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2Instituto de Astrofı́sica, Ponticia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
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ABSTRACT
We present a systematic comparison of several existing and new void-finding algorithms,
focusing on their potential power to test a particular class of modified gravity models –
chameleon f(R) gravity. These models deviate from standard general relativity (GR) more
strongly in low-density regions and thus voids are a promising venue to test them. We use halo
occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the
HOD parameters such that the galaxy two-point correlation functions are the same in both f(R)
and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D)
underdensities in the plane of the sky to find the same void abundance and void galaxy number
density profiles across all models, which suggests that they do not contain much information
beyond galaxy clustering. However, the underlying void dark matter density profiles are
significantly different, with f(R) voids being more underdense than GR ones, which leads to
f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the
potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID

and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of
tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80
and 11σ (statistical error) f(R) models with parameters, |fR0| = 10−5 and 10−6, from GR.

Key words: gravitational lensing: weak – dark energy – large-scale structure of Universe –
cosmology: theory.

1 IN T RO D U C T I O N

After billions of years of evolution since the big bang, the Universe
has developed rich large-scale structures, the so-called cosmic web.
This forms a complex and space-filling pattern, and is composed of
lumpy knots at the intersection of long filamentary bridges, which
in turn form at the intersection of tenuous sheets (Bond, Kofman
& Pogosyan 1996, see Cautun, van de Weygaert & Jones 2013
for a visualization). These structures are populated by dark matter
haloes, some of which are illuminated by galaxies such as our own
Milky Way.

Such rich structures are a consequence of the interplay of various
ingredients, most of which have their roots in fundamental physics.
The tiny initial density fluctuations are believed to be seeded by
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quantum effects in a hypothetical period of inflationary expansion.
The matter species are predicted by the standard model of particle
physics, along with its extensions that provide theoretical candidates
for the dark matter. The effect of gravity is felt on almost all scales,
from determining the expansion rate of the Universe as a whole to
governing the formation and evolution of the cosmic web itself and
the galaxies and stars inside them. Finally, there is the mysterious
cosmic acceleration – the observation that the expansion rate of the
Universe has been accelerating instead of decelerating as predicted
originally – discovered initially almost two decades ago (Riess et al.
1998; Perlmutter et al. 1999), which could be due to a small positive
cosmological constant, a new exotic matter species (dark energy)
or a breakdown of Einsteinian general relativity (GR) on cosmic
scales (modified gravity). This interplay suggests that the accurate
determination of the properties of the cosmic web could help to
improve our understanding of the laws of fundamental physics that
have shaped the Universe. However, it also poses great challenges to
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find optimal ways of extracting accurate information from a highly
entangled observational reality.

One of the key properties of the cosmic web, which has been
a subject of growing interest in recent years, is related to the vast
space in between sheets and filaments, nearly empty of galaxies and
dark matter. These are commonly referred to as ‘cosmic voids’ (van
de Weygaert & Platen 2011). By definition, these are low-density
regions that contain little matter and few galaxies; however, they
still encode detailed information about the underlying cosmologi-
cal model (e.g. Li 2011; Bos et al. 2012; Cai, Padilla & Li 2015;
Massara et al. 2015; Pisani et al. 2015; Zivick et al. 2015; Achi-
touv 2016; Banerjee & Dalal 2016; Demchenko et al. 2016). Voids
make an attractive cosmological probe since their properties are
hardly affected by galaxy formation physics, which is still a major
unknown, and are well reproduced by dark matter only simulations
(after suitably populating haloes with galaxies) (Paillas et al. 2017).
Their abundance, for example, can be qualitatively understood us-
ing semi-analytical models (see e.g. Sheth & van de Weygaert 2004;
Paranjape, Lam & Sheth 2012; Jennings, Li & Hu 2013). However,
as we will discuss below, there is an uncertainty in the precise
definition of voids, which inevitably makes void abundance a less
well-defined quantity. In recent years, other observables associated
with voids have attracted attention, e.g. void redshift-space distor-
tions, which is the anisotropy in the observed correlation of voids
and galaxies in redshift space induced by the peculiar velocities of
galaxies (Hamaus et al. 2015, 2016; Cai et al. 2016). An additional
observable is void lensing, an antilensing effect caused by the un-
derdense voids deflecting light away from their centres, which has
been detected in both the Sloan Digital Sky Survey (SDSS) and the
Dark Energy Survey (DES) (Clampitt & Jain 2015; Gruen et al. 2016;
Sanchez et al. 2017).

The surge of interest in cosmic voids is also partly thanks to a
community that works on modified gravity theories (see e.g. Joyce
et al. 2015 and Koyama 2016 for the latest reviews). This growing
field explores the possibility that the cosmic acceleration is due
to new gravitational physics on cosmological scales and attempt
to use precision cosmological data to verify the validity of GR in
a new regime, beyond traditional tests of the theory (Will 2014).
In environments similar to the Solar system (e.g. deep or large
gradient of the gravitational potential, high matter density), small-
scale tests of GR have placed stringent constraints on the viability
of any new gravity theory (or extension to GR). As a result, many of
the newly proposed theories have a so-called screening mechanism,
by which standard GR is recovered, and existing small-scale tests
of GR satisfied. As a result of this, the differences between these
models and GR are usually suppressed in dense regions where most
cosmological data are currently available. It is because of this that
voids offer an alternative and promising venue to test them. In the
literature, there have been many studies trying to understand the
properties of voids in non-standard cosmological models. While
simple semi-analytical models (see e.g. Clampitt, Cai & Li 2013;
Lam et al. 2015, ) can offer useful insight into the essential physics,
most studies so far have relied on numerical simulations to get
more precise predictions for a larger range of void properties (e.g.
Li 2011; Bos et al. 2012; Li, Zhao & Koyama 2012b; Barreira et al.
2015; Cai, Padilla & Li 2015; Pisani et al. 2015; Zivick et al. 2015;
Barreira et al. 2017; Paillas et al. 2017; Falck et al. 2018).

The name ‘cosmic voids’ is used to describe generic low-density
regions in the Universe, and it is difficult to make a precise def-
inition without having a clear idea about how to determine the
spatial boundary of such regions. For example, looking at a three-
dimensional (3D) distribution of galaxies, it is immediately appar-

ent that regions devoid of galaxies usually take on irregular shapes
and there is no straightforward way to define their spatial domains.
In the literature, two frequently used methods to identify voids
are based on ‘spherical underdensity’ (e.g. Padilla, Ceccarelli &
Lambas 2005) and ‘space tessellation’ (e.g. Platen, van de Wey-
gaert & Jones 2007; Neyrinck 2008). In the former approach, one
centres voids at positions of lowest density and grows spheres until
some density threshold, ρv is attained (e.g. the average density in-
side the sphere is less than ρv). In the second approach, one covers
the space with tessellation cells (such as Voronoi and Delaunay) in
such a way that larger cells correspond to low-density regions. The
cells are then joined to form voids according to certain prescrip-
tions. This broad distinction, however, does not cover all possible
algorithms of void finding, and actually allows for many variations
in the exact implementation. For example, the threshold ρv in spher-
ical underdensity void finders can take different values, the method
for joining tessellation cells to form voids can vary the tracers (e.g.
which galaxy population and what tracer number density) used to
identify voids differ in different works, and so on. Such ambigu-
ities in void finding could be seen as a disadvantage: if different
groups cannot agree on how voids are defined, and the results from
them display discrepancies among each other, how can any of these
results be useful?

However, it has been suggested (see e.g. Cai et al. 2015) that a
positive point of view could be taken: the cosmic web is a highly
complicated structure and one should not expect that a single statis-
tic can characterize it completely. Rather, each void-finding algo-
rithm represents a different way to quantify the emptiness – there
is no a priori way to know which algorithm is the ‘best’, since this
will depend on both the observables being used and the questions
being asked. The latter consideration adds a new dimension to void
studies and is a main motivation of this work: given a certain cos-
mological model such as a specific modified gravity (which usually
has distinct physical properties that imprint different observational
features compared to other models), what is the void finder that best
captures these differences and hence presents the best opportunity
to tell it apart from other models? To address this question, in this
paper we will compare the predictions of some key void properties
using a number of void finders.

This is the first of a series of papers, with which we endeavour
to make a detailed exploration of the performances of various void
finders in predicting various void properties for various theoretical
models. The emphasis here is that the different void finders should
be compared (1) in specific and clear contexts, i.e. the comparison
is done for certain theoretical models so that the conclusion would
apply to those models and not necessarily to all models, (2) at equal
footing, i.e. wherever possible, the properties of voids identified
by different void finders are calculated using the same pipelines to
exclude spurious differences that can bias the comparison, and (3)
with a reasonable degree of reality, i.e. we focus on voids identified
from galaxy fields in typical current and near-future galaxy sur-
veys and assume that the different models being tested all predict
the same galaxy clustering – the observed one. In practice, this is
achieved by tuning the parameters governing how galaxies populate
dark matter haloes; we do this because there is only one observed
Universe, and if the galaxy clustering predicted by a model does not
agree with observations, then that model should have already been
ruled out. Some of the void-finding algorithms being compared here
are new, and we hope that this further adds to the usefulness of this
work to the community. We want to stress that it is not our intention
to distinguish good versus poor void finders, but rather to find the
right ones for specific questions at hand.
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The only other comparison study of cosmic voids, to the best
of our knowledge, is the Aspen Void Finder Comparison Project
(AVFCP) by Colberg et al. (2008), which compared a total of 13
void finders; it differs from this work in several ways. First, AVFCP
also compared voids identified from the dark matter field, while we
only use galaxies as tracers since these are directly observable in
galaxy surveys. Secondly, AVFCP identify voids from a selected
region of size 60 h−1 Mpc from the Millennium simulation, while
we use a whole simulation box of size 1024 h−1 Mpc to get a large
number of voids spanning a range of sizes and study different void
observables. Finally, as we have mentioned above, this is a void code
comparison project in the context of testing gravity, and thus we run
our void finders on several sets of simulations that differ (only) by
their underlying gravity theories; in particular, we have tuned our
mock galaxy catalogues so that they have the same correlation
functions to avoid the contamination of having different tracers
for the different models. This work will focus on the comparison
of void finders in testing a particularly popular class of modified
gravity models: the so-called chameleon model.

This paper is organized as follows. In Section 2, we briefly review
the f(R) model, which is a representative example of chameleon
models, and the simulations and mock galaxy catalogues used in
the comparison. In Section 3, we introduce the six void-finding
algorithms to be studied and present a visual comparison of the
various void catalogues. The main results of this paper are presented
in Section 4, where we compare the void abundance, void galaxy
number density profile, matter density profile, and lensing tangential
shear profiles; we also estimate the signal-to-noise ratio (S/N) for
each void finder to determine how well they are able to discriminate
this particular class of models from GR. Finally, we discuss and
conclude in Section 5.

Throughout this paper, we use the unit convention c = 1, with c
the speed of light, except where c is explicitly included. We use an
overbar to denote the background value, and a subscript 0 to denote
the present-day value of a quantity, unless otherwise stated.

2 TH E O RY

We start by presenting a brief description of the f(R) gravity model
studied in this paper (Section 2.1), the simulations used and the
catalogues of tracers of the large-scale structure that are needed for
finding voids (Section 2.2). Many of the details – such as the model
and simulations – can be found elsewhere; therefore, this section is
mainly for completeness and will be kept concise.

2.1 Theory, simulations, and halo/galaxy catalogues

2.1.1 f(R) gravity

f(R) gravity is an alternative possibility to dark energy in explaining
the accelerated Hubble expansion. It is constructed by replacing the
usual Ricci scalar R in the Einstein–Hilbert action with an algebraic
function of R:

S =
∫

d4x
√−g

1

16πG
[R + f (R)] , (1)

in which G is the gravitational constant, g is the determinant of the
metric tensor gμν , and, for simplicity, we have ignored the matter
Lagrangian term which is the same as in GR.

The action in equation (1) can be extremized with respect to gμν ,
which leads to a modified version of the Einstein equations:

Gμν + fRRμν − gμν

[
1

2
f − ∇2fR

]
− ∇μ∇νf (R)

= 8πGT m
μν. (2)

Here, Gμν ≡ Rμν − 1
2 gμνR is the Einstein tensor, ∇μ denotes the

covariant derivative compatible with gμν , fR ≡ df/dR, � ≡ ∇α∇α

and T m
μν is the stress-energy tensor for matter. Equation (2) is a

fourth-order equation because R contains second-order derivatives
of the metric field. For this reason, it is useful to rewrite it as the usual
Einstein equation in GR with a scalar field (called the scalaron), fR.
The equation of motion of the scalaron can be obtained by taking
the trace of equation (2):

�fR = 1

3
(R − fRR + 2f + 8πGρm) , (3)

where ρm is the density for non-relativistic matter.
As we will restrict ourselves to subhorizon scales in a spatially

flat universe, it is possible to use the quasi-static approximation that
assumes that the time derivatives of fR are negligible compared with
their spatial derivatives (see e.g. Bose, Hellwing & Li 2015, for
numerical tests of this approximation). Under this approximation,
equation (3) becomes

�∇2fR = −1

3
a2

[
R(fR) − R̄ + 8πG(ρm − ρ̄m)

]
, (4)

where �∇ is the spatial gradient, a is the scale factor, with the usual
convention a = 1 today.

On the other hand, the Newtonian potential � in this model is
governed by a modified Poisson equation, which now becomes

�∇2� = 16πG

3
a2(ρm − ρ̄m) + 1

6

[
R(fR) − R̄

]
. (5)

In some sense, the scalar field fR plays the role of the potential of a
fifth force that is the difference between the modified gravitational
force as predicted by equation (5) and the standard Newtonian
force produced by the same matter density field ρm. There exist two
opposite limits of the behaviour of this fifth force (though solutions
anywhere in between could exist in regions and/or epochs of a real
universe):

(i) When |fR| � |�|, we approximately recover the GR solution
R = −8πGρm, which simplifies equation (5) to the usual Poisson
equation:

�∇2� = 4πGδρm, (6)

where δρm ≡ ρm − ρ̄m is the matter density perturbation. The effect
of the fifth force is strongly suppressed in this regime, which is the
consequence of what now is known as the chameleon mechanism
(Khoury & Weltman 2004).

(ii) In contrast, in the case of |fR| ≥ |�|, we have |δR| � δρm

where δR ≡ R − R̄, leading to a modified Poisson equation:

�∇2� ≈ 16πGδρm/3, (7)

which describes a 1/3 enhancement compared to the strength of
Newtonian gravity. This enhancement is independent of the func-
tional form of f(R), though the specific choice does affect the transi-
tion between this regime and the previous one. In the literature, these
are often called the screened and unscreened regimes, respectively.

The chameleon mechanism earns its name because of the ap-
parently environmental dependence of the fifth force; namely, that
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it is screened in regions where the Newtonian potential is deep
enough. Intuitively, the scalar field fR is the mediator of the fifth
force, and has a mass due to its self-interaction (as described by its
potential), so that the fifth force is of Yukawa type. The mass is en-
vironment dependent and becomes quite heavy in deep Newtonian
potentials, causing the Yukawa force to decay exponentially with
distance, which would make it difficult to detect experimentally the
fifth force on Earth.

The Solar system is an example of a scale where screening could
occur, making f(R) gravity viable (i.e. not yet ruled out by fifth force
experiments). However, determining whether the screening has in-
deed taken place is much more tricky, because this also depends on
the environment of the Solar system itself, such as the Galaxy and
its underlying dark matter: even if the Solar system itself is inca-
pable of producing a deep enough Newtonian potential to trigger
screening, the Galaxy and its dark matter halo might just be able to
do that.

In this paper, we shall not pursue this line of research. Instead,
we will focus on cosmological scales and, in particular, regions of
low matter density – the so-called cosmic voids. The idea is that
even if a given f(R) model passes all local tests, it can still deviate
substantially from GR in voids, where the chameleon screening does
not happen. This opens a window of testing gravity independently.

2.1.2 The choice of f(R) model

The mere requirement of chameleon screening taking place in the
Solar system for the model to be viable does not place a strong re-
striction on the functional form of f(R) which, as mentioned above,
determines how the fifth force transitions from screened to un-
screened regimes. Thus, in the literature many possibilities have
been studied to different levels of detail.

However, there are good reasons for focusing on one particular
example in a detailed study. First, at this point, neither the motiva-
tion for the functional form of f(R) nor the general understanding
of the origin of the cosmic acceleration has matured to allow a con-
nection to a more fundamental theory, and so any choice of f(R) is
phenomenological. Indeed, f(R) models are known to face difficul-
ties if inspected from a theoretical point of view (see e.g. Erickcek
et al. 2013).

Secondly, although the exact details differ, many f(R) models
share some common properties – chameleon screening in dense
regions being one – resulting in qualitatively similar behaviour
on cosmological scales. As a result, instead of asking ‘what do
observations tell us about the form of f(R)?’, we can ask the question
‘to what extent are deviations from GR in the way that is prescribed
by f(R) gravity allowed by observations?’ This question can be
answered by choosing one particular model and testing it against as
many observations as possible, as accurately as possible.

For these considerations, in this paper we choose to work with the
model first proposed by Hu & Sawicki (2007, hereafter HS), which
has three advantages. First, it is the most well-studied choice of f(R)
gravity in the literature, so that this paper is building upon many
existing tests of the model. Secondly, its particular f(R) form allows
an efficient algorithm to be used to greatly speed up numerical
simulations of the model (Bose et al. 2017), making its study easier,
more efficient, and more accurate. Finally, not only is this model a
representative example of f(R) gravity but it also – as we shall see
shortly – has the flexibility to cover very different behaviours by
varying its parameters. This last property means that studies of this

particular model can inform us of general implications beyond the
f(R) class of models.

The HS model is specified as following:

f (R) = −M2 c1

(−R/M2
)n

c2

(−R/M2
)n + 1

, (8)

where c1, c2, and n are dimensionless model parameters, and M2 ≡
8πGρ̄m0/3 = H 2

0 
m, with H the expansion rate and 
m the current
fractional density of non-relativistic matter.

When |R̄| 
 M2, f̄ = f (R̄) → − c1
c2

M2, and fR and its deriva-
tives become small, so that equation (3) can be approximated as

− R̄ ≈ 8πGρ̄m − 2f̄ ≈ 3M2

(
a−3 + 2c1

3c2

)
, (9)

which mimics the background cosmology of the standard �CDM
model, with the mapping:

c1

c2
= 6


�


m

, (10)

where 
� ≡ 1 − 
m (we consider a spatially flat universe through-
out this paper). To reproduce the observed accelerated expansion
rate with 
� ≈ 0.7 and 
m ≈ 0.3, we have |R̄| ≈ 40M2 
 M2

today, which is also true at all earlier times because |R̄| increases
with redshift, and so the approximation in equation (9) is always
valid.

Under the same approximation, and by taking the derivative of
equation (8) with respect to R, we find a simplified relation between
fR and R:

fR ≈ −n
c1

c2
2

(
M2

−R

)n+1

< 0, (11)

which can be readily inverted to obtain the quantity R(fR) that ap-
pears in the scalar field and modified Poisson equations. As a result,
we only need to specify n and c1/c

2
2 – along with cosmological pa-

rameters including 
m, 
�, H0 – to fully fix the model. However,
it is often more convenient to use fR0, the present-day value of the
scalar field fR, instead of c1/c

2
2. The two parameters are related by

c1

c2
2

= − 1

n

[
3

(
1 + 4


�


m

)]n+1

fR0. (12)

In this paper, we will focus on the particular choice, n = 1, and
consider two values of fR0 – |fR0| = 10−6, 10−5, which are referred
to as F6 and F5 in the literature. These choices of fR0 cover a broad
range of model behaviours: F6 is the one that deviates least strongly
from GR, while F5 deviates the most. Recent studies show that F5
could already be in tension with various cosmological observations
(see e.g. Lombriser 2014 for a review of current constraints on f(R)
gravity), but for completeness, we will still consider F5 in what
follows.

2.2 Simulations and halo/galaxy catalogues

The simulations used in this paper (ELEPHANT simulations, or Ex-
tended LEnsing PHysics using ANalaytic ray Tracing) were per-
formed using the ECOSMOG code (Li et al. 2012a), which is an aug-
mented version of the popular simulation code RAMSES (Teyssier
2002), with added new routines to solve the scalar field and Ein-
stein equations in modified gravity models. It inherits RAMSES’s
efficient MPI parallelization and adaptive-mesh-refinement (AMR)
feature. The code starts with a uniform domain grid that covers a
cubic simulation volume and the grid has N

1/3
dc cells a side. The cells
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Table 1. The parameters and technical specifications of the N-body simu-
lations used in this work. Note that Nref is an array because we take different
values at different refinement levels, and that σ 8 is for the �CDM model
and only used to generate the initial conditions – its value for f(R) gravity is
different but is irrelevant here.

Parameter Physical meaning Value


m Present fractional matter density 0.281

� 1 − 
m 0.719
h H0/(100 km s−1 Mpc−1) 0.697
ns Primordial power spectral index 0.971
σ 8 rms linear density fluctuation 0.820

n HS f(R) parameter 1.0
|fR0| HS f(R) parameter 10−6, 10−5

Lbox Simulation box size 1024 h−1 Mpc
Np Simulation particle number 10243

mp Simulation particle mass 7.78 × 1010 h−1 M�
Ndc Domain grid cell number 10243

Nref Refinement criterion 8, 8, 8, 8, 8, 8, 8, 8

are refined (split into eight daughter cells) if the particle number in
them exceeds some criterion (Nref); in this way, the code hierarchi-
cally refines the domain grid to achieve high resolutions for solving
the fifth force when the particle number density is high. The rest
of the code algorithm is the same as in simulations for standard
gravity, and interested readers are referred to Teyssier (2002, for
more details).

The cosmological and numerical parameters are listed in Table 1,
and the former are chosen to correspond to the best-fitting (Hinshaw
et al. 2013) �CDM parameters. The simulations were initialized at
zini = 49, with the initial conditions generated using the publicly
available MPGRAFIC code (Prunet et al. 2008). As a control, for each
realization of f(R) simulations, we also ran a �CDM simulation with
the same parameters and specifications. Since the F5 and F6 models
only deviate from �CDM at late times, at zini the effect of the fifth
force is negligible, and so we let the simulations of all models start
from exactly the same initial conditions. For �CDM, we had five
independent realizations of boxes whose initial conditions differ
only in their random phases, and we will use these to estimate
errors in this paper. For f(R) gravity, only the first two realizations
were run up to z = 0 and used for the analysis here.

2.2.1 Halo and galaxy catalogues

Dark matter haloes and the self-bound substructures associated
with them are identified using the publicly available ROCKSTAR halo
finder (Behroozi, Wechsler & Wu 2013).1 ROCKSTAR uses the six-
dimensional phase-space information from the dark matter particles
to identify haloes. Note that, in principle, the presence of the fifth
force in f(R) gravity would require a modification to the unbind-
ing procedure employed by ROCKSTAR (or indeed any halo-finding
algorithm); however, Li & Zhao (2010) found the effect of this mod-
ification to be quite small and, as such, we use identical versions of
ROCKSTAR for the GR and f(R) simulations. In this paper, we make
use of only independent (‘main’) haloes, and not their substructures.

In order to map the halo catalogues to a corresponding galaxy
distribution, we populate haloes with galaxies using the halo
occupation distribution (HOD) method (Benson et al. 2000;

1 https://bitbucket.org/gfcstanford/rockstar

Peacock & Smith 2000; Scoccimarro et al. 2001; Berlind & Wein-
berg 2002; Kravtsov et al. 2004), in which it is assumed that the
probability for a halo to host a certain number of galaxies can be
computed through a simple functional dependence on the mass of
the host halo. We use the form of the HOD suggested by Zheng,
Coil & Zehavi (2007), in which the mean number of central galax-
ies, 〈Ncen(M)〉, and the mean number of satellite galaxies, 〈Nsat(M)〉,
hosted in a halo of mass M, are given by

〈Ncen(M)〉 = 1

2

[
1 + erf

(
log M − log Mmin

σlog M

)]
,

〈Nsat(M)〉 = 〈Ncen〉
(

M − M0

M1

)α

, (13)

in which Mmin, M0, M1, σ log M, and α are free parameters of
the HOD model. Once their values have been specified, the
mean number of galaxies in a halo of mass M is then given by
〈N(M)〉 = 〈Ncen(M)〉 + 〈Nsat(M)〉. From equation (13), it can be
seen that Mmin and M0, respectively, denote the threshold halo mass
required to host at least one central or one satellite galaxy. When
placing HOD galaxies in haloes, central galaxies are assumed to
reside at the potential minima of their host halo. Satellites, on the
other hand, are distributed between [0, r200]2 of the host halo cen-
tre, according to a NFW profile with a concentration equal to the
concentration of the host halo as computed by ROCKSTAR. Further-
more, central galaxies are assigned the centre of mass velocity of
the host halo, VCM; the velocity of a satellite galaxy is VCM plus a
perturbation along the x-, y-, and z-axes sampled from a Gaussian
distribution with a dispersion equal to the rms velocity dispersion
of the host halo.

The parameters of the HOD are calibrated by requiring that the
galaxy catalogue produced matches up with the galaxy distribu-
tion obtained from redshift surveys according to various metrics:
most commonly, the number density of galaxies, ng, and their pro-
jected two-point clustering. For our catalogues, the target (comov-
ing) number density of galaxies were chosen to be appropriate
for the BOSS CMASS DR9 galaxy sample (Anderson et al. 2012):
ng = 3.8 × 10−4 h3 Mpc−3 and ng = 3.2 × 10−4 h3 Mpc−3 at z = 0
and 0.5, respectively. Simply specifying the target number density
is not enough to constrain the HOD, so we additionally require that
the galaxy distribution exhibit the same two-point clustering across
all gravity models at each redshift. Imposing this criterion in addi-
tion to the number density target substantially reduces the degree
of degeneracy between different permutations of HOD parameter
values. In total, we have constructed three types of HOD catalogues:

(i) CMASS-DEFAULT: in which the same set of HOD parameters are
used for all gravity models;

(ii) CMASS-FIXED-ng: in which the parameters of the HOD are
tuned (separately for each gravity model) to reproduce the same
number density of galaxies only;

(iii) CMASS-FIXED-ng-ξ g: in which the parameters of the HOD are
tuned (separately for each gravity model) to reproduce the same
number density of galaxies and projected clustering.

For catalogue (i), we use the same set of HOD parameters as in
Manera et al. (2013), which were tuned to create a mock galaxy cat-
alogue representative of the BOSS CMASS DR9 observational sample at
z = 0.5. The catalogues in (ii) were tuned separately at z = 0.5 and
z = 0 to match the target number densities for that redshift. This

2 The radius within which the enclosed density is 200 times the critical
density of the universe at that redshift.
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Table 2. Table of HOD parameters for the CMASS-FIXED-ng-ξg catalogue for GR, F6, and F5. The HOD parameters for F5 and F6 are
obtained by requiring ng = 3.8 × 10−4 h3 Mpc−3 and ng = 3.2 × 10−4 h3 Mpc−3 at z = 0 and z = 0.5, respectively, in addition to
requiring that the projected clustering of galaxies in these models is nearly identical to that in GR. The parameters for the HOD catalogue
corresponding to the GR run are the same as those obtained by Manera et al. (2013). For F5 and F6 the HOD parameters outside (inside),
the parentheses are for HOD catalogues generated using the simulation Box 1 (Box 2).

Model log (Mmin) log (M0) log (M1) σ log M α

z = 0.5

GR 13.090 13.077 14.000 0.596 1.0127
F6 13.093 (13.073) 13.077 (13.060) 14.000 (13.983) 0.540 (0.516) 1.0127 (1.0127)
F5 13.107 (13.130) 13.077 (13.177) 14.143 (14.040) 0.439 (0.510) 0.7444 (1.0127)

z = 0.0
GR 13.090 13.077 14.000 0.596 1.0127
F6 13.103 (13.095) 13.077 (13.082) 14.000 (14.005) 0.504 (0.486) 1.0127 (1.0127)
F5 13.106 (13.139) 13.077 (13.126) 14.098 (14.049) 0.486 (0.546) 1.0127 (1.0127)

was done by varying Mmin while keeping the mass ratios, M0/Mmin

and M1/Mmin, constant. The catalogues in (iii) were obtained by
varying all five HOD parameters for each f(R) model, redshift, and
realization so that it has the same galaxy number density and two-
point correlation as the GR mock catalogue for the same redshift
and realization. The tunning of the HOD parameters was achieved
using a search with the Nelder–Mead simplex algorithm through the
five-dimensional parameter space that minimized the rms difference
between the f(R) and GR two-point correlation function in the dis-
tance range [2, 80] h−1 Mpc (for more details, see Li & Shirasaki
2018). We tried different starting points for the search algorithm and
all converged to the same value, suggesting that the choice of HOD
parameters is reasonably unique. Table 2 summarizes the HOD pa-
rameter values used to construct the CMASS-FIXED-ng-ξ g catalogues
for the first (Box-1) and second (Box-2) realizations. Note that for
both z = 0 and z = 0.5, the GR parameter values are the same as
those in Manera et al. (2013) (i.e. the same as catalogue i).

The difference in galaxy clustering induced by the different
HODs is shown in Fig. 1, which compares the galaxy two-point
correlation function, ξ g, in GR, with the F5 model for catalogues
(i)–(iii). The top panel shows that simply fixing the F5 HOD param-
eters to the same values as in GR (CMASS-DEFAULT), or fixing them to
achieve the same number density (CMASS-FIXED-ng) does not guaran-
tee that the clustering is the same in the two models, and can in fact
leave differences as large as 5 per cent across all separations. The
bottom panel of Fig. 1 compares ξ g in GR, F6, and F5 at z = 0 and
z = 0.5, but for the CMASS-FIXED-ng-ξ g catalogue only; the agree-
ment between the models now improves to better than 2 per cent
for separations larger than 2 h−1 Mpc. Fig. 2 displays the mean
galaxy occupancy, 〈N(M)〉, as a function of halo mass, M, for the
CMASS-FIXED-ng-ξ g catalogues in GR, F5, and F6. Finally, we note
that catalogues (i) and (ii) are only used for illustration purposes
in Fig. 1; the fiducial catalogue used in the rest of the analysis is
catalogue (iii).

2.2.2 Mock observations

We study the populations of voids at two redshifts, z = 0.0 and
0.5. The voids are identified using HOD galaxy catalogues that are
built from the distribution of dark matter haloes in the simulation
snapshots corresponding to the two redshift choices. For simplicity,
when we apply the void finders to the distribution of galaxies in the
periodic simulation box, which has a side length of 1024 h−1 Mpc,

Figure 1. Top panel: the two-point galaxy correlation function, ξg, in F5
for various z = 0 HOD catalogues. The solid black curves show the CMASS

HOD for GR. The other curves show the following F5 HOD catalogues: the
same galaxy number density ng and ξg as GR (CMASS-FIXED-ng-ξg), only the
same ng as GR (CMASS-FIXED-ng) and default GR HOD parameters (CMASS-
DEFAULT). The secondary panel shows the ratio of the F5 ξg to the GR one.
Bottom panel: ξg for the CMASS-FIXED-ng-ξg GR and f(R) catalogues at z = 0
and z = 0.5. The secondary panel shows the ratio of the f(R) correlation
function to the GR one. The grey shaded region show the 1σ uncertainty for
the GR two-point correlation function.
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Figure 2. The mean number of galaxies, 〈N〉, as a function of halo mass,
M, for our CMASS-FIXED-ng-ξg catalogues. The different curves show the GR,
F6, and F5 HOD models. The secondary panel shows the ratio of the f(R)
HOD to the GR one.

we work in the distant observer approximation, which is when all the
line of sights can be taken to be parallel, and we fix the line of sight
to be along a preferential axis of the simulation box. This means that
the two-dimensional (2D) underdensities, which are identified in the
projected galaxy distribution, correspond to geometrical cylinders
along the line of sight; in actual observations or in more realistic
mock catalogues, the 2D underdensities would correspond to con-
ical frustums (cones with their top sliced off). We work within the
same distant observer approximation when calculating projected
matter density profiles and the tangential shear signal. Our mock
galaxy catalogues also neglect redshift space distortions, which,
while not important for 2D voids, can affect the identification of 3D
voids. A detailed study of the redshift-space distortions effect on
void finding and void properties will be left for future work.

3 VO I D FI N D E R S

Our study makes use of several void finders with the goal of de-
termining which ones are best suited for probing chameleon-type
modified gravity models. Broadly, we can split the void finders into
two categories: the ones that identify 3D underdensities (i.e. voids)
and the ones that identify 2D underdensities in the plane of the sky
(2D spherical void finders, tunnels, and troughs). The underdensi-
ties identified by the latter methods are not formally called voids,
since voids are 3D objects, but nonetheless, we can think of them as
2D voids that are very elongated along the line of sight. We identify
the 2D underdensities by projecting the full simulation box along
one of the principal axes of the simulations. The box has a side
length of 1024 h−1 Mpc, which is approximately the comoving dis-
tance between redshift 0.3 and 0.7 – the latter is the redshift range
we use to make predictions for EUCLID- and LSST-like surveys (see
Section 4.5). The structures identified by each method are illustrated
in Fig. 3. The rest of this section provides a short description of each
of the six methods used to classify 2D and 3D underdensities.

3.1 3D spherical underdensity void finder

The 3D spherical underdensity void finder (from hereon SVF) used
in this work is a substantially modified version of the algorithm

presented in Padilla et al. (2005). It searches for spherical regions
that satisfy a specified density criterion in a simulation.

To find the void centres, a rectangular grid is constructed over the
simulation volume. The number of galaxies in each cell of the grid
is counted, and the centres of the cells that are empty of galaxies are
considered to be prospective void centres. The integrated density
profile about each centre is then calculated. The radius at which
the integrated density is equal to 20 per cent of the mean number
density of galaxies is considered to be the radius of a void. Only the
largest sphere satisfying this condition about any centre is kept in
the void catalogue. This density threshold is commonly adopted in
the literature of void studies, motivated by a calculation presented
in Blumenthal et al. (1992), who used linear theory to show that
the voids we observe at the present time correspond to mass under-
densities of about 20 per cent of the cosmic mean. After this step,
one might end up with a large number of voids with similar cen-
tres, sharing a fraction of their volume. If the distance between the
centres of any two voids is less than 80 per cent of the sum of their
radii, we keep only the largest of the two. This naturally favours
a single, large void over many smaller voids of comparable sizes
and similar centres. A conservative degree of overlap between adja-
cent voids is still required, though, in order to trace the low density
regions of the cosmic web to a good extent.

There are two free parameters in the 3D spherical underden-
sity void finder, the density criterion and the overlapping threshold
for excluding voids. As mentioned above, the former is chosen as
20 per cent of the mean number density of galaxies for physical
considerations. For the latter, Cai et al. (2015) have tested several
different choices and found that the S/N is not sensitively dependent
on the exact value, and so we choose 80 per cent as our default.

3.2 3D Watershed void finder

The watershed void finder (WVF; Platen et al. 2007) associates the
voids to the watershed basins of the large-scale density field without
imposing a priori constraints on the size, shape, and the mean under-
density of the objects it identifies. The method starts by constructing
a galaxy density field using the Delaunay Tessellation Field Estima-
tor (Schaap & van de Weygaert 2000; Cautun & van de Weygaert
2011), which uses a Delaunay triangulation with the galaxies at its
vertices to extrapolate a volume-filling density field. The resulting
density is defined on a 10243 regular grid with a grid cell size of
1 h−1 Mpc. The density is then smoothed with a Gaussian filter of
2 h−1 Mpc radius to reduce small-scale structures inside and at the
boundaries of voids, which could potentially give rise to artificial
voids. The 2 h−1 Mpc filter corresponds to the typical width of the
filaments and walls forming the void boundaries (e.g. Cautun et al.
2013, 2014). The smoothed density field is then segmented into
watershed basins. This process is equivalent to following the path
of a rain drop along a landscape: each volume element, in our case
the voxel of a regular grid, is connected to the neighbour with the
lowest density, with the same process repeated for each neighbour
until a minimum of the density field is reached. Finally, a watershed
basin is composed of all the voxels whose path ends at the same
density minimum.

The resulting WVF void catalogue is characterized in terms of the
void centres, which are chosen as the volume-weighted barycentre
of all the voxels associated with each void, and the void sizes.
Since voids have irregular shapes, the latter is given in terms of
the effective void radius, Reff = ( 3

4π
V )1/3, which is the radius of a

sphere with the same volume as the void volume.
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Figure 3. Illustration of the structures identified by the six void-finding methods employed in this paper. Each circle corresponds to an underdensity of radius
equal to the one shown in the plots. The left column plots the SVF (top left), WVF (centre left), and ZOBOV (bottom left) 3D voids in a 50 h−1 Mpc slice, with the
background image showing the density in that slice. The right column plots the 2D SVF_2D voids (top right), tunnels (centre right), and troughs (bottom right),
with the background image showing the projected density of the full box (which has a 1024 h−1 Mpc side length) along the line of sight. Note the different
scales for the left and right columns.
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The WVF has a single free parameter – the Gaussian smoothing
size. As mentioned above, our choice of 2 h−1 Mpc corresponds
roughly to the size of filaments and helps to reduce artificial voids.
The smoothing size is much smaller than the radius of most of
the WVF voids considered in this paper, and we do not expect it to
strongly affect the properties of the WVF voids.

3.3 3D ZOBOV void finder

We also run a slightly modified version of the ZOBOV algorithm
(Neyrinck 2008) on our HOD galaxy mocks. ZOBOV uses Voronoi
tessellations to estimate the galaxy density field at each galaxy po-
sition and then identifies the density minima by comparing each
Voronoi cell with its neighbours. Starting from the density minima,
neighbouring Voronoi cells of increasing densities are grouped to-
gether to form ‘zones’. The growth of ‘zones’ stops when the density
of the next neighbouring Voronoi cell decreases. The original algo-
rithm goes one step further to group neighbouring ‘zones’ together
if their boundary is below a density threshold, i.e. as this threshold
density increases, more and more ‘zones’ are grouped together to
form larger and larger voids. This step can lead to unwanted effects;
Cai et al. (2017) showed that when applying ‘zone’ merging some
of the largest ZOBOV voids found in their CMASS mocks do not seem
to correspond to true matter underdensities. To avoid such spurious
effects, we treat every ‘zone’ as a void in this work, i.e. we do not
merge zones. By definition, our zones (voids) do not overlap with
each other.

The void volume, V, is defined as the sum of the Voronoi cell
volumes that are part of that given ‘zone’. The effective radius of
the void is then defined as Reff = ( 3

4π
V )1/3. Voronoi cells belonging

to each zone are weighted by their volumes to define the void centre.
Our implementation of the ZOBOV void finder has no free param-

eters given a tracer catalogue.

3.4 2D Spherical underdensity void finder (SVF_2D)

2D spherical voids are obtained using a slightly modified version
of the SVF algorithm. To find the void centres, a rectangular grid is
constructed over the projected distribution of HOD galaxies along
one of the axes of the simulations, and the number of galaxies
in each grid cell is counted. The centres of empty grid cells are
considered as prospective void centres, and circles are grown from
those centres until the integrated number density of galaxies at the
circle radius is equal to 40 per cent of the mean density. After this
step, if two voids overlap more than 80 per cent of the sum of their
radii, only the largest void is kept in the catalogue.

The SVF_2D, as the 3D one, has three parameters: the density
criterion for defining a void, the criterion for removing overlapping
voids, and the length of projected redshift range. For the former,
we have tested density criteria equal to 0.2, 0.3, 0.4, 0.5, and 0.8
of the mean projected galaxy number density, respectively, and
found that choosing the 0.4 value results in the strongest detec-
tion of weak lensing by 2D underdensities (when considering only
sample variance uncertainties). Similar to the 3D case, if the cen-
tres of two neighbouring voids are closer than 80 per cent of the
sum of their radii, we remove the smaller one. Here, we iden-
tify voids by projecting in the distant observer approximation the
entire simulation box (1024 h−1 Mpc in length) along one of its
preferential axes.

3.5 2D tunnels

The tunnels correspond to elongated line-of-sight regions that inter-
sect one or more voids without passing through overdense regions
(Cautun et al., in preparation). Using galaxies as tracers of the matter
distribution, the tunnels are identified as circles in the plane-of-the-
sky that are devoid of galaxies. The typical size of tunnels depends
on the number density of tracer galaxies and on the line-of-sight
depth used to identify them; a higher tracer density or a larger
line-of-sight depth results in smaller tunnels. In the distant observer
approximation, which we use in this work, the tunnels consist of
line-of-sight cylinders that are empty of galaxies.3

To identify the tunnels, we start by projecting the HOD galaxy
catalogue along one of the simulation axes to obtain a 2D distribu-
tion of galaxies. To identify the largest circles empty of galaxies,
we build a Delaunay tessellation with the galaxies at its vertices.
By definition, the circumcircle of every Delaunay triangle is empty
of galaxies, with the closest galaxies being the three that give the
triangle vertices and that are found exactly on the circumcircle.
The tunnels consist of the circumcircles whose centres are not in-
side a larger circumcircle. We also discard candidates for which
the Delaunay triangle has an area of 0.2 or less than that of its cir-
cumcircle; such cases correspond to triangles that either have a side
much shorter than the other two or that have one very large angle.
The tunnel centre and radius are given by the centre and radius of
its corresponding circumcircle.

Since galaxies are biased tracers of dark matter, tunnels do not
necessarily correspond to empty regions of dark matter. Never-
theless, the tunnel radius is correlated with their projected mat-
ter density, as shown in Appendix A. On average, large tunnels
correspond to underdense regions while small ones correspond to
overdense ones, with the transition taking place at a tunnel radius
of 1 h−1 Mpc, which corresponds to 0.4 times the mean projected
galaxy separation. Here, we only consider tunnels larger than this
transition radius, since we are interested in the modified gravity
signature of underdense regions.

The tunnel catalogue depends on two free parameters, the transi-
tion radius between underdense and overdense tunnels, and the line-
of-sight projection length. The former is determined by analysing
the enclosed projected matter density inside tunnels. The latter,
which affects the size distribution of SVF_2D voids too, should be
selected according to the details of the observational survey we
want to match. For this study, we project the entire simulation box
(1024 h−1 Mpc in length) using the distant observer approximation.

3.6 2D troughs

The troughs (Gruen et al. 2016) are somewhat similar to tunnels in
that they also correspond to elongated line-of-sight regions that are
underdense. In contrast to tunnels, all troughs have the same radius
and are given by randomly positioned circles in the plane of the sky
that contain very low galaxy counts.

The troughs are identified using the same projected HOD galaxy
catalogues as the tunnels, which represent our simulated plane of
the sky in the distant observer approximation. We choose to study
troughs of 2 h−1 Mpc in radius, which is similar to the typical radius
of tunnels. Moreover, troughs of this size contain a similar galaxy
count at the 5 arcsec troughs studied by Gruen et al. (2016) and

3 For realistic surveys, the tunnels correspond to conical frustums. For all
practical purposes, the angular opening of tunnels is very small and they can
be thought of as having planar top and bottom circular bases.
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Barreira et al. (2017). The trough identification starts by randomly
positioning 106 circles of 2 h−1 Mpc in radius on our simulated plane
of the sky. The troughs are given by the circles that contain two or
fewer galaxies inside them; these correspond to 23 and 30 per cent
of population at z = 0 and z = 0.5, respectively. This selection is
similar to the one used by Gruen et al. (2016), and it is also the one
that gives a good compromise between selecting very underdense
regions and covering a large fraction of the available simulation.
See Appendix A for a more detailed discussion.

3.7 Comparison of the different void finders

Fig. 3 presents a visual comparison of the underdensities identified
by the six void finders. For the 3D voids, the figure shows the voids
whose centres lie in 500 × 500 × 50 (h−1 Mpc)3 region of the sim-
ulation. The background image shows the density, ρ, of that region
expressed in terms of the mean background density, ρ. While some
voids seem to have overdense regions inside them, in most cases
it is either a projection effect or it is due to representing the WVF

and ZOBOV voids as circles when they typically have non-spherical
shapes. A closer inspection of the positions of 3D voids reveals that,
in a large number of cases, we can find a match between individ-
ual objects identified by different void finders. This is especially
striking for the WVF and ZOBOV methods, since both are based on the
watershed transform of the galaxy density field. Nonetheless, many
of the matched voids have different centres and radii, and thus no
two methods result in similar void catalogues (see Colberg et al.
2008 for a comparison of more void finders).

The 2D underdensities generally have much smaller radii than
their 3D counterparts, so the right column of Fig. 3 shows 2D
voids in a smaller region of size 25 × 25 (h−1 Mpc)2 in the xy
plane of the whole simulation box. The 2D voids were identified
by projecting the full simulation box (1024 h−1 Mpc side length)
along the z-direction in the distant observer approximation, and
the background colours show the projected matter density field
(in unit of mean projected density) along the z-direction for the
full simulation box. The three right-hand panels show that the 2D
voids, which were selected as underdensities in the projected galaxy
distribution, correspond to underdensities in the projected matter
density field too. Most matter underdense regions are identified
as 2D voids, but the centre and size of those 2D voids show a
large variation between the three types of objects we study: SVF_2D

voids, tunnels, and troughs. Both SVF_2D voids and tunnels show
relatively little overlap, but on average the tunnels are smaller and
cover a larger fraction of the plane of the sky than SVF_2D voids. The
troughs are very clustered in underdense regions and show a large
degree of overlap; in fact, for readability purposes, the bottom right-
hand panel of Fig. 3 shows only half of the troughs we identified,
with the half not shown being right on top of the ones shown in the
figure.

4 R ESULTS

In this section, we compare the distribution of void properties, e.g.
void abundance, galaxy and matter density profiles, and lensing sig-
nal, between the standard �CDM cosmology and f(R) models. We
perform this analysis using the CMASS-FIXED-ng-ξ g HOD catalogues,
which means that both the GR and f(R) mocks have the same num-
ber density of tracers and the same real-space two-point correlation
function of these tracer galaxies. We perform this comparison for
voids defined using six different methods: three that identify 3D

underdensities (SVF, WVF, and ZOBOV) and three that identify 2D un-
derdensities using the projected distribution of galaxies (tunnels,
troughs, and 2D WVF).

We characterize voids in terms of their radius, which we denote
with Reff and Rp eff (i.e. projected radius) for the 3D and 2D struc-
tures, respectively. This nomenclature is motivated by two of the
void finders, WVF and ZOBOV, that identify irregularly shaped voids
and thus these voids are characterized in terms of an effective ra-
dius, which is the radius of a sphere with the same volume as that
of the void. For consistency, we use the same Reff notation also for
the radius of the other voids, even though those are by definition
spherical/circular objects.

We present stacked void profiles that are averaged over voids of
all sizes, unless we specify otherwise. We have checked that similar
differences between GR and f(R) are present when stacking voids
in a narrower range of sizes, albeit with a lower S/N due to reduced
sample size and thus poorer statistics. When averaging, each void
is given the weight, w = R2

eff , such that larger voids are weighed
more compared to the more numerous small voids. This weight
is motivated by measurements of the tangential shear profile of
voids in observations. The number of source galaxies inside a void
scales approximately with R2

eff and thus large voids have a larger
contribution to the stacked tangential shear measurements. We note
that when simulating other observables, different weights may be
appropriate; for example, in the case of the 3D void galaxy density
profile, the contribution of each void to the stacked signal scales
with R3

eff . Nonetheless, for simplicity, we keep the same w = R2
eff

weight for all our stacked profiles.
We present mean profiles by averaging over two realizations of

a cosmological volume of 1024 h−1 Mpc in length, Box 1 and 2,
which were simulated using both GR and f(R) gravity models. We
estimate uncertainties using five realizations of the GR box. For
each realization, we split the volume into 43 non-overlapping re-
gions and perform 100 bootstrap samples over these regions. The
procedure leads to 5 × 100 samples that we use to compute the
correlation matrix and estimate errors. For tunnels and troughs, we
split the mock plane of the sky into 82 non-overlapping regions, af-
ter which we perform exactly the same analysis. Such a procedure
accounts for correlations between neighbouring voids that are espe-
cially important in the case of troughs since many troughs overlap.
In practice, the procedure is implemented by first computing the
stacked profile and the total weight of the voids in each of the re-
gions defined above. The total weight of all voids inside a region is
assigned as the weight of that region. Then, all the regions selected
for a bootstrap sample are combined according to their weights.

4.1 Void abundances

We start by comparing the distribution of void sizes between GR and
f(R) models. Fig. 4 shows these distributions for all the void finders
employed here with the exception of troughs that are defined to have
a constant 2 h−1 Mpc radius. The distribution of void sizes varies
between finders (note that the horizontal axes have different ranges
in the different panels of Fig. 4), but, when considering the same
identification method, there is no statistically relevant difference
between GR and f(R) gravity. This result agrees with that in Cai et al.
(2015), where it was found that while voids identified in the matter
density field are larger in f(R) models compared to the GR case,
these differences largely disappear when identifying voids using
the halo distribution. Falck et al. (2018) obtained a similar result
for the DGP modified gravity model: when identifying voids using
haloes, there is no difference in void abundance between �CDM
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Figure 4. Comparison of the void abundance, i.e. number density of voids as a function of their radius, in GR and f(R) models using HOD galaxy catalogues
that were tuned to have the same number density and two-point correlation function across all models. The figure shows the abundance of 3D voids identified
using SVF (top left-hand panel), WVF (centre left-hand panel), and ZOBOV (bottom left-hand panel); and that of 2D SVF_2D voids (top right-hand panel), and tunnels
(centre right-hand panel). All the 2D troughs have by definition the same 2 h−1 Mpc radius. The 2D voids were obtained by projecting the entire simulation
box (1024 h−1 Mpc side length) along one of its preferential axes in the distant observer approximation. For each panel, the various curves show the results for
GR and for two f(R) models at z = 0 (solid curves) and z = 0.5 (dashed curves). For clarity, only the GR z = 0.5 are shown in each of the main panels. The
secondary panels shows the ratio of the f(R) results to the GR one for both z = 0 and z = 0.5. The shaded region shows the 1σ uncertainty interval computed
using multiple GR realizations.

and DGP models. In contrast, Zivick et al. (2015) found that f(R)
models boost the number of large voids; the discrepancy could be
due to their neglect of halo and galaxy bias since they identified
voids using a subsampled distribution of dark matter particles (e.g.
see Pollina et al. 2016).

By analysing our various HOD catalogues (see Section 2.2.1), we
find that the void abundance is most sensitive to the number density
of tracer galaxies, ng. Once the f(R) galaxy catalogues have the
same ng as the GR ones, there is little difference in void abundance.
Further matching also the two point correlation function of the f(R)
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and GR catalogues does not lead to a significant change. We have
checked explicitly that (not shown here) the same is true if dark
matter haloes with fixed number density are used as tracers to find
voids. The differences in void abundance between z = 0 and z = 0.5
(the solid versus dashed curves from Fig. 4) could also be due to
differences in galaxy number density, which are ng = 3.8 × 10−4

and 3.2 × 10−4 h3 Mpc−3 at z = 0 and 0.5, respectively. A lower
tracer number density results in systematically larger voids and
fewer small voids due to them merging to form larger ones.

4.2 Void galaxy number density profiles

We calculate the spherically averaged number density of galaxies
for each void as a function of the distance from the void centre. The
galaxy number density profile, ng(r), contains the same information
as the 3D void–galaxy correlation function, ξvg;3D(r), and the two
are related via

ng(r) = ng(1 + ξvg;3D(r)) , (14)

where ng denotes the mean number density of galaxies. Since the
2D voids have centres defined only in two dimensions (i.e. in the
plane of the sky), we compute the galaxy number density projected
on the simulated plane of the sky as a function of projected distance
from the centre of the 2D void. Equation (14) holds true for the
projected number density of galaxies, g(r), but with the 3D void–
galaxy correlation function replaced by the 2D projected one, which
we compute by projecting the entire simulation box in the distant
observer approximation. After expressing the profiles in terms of
the scaled radial distance, r/Reff, we stack all the voids to obtain
average profiles.

Fig. 5 presents the radial galaxy number density profiles of voids.
All the methods find that, on average, the void interiors are devoid
of galaxies, but the average galaxy number varies between methods.
For SVF, ng shows a large increase at the void radius since SVF voids
are identified as the largest sphere that has mean enclosed density
≤ 0.2ng , with ng denoting the mean number density of galaxies.
The watershed void finders, both WVF and ZOBOV, have smoothly
increasing ng(r) profiles due to their non-spherical shape, with
their overdense ridges smeared by the spherical stacking procedure
(Cautun, Cai & Frenk 2016). The profiles of 2D voids are expressed
in terms of the projected mean galaxy number, g, and its mean
background value, g. Similar to the 3D SVF voids, the SVF_2D voids
are very underdense inside the void and show a prominent galaxy
density enhancement at their edge. By definition, the tunnels are
the largest circles devoid of galaxies; this explains why g = 0 for
r < Rp eff is followed by a sharp peak at r = Rp eff. The troughs have
g < g not only inside Rp eff but also outside their radius. This
is because troughs with our selection criteria are likely to reside
in large underdense regions4 (see Fig. 3). With the exception of
troughs, the ng(r) and g profiles show very little dependence on
redshift.

Fig. 5 shows that there is no statistical difference in the galaxy
number density profiles between GR and f(R) models when the latter
catalogues are matched to have the same number density of tracers
and the same galaxy correlation function. The only exception is

4 Troughs are selected to correspond to the ∼20 per cent most underdense
regions. Moreover, unlike other voids studied in this paper, whose edge is
defined by an increase in galaxy number density, the sizes of troughs are a
user defined parameter, which is 2h−1 Mpc in our case. These differences
can explain why there is no overdense ridge in our troughs.

inside SVF_2D voids and troughs, where the differences are likely a
limitation of our mocks rather than a tell-tale signature of modified
gravity. This is supported by the non-monotonic behaviour with
redshift and with the parameter that determines the strength of the
modifications to gravity: for example, the F5 model, which has
stronger deviations from GR than F6, shows a large systematic
difference at z = 0.5 but no difference at z = 0, while in theory
we would expect bigger differences at later times. For F6, it is
especially suspicious that the z = 0 difference in the profile with
respect to GR is bigger than the difference of the F5 model. The
observed differences in the galaxy density profiles within the trough
radius, which is 2 h−1 Mpc, could be due to the fact that our HOD
catalogues were tuned to match the galaxy correlation functions
among the different models only above separations of 2 h−1 Mpc.
In particular, we note the same qualitative (and even quantitative)
behaviour of the model differences in the case of 2D spherical voids,
suggesting that this is not specific to troughs. The error bars in the
plot appear smaller in the case of troughs, but these are simply taken
as the square root of the diagonal elements of the covariance matrix
for indication, and the actual errors in different bins are indeed
very strongly correlated. Therefore, we refrain from interpreting
the differences shown in the galaxy density profiles of troughs and
SVF_2D voids as a signature of deviation from GR, and will leave a
more detailed investigation to a future work, hopefully using higher
resolution simulations and mock catalogues.

4.3 Void matter density profiles

We compute the void matter profiles similarly to the galaxy number
density profiles, except that now we use the full distribution of DM
particles in the simulation volume. In the case of 2D underdensities,
we project the particles in the full simulation box on the simulated
plane of the sky as we did in the case of the HOD galaxies. The
3D matter density profile, ρ(r), and the projected 2D one, (r), are
given by

ρ(r) = ρbg(1 + ξvm; 3D), (15)

(r) = bg(1 + ξvm; 2D), (16)

where ρbg and bg denote the mean background 3D and the 2D
projected density, respectively. The quantities ξvm; 3D and ξvm; 2D

denote the void-mass cross-correlation function in 3D and in 2D
projection, respectively.

The resulting matter density profiles of voids are shown in Fig. 6.
These are obtained by stacking all the voids and thus are average
profiles. All methods identify regions that are underdense in
the inner parts, i.e. r � Reff; and that show a modest overden-
sity close to their edge, i.e. r � Reff. The only exception are troughs
that are underdense even beyond r > Reff because troughs represent
the most underdense regions and moreover, because their bound-
aries are not defined as a galaxy number overdensity. Compared
to the galaxy number density profiles, the void matter profiles are
both less underdense in their interiors and less overdense at their
boundaries. Moreover, the matter profiles show a considerable de-
pendence with redshift, with voids identified at higher redshift being
less overdense.

We find that the interiors of both 2D and 3D voids are more
underdense in f(R) gravity than in GR. The effect is the strongest
for F5 and also decreases at higher redshift. This is in line with
theoretical expectations, since the modifications to gravity become
stronger at later times and are larger in F5 than in F6. Due to mass
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Figure 5. Comparison of the radial galaxy density profile of voids between GR and f(R) models. The left column shows the 3D galaxy number density profile,
ng/ng, of 3D voids. The right column shows the projected surface density of galaxies, g/g, of 2D line-of-sight underdensities. The symbols and curves are
the same as in Fig. 4.

conservation, since f(R) voids have emptier interiors they should
also be more overdense around the void edge. This effect is present
for all void types, except troughs, and it is especially prominent
for SVF voids, both 2D and 3D ones, and tunnels. The troughs are
different, since they are likely embedded in underdense regions
much larger than their size, and, even by going to 2Reff, we still
have not reached the overdense ridge surrounding these underdense
regions.

We studied the void density profiles of several modified gravity
HOD catalogues (see Section 2.2.1): CMASS-DEFAULT, which uses the
same HOD parameter values as GR, CMASS-FIXED-ng, which changes
the three HOD mass parameters proportionally to match the galaxy
number density of GR, and CMASS-FIXED-ng-ξ g (the one shown in

Fig. 6), which matches both the number density and the two-point
clustering of GR. For all these catalogues, the void density profiles
show the same difference between f(R) and GR, suggesting that the
difference between the models is robust to small changes in how
galaxies populate dark matter haloes.

4.4 Void tangential shear profiles

Weak gravitational lensing represents the most promising way of
measuring the matter distribution in and around voids, and could
potentially be used as a probe of modifications to gravity (Barreira
et al. 2015; Cai et al. 2015). Current surveys have already measured
the weak lensing imprint of voids (e.g. Gruen et al. 2016; Sanchez

MNRAS 476, 3195–3217 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/3195/4898070
by Durham University user
on 23 March 2018



3208 M. Cautun et al.

Figure 6. Comparison of the void matter density profile between GR and f(R). The left column shows the 3D matter density profile, ρ/ρbg , of 3D voids. The
right column shows the projected matter surface density, /bg , of 2D line-of-sight underdensities. The symbols and curves are the same as in Fig. 4.

et al. 2017) and future surveys, thanks to increases in both sky
coverage and image quality, would improve greatly the precision of
such measurements. This motivates us to compare the weak lensing
signal of the various void finders and predict which method shows
the largest potential for discriminating between GR and f(R) models.

Voids have a weak, yet measurable, gravitational lensing imprint.
This is most conspicuous as distortions in the shapes of background
galaxies, whose image is distorted by the intervening mass distribu-
tion between source and observer. Such distortions are encapsulated
in the tangential shear profile of voids, which is given by

γt (r) = �(r)

c

= (<r) − (r)

c

. (17)

The numerator is the differential surface mass density, �(r),
which is the difference between the mean enclosed surface den-
sity within r, (<r), and the surface density at r, (r), with

(<r) = 1

πr2

∫ r

0
(r ′) 2πr ′ dr ′. (18)

The denominator in equation (17), c, is the critical projected mass
density and depends on the geometry of the lensing event, with

c = c2

4πG

Ds

DlDls
= c2

4πG

χs

al χl χls
, (19)

where c and G are the speed of light and the Newton gravitational
constant, respectively. The symbols Dl, Ds, and Dls are angular
diameter distances between the observer and the lens (the void in
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Figure 7. Comparison of the differential surface mass density, �, of WVF

voids measured directly from the projected particle distribution and the one
calculated from the 3D density profile using equation (20). Both methods
were applied to the same physical volume. The uncertainty associated with
the red curve is roughly the width of the curve itself and thus is barely visible.
Calculating � using the void 3D density profile gives a better estimate of
the mean signal, but it underestimates the errors by a factor of ∼7, since this
method does not account for a major source of error: the variation in the
projected mass distribution of individual voids with the line of sight along
which the void is observed. The blue-shaded region accounts for this effect
and is the observationally relevant uncertainty.

our case), the observer and the source galaxies, and the lens and the
source galaxies. The angular diameter distances can be expressed
in terms of the comoving distance, χ , and the scale factor, a, as
Dl = alχ l, Ds = asχ s, and Dls = asχ ls, which, upon insertion,
results in the right-hand side of equation (19).

According to equation (17), up to a normalization constant, the
tangential shear is determined by the differential surface mass den-
sity, �(r), which, in turn, is determined by the projected surface
mass density at r, (r), whose calculation is described in Sec-
tion 4.3. In the case of 2D voids, (r) is shown in the right column
of Fig. 6. Similarly, we compute (r) for the case of 3D voids by
projecting the voids on the simulated plane of the sky using the
distant observer approximation.

In the case of 3D voids, the small amplitude of the tangential
shear signal introduces an additional challenge. This is illustrated
in Fig. 7, where we show �(r) for WVF voids in the GR model.
The differential surface density was calculated as described above,
by projecting the void and matter distribution along the line of
sight. The solid curve shows one mock observation (i.e. one sim-
ulation box and one line-of-sight choice), while the uncertainty
region corresponds to the 1σ sample variance calculated using mul-
tiple realizations and line of sights. The 1σ uncertainty is around
10 per cent of the signal strength at r ∼ Reff and is much larger than
the typical difference in the void density profile between f(R) and
GR models, which is only a few per cent (see Fig. 6). This means
that to systematically characterize the lensing differences between
f(R) and GR, we would need a large number of mocks.

Alternatively, (r) can be computed by integrating the 3D density
profile of voids, ρ3D, via the expression (Barreira et al. 2015):

(r) =
∫ L

−L

ρ3D(
√

r2 + l2) dl, (20)

where the integral is along the line of sight, l, up to some line-of-sight
distance from the void, L, large enough to account for large-scale
correlations in the mass distribution. In practice, we take L to be
three times the size of each void since the matter density profiles

are well converged to unity beyond those distances. We perform
the calculation outlined in equation (20) using directly the density
profiles of 3D voids shown in the left column of Fig. 6. In contrast
to other studies (e.g. Barreira et al. 2015; Falck et al. 2018, which
focus on different models than here), we prefer not to fit a functional
form since the differences between GR and f(R) profiles are small.
Using a fitting function incurs the danger of artificially increasing
or decreasing the differences between GR and f(R), thereby biasing
our predictions.

A second curve in Fig. 7 shows the outcome of calculating the
differential surface mass density of WVF voids using equation (20).
As expected, we find good agreement between the mean values of
the two calculations. The small discrepancy at r > 1.5Reff is a com-
bination of correlated errors and a slight overestimation of �(r)
due to the fact that we limit the integration in equation (20) to three
times the void radius. The sample variance 1σ uncertainty region,
which was found using multiple realizations of the GR box com-
bined with bootstrap sampling, is much smaller than the uncertainty
resulting from projecting the voids and matter distribution along the
line of sight. This suggests that integrating the 3D matter density
profile is a more computationally efficient method of calculating
the mean �(r) value of 3D voids. However, the same calculation
underestimates the size of the sample variance error by a factor of
∼7. This discrepancy is due to equation (20) neglecting one major
source of scatter. The �(r) uncertainty is a combination of two ef-
fects. First, it is affected by the void-to-void variation in their radial
mass distribution. Secondly, since voids are highly non-spherical,
the projected mass distribution around each void shows plenty of
variation depending on the viewing direction. The 3D density pro-
file of each void corresponds to an average over all possible line of
sights and thus does not include this latter source of scatter. There-
fore, the observationally relevant uncertainty is the one computed
using the projected particle distribution.

To summarize, for 3D voids we follow a hybrid approach for
calculating �. The mean � for both GR and f(R) models was
computed using equation (20), that is by integrating the 3D density
profiles along the line of sight. This means that we can measure to a
high accuracy systematic differences between GR and f(R) models.
To compute the observationally relevant GR sample variance, we
used the projected particle distribution around each void. Similarly
to previous error estimates, we compute the covariance matrix using
500 bootstrap samples constructed from five simulation boxes (for
details, see the fourth paragraph in Section 4).

Fig. 8 shows the differential surface mass density, �, for the
six voids studied here. In all cases, we find that � is negative at
least up to, r � 1.5Reff, indicating that voids, due to their underdense
interiors, produce divergent lensing, which is similar to a concave
lens. In contrast, high-density regions (e.g. clusters) give rise to
convergent lensing, which is similar to a convex lens. For most
void types, the diverging weak lensing signal peaks at the void
radius, r = Reff, with troughs being the exception for which the
signal peaks at r � 1.2Reff. Of the 3D underdensities, SVF voids
produce the strongest tangential shear, which is ∼30 per cent larger
than the signal of the other two 3D voids. The lensing signature of
WVF voids, and probably that of ZOBOV ones, can be increased by
a factor of ∼2 by stacking with respect to the boundary of these
non-spherical objects (Cautun et al. 2016), which would result in
a stronger lensing signal than the SVF one. The 2D underdensities
have an even stronger weak lensing imprint than the 3D ones, with
troughs producing an approximatelyfivetimes larger signal than SVF

voids. The SVF_2D voids and tunnels have an even larger tangential
shear, roughly 15 times larger than that of SVF voids. This is due to

MNRAS 476, 3195–3217 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/476/3/3195/4898070
by Durham University user
on 23 March 2018



3210 M. Cautun et al.

Figure 8. Comparison of the differential surface mass density, �, profile of voids in GR and f(R) models. These were calculated by projecting the mass
distribution along one of the axes of the simulation box. The grey-shaded regions show the 1σ uncertainties corresponding to the sample variance of the GR
signal. For 2D voids, the errors correspond to the sample variance of a (1.024 h−1 Gpc)3 volume, which is the volume of each of our five simulation boxes. For
3D voids, the errors are very large so we show the sample variance for an EUCLID-like survey with a 10 (h−1 Gpc)3 volume, which is 9.3 times larger than the
volume of each of our simulation boxes. The symbols and curves are the same as in Fig. 4.

the fact that 2D voids are much smaller than 3D ones and therefore
they are measuring the matter fluctuations at much smaller scales.

Fig. 8 also compares the �(r) profiles in GR and f(R) gravity.
Voids in modified gravity models show a stronger lensing signal
than in GR, with the enhancement being largest for the F5 model at
late times. To assess the significance to which these differences can
be measured, Fig. 8 shows as a grey-shaded region the 1σ sample
variance for GR. For 3D voids, the uncertainty corresponding to
the volume of the simulation box is very large, so we present a
rescaled error for an EUCLID-like survey with a 10 (h−1 Gpc)3 volume
(9.3 times larger than our simulation box), which practically means
reducing the uncertainty by a factor of

√
9.3. Among the 3D voids,

SVF voids show the largest difference compared to the fiducial GR

model, both in absolute terms as well as when compared to the error
bars, but note that the �f (R) − �GR difference is very similar
to the cosmic variance. In contrast, for 2D voids, the signature of
modified gravity models is significantly larger than the associated
uncertainties in the lensing signal, which makes these objects ideal
for testing f(R) models.

4.5 Predictions for EUCLID and LSST

Here, we investigate the extent to which void lensing in future sur-
veys can be used to constrain modified gravity theories. In particular,
we focus our attention to the EUCLID (Laureijs et al. 2011) and the
LSST (LSST Science Collaboration et al. 2009) lensing surveys that
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cover 20 000 and 18 000 deg2, respectively. For both surveys, we
assume that their sky coverage area overlaps with spectroscopic
surveys that have a galaxy number density in the redshift range
z = 0.3–0.7 at least as high as that of the SDSS CMASS sample. In many
cases, there will be overlapping spectroscopic surveys with higher
galaxy number densities, in which case our analysis quantifies the
modified gravity constraints that can be inferred when using only
the brightest galaxies. Using the full spectroscopic survey would
probably result in even tighter constraints, but our simulations lack
the resolution to make predictions for such observations.

Let us consider a survey with lenses in the redshift range [zl; min,
zl; max] with a number density of lenses given by Wl(zl). The lens-
ing signal of these objects is measured using sources distributed
according to Ws(zs) in the redshift range [zs; min, zs; max]. Then, the
mean tangential shear is given by

γ t =
∫ zl; max

zl; min

dzl

∫ zs; max

zs; min

dzs

�(zl)

c(zl, zs)
Wl(zl)Ws(zs), (21)

where �(zl) is the mean differential surface density of lenses at
redshift zl and c(zl, zs) is the corresponding critical surface density
for lens redshift zl and source redshift zs.

We are interested in obtaining an approximate estimate for the
tangential shear, so we consider a simplified set-up. First, we take
all the source galaxies to have a single redshift that is the median
redshift of the distribution, zs med. Secondly, we take the lenses to
have a uniform comoving number density, in which case Wl(zl) ∝
χ2(zl), with χ (zl) the comoving distance to redshift zl. Thirdly, we
take the differential surface density, �(zl), to be independent of
redshift. The goal is to make predictions for a lens distribution in
the redshift range [0.3, 0.7], so we take the value of �(zl = 0.5)
calculated in Fig. 8. After accounting for all these simplifications,
equation (21) becomes

γ t = �(zl = 0.5)
4πG

c2χs

∫ χl; max

χl; min

dχl (1 + zl)
−1χ3

l (χl − χs)

∫ χl; max

χl; min

dχl χ
2
l

(22)

≡ �(zl = 0.5)

c; eff
, (23)

where χ s = χ (zs; med), χ l = χ (zl), χ l; min = χ (zl; min) and
χ l; max = χ (zl; max). All the terms of equation (22) to the right of
�(zl = 0.5) can be grouped together into the inverse of an ef-
fective critical surface density for the survey, c; eff. Using this
notation, equation (22) can be rewritten as equation (23), which is
similar in form to equation (17).

Here, we adopt zs; med = 0.8 and 1.2, which corresponds to the
median source redshift for the EUCLID and the LSST surveys, respec-
tively, to obtain c; eff = 6770 and 3960 hM� pc−2. For the EUCLID

survey, we predict tangential shear values at the position of the dip
of γ t � −1 × 10−4 for 3D voids, γ t = −5 × 10−4 for troughs and
γ t = −2 × 10−3 for SVF_2D voids and tunnels. For the LSST survey,
we predict a lensing signal that is a factor of 1.7 times larger than for
EUCLID. Thus, depending on the method used to identify underdense
regions, the weak lensing signal can vary by a factor of 20, being
lowest for 3D underdensities and highest for 2D underdensities,
with SVF_2D voids and tunnels having the highest lensing imprint.

The tangential shear measurements are affected by three impor-
tant sources of uncertainty: void sample variance, the covariance of
uncorrelated large-scale structure along the path of the light rays,
and shape noise (e.g. see Krause et al. 2013). The first two error

sources can be obtained by calculating the void tangential shear
profile due to the mass distribution between the source plane and
the observer. For this, we construct a mock light cone for each GR
realization. First, the mass distribution in the redshift range z = 0.3
to z = 0.7 is given by the z = 0.5 snapshot of the respective GR
realization. To account for uncorrelated large-scale structure, the
mass distribution for z < 0.3 and for z > 0.7 is taken from the
z = 0.5 snapshot of the other GR realizations. For simplicity, our
light cone mocks use the mass distribution at z = 0.5, which ne-
glects the time evolution of the clustering, and, secondly, we use a
cylindrical geometry while in practice observations have a conical
geometry. We calculate the tangential shear of each individual void
by applying equation (17) to thin slices along the line of sight and
summing the contribution of all these slices. We do so for all the 5
GR realizations.

The remaining source of uncertainty, shape noise, comes from the
intrinsic ellipticity distribution, characterized by its variance, σ ε , of
the source galaxies used to measure γ t. We measure shape noise by
generating a random distribution of source galaxies in our simulated
plane of the sky (i.e. projected simulation box), with each source
having a randomly assigned and randomly oriented ellipticity, with
the ellipticity variance being given by σ ε (this is similar to the
procedure described in Sanchez et al. 2017, but applied to mock
catalogues and not to the data). For each void in the catalogue,
we calculate the mean source galaxy ellipticity for the same radial
bins used to estimate the weak lensing signal. For this calculation,
we adopt and intrinsic source ellipticity, σ ε = 0.22, and a number
density of sources, nsources = 30 and 40 arcmin−2 for EUCLID and
LSST, respectively. Then, we add the shape noise to the tangential
shear signal for each of the voids found in the 5 GR realizations. To
compute the covariance matrix, we split each GR void catalogue into
64 subregions and generate 100 bootstrap realizations; the resulting
N = 500 estimates are used to calculate the total covariance matrix.
The resulting covariance matrix, which corresponds to a survey
with the same volume as each of our simulation boxes, is rescaled
by multiplying with the factor Vsim/Vsurvey, where Vsim and Vsurvey

are the comoving volumes of the simulation box and the survey,
respectively.

Since the inverse of a noisy estimate of the covariance matrix is
biased high, we correct for this effect by multiplying the inverse co-
variance by the Anderson–Hartlap factor (Anderson 2003; Hartlap,
Simon & Schneider 2007),

α = N − Nbin − 2

N − 1
, (24)

where N = 500 is the number of realizations used to estimate the
covariance matrix and Nbin is the number of bins.

A useful way to quantify the degree to which f(R) models can
be distinguished from the fiducial case is to compute the S/N for
the tangential shear signal of the various void catalogues. In this
respect, we define the cumulative S/N up to a radial bin k as

(S/N)2 (<k) =
∑

i≤k; j≤k

δγt (i) cov−1(i, j ) δγt(j ), (25)

where δγt = γt f (R) − γt GR is the excess tangential shear signal in
f(R) gravity compared to GR and cov−1 is the inverse of the tan-
gential shear covariance matrix. The sum is over radial bins i and
j that take values from 1 to a maximum of k. For each value of k,
we calculate the cov−1 matrix by inverting the first k × k entries of
the covariance matrix, with the number of bins in the Anderson–
Hartlap correction factor (see equation 24) being given by Nbin = k.
The radial range r/Reff ≤ 2 is split into 40 equal width bins. The
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Figure 9. The cumulative (from small to large radius) S/N of the differences
in tangential shear between f(R) and GR. The top and bottom panels show
the S/N of the F5 and F6 models, respectively. Each colour corresponds
to one of the six void types studied in this paper. The predictions for an
EUCLID- and a LSST-like lensing surveys are shown as solid and dashed lines,
respectively.

S/N values correspond to the number of sigma that the f(R) models
can be distinguished from the standard GR one.

We compute the cumulative S/N for all the six void catalogues
for both the F5 and F6 models. The results are shown in Fig. 9.
For all methods, the cumulative S/N increases up to the void radius,
after which it stays relatively constant, which suggests that most of
the power for distinguishing gravity models comes from the region
r � Reff. The 2D voids show the largest S/N for both f(R) models,
with tunnels being the most promising method. The S/N is larger for
LSST than for EUCLID, since the source galaxies of the former survey
are at higher redshift and there are 25 per cent more of them. In
the case of EUCLID, tunnels have a maximum S/N of 50 and 7 for,
respectively, the F5 and F6 models. For LSST, the tunnels’ S/N of
the same two models increases to 80 and 11, respectively.

For the F5 case, the lensing signal of 3D voids peaks at an
S/N ∼ 1–2. This value is lower than previous studies, with Cai et al.
(2015) predicting that SVF voids in a 1 (h−1 Gpc)3 volume can dis-
tinguish F5 with S/N ∼ 7. Extrapolating this result to the EUCLID

volume would result in a
√

10 larger value, i.e. S/N ∼ 22, while
in this work, we only find an S/N ∼ 2. The discrepancy is due to
several differences between our analysis and the Cai et al. one. We
estimate the S/N using the z = 0.5 snapshots, while Cai et al. used
the z = 0 matter distribution; as seen in Fig. 8, the difference in void
tangential shear between f(R) and GR is smaller at higher redshift.

Figure 10. Comparison of which sources of error dominate the S/N of the
difference in tangential shear between F6 and GR. Each colour corresponds
to a different void finder; for clarity we only show the SVF results for 3D
voids. The solid curves show the S/N for the LSST survey; the dashed lines
show the change in S/N if instead the survey would have the same number of
lensing sources but cover a four times larger volume; the dotted lines show
the S/N if instead the survey would have four times more lensing source
galaxies.

Also, we include two additional error sources, shape noise, and
the contribution of uncorrelated line-of-sight large-scale structure,
which are similar in magnitude to the sample covariance of voids.

In Fig. 10, we study which of two possible observational strate-
gies, which is surveying a larger volume versus having a higher
density of source galaxies, optimizes the gain of using void lensing
to distinguish between the f(R) and GR models. We analyse the case
of F6 and we limit the analysis to the LSST survey, which in Fig. 9
gives the largest S/N. For each void finder, Fig. 10 shows three sets
of S/N curves: (i) LSST (solid lines), (ii) four times the LSST volume,
but equal number of lensing source galaxies as LSST (dotted lines),
and (iii) LSST volume with four times the number of LSST lensing
source galaxies. Cases (ii) and (iii) correspond to decreasing sepa-
rately the covariance matrix contribution from, respectively, cosmic
variance and shape noise. In the case of 3D underdensities, for clar-
ity, we only show SVF voids, but WVF and ZOBOV voids show the same
trends. We find that the S/N is boosted more when increasing the
survey volume compared to when increasing the density of source
galaxies by the same factor, although for troughs and SVF_2D both
strategies lead to similar S/N gains. In the case of 3D voids, shape
noise represents a small fraction of the error budget, so having larger
survey volumes brings the largest gain. For 2D underdensities, the
shape noise error contribution is larger than in the case of their 3D
counterparts, but it is still smaller than uncertainties due to sample
variance and uncorrelated line-of-sight structures.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have carried out a detailed comparison of the extent to which
voids can test models of modified gravity. Underdense regions are
typically unscreened in modified gravity theories, which suggests
that voids can be potentially good discriminators of such models.
There are multiple ways of defining voids, with different algorithms
designed to identify structures at different scales and with differ-
ent geometries. Moreover, different void finders may have differing
systematic and statistical error budgets. This motivated the need for
a comprehensive comparison of different void-finding algorithms in
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order to precisely quantify which voids are best suited to test mod-
ified gravity models in light of the coming data from big galaxy
surveys. In particular, we would like to know what level of con-
straints future surveys such as EUCLID and LSST can lead to when
using void statistics. In this analysis, we compare six existing and
new methods to identify cosmic voids, with three algorithms find-
ing underdensities in the 3D galaxy distribution and three in the
line-of-sight projected 2D galaxy distribution.

We expect that the constraining power of different void finders to
be model dependent, so this work focuses on a class of very popular
theoretical models: f(R) gravity proposed by Hu & Sawicki (2007),
which is a representative example of the general models known
as chameleons (Khoury & Weltman 2004). We studied two f(R)
models, F5 and F6, with F5 corresponding to stronger deviations
from GR than F6. The underlying philosophy is to use this very
example to quantitatively understand the future constraints given by
void statistics, and the conclusions from this study will be indicative
for the more general models.

We improved upon previous studies, which used either dark mat-
ter particles or dark matter haloes as tracers, by identifying the
voids using tracer galaxies, and therefore special care has been
taken to create realistic mock galaxy catalogues. We have used a
five-parameter HOD model to populate dark matter haloes with
galaxies. The GR HOD uses the Manera et al. (2013) parameters,
which reproduce the SDSS CMASS-sample galaxy clustering, while
the f(R) HOD parameters were tuned to result in the same galaxy
number density and projected two-point correlation functions as the
GR ones. The resulting number densities of galaxies are ng = 3 and
5 × 10−4 (Mpc/h)−3 for z = 0.5 and z = 0, respectively, and we leave
a study of the effect of varying ng (which requires higher-resolution
simulations than used here) to future work.

The main conclusions of this work are as follows:

1. Void abundance

The abundance of voids is sensitive to the tracers used to identify
them. For example, Cai et al. (2015) found that the different f(R)
models predict very different abundances for voids found using the
dark matter field directly. For sparse tracers, such as dark matter
haloes and galaxies whose number densities are in the region of
∼5 × 10−4(h−1 Mpc)−3, we find the same void abundance across
all models when matching the number densities, and the agreement
becomes even better when we further match the galaxy correlation
functions (see Fig. 4). Thus, void abundances do not have additional
discrimination power of modified gravity models once the number
density and the correlation function are the same across all models.

The above conclusion holds when comparing voids identified
using the same method for all models, and there can still be a lot of
variation if we compare the abundances from different void finders.

2. Void profiles

Similar to void abundances, the galaxy number density profiles of
voids are almost identical across all models when we have matched
their two-point correlation functions (see Fig. 5), and it suggests
that the observed void galaxy number density profiles cannot be
used to distinguish the models studied here.

However, the modification of gravity does affect the distribution
of the underlying dark matter field. The agreement of the galaxy
correlation functions in the different models has been achieved
by tuning the HOD parameters – which are empirical parameters

describing how galaxies populate dark matter haloes from a sim-
ulation – in the models, and this means that these models must
have different galaxy bias in order to match the same observational
data. When studying the void matter density profiles, we find that
voids in f(R) gravity are more underdense (see Fig. 6) due to the
presence of a fifth force that evacuates underdense regions more
efficiently.

Gravitational lensing is a way to directly probe the total mat-
ter distribution between the source and the observer, and so we
compared the stacked lensing signal (tangential shear) by voids
between f(R) and GR gravity to find that the former generally
predicts stronger void lensing (see Fig. 8). The tangential shear
profiles of voids depend on the way in which the voids are iden-
tified. In particular, we confirm that among the 3D void finders,
the SVF gives rise to the strongest model difference in the tangen-
tial shear profile, since, by construction, spherical voids show a
stronger density variation with distance at the void edge. We also
find that 2D voids, in particular tunnels and 2D SVF, show both
stronger lensing signals and stronger model differences compared to
3D voids.

3. Constraining power of void lensing in future surveys

In order to quantify the significance of the lensing signals for future
galaxy surveys such as EUCLID and LSST, and to assess more accu-
rately the potential of using voids to test chameleon-type models,
we have performed a comprehensive calculation of the S/N of void
tangential shear to distinguish f(R) and GR models. Our analysis
has taken into account the major sources of uncertainties: the num-
ber densities of voids in the survey volume, the number density of
source galaxies, line-of-sight projection effects, and the shape noise
due to the intrinsic ellipticity of source galaxies.

We find that 2D voids are the most promising underdensities for
probing f(R) gravity. Of these, the tangential shear by tunnels has
the largest constraining power, with a EUCLID-like survey being able
to distinguish the f(R) gravity F5 and F6 models at a 50 and 7σ

confidence level, respectively (see Fig. 9). The LSST data will have
an even higher constraining power corresponding to a confidence
level of 80 and 11σ for the F5 and F6 models. The 2D SVF voids
have somewhat less distinguishing power than tunnels, with troughs
being the least constraining of the 2D voids.

We also find that the weak lensing signal of 3D voids has a poor
power to distinguishing f(R) models. The most promising of them,
the SVF, applied to the LSST survey can constrain the F5 and F6
models to a confidence level of 2 and 0.3σ . This distinguishing
power is significantly lower than found in previous literature. The
discrepancy with previous studies is due to (1) the use of the z = 0.5
snapshots, which show smaller differences between f(R) and GR
than present at z = 0, and (2) our inclusion of additional error
sources, such as shape noise and the contribution of uncorrelated
line-of-sight large-scale structure.

We investigated the dominant void lensing uncertainty sources
for the LSST survey to find that while source galaxy shape noise is less
important than errors due to sample variance and line-of-sight large-
scale structures, it still has a significant contribution (see Fig. 10).
Thus, the prospects of using void lensing to distinguish f(R) models
from GR can be best boosted by increasing the survey volume. The
best way of increasing the survey volume is by extending the sky
coverage of the LSST survey; going to higher redshift will cover more
volume, but may not help as much because at higher redshift the
difference between models also decreases.
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This paper uses a conservative sample of tracer galaxies with a
number density corresponding to that of the CMASS galaxy sample.
EUCLID and LSST are expected to have a larger number density of
galaxies that will allow for the identification of more voids, but
with smaller sizes. It remains to be studied how the larger density of
tracers can affect the constraining power of void weak lensing. We
leave this for future work, since it needs higher-volume simulations
than used here with much better mass resolution, the latter needed to
resolve the lower mass dark matter haloes that host galaxies fainter
than in CMASS. Another important question, which is not addressed
in this paper, is the potential degeneracy between the effects of mod-
ified gravity and other cosmological parameters such as 
m and σ 8

(Cai et al. 2015). In f(R) gravity, the convergence power spectra
show a scale-dependent enhancement compared to GR predictions
(e.g. Tessore et al. 2015; Li & Shirasaki 2018), which suggests that
the lensing signature of f(R) models is not degenerate with cosmo-
logical parameters, as explicitly checked by Shirasaki et al. (2017).
Extending this conclusion to void lensing is non-trivial because the
convergence power spectrum represents an average over the entire
volume while voids sample mostly underdense regions, and, fur-
thermore, there is an environmental dependence of the fifth force in
f(R) models. Understanding the degeneracy between cosmological
parameters and void lensing will involve new simulations to be car-
ried out by varying these cosmological parameters and will be left
for future work.
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A P P E N D I X A : SE L E C T I O N O F T U N N E L S A N D
T RO U G H S

We are interested in studying the signature of f(R) modified gravity
in underdense regions, but not all tunnels and troughs correspond
to underdense regions. Here, we present one simple method, which
can be applied to observations, of segregating tunnels and troughs
according to their projected density contrast, /〈〉. For tunnels,
their radius is correlated with their projected density, as shown in the
top panel of Fig. A1. Large tunnels correspond to regions sparsely
populated with galaxies and thus have low  values; in contrast

Figure A1. The projected matter density, , profile of tunnels (top) and
troughs (bottom) at z = 0. The tunnels are split according to their effective
projected radius, Rp eff. We use only tunnels with Rp eff ≥ 1 h−1 Mpc that
correspond to underdense regions. The troughs are split according to the
number of tracer galaxies they contain. We use only troughs with Ngal ≤ 2
that correspond to a similar projected underdensity as the tunnels.

small tunnels are found in regions crowded with galaxies, typically
corresponding to high-mass haloes. A simple cut in radius, Rp eff

≥ 1 h−1 Mpc, represents a good compromise between including as
many objects as possible while still considering mainly underdense
tunnels.

All troughs are defined to have the same radius, 2 h−1 Mpc, so to
discriminate between under- and overdense ones we use the number
of galaxies inside each trough. Troughs that contain few galaxies
are typically found in regions of low projected matter densities,
as shown in the bottom panel of Fig. A1. The four bins in trough
galaxy count were selected to contain roughly 20, 30, 30, and 20 per
cent of the population, respectively. Our analysis uses only troughs
that contain at most two galaxies inside them, which corresponds
to 22 and 30 per cent of objects at z = 0 and z = 0.5, respectively.
The z = 0.5 HOD has a lower galaxy number density and thus the
same cut in trough galaxy count corresponds to a larger fraction
of the population. The threshold of two galaxy counts in troughs
is motivated by finding a compromise between large differences in
the  profiles between f(R) and GR, which are maximal for the
most underdense troughs, and including a sufficient fraction of the
population.

A P P E N D I X B : L E N S I N G C OVA R I A N C E
MATRI X

Here, we describe and present the tangential shear covariance matrix
for each of the six voids used in our analysis. The void sample
variance is estimated by first measuring the differential surface mass
density, �. This is calculated by correlating the void distribution
of each of the six void finders with the 2D matter distribution
obtained from projecting the entire simulation box along a principal
axis. In the case of the 2D voids, the principal axis of the projection
is the same as the principal axis of the projection used to identify the
voids in the first place. We estimate � for N = 500 realizations,
which are obtained by using a mix of five simulation boxes with 100
bootstrap realizations for each box (see Section 4 for more details).
Then, the (i, j) entry of the sample variance is given by

cov�(i, j ) = 1

N − 1

N∑
k=1

[
�k(i) − �(i)

]

× [
�k(j ) − �(j )

]
, (B1)

where �k is the differential surface mass density for realization k
and � = 1

N

∑
�k is the mean value of � across all realiza-

tions.
Fig. B1 shows the correlation matrix, Rij, of � for the voids

studied here. The correlation matrix is given by

Rij = cov�(i, j )

σiσj

, (B2)

where cov�(i, j) is the covariance matrix of � and σ 2
i =

cov�(i, i), which are the diagonal entries of the covariance matrix.
For most void finders, the correlation matrix is mainly diagonal
suggesting that while there is a strong correlation between neigh-
bouring bins, bins which are farther apart are only very weakly
correlated. The only exception is for troughs, where we find that
all bins with r � 0.5Reff show a large degree of correlation, in-
dependently of how far apart they are. This is probably a conse-
quence of the high degree of overlap between different troughs
(see Fig. 3).

The shape noise covariance was calculated by generating a spa-
tially random catalogue of source galaxies whose number density
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Figure B1. The sample variance correlation matrices, Rij, of the differential surface mass density, �, for the six void finders used in this work.

and intrinsic ellipticity distribution matches that of the target lens-
ing survey. Furthermore, the source galaxies are oriented randomly,
which corresponds to a null tangential shear signal. We calculate
the stacked mean galaxy ellipticity for each void catalogue by cor-
relating the void distribution with the source galaxies. We obtain
500 bootstrap realizations that are then used to compute the shape

noise covariance, which is shown in Fig. B2. For all void finders,
we find that the diagonal terms are dominant. This is especially the
case for tunnels and SVF_2D voids, which show the smallest degree
of overlap (see Fig. 3). The remaining void catalogues have various
degrees of overlap that results in many off-diagonal elements being
non-zero.
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Figure B2. The shape noise correlation matrices for three of the void finders
used in this work. The correlation matrices shown here are top panel for SVF

voids (we checked that all 3D voids have a similar matrix), central panel
for tunnel (we checked that the SVF_2D result looks almost identical), and
bottom panel for troughs.
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