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Abstract: We investigate the dielectric properties of the 4H and 6H polytypes of silicon 
carbide in the 0.1-19 THz range, below the fundamental transverse-optical phonons. Folding 
of the Brillouin zone due to the specific superlattice structure of the two polytypes leads to 
activation of acoustic phonon modes. We use a combination of ultrabroadband terahertz 
time-domain spectroscopy and simulations based on density-functional perturbation theory to 
observe and characterize these modes, including band splitting due to the dissimilar carbon 
and silicon sublattices of the structures, and an indirect measurement of the anisotropic sound 
velocities in the two polytypes. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Silicon carbide (SiC) is an important material for power electronics and optoelectronics due 
to its uniquely high dielectric strength, high bandgap, and mechanical hardness [1,2]. 
Recently, SiC has attracted attention as host material for solid-state single photon emitters [3] 
as well as dielectric substrate material for graphene growth [4,5], nanophotonics at long 
wavelengths with surface phonon polaritonics [6], mid-IR femtosecond pulse generation [7], 
and THz generation in the difficult-to-access 5-15 THz region [8]. Natural SiC superlattices 
can emit THz electroluminescence due to Bloch oscillations [9], and it was recently 
demonstrated that high-quality graphene nanoribbons with ballistic electron on the µm scale 
at room temperature can be grown on sidewalls of SiC mesas [10,11]. 

It is well known that SiC naturally forms a wide range of polytypes, depending on the 
stacking sequence of the individual SiC layers of the material. Stacking increases the size of 
the crystal unit cell in the growth direction compared to the simple cubic SiC unit cell (3C 
SiC), and thus reduces the size of the Brillouin zone (BZ) correspondingly. This reduction 
can be understood as a folding of the cubic BZ, and therefore the edges of the simple BZ are 
projected onto the center of the BZ of the given polytype (see e.g [12,13].). The same zone-
folding effect is also observed in artificial superlattice structures, such as GaAs/AlAs [14] 
and GaSe [15]. Here we perform a detailed investigation of the infrared active zone-folded 
acoustic phonons below the TO frequency in the most common polytypes 4H and 6H of SiC 
that are commercially available in wafer dimensions. The acoustic phonons in these and other 
polytypes have been studied extensively by Raman spectroscopy [12,13], and their nature is 
well established. However, these exceedingly weak modes are not obvious in infrared 
spectroscopy, and have not been characterized in recent studies of the optical properties of 
SiC in the same spectral range [8,16]. To the best of our knowledge, the modes have not been 
observed and documented in IR spectroscopy with the exception of the LA mode in 6H SiC 
[17]. 
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extinction coefficient κ [21]. The complex permittivity is then determined as 2( )n iε κ= +  . 

Figures 3(a) and 3(b) show the real and imaginary parts of the permittivity of the two 
polytypes across the 1-19 THz band, measured at normal incidence, with insets showing a 
zoom onto the weak but sharp spectral bands in the 7-8 THz range, due to transverse acoustic 
phonons activated by zone folding. The black, dashed curves are global fits to the real and 
imaginary parts of the experimental permittivity data with a multi-Lorentzian function, 
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taking into account both the strong fundamental TO phonon that is responsible for the 
general dispersion across the frequency range explored here, and the weak polytype-specific 
modes in the 7-8 THz range. The resulting fit parameters are shown in Table 1. It can be 
noted that the zone-folded modes have intensities that are between 7 and 25 parts per million 
relative to the strong TO phonon. Although outside the range of the spectroscopic data, the 
position of the TO phonon can easily be obtained from the fits due to the strong dispersion of 
the real part of the permittivity at lower frequencies. 

Figure 3(c) shows the imaginary part of the permittivity of both polytypes, measured at 
70° incidence angle, resulting in an internal propagation angle of 14.5° and giving access to 
the extraordinary axis of the refractive index. The high angle of incidence leads to slight shift 
of the THz beam path, so quantitative spectroscopic information is difficult to extract. 
However, we observe narrow absorption bands at 18.3 and 15.2 THz in 4H and 6H SiC, 
respectively. These peaks are not observed at normal incidence (Fig. 3(b)), and are due to 
longitudinal acoustic phonons, as will be discussed below. 

Table 1. Lorentzian fitting parameters for 4H and 6H SiC 

Parameter, units 4H SiC 6H SiC 
ε∞ 6.587 ± 0.003 6.625 ± 0.003 
W1 [ps−1] 1.72 ± 0.04 0.52 ± 0.06 
W2 [ps−1] - 1.85 ± 0.03 
W3 [ps−1] 71734 ± 84 71342 ± 87 
τ1 [ps] 9.4 ± 0.4 4.0 ± 0.8 
τ2 [ps] - 12.4 ± 0.5 
τ3 [ps] 2.45 ± 0.03 2.61 ± 0.04 
ω0,1/2π [THz] 7.955 ± 0.001 7.034 ± 0.005 
ω0,2/2π [THz] - 7.203 ± 0.001 
ω0,3/2π [THz] 23.92 ± 0.005 23.87 ± 0.005 

Based on our experimental data, the relations for the ordinary refractive index of the two 
polytypes are 
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where λ is the wavelength in units of µm. The deviation between these relations and our 
experimental data is shown in the top panel of Fig. 4. The RMS deviation is well below 10−3 
in the 15-300 µm range, excluding the narrow region of the folded-zone phonon modes that 
are not accounted for by the Sellmeier relations. For comparison, we show the excellent 
agreement with previous values for 4H SiC in the same spectral region obtained by Fischer et 
al. [8] and Naftaly et al. [16] 
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Fig. 3. (a) Real and (b) imaginary part of the permittivity of 4H (blue curves) and 6H (red 
curves) SiC. The insets show a zoom onto the resonant modes in the 6.5-8.5 THz region. 
Dashed curves in insets are Lorentz fits to the measurements. (c) Imaginary part of 
permittivity measured at 70 degrees incidence angle with longitudinal phonons at 18.4 THz 
(4H) and 15.2 THz (6H). The shaded areas around each curve indicate the standard deviation 
of the measurements. 
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Fig. 4. Index of refraction of 4H (blue) and 6H (red) SiC (ordinary axis) as function of 
wavelength, together with Sellmeier fits in the range 15-300 µm. Shaded areas indicate 
standard deviation of the experimental data. Top panel shows deviation between experimental 
data and fits, with RMS deviations indicated in the legend. Dashed and dashed-dotted curves 

show the Sellmeier fits from [8,16], respectively (4H SiC). 

4. Theoretical analysis 

The nature of the observed sharp bands can be understood by considering phonons in the 
simplest cubic (3C) polytype. Here the phonon dispersion consist of two acoustic (TA and 
LA) and two optical (TO and LO) branches, where only the TO mode at wavevector q = 0 is 
infrared active. The phonon dispersion diagram of the higher polytypes can be qualitatively 
constructed by appropriate folding of the dispersion diagram along the stacking direction. 
The acoustic branches of the dispersion diagram are shown in Fig. 4(a) for 4H and Fig. 4(b) 
6H polytypes. The dispersion diagram was calculated by ab-initio density functional 
perturbation theory (DFPT) as implemented in the Castep code [22,23] on optimized unit 
cells, using the exchange correlation functional PBEsol, a plane-wave energy cut-off of 1200 
eV, 2.2⋅10−10 eV/atom tolerance in electronic minimization, 10−5 eV/Å2 phonon energy 
tolerance, and 10−5 Å3 electric field convergence tolerance. A k point grid of 9x9x2 (total of 
81 k points used after symmetry considerations). Figure 5 shows the resulting phonon 
dispersion curves of the transverse (red) and longitudinal (blue) acoustic phonon branches of 
(a) 4H and (b) 6H SiC. The IR intensities of the modes at q = 0 are indicated by gray bars 
(logarithmic scale). 
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Fig. 5. Acoustic phonon dispersion diagrams of (a) 4H and (b) 6H SiC, calculated by DFT. 
Red and blue symbols represent transverse and longitudinal zone-folded acoustic branches, 
respectively. Grey bars indicate IR intensities (upper logarithmic scale) predicted by DFPT. 
Solid, black lines indicate the linear dispersion relation and speed of sound for the transverse 
and longitudinal directions. 

The zone folding results in IR activation of several of the acoustic modes. In 4H SiC, a 
doubly degenerate TA mode and an LA mode is predicted, and in 6H SiC, two TA modes 
two LA modes are predicted, together with the strong TO phonon in both polytypes. The 
predicted frequencies are shown in Table 2, with a direct comparison to the experimentally 
determined frequencies in Fig. 3. The DFT frequencies are immediately confirmed by the 
experimental spectra shown in Fig. 3, with all deviations below 3% and an RMS deviation of 
only 0.5%. 

Table 2. Experimental and DFT phonon frequencies [THz] 

4H Exp. DFT Δ [%] 6H Exp. DFT Δ [%] 
TA 7.96 7.83 1.6 

TA 
7.03 6.87 2.3 

    7.20 7.00 2.8 
LA 18.20 18.17 0.2 

LA 15.2 
15.1 0.7 

    15.4 −1.3 
TO 23.92 23.91 0.04 TO 23.87 23.86 0.04 

The very good agreement between the theoretical and observed frequencies may at first 
glance be surprising. The DFPT calculation is performed at absolute zero temperature, and 
thus excludes anharmonic temperature effects such as redshift of frequencies and thermal 
expansion of the lattice, known to have significant influence on vibrational modes in 
crystalline materials in the THz range [24]. Figure 6 shows the calculated vibrational 
potential as function of the normal mode coordinates of the two motions for the 4H SiC TA 
mode and the upper of the 6H SiC TA modes (7.83 and 7.00 THz, respectively). The normal 
mode coordinates are scaled so that the curvature of the potential energy corresponds to the 
vibrational frequencies of the modes. The solid symbols represent the DFT potential 
energies, and the dashed curves represent simple harmonic fits that hardly deviates from the 
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DFT potential within the shown range, up to energies well above 1 eV. The thermal 
expansion coefficients of SiC are very low, with an estimated volume expansion of 6H SiC 
of 9

0/ 1.5 10V V −Δ ≈ ⋅  between 0 and 300 K [25]. Pressure studies of SiC determined the shift 

of the TO phonon frequency to be 0/ ( / ) 19 THzTO V VνΔ Δ ≈  [26], so the TO frequency shift 

due to thermal expansion alone between 0 and 300 K would be in the 30 kHz range, which 
can be safely ignored here. Thus, the harmonic vibrational potential indicates that the 
vibrational frequencies should be virtually independent of temperature. 

 

Fig. 6. Representative potential energy curves calculated by DFPT for the 4H SiC TA mode at 
7.83 THz (red symbols) and the second 6H TA mode at 7.00 THz (blue symbols). Dashed 
lines are harmonic fits. 

The precise agreement between experimental and theoretical frequencies of the IR active 
acoustic modes confirm the general shape of the calculated dispersion curves, and thus it is 
possible to accurately estimate the axial and planar sound velocities (v = ω/q) in the 4H and 
6H polytypes, as shown in Table 3. 

Table 3. Planar (vT) and axial (vL) sound velocities (km/s) in 4H and 6H SiC, compared 
with literature values. 

 6H 4H 6H [27] 4H [27] 6H [28] 
vT 6.4 ± 0.06 6.9 ± 0.07 7.1 7.0 7.3 
vL 13.6 ± 0.14 13.2 ± 0.13 13.1 13.0 13.3 

The values are consistent with theoretical and experimental literature values [12,27,28], 
although our reported planar sound velocities are slightly lower than reported literature 
values. The low-frequency slope of the dispersion curves are uniquely defined by the 
frequencies of the IR activated acoustic modes, so we estimate the uncertainty of the 
extracted sound velocities to be given by the differences between optimized lattice constants 
in the simulation (mainly the c axis) and the experimental value at room temperature. The 
room temperature axial lattice parameter (c direction) for 4H and 6H SiC is 10.082 and 
15.115 Å, respectively [29], and our optimized DFT unit cell parameters are 9.97 and 14.958 
Å, respectively, which is 1% lower than the experimental values. This results in a similar 
relative uncertainty on the absolute slope of the dispersion curves in Fig. 5, and thus on the 
extracted sound velocities. 

The detailed nature of the observed modes is detailed in Fig. 7, where we show the 
calculated eigenmotions of the individual ions in the unit cells, projected onto the transient 
dipole moment of each mode. 
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frequencies with predictions from density functional perturbation theory, and found excellent 
agreement, with 0.5% RMS deviation between observed and calculated frequencies. The 
zone-folded acoustic modes are very weak compared to the transverse optical phonon (by a 
factor of approximately 105), and we believe that the present study represents the first 
documented observation of these modes in infrared spectroscopy. The theoretical analysis 
allowed us to extract good estimates of the axial and planar sound velocities in both 
polytypes that are consistent with previous observations and calculations, and with a 
precision determined by the accuracy of the calculated vibrational frequencies. 
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