for alternative values
αPDF

s (mZ).
The results obtained using different PDFs are displayed

in Fig. 4 for fits to inclusive jet and dijet cross sections, and
in Fig. 5 for H1 jets. In Fig. 5 (right) only H1 jets with
μ̃ > 28 GeV are used. The predictions using NNPDF3.1,
determined with αPDF

s (mZ) = 0.118, provide good descrip-
tion of the data with χ2/ndof close to unity (Fig. 4), where

) from fit
Z

(mσ
sα

0.11 0.12 0.13 0.14

) f
ro

m
 fi

t
Z

(m
sΓ

α

0.11
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PDFα(NNPDF3.1

0.118)=s
PDFα(NNPDF3.1

0.120)=s
PDFα(NNPDF3.1

% C.L.68NNLOJET and H1

H1 jets

Fig. 3 Results from fits to H1 jets with two free fit parameters for
αs(mZ), where the appearances of αs(mZ) in the PDF evolution α�

s (mZ)

and in the partonic cross sections ασ
s (mZ) are identified separately. The

ellipses display a confidence level of 68 % including the experimental,
hadronisation and PDF uncertainties, and thus the lines are calculated
for 
χ2 = 2.3. The dotted, full and dashed lines indicate the con-
tour for 
χ2 = 2.3 using three versions of the NNPDF3.1 set which
were obtained using values for αPDF

s (mZ) of 0.116, 0.118 and 0.120,
respectively

ndof denotes the number of data points minus one. The fitted
αs(mZ) values are only weakly correlated to the αPDF

s (mZ)

values employed for the PDF extraction (Figs. 4 and 5). Dif-
ferent PDF sets yield consistent results. The correlation of
αPDF

s (mZ) and the fitted αs(mZ) vanishes when using only
data with μ̃ > 28 GeV.

Three PDF related uncertainties are assigned to the fitted
αs(mZ) results. The ‘PDF’ uncertainty originates from the
data used for the PDF extraction [82]. A ‘PDFset’ uncer-
tainty is defined as half of the maximum difference of the
results from fits using the ABMP [104], CT14 [105], HERA-
PDF2.0 [56], MMHT [58] or NNPDF3.1 PDF set [82]. The
‘PDFαs’ uncertainty is defined as the difference of results
from repeated fits using PDFs of the NNPDF3.1 series deter-
mined with αPDF

s (mZ) values differing by 0.002 [106]. This
uncertainty can be considered to be uncorrelated to the PDF
uncertainty [106,107]. The size of the variation includes the
NNPDF3.1 PDF set determined with αPDF

s (mZ) = 0.116,
where αPDF

s (mZ) is close to the fitted αs(mZ), in particular
when restricting H1 jets to μ̃ > 28 GeV (Fig. 5). The varia-
tion of μ0 in the range 10 to 90 GeV is also studied but has
negligible effect on the results.

Scale variants and comparison of NLO and NNLO predic-
tions Studies of different choices for μR and μF are com-
monly used to estimate contributions of higher orders beyond
NNLO.

The dependence of the results on μR and μF is studied
by applying scale factors to the definition of μR and μF.
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Fig. 4 Dependencies of the
fitted values of αs(mZ) on the
input PDFs for separate fits of
inclusive jet and dijet data.
Shown are fits using the ABMP,
CT14, HERAPDF2.0, MMHT
and NNPDF3.1 PDF sets. For
each case, the PDFs are
available for different input
values αPDF

s (mZ) used for the
PDF determination, and these
values are displayed on the
horizontal axis. The PDFs are
available only for discrete
values of αPDF

s (mZ) and the
results are connected by smooth
lines. The lower panel displays
the resulting values of χ2/ndof
of the fits ) of PDF
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Fig. 5 Dependencies of the
fitted values of αs(mZ) on the
input PDFs for the H1 jets fit
(left) and the H1 jets fit with
μ̃ > 28 GeV (right). Further
details are given in the caption
of Fig. 4
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The values of αs(mZ) and χ2/ndof resulting from the fits
to inclusive jet and to dijet cross sections are displayed in
Fig. 6 indicating that the standard choice for the scales (unity
scale factor) yields reasonable values of χ2/ndof . Figure 7
displays the resulting αs(mZ) for fits to H1 jets. In general,
variations of μR have a larger impact on the result than those
of μF. When restricting the data to μ̃ > 28 GeV, the scale
dependence is greatly reduced.

Scale uncertainties are estimated through repeated fits
with scale factors applied simultaneously to μR and μF.

Instead of varying the scales up and down by conventional
factors, in this analysis a linear error propagation to the scale
factors of 0.5 and 2 is performed using the derivative deter-
mined at the nominal scale. This is justified by the almost lin-
ear dependence on the logarithm of the scale factor (Figs. 6
and 7) and thus symmetric scale uncertainties are presented.

Alternative choices for μR and μF are investigated and
the results for αs(mZ) with values of χ2/ndof are displayed in
Fig. 8 for fits to inclusive jet and dijet data. The nominal scale
definition μ2

R = μ2
F = Q2 +P2

T results in good agreement of

123



 791 Page 10 of 21 Eur. Phys. J. C   (2017) 77:791 

Fig. 6 Dependencies of the
fitted values of αs(mZ) as a
function of the scale factors
applied to the renormalisation
and factorisation scales (μR and
μF) for separate fits of inclusive
jet and dijet data. The upper
panels show the fitted value of
αs(mZ), and the lower panels
show the values of χ2/ndof . The
left (right) panels show the
values for the fit to inclusive jet
(dijet) cross sections. The solid
lines show the effects from
varying μR and μF together.
The dashed (dotted) lines show
the effects from varying μR
(μF) alone
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theory and data in terms of χ2/ndof . The results obtained with
alternative scale choices typically vary within the assigned
scale uncertainty. This is also observed for fits to H1 jets,
presented in Fig. 9. A representative scale of the jet data
analysed here is 20 GeV. Using μR = μF = μ0 = 20 GeV,
simplifies the theory calculations such that Eqs. (3)–(5) are
not used and no running of the coupling or evolution of the
PDFs is needed. For this scale choice the resulting value of
αs(mZ) (which after the fit is evolved from 20 GeV to mZ for

comparisons) is also found to be consistent with the values
obtained using the nominal scale.

The fits are repeated with the partonic cross sections σ̂i,k
calculated only up to NLO where for better comparisons
identical scale definitions and identical PDFs determined in
NNLO fits are used. For inclusive jets, the values of χ2/ndof

of the NLO fits are of comparable size for some of the
studied scale choices, but are significantly worse for cer-
tain choices such as μ2

R = μ2
F = Q2. For dijets, the values
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Fig. 8 Values of αs(mZ)

obtained for various different
definitions of the
renormalisation and
factorisation scales (μR and μF)
in separate fits of inclusive jet
and dijet data. The lower panels
show χ2/ndof of the fits. The
open circles display results
obtained using NLO matrix
elements. The vertical bars
indicate the scale uncertainties
displayed together with the
nominal scale choice
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of χ2/ndof are always higher for NLO than for NNLO cal-
culations. The NLO calculations exhibit an enhanced sen-
sitivity to the choice of the scale and to scale variations,
as compared to NNLO, resulting in scale uncertainties of
αs(mZ) of 0.0077, 0.0081 and 0.0083 for inclusive jets,
dijet and H1 jets, respectively, as compared to uncertainties

of 0.0040, 0.0040 and 0.0042 in NNLO, respectively. The
previously observed reduction of scale uncertainties of the
cross section predictions at NNLO [11,12,15] is reflected
in a corresponding reduction of the αs(mZ) scale uncertain-
ties.
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Fig. 10 Uncertainties of the αs fit as a function of the parameter μ̃cut
which restricts the jet data to high scales. The experimental, scale,
PDFαs, quadratic sum of all PDF related uncertainties, and the theory
uncertainty are shown

Restricting the scale μ̃ In order to study the size of the uncer-
tainties as a function of μ̃, the fits to inclusive jet and to dijet
cross sections are repeated using data points exceeding a
given value μ̃cut. The resulting uncertainties are displayed in
Fig. 10. The experimental uncertainties are smaller for lower
μ̃. This is because more data are considered in the fit, but
also since the data at lower values of μ̃ have an enhanced
sensitivity to αs(mZ) due to the running of the strong cou-
pling. In contrast, the scale uncertainties of the NNLO cross
section predictions are largest for low values of μ̃, and thus
decrease with increasing μ̃. Considering only data with val-
ues of μ̃ above approximately 30 GeV the experimental and
scale uncertainty become similar in size.

The result obtained with μ̃ > 28 GeV is considered as the
main result of this article.

At values of μ̃cut around 20 GeV the PDFαs uncertainty
effectively vanishes. In other words, the fit result is insensi-
tive to the αPDF

s (mZ) assumptions made for the PDF deter-
mination. A possible explanation is the gradual change of the
fraction of gluon and quark induced processes with μ̃: data
at lower values of μ̃ have contributions from low-x where
the gluon PDF is dominating, whereas data at higher values
of μ̃ have a successively higher fraction of quark induced
processes. The quark PDFs are less dependent on αPDF

s (mZ)

than the gluon PDF, and are well determined by inclusive
DIS data.

3.4 Results

The value of the strong coupling constant αs(mZ) The values
of αs(mZ) obtained from the fits to the data are collected in
Table 4 and displayed in Fig. 11. Good agreement between
theory and data is found.

For the fits to the individual data sets the χ2/ndof is around
unity in most cases. The αs(mZ) values are all found to be
consistent, in particular between inclusive jet and dijet mea-
surements.

The fits to the inclusive jet data exhibit χ2/ndof values
around unity, thus indicating the consistency of the individual
data sets. The value of αs(mZ) from ‘H1 inclusive jets’ has a
significantly reduced experimental uncertainty compared to
the results for the individual data sets. The cut μ̃ > 28 GeV
results for inclusive jets in αs(mZ) = 0.1152 (20)exp (27)th,
which is consistent with the world average [2,108].

Value of χ2/ndof around unity are obtained for fits to all
dijet cross sections confirming their consistency. The results
agree with those from inclusive jet cross sections and the
world average. At high scales μ̃ > 28 GeV, a valueαs(mZ) =
0.1147 (24)exp (25)th is found.

The fit to H1 jets yields χ2/ndof = 0.98 for 200 data
points and αs(mZ) = 0.1143 (9)exp (43)th. The scale uncer-
tainty is the largest among the theoretical uncertainties and
all other uncertainties are negligible in comparison.

The αs(mZ) value obtained from H1 jet data restricted to
μ̃ > 28 GeV is

αs(mZ) = 0.1157 (20)exp (6)had (3)PDF (2)PDFαs

(3)PDFset (27)scale

with χ2 = 63.2 for 91 data points. Although the reduced
number of data points leads to an increased experimental
uncertainty, as compared to the option μ̃ > 2mb, it is still
smaller than the scale uncertainty, which is found to be
reduced significantly. All PDF related uncertainties essen-
tially vanish.1 Therefore, this αs(mZ) determination is taken
as the main result. This result as well as those results obtained
from the inclusive jet and dijet data separately are consistent
with the world average.

The main result is also found to be consistent with
αs(mZ) = 0.1165(8)exp(38)pdf,theo determined previously in
NLO accuracy from normalised H1 HERA-II high-Q2 jet
cross section data [24]. That result is experimentally more
precise, mainly because data at somewhat lower scales and
three-jet data are included.2 The scale uncertainty of the pre-
vious NLO fit is larger than for the present analysis in NNLO,
despite of the fact that it was considered to be partially
uncorrelated bin-to-bin in the previous NLO fit, whereas the
present approach is more conservative.

In the present analysis, the value with the smallest total
uncertainty is obtained in a fit to H1 jets restricted to μ̃ >

42 GeV with the result αs(mZ) = 0.1168 (22)exp (20)theo

1 The difference of the main fit result to αPDF
s (mZ) = 0.118 is covered

by the systematic variation αPDF
s (mZ) = 0.118 ± 0.002.

2 No NNLO calculation is available for three-jet production in DIS to
date.
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Table 4 Summary of values of αs(mZ) from fits to H1 jet cross sec-
tion measurements using NNLO predictions. The uncertainties denote
the experimental (exp), hadronisation (had), PDF, PDFαs, PDFset and
scale uncertainties as described in the text. The rightmost three columns
denote the quadratic sum of the theoretical uncertainties (th), the total
(tot) uncertainties and the value of χ2/ndof of the corresponding fit.
Along the vertical direction, the table data are segmented into five parts.
The uppermost part summarises fits to individual inclusive jet datasets.
The second part corresponds to fits of the individual dijet datasets. The

third part summarises fits to all inclusive jets or all dijets together, with
different choices of the lower cut on the scale μ̃cut . The fourth group of
fits, labelled H1 jets, is made using all available dijet and inclusive jet
data together, for three different choices of μ̃cut . The bottom row corre-
sponds to a combined fit of inclusive data and normalised jet data. For
that fit, theoretical uncertainties related to the PDF determination inter-
fere with the experimental uncertainties and thus no overall theoretical
uncertainty is quoted

αs(mZ) values from H1 jet cross sections

Data μ̃cut αs(mZ) with uncertainties th tot χ2/ndof

Inclusive jets

300 GeV high-Q2 2mb 0.1221 (31)exp (22)had (5)PDF (3)PDFαs (4)PDFset (36)scale (43)th (53)tot 6.5/15

HERA-I low-Q2 2mb 0.1093 (17)exp (8)had (5)PDF (5)PDFαs (7)PDFset (33)scale (35)th (39)tot 17.5/22

HERA-I high-Q2 2mb 0.1136 (24)exp (9)had (6)PDF (4)PDFαs (4)PDFset (31)scale (33)th (41)tot 14.7/23

HERA-II low-Q2 2mb 0.1187 (18)exp (8)had (4)PDF (4)PDFαs (3)PDFset (45)scale (46)th (50)tot 29.6/40

HERA-II high-Q2 2mb 0.1121 (18)exp (9)had (5)PDF (4)PDFαs (2)PDFset (35)scale (37)th (41)tot 42.5/29

Dijets

300 GeV high-Q2 2mb 0.1213 (39)exp (17)had (5)PDF (2)PDFαs (3)PDFset (31)scale (35)th (52)tot 13.6/15

HERA-I low-Q2 2mb 0.1101 (23)exp (8)had (5)PDF (4)PDFαs (5)PDFset (36)scale (38)th (45)tot 10.4/20

HERA-II low-Q2 2mb 0.1173 (14)exp (9)had (5)PDF (5)PDFαs (3)PDFset (44)scale (45)th (47)tot 17.4/41

HERA-II high-Q2 2mb 0.1089 (21)exp (7)had (5)PDF (3)PDFαs (3)PDFset (25)scale (27)th (34)tot 28.0/23

Combined αs fits

H1 inclusive jets 2mb 0.1132 (10)exp (5)had (4)PDF (4)PDFαs (2)PDFset (40)scale (40)th (42)tot 134.0/133

H1 inclusive jets 28 GeV 0.1152 (20)exp (6)had (2)PDF (2)PDFαs (3)PDFset (26)scale (27)th (33)tot 44.1/60

H1 dijets 2mb 0.1148 (11)exp (6)had (5)PDF (4)PDFαs (4)PDFset (40)scale (41)th (42)tot 93.9/102

H1 dijets 28 GeV 0.1147 (24)exp (5)had (3)PDF (2)PDFαs (3)PDFset (24)scale (25)th (35)tot 30.8/43

H1 jets 2mb 0.1143 (9)exp (6)had (5)PDF (5)PDFαs (4)PDFset (42)scale (43)th (44)tot 195.0/199

H1 jets 28 GeV 0.1157 (20)exp (6)had (3)PDF (2)PDFαs (3)PDFset (27)scale (28)th (34)tot 63.2/90

H1 jets 42 GeV 0.1168 (22)exp (7)had (2)PDF (2)PDFαs (5)PDFset (17)scale (20)th (30)tot 37.6/40

PDF+αs fits

H1PDF2017 [NNLO] 2mb 0.1142 (11)exp,NP,PDF (2)mod (2)par (26)scale (28)tot 1539.7/1516

and a value of χ2/ndof = 37.6/40. This result, however,
is obtained from a very limited number of measurements,
the precision of which is limited by statistical uncertainties.

The ratio of all H1 jet cross section measurements to
the NNLO predictions is displayed in Fig. 12. Overall good
agreement between data and predictions is observed.

Running of the strong coupling constant The strong coupling
is determined in fits to data points grouped into intervals
[μ̃lo; μ̃up] of μ̃. The data point grouping and the interval
boundaries can be read off Fig. 12. The assumptions on the
running of αs(μR) thus are for each fit restricted to a limited
μR range.3 For a given data point its μ̃ value is representative
for the μR range probed by the corresponding prediction, see
Eqs. (8) and (9). The fit results are for each interval shown
at the representative scale μR = √

μ̃loμ̃up.

3 For purely technical reasons the fit parameter is αs(mZ), and thus the
running is applied from μR, as used in the calculation, to mZ and then
‘back’ to a representative value μR.

The results for fits to inclusive jet and to dijet cross sec-
tions, as well as to H1 jets, are presented for the ten selected
intervals in μ̃ in Table 5 and are displayed in Fig. 13. Consis-
tency is found for the fits to inclusive jets, dijets, and H1 jets,
and the running of the strong coupling is confirmed in the
accessible range of approximately 7 to 90 GeV. The lowest
interval considered contains the data points with μ̃ < 2mb,
which are excluded from the main analysis. Nevertheless,
these results are found to be consistent with the other αs(mZ)

determinations presented here.
The values obtained from fits to H1 jets are compared to

other determinations of at least NNLO accuracy [41,44,54,
109] and to results at NLO at very high scale [52] in Fig. 14,
and consistency with the other experiments is found.

The results are consistent with results obtained from an
alternative method used as a cross check, where in a single
fit with ten free parameters the αs values in the ten bins are
determined simultaneously.
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Fig. 11 Summary ofαs(mZ)values obtained from fits to individual and
multiple H1 jet data sets. The inner error bars indicate the experimental
uncertainty and the outer error bars the total uncertainty

4 Simultaneous αs and PDF determination

In addition to the fits described above also a fit in NNLO
accuracy of αs(mZ) together with the non-perturbative PDFs
is performed which takes jet data and inclusive DIS data as
input. This fit is denoted as ‘PDF+αs-fit’ in the following.

4.1 Methodology

The methodology of the PDF+αs-fit is closely related to PDF
determinations as performed by other groups [56,58,82,104,
105]. The PDFs are parametrised at a low starting scale μ0

which is below the charm-quark mass. Heavy-quark PDFs
are generated dynamically and only light-quark PDFs and
the gluon distribution have to be determined in the fit.

In order to have constraints on the PDFs, polarised and
unpolarised inclusive NC and CC DIS cross sections [61–
66] are used (Table 3). This data sample is identical to the
one used in the H1PDF2012 PDF fit [65]. In addition, nor-
malised inclusive jet and dijet cross sections [15,21,24] are
used (Table 2).

The calculations of the splitting kernels are performed in
NNLO using the program QCDNUM [96,97]. The predic-
tions for the inclusive DIS cross sections are calculated using
structure function calculations in NNLO using the zero-mass
variable flavour number scheme (ZM-VFNS) [65] as imple-
mented in QCDNUM [96,97]. Normalised jet cross sections
are calculated as a ratio of jet cross sections to inclusive NC
DIS, where the former are calculated as outlined in Sect. 3.1
and the latter are calculated using ZM-VFNS structure func-
tions using QCDNUM. For inclusive DIS predictions the
scales μ2

R and μ2
F are both set to Q2 and for jet predictions

to Q2 + P2
T , as specified in Eq. (6).

For the PDF+αs-fit all data are restricted to the range Q2 >

10 GeV2 in order to exclude kinematic regions where fixed-
order pQCD cannot be applied reliably. For jet cross sections
μ̃ > 2mb is required in addition. After applying these cuts,
the jet predictions receive contributions from the x-range
down to 0.003, whereas without these cuts it would be 0.002.
Major contributions to the data points at highest values of μ̃

are within the x-range 0.1 to 0.5.
The choice of the PDF parametrisations and the values of

input parameters follows closely previous approaches [56,
63,65,110] and are only discussed briefly here. At a starting
scale μ2

0 = 1.9 GeV2 parton densities are attributed to the
constituents of the proton. These take the functional form

x f (x)|μ0 = f Ax
fB (1 − x) fC (1 + fDx + fE x

2), (11)

where f is one of g, ũ, d̃ , Ū , D̄, denoting the density of the
gluon, up-valence, down-valence, up-sea, down-sea in the
proton, respectively. The strange sea is set to s̄(x) = fs D̄,
where fs = 0.4. Parameters fD and fE are set to zero by
default, but are added for specific flavours in order to improve
the fit. The parameters gA, ũ A and d̃A are constrained by
sum rules. The parameter ŪA is set equal to D̄A(1− fs). The
parameter ŪB is set equal to D̄B . A total of 12 fit parameters
are used to describe the PDFs.

The uncertainty obtained from the fit comprises exper-
imental uncertainties of the data and hadronisation uncer-
tainties of the jet cross section predictions. The resulting
uncertainty of αs(mZ) from the PDF+αs-fit is denoted as
‘exp,had,PDF’. In order to determine also model (‘mod’)
and parametrisation (‘par’) uncertainties, an additional error
estimation similar to HERAPDF2.0 [56] is performed. The
model uncertainty is estimated as the quadratic sum of the
differences of the nominal result to the resulting values of
αs when repeating the PDF+αs-fit with alternative parame-
ters, such as the charm or beauty masses or the sea quark
suppression factor fs [56]. Parametrisation uncertainties are
attributed by adding extra fD or fE parameters to the fit
or by varying the starting scale. In addition, a more flexible
functional form is allowed for the gluon, similar to the PDF
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Fig. 12 Ratio of inclusive jet (upper panel) and dijet cross sections
(lower panel) to NNLO predictions obtained with the fitted value
αs(mZ) = 0.1157. Data points are ordered according to their scale
μ̃ and are displayed on the horizontal axis within the respective μ̃-
interval. Within a single interval multiple data points are displayed with
equal horizontal spacing and are thus not to scale. The displayed inter-
vals reflect the choices made for the studies of the running of the strong

coupling (compare Figs. 13 and 14). The shaded area indicates the
uncertainty on the NNLO calculations from scale variations. The open
circles show data points which are not considered for some fits, because
their scale μ̃ is below 2mb. The squares show data points not considered
for the ‘H1 jets’-fit, since the statistical correlations to the respective
inclusive jet measurements are not known

parametrisation used for the default HERAPDF2.0 [56] fit.4

A total of eight parametric forms different from the default
are considered.

The scale uncertainty of αs(mZ) from this fit is deter-
mined by repeating fits with scale factors 0.5 and 2 applied
to μR and μF simultaneously to all calculations involved.
The larger of the two deviations from the central fit, corre-
sponding to a scale factor of 0.5, is taken as symmetric scale

4 The functional form referred to as “alternative gluon” in [56] actually
corresponds to the default choice for this paper.

uncertainty. A more detailed study is beyond the scope of
this paper.

The PDF+αs-fit differs from the αs-fit outlined in Sect. 3
in the following aspects: the usage of normalised jet cross
sections, the inclusion of NC and CC DIS cross sec-
tions and the low starting scale μ0 of the DGLAP evo-
lution, thus assuming the validity of the running cou-
pling and the PDF evolution down to lower scale val-
ues.
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Table 5 Values of the strong coupling constant αs(μR) and at the Z -
boson mass, αs(mZ), obtained from fits to groups of data points with
comparable values of μR. The first (second) uncertainty of each point

corresponds to the experimental (theory) uncertainty. The theory uncer-
tainties include PDF related uncertainties and the dominating scale
uncertainty

Running of the strong coupling

μR [GeV] Inclusive jets Dijets H1 jets

αs(mZ) αs(μR) αs(mZ) αs(μR) αs(mZ) αs(μR)

7.4 0.1148 (13) (42) 0.1830 (34) (114) 0.1182 (28) (41) 0.1923 (77) (116) 0.1147 (13) (43) 0.1829 (34) (114)

10.1 0.1136 (17) (36) 0.1678 (39) (81) 0.1169 (14) (42) 0.1751 (34) (99) 0.1148 (14) (40) 0.1705 (31) (91)

13.3 0.1147 (15) (43) 0.1605 (30) (88) 0.1131 (18) (38) 0.1573 (36) (76) 0.1144 (15) (42) 0.1600 (30) (86)

17.2 0.1130 (15) (33) 0.1492 (26) (59) 0.1104 (19) (30) 0.1445 (33) (53) 0.1127 (15) (33) 0.1486 (27) (59)

20.1 0.1136 (17) (33) 0.1457 (29) (56) 0.1116 (22) (31) 0.1425 (36) (52) 0.1134 (17) (33) 0.1454 (29) (55)

24.5 0.1173 (17) (30) 0.1463 (26) (48) 0.1147 (23) (24) 0.1423 (36) (38) 0.1171 (17) (29) 0.1460 (27) (46)

29.3 0.1084 (36) (29) 0.1287 (51) (41) 0.1163 (34) (34) 0.1401 (50) (50) 0.1134 (30) (32) 0.1358 (44) (46)

36.0 0.1153 (32) (37) 0.1338 (43) (50) 0.1135 (37) (29) 0.1314 (50) (39) 0.1146 (30) (33) 0.1328 (41) (44)

49.0 0.1170 (22) (20) 0.1290 (27) (25) 0.1127 (31) (15) 0.1238 (37) (18) 0.1169 (23) (19) 0.1290 (28) (24)

77.5 0.1111 (55) (19) 0.1137 (58) (20) 0.1074 (84) (19) 0.1099 (88) (20) 0.1113 (55) (19) 0.1139 (58) (20)

4.2 Results

Fit results and the value of αs(mZ) The results of the
PDF+αs-fit are presented in Table 6. The fit yields χ2/ndof =
1539.7/(1529−13), confirming good agreement between the
predictions and the data. The resulting PDF is able to describe
141 jet data points and the inclusive DIS data simultaneously.

The value of αs(mZ) is determined to

αs(mZ) = 0.1142 (11)exp,had,PDF (2)mod (2)par (26)scale.

and is determined to an overall precision of 2.5 %. It is worth
noting that the result is largely insensitive to the PDF model
and parametrisation choices. The scale uncertainty is domi-
nating. The αs(mZ) value is consistent with the main result
of the ‘H1 jets’ fit. The result is compared to values from the
PDF fitting groups ABM [111], ABMP [104], BBG [112],
HERAPDF [56], JR [113], NNPDF [57] and MMHT [58]
in Fig. 15 and consistency is found. The value is consis-
tent with the world average and the ‘pre-average’ value
of the structure function category [2]. The result exhibits
a competitive experimental uncertainty to other determina-
tions [57,58,104], which is achieved by using H1 normalised
jet cross sections in addition to the H1 inclusive DIS data.

PDF parametrisation results The PDF and αs(mZ) param-
eters determined together in this fit (Table 6) are denoted as
H1PDF2017 [NNLO]. It is released [114] in the LHAPDF [93]
format with experimental, hadronisation and αs(mZ) uncer-
tainties included. The gluon and singlet momentum distribu-
tions, xg and x�, the latter defined as the sum of all quark and
anti-quark densities, are compared to NNPDF3.1 at a scale
μF = 20 GeV in Fig. 16. The uncertainties of the fitted PDFs
are somewhat larger than the uncertainties of NNPDF3.1. For
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Fig. 13 Results on αs(mZ) and αs(μR) for fits to data points arranged
in groups of similar μR. The circles show results from inclusive jet and
dijet data taken together (‘H1 jets’), the open diamonds results from
inclusive jet cross sections alone and the open boxes results from dijet
cross sections alone. For these fits, the data sets are not constrained by
the requirement μ̃ > 2mb. The fitted values of αs(mZ) (lower panel)
are translated to αs(μR) (upper panel), using the solution of the QCD
renormalisation group equation. The data points from fits to inclusive
jets (dijets) are displaced to the left (right) for better visibility. In the
upper panel a displacement is also applied along the vertical direction,
to account for the running of αs(μR). The inner error bars denote the
experimental uncertainties alone, and the outer error bars indicate the
total uncertainties

NNPDF3.1, αPDF
s (mZ) is fixed while it is a free parameter in

the H1PDF2017 [NNLO] fit. Within uncertainties, the singlet
distribution obtained for H1PDF2017 [NNLO] is in fair agree-
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Fig. 14 Results for αs(mZ) and αs(μR) for fits to data points arranged
in groups of similar μR, compared to results from other experiments
and processes. Further details can be found in the caption of Fig. 13

ment with NNPDF3.1 over a large range in x , whereas the
gluon density is consistent with NNPDF3.1 only for x > 0.01
and is significantly higher than NNPDF3.1 at lower x . This
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Fig. 15 Comparison of the value of αs(mZ) obtained in the
H1PDF2017 [NNLO] PDF+αs-fit and in the H1 jets fit in NNLO accuracy
to other αs determinations from DIS data. The pre-average of structure
function data and the world average [2] are also indicated

Table 6 Results of the PDF+αs fit. The columns denote the resulting fit value, its uncertainty and the correlations to the other parameters

Results for the PDF+αs-fit

Parameter Fit result Correlation coefficients

αs(mZ) gB gC gD ũB ũC ũE d̃B d̃C ŪC D̄A D̄B D̄C

αs(mZ) 0.1142 ± 0.0011 1

gB −0.023 ± 0.035 0.25 1

gC 5.69 ± 4.09 −0.08 0.01 1

gD −0.44 ± 4.20 −0.03 −0.10 0.99 1

ũ B 0.707 ± 0.036 0.39 0.25 0.05 0.04 1

ũC 4.909 ± 0.096 −0.09 −0.13 0.02 0.03 −0.08 1

ũE 12.7 ± 1.8 −0.03 −0.25 −0.04 −0.01 −0.75 0.57 1

d̃B 1.036 ± 0.098 0.24 −0.02 0.06 0.08 0.32 −0.24 −0.24 1

d̃C 5.35 ± 0.49 −0.10 −0.07 0.03 0.05 −0.08 −0.24 0.00 0.80 1

ŪC 4.96 ± 0.86 0.32 −0.28 −0.01 0.05 0.76 0.09 −0.39 0.53 0.11 1

D̄A 0.299 ± 0.032 0.29 −0.71 −0.04 0.07 0.32 0.01 −0.08 0.38 0.13 0.71 1

D̄B −0.091 ± 0.017 0.22 −0.79 −0.05 0.06 0.19 0.03 0.01 0.29 0.09 0.61 0.97 1

D̄C 16.1 ± 3.8 −0.13 −0.51 −0.01 0.08 −0.15 −0.24 −0.06 0.14 0.24 0.05 0.48 0.46 1

gA 2.84 Constrained by sum-rules

ũ A 4.11 Constrained by sum-rules

d̃A 6.94 Constrained by sum-rules

ŪA 1.80 Set equal to D̄A(1 − fs)

ŪB −0.091 Set equal to D̄B
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Fig. 16 Gluon and singlet distributions determined by the PDF+αs-fit,
denoted as H1PDF2017 [NNLO], as a function of the convolution vari-
able x (see Eq. (1)). The distributions are displayed at μF = 20 GeV.

The PDFs are compared to the NNPDF3.1 PDFs determined with val-
ues of αPDF

s (mZ) of 0.114 and 0.118. Ratios to NNPDF3.1 are shown
in the right panels

difference can not be explained by the assumptions made on
the strong coupling in NNPDF3.1, as can be seen from the
NNPDF3.1 distributions obtained for αPDF

s (mZ) = 0.114.
However, there are differences in the datasets used for the
fits. For H1PDF2017 [NNLO] only H1 data are considered,
restricted to the range Q2 > 10 GeV2. For NNPDF3.1
the combined HERA DIS data [56] are used, starting from
Q2 > 3.5 GeV2. Data from other processes and experiments
are also included, but no DIS jet data.

The PDFs obtained for each of the model and parametri-
sation variations (not shown in Fig. 16) are contained in the
exp,had,PDF uncertainty band for x > 0.0004 and thus do
not explain the differences to NNDPF3.1.

The impact of H1 jet data on PDF fits The PDF+αs-fit is
repeated with the normalised jet data excluded, i.e. only
inclusive DIS data are considered. For this fit and the
H1PDF2017 [NNLO] fit the gluon distribution xg(x, μF) is
evaluated at μF = 20 GeV and x = 0.01 and its Hes-
sian uncertainty together with its correlation coefficient with
αs(mZ) are calculated. The resulting Hessian error ellipses
are displayed in Fig. 17 at a confidence level of 68 %. Com-
pared to the fit without jet data, the inclusion of jet data
significantly reduces the uncertainties of αs(mZ) and xg, as
well as their correlation. The correlation coefficient is −0.92
and reduces to −0.65 if jet data are included. Also shown is
the gluon distribution of NNPDF3.1 determined for differ-
ent values of αPDF

s (mZ). At this particular choice of x and
μF, the gluon density of H1PDF2017 [NNLO] is found to be
consistent with NNPDF3.1 in the range where αPDF

s (mZ) is
close to the result of the H1PDF2017 [NNLO] fit.
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NNLOJET and H1
% C.L. of68
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 fitsαPDF+

Fig. 17 Error ellipses of Hessian uncertainties at 68 % confidence level
of αs(mZ) and the gluon density xg at μF = 20 GeV and x = 0.01 as a
result of two different PDF+αs-fits. The filled ellipse indicates the result
of the H1PDF2017 [NNLO] fit and the dashed line of a PDF+αs-fit with
jet data excluded. The error ellipses represent the combined effect of
experimental and hadronisation uncertainties as described in the text.
The diamonds indicate the gluon density of the NNPDF3.1 PDF set for
fixed values αPDF

s (mZ)

The two fits are repeated for each of the model and
parametrisation variations (not shown in Fig. 17). For the
H1PDF2017 [NNLO] fit, only small variations of the results
are observed, in accord with the small model and parametri-
sation uncertainties assigned to αs(mZ). However, if the jet
data are not included in the fit, the resulting αs(mZ) and xg
are found to be strongly dependent on the assumptions made
for the PDF parametrisation. This confirms previous obser-
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vations [115], namely that xg and αs(mZ) together cannot be
determined reliably from H1 inclusive DIS data alone.

In summary, the inclusion of jet data allows for a reli-
able determination of αs(mZ) and its uncertainty. It also sta-
bilises the gluon density determination. In contrast to a pre-
vious study using only a fraction of the H1 data [17], it can
now be stated that all H1 jet data taken together with all
H1 inclusive DIS data do allow for a simultaneous deter-
mination of xg and αs(mZ), with a precision on xg com-
petitive to global PDF fits obtained using fixed value of
αPDF

s (mZ).

5 Summary

The new next-to-next-to-leading order pQCD calculations
(NNLO) for jet production cross sections in neutral-current
DIS are exploited for a determination of the strong coupling
constant αs(mZ) using inclusive jet and dijet cross section
measurements published by the H1 collaboration. Two meth-
ods are explored to determine the value of αs(mZ).

In the first approach H1 inclusive jet and dijet data are
analysed. The cross section predictions account for the αs

dependence in the two components of the calculations, the
partonic cross sections and the parton distribution func-
tions (PDFs). The strong coupling constant is determined
to be αs(mZ) = 0.1157 (20)exp (29)th, where the jet data are
restricted to high scales μ̃ > 28 GeV. Uncertainties due to
the input PDFs or the hadronisation corrections are found
to be small, and the largest source of uncertainty is from
scale variations of the NNLO calculations. The experimen-
tal uncertainty may be reduced to 0.8 %, if all inclusive jet
and dijet data with μ̃ > 2mb are considered, but the scale
uncertainties are increased significantly. The smallest total
uncertainty on αs(mZ) of 2.5 % is obtained when restricting
the data to μ̃ > 42 GeV. Values of αs(mZ) determined from
inclusive jet data or dijet data alone are found to be consis-
tent with the main result. All these results are found to be
consistent with each other and with the world average value
of αs(mZ).

The running of the strong coupling constant is tested in
the range of approximately 7 to 90 GeV by dividing the jet
data into ten subsets of approximately constant scale. The
scale dependence of the coupling is found to be consistent
with the expectation.

In a second approach a combined determination of PDF
parameters and αs(mZ) in NNLO accuracy is performed. In
this fit all normalised inclusive jet and dijet cross sections
published by H1 are analysed together with all inclusive
neutral-current and charged-current DIS cross sections deter-
mined by H1. Using the data with Q2 > 10 GeV2, the value
of αs(mZ) is determined to be αs(mZ) = 0.1142 (28)tot.
Consistency with the other results and the world average is

found. The resulting PDF set H1PDF2017 [NNLO] is found
to be consistent with the NNPDF3.1 PDF set at sufficiently
large x > 0.01, albeit there are differences at lower x . It is
demonstrated that the inclusion of H1 jet data into such a
simultaneous PDF and αs(mZ) determination provides strin-
gent constraints on αs(mZ) and the gluon density. The results
and their uncertainties are found to be largely insensitive to
the assumptions made for the PDF parametrisation.

Relevant phenomenological aspects of the NNLO calcu-
lations are studied for the first time. The NNLO calculations
are repeated for a number of different scale choices and scale
factors, as well as for a large variety of recent PDF sets. The
level of agreement with H1 jet data is judged quantitatively.
The NNLO calculations improve significantly the description
of the data and reduce the dominating theoretical uncertainty
on αs(mZ) in comparison to previously employed NLO cal-
culations. All jet cross section measurements are found to
be well described by the NNLO predictions. These NNLO
calculations are employed for a PDF determination for the
first time.

This is the first precision extraction of αs(mZ) from jet
data at NNLO involving a hadron in the initial state. It opens
a new chapter of precision QCD measurements at hadron
colliders.
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