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Abstract

A computational investigation is conducted concerning the stability of free-surface

gravity-driven liquid film flow over periodic corrugated substrate. The underpinning math-

ematical formulation constitutes an extension of the weighted residual integral boundary-

layer (WIBL) method proposed by C. Ruyer-Quil and P. Manneville [Eur. Phys. J. B 15,

357 (2000)] and S.J.D. D’Alessio et al. [Phys. Fluids 21, 062105 (2009)] to include third-

and fourth-order terms in the long-wavelength expansion. Steady-state solutions for the

free-surface and corresponding curves of neutral disturbances are obtained using Floquet

theory and validated against corresponding experimental data and full Navier-Stokes (N-

S) solutions. Sinusoidal and smoothed rectangular corrugations with variable steepness

are considered. It is shown that the model is capable of predicting characteristic patterns

of stability, including short-wave nose and isles of stability/instability as reported exper-

imentally for viscous film flow over inclined topography, providing an attractive trade-off

between the accuracy of a full N-S computation and the efficiency of an integral method.

The range of parameter values for which the WIBL model remains valid is established, in

particular it is shown that its accuracy decreases with Reynolds number and corrugation

amplitude, but increases with the steepness parameter and ratio of wavelength to capillary

length.

1 Introduction

Gravity-driven liquid film flows over a variety of substrates containing topography play an

important role in numerous engineering, biological and medical applications. In the coating

industries several devices exist which have been optimised specifically for the continuous produc-

tion and fast throughput of uniform, defect-free, films on substrates made from plastic, metal,

paper, etc [1]. Solar cells are currently manufactured using raw materials that are costly, toxic

and scarce (cadmium and gallium). However, using print manufacturing it is possible to pro-

duce cells that are exceptionally thin and extremely light-weight, using only a few milligrams
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of copper, zinc and tin, thereby substantially reducing both production costs and production

times [2]. Other examples of application areas include the manufacture of thin-film transistors

[3], organic light-emitting diode displays [4], printed circuits [5], large-area pressure transducers

on flexible substrates (”electronic skins”) for security, impact monitoring and health diagnos-

tics [6], hydrophilic/hydrophobic coated products and surfaces for water removal [7] or drag

reduction [8], tissue engineering and the printing of biologically active materials such as cells,

proteins, bacteria and biogels [9].

The dynamics and stability of film flows have attracted considerable attention for several

decades as there is a rich variety of internal fluid flow and associated free-surface disturbances

observed, see the reviews of [10] and [11]. Flow structures of interest include kinematically

or inertially induced eddies in troughs formed by the presence of topography, [12–19], while

hydraulic jumps and standing waves [20], caused by both linear [21] and nonlinear [22] resonance

of the steady-state free surface, appear.

The issue of the stability of film flow over topographical features has also attracted much

attention. The instability of interest takes the form of large-amplitude interfacial waves which

are found to propagate with a coherent shape and characteristic speed [23]. The majority of

existing studies concerning the stability of film flows rely primarily upon the classical stability

condition, originally derived by [24, 25], which predicts that thin films of Newtonian fluids

flowing over flat substrates of infinite extent, which are inclined at an angle β to the horizontal,

become unstable for Reynolds numbers, Re > Reflat = (5/4) cot β. Existing experimental data,

however, shows that the presence of surface topography can, under certain conditions, delay

the onset of instability, resulting in a higher topography-dependent Recrit. The stabilising and

destabilising effects due to topography have been reported for experiments involving rectan-

gular [26] and sinusoidal [27, 28] features. The aforementioned experiments report a slight

stabilisation of the respective films compared to the corresponding flow over flat substrate and

qualitatively unaffected neutral stability conditions. Subsequent experimental studies [29–33],

however, have reported a much more substantial stabilisation of the flow. They conclude that

topographies stabilise film flow if the corrugations are sufficiently steep to give rise to a signif-

icantly higher average film thickness compared to the corresponding flow over a flat substrate

[34]. It has subsequently been suggested that the stabilisation effect is the result of the complex

interplay between the underlying eddy structure formed within troughs of the topography and

the unsteady free surface disturbance [32, 35].

Theoretical investigations and models for predicting the hydrodynamic stability of thin film

flows over topography have been reported in numerous complementary articles [27, 28, 36–42].

One of the most advanced modelling approaches is based on the integral boundary layer (IBL)

approximation, namely either Shkadov’s non-weighted (NIBL), [42–44], or a modified weighted

(WIBL), [38, 45], formulation. This approach relies upon the long-wavelength assumption that

places limits on its application for high Reynolds number, capillary number and topography

with high amplitude and steepness, such as a rectangular feature. However, it benefits consid-

erably in terms of computational cost compared to a modelling approach based on solution of

full Navier-Stokes equations as developed and used by [41, 46]. The WIBL model eliminates
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the explicit depth-coordinate dependence from the full N-S system of equations by assuming

a parabolic velocity profile and integrating over the depth of the film together with utilising

a weighting function, resulting in a set of equations for film thickness and flow rate whose

dimensionality is essentially reduced by one. As a result, the WIBL method represents a good

trade-off and balance between accuracy and computational efficiency and can be realistically

used for three-dimensional topographies. It has been shown that, if the second-order terms

are taken into account, the WIBL model is able to capture the leading dynamics and predict

the onset and evolution of interfacial instability [38]. In addition, the WIBL model removes

the limitations associated with other alternative approaches based on perturbation theory [27],

which is limited to corrugations with small amplitude and small substrate inclination angles,

and the so-called Benney-type model [40] that is restricted to small long-wave ratios.

Although accurate and computationally efficient relative to other theoretical models, WIBL

approach has not yet been reported as able to predict and capture the important experimentally

observed short-wave instability modes discussed in [30] or the stability/instability isles revealed

in [32, 33, 46]. The proposed aims of the present work is to explore whether such a model based

on a weighted residual integral boundary-layer approximation can be further developed that

is able to capture experimental and N-S data by predicting free-surface patterns and neutral

stability curves including the relevant stabilisation effects of topography. To this end the pa-

per is structured as follows: section 2 provides the necessary mathematical background, with

particular emphasis placed on the use of third- and fourth-order WIBL formulations. Section

3 reports and assesses comparisons of the experimental and full N-S results against those gen-

erated using the different order WIBL formulations with regard to (i) steady-state free-surface

location; (ii) neutral stability charts; (iii) evolution of a sinusoidally-shaped corrugation towards

a more rectangularly-shaped one of varying thickness (tip width) by varying the steepness of the

topography. Finally, in section 4, the main results are reviewed with appropriate conclusions

drawn.

2 Mathematical Background

Consider a two-dimensional laminar film of Newtonian fluid flowing over a regularly-corrugated,

inclined surface. The coordinate system (x, z) is oriented such that the x-axis points down the

slope, which is inclined at an angle β to the horizontal, the z-axis points in a direction normal

to the aforementioned, inclined slope, at time t, as per Figure 1. The solid, corrugated surface

is assumed to be periodic and have the following form:

s(x) = A · b

(

2πx

L

)

, (1)

where b(x) ∈ [0, 1] is a normalised periodic function, the exact form of which may vary from

case-to-case; A is the corrugation amplitude and L is the corrugation wavelength. The fluid

velocity is denoted by ~u = (u, w), the pressure by p, the film thickness by h(x, t) and f(x, t) =
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s(x) + h(x, t) is the free surface coordinate. The governing equations (i.e. continuity and full

Navier-Stokes) are scaled with respect to vertical and horizontal length scales, and associated

pressure, velocity and time scales. The vertical length is scaled by the Nusselt film thickness,

H, defined as

H =

(

3µV̇

ρg sin β

)1/3

, (2)

where V̇ is the flow rate per unit cross-sectional width, g is accelaration due to gravity, ρ is

fluid density and µ is the dynamic viscosity. The horizontal length is scaled by L, velocity by

U = 3V̇ /2H and pressure by P = ρUL/H2. Buoyancy and evaporation effects are assumed to

be negligible and therefore ignored.

The two-dimensional continuity and Navier-Stokes equations take the following, non-dimensional

form

∂u

∂x
+

∂w

∂z
= 0, (3)

εRe

(

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)

= −
∂p

∂x
+ ε2

∂2u

∂x2
+

∂2u

∂z2
+ 2, (4)

ε3Re

(

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)

= −
∂p

∂z
+ ε4

∂2w

∂x2
+ ε2

∂2w

∂z2
− 2ε cot β, (5)

where ε = H/L is the shallowness parameter (also long-wavelength parameter) and Re =

ρUH/µ is the Reynolds number. Equations (3-5) are subject to the following dynamic boundary

conditions at the free surface [47]

p =
2ε2

(1 + ε2g)

[

ε2g
∂u

∂x
+

∂w

∂z
−

∂f

∂x

∂u

∂z
− ε2

∂f

∂x

∂w

∂x

]

−
ε3

Ca (1 + ε2g)3/2
∂2f

∂x2
at z = f, (6)

∂u

∂z
+ ε2

∂w

∂x
=

4ε2

(1− ε2g)

∂f

∂x

∂u

∂x
at z = f, (7)

where g(x, t) =
(

∂f
∂x

)2
is the curvature prefactor, Ca = µU/γ is the capillary number and γ is

the fluid surface tension. By making use of equations (3) and (7) the boundary condition for

pressure, (6), is expressed

p = −
2ε2 (1 + ε2g)

(1− ε2g)

∂u

∂x
−

ε3

Ca (1 + ε2g)3/2
∂2f

∂x2
at z = f. (8)

The kinematic condition describing the position of the free surface is given by

w =
∂f

∂t
+ u

∂f

∂x
at z = f. (9)

The no-slip and impermeability conditions at the corrugated substrate are satisfied by setting
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the tangential and normal fluid velocity components to zero

u = w = 0 at z = s, (10)

where the scaled substrate profile is given by

s(x) =
A

H
· b (2πx) . (11)

Averaging the equations over the depth of the flow removes the z-dependence, yielding a one-

dimensional set of equations. Integrating the continuity equation (3) with the kinematic (9)

and no-slip (10) boundary conditions gives

∂h

∂t
+

∂q

∂x
= 0, (12)

where q is the flow rate given by

q =

∫ f

s

udz. (13)

Integrating (5) from z = f to z = z, using the continuity equation (3) and substituting the

value for the pressure at the free surface from (8) provides the following expression for the fluid

pressure

p = 2ε cot β (f − z)− ε2
(

∂u

∂x
+

(1 + 3ε2g)

(1− ε2g)

∂u

∂x

∣

∣

∣

z=f

)

−
ε3

Ca (1 + ε2g)3/2
∂2f

∂x2

+ε3Re

∫ f

z

(

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)

dz − ε4
∫ f

z

∂2w

∂x2
dz,

(14)

which can be used to eliminate the pressure from the x-momentum equation (4). Following

[38, 45], the WIBL technique is implemented to eliminate the z-dependence by firstly assuming

the following self-similar parabolic velocity profile across film:

u =
3q

2h3
(z − s)(2h− z + s). (15)

Note that the assumed profile for the velocity satisfies the no-slip condition (10) and zero-order

shear condition (7), namely ∂u/∂z = 0 at z = f , and represents the steady and uniform flow.

The profile (z−s)(2h−z+s) is taken as the weighting function; multiplying (4) by this function

and integrating with respect to z from s to f by making use of shear condition (7) and equation

(12) results in the desired dimensionless system of equations. These include the continuity-type

equation (12) and momentum equation (A.1) obtained using Maple and provided in full in

Appendix A. Solutions to different order of accuracy, i.e. first, second, third and fourth order,

are referred to subsequently as WIBL1, WIBL2, WIBL3 and WIBL4, respectively. Note the

WIBL1-2 models are equivalent to the first- and second-order modified models originally derived

for flow over flat substrate in [45] and later extended to incorporate the effect of topography

in [38]. The WIBL3 model includes extra terms originating from w-inertia in equation (14),
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while WIBL4 one includes all the high-order terms consistent with the full two-dimensional

N-S system of equations. Even though WIBL4 model, which is based on parabolic profile, is

able to capture the free-surface profiles reasonably well, when the free-surface is pronounced for

large β or small d WIBL4 is not able to predict the fourth-order curvature prefactor g enough

accurately, therefore it is consistently ignored in all our calculations by setting g = 0.

In order to investigate how small perturbations ĥ and q̂ evolve over time, superimposing

them with the steady-state solutions hs and qs gives:

h = hs(x) + ĥ(x, t),

q = qs(x) + q̂(x, t).
(16)

Equation (12) implies that the steady-state solution for q is a constant, since
∂q

∂x
= 0, therefore

qs = V̇ /UH = 2/3. Accordingly hs(x) is determined by solving the steady-state equation (B.1)

given in Appendix B. Substituting (16) into governing equations (12) and (A.1) and linearising

over small perturbations one obtaines



















∂ĥ

∂t
+

∂q̂

∂x
= 0,

k=2
∑

k=0

αk(x)
∂k+1q̂

∂t∂xk
+

k=4
∑

k=0

[

βk(x)
∂kĥ

∂xk
+ γk(x)

∂kq̂

∂xk

]

= 0,

(17)

where αk(x), βk(x) and γk(x) are periodic coefficients given by equations (C.1 - C.3) of Appendix

C. Since the substrate is a periodic function these are also periodic. Applying Floquet theory

for the stability analysis leads to

ĥ = eσte2πiQx

m=F
∑

m=−F

ĥme
2πimx,

q̂ = eσte2πiQx

m=F
∑

m=−F

q̂me
2πimx,

(18)

where Q ∈ [0, 1] is the Floquet parameter, F is the number of Floquet harmonics, ℜ(σ) is

the temporal growth rate and ℑ(σ) is the circular frequency. The problem reduces to the

generalised eigenvalue problem (σA− B) x̂ = 0, x̂ =
(

ĥm, q̂m

)T

as follows















σĥn + 2πi (Q+ n) q̂n = 0 for n = −F .. F,

m=F
∑

m=−F

σ
k=2
∑

k=0

(2πi)k (Q+m)k αk,n−mq̂m +
k=4
∑

k=0

(2πi)k (Q+m)k
(

βk,n−mĥm + γk,n−mq̂m

)

= 0,

(19)

where αk,n−m =
∫ 1

0
αk(x)e

−2πi(n−m)xdx, βk,n−m =
∫ 1

0
βk(x)e

−2πi(n−m)xdx and

γk,n−m =
∫ 1

0
γk(x)e

−2πi(n−m)xdx are the Fourier expansion coefficients. Matrices A and B are

of order [2(2F + 1), 2(2F + 1)] and are computed numerically together with eigenvalues de-
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termined using Matlab’s built-in subroutine eig. Since there is symmetry σn(−Q) = σ∗

n(Q)

and periodicity σn(1 + Q) = σn(Q) there is, therefore, also symmetry σn(1 − Q) = σ∗

n(Q) and

σn(0.5 +Q) = σ∗

n(0.5−Q) for n = 1, ..., 2(2F + 1), and it is sufficient to consider values of the

Floquet parameter Q only from half of its original interval, Q ∈ [0, 0.5], see also [46] for further

details. Here the superscript * denotes complex conjugation. In the spectrum of the stability

problem all 2(2F + 1) eigenvalues are considered. The eigenvalue with the maximum real part

defines the stability.

The problem consists of five independent parameters, namely Re, β, Ca, ε, A/H and the

function b(x) describing the wall configuration. Following [46] a different set of five indepen-

dent parameters can also be considered, namely Re, β, Kapitza number Ka =

(

ργ3

gµ4

)1/11

=

(

sin βRe2

2Ca3

)1/11

, scaled wavelength L/Lc =

√

2Ca/ sin β

ε
(that measures wavelength in terms

of static capillary length Lc =
√

γ/ρg) and scaled amplitude A/L = ε · A/H (that measures

amplitude in terms of wavelength). A smooth periodic rectangular corrugation is defined via

the wall shape function b(x):

b1(x) =







































cos

(

π
x+ 0.5− w

1− w

)

, |x− 0.5| ≤ 1− w and w ≥ 0.5,

1, |x− 0.5| ≥ 1− w and w > 0.5,

cos

(

π
|x− 0.5| − 0.5

w

)

, |x− 0.5| > 0.5− w and w < 0.5,

− 1, |x− 0.5| ≤ 0.5− w and w < 0.5,

(20)

b(x) = 0.5
[

1 + sign (b1(x)) · |b1(x)|
d
]

, (21)

introducing two more independent parameters, namely the dimensionless tip width w = W/L ∈

[0, 1] and steepness parameter d ∈ [0, 1] of the wall corrugation. It is easy to see that d = 1

and w = 0.5 correspond to a perfectly sinusoidal wall shape, while decreasing steepness to the

smallest value d = 0 results in a perfectly rectangular profile, as per Fig. 2(a), allowing the

effect of steepness to be considered. This can also be combined with the effect of tip width, as

per Fig. 2(b).

3 Results and Discussion

Steady-state solutions for films flowing over substrate having a sinusoidal profile for cases

reported elsewhere in the literature are considered first. Matlab’s built-in function fsolve is

used to obtain steady-states with residuals reduced below 10−6; WIBL models of up to fourth-

order accuracy are considered as per Appendix B with the steady-state prefactor taken as

gs = 0.

Fig. 3(a-c) shows the effect of Re on steady-state free surface shape for small L/Lc = 1.057

and amplitude A/L = 0.2. The WIBL1-4 models are seen to be in excellent agreement with
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each other and the N-S solutions from Fig. 5 of [17] for Re up to 22.5; even WIBL1 is good

enough in this case. Fig. 3(d-g) reveals the corresponding results for moderate L/Lc = 3.342

and amplitude A/L = 0.2. In this case the WIBL2-4 models are found to be in reasonably

good agreement with each other and the N-S solutions from Fig. 6 of [17] for Re up to 22.5;

the discrepancy between the models increases with increasing Re as the free surface becomes

more pronounced. WIBL1 noticeably returns the least satisfactory solution for the Re range

considered.

The corresponding Fig. 4(a-d) reveals the effect of amplitude A/L on the steady-state free

surface profile for Re = 12.75 and large L/Lc = 13.746. Good agreement between WIBL3 &

WIBL4 for A/L up to 0.2 is achieved with the discrepancy between the models getting larger

with increasing A/L. For A/L = 0.4 WIBL4 provides good qualitative agreement with the

N-S solution from Fig. 9 of [41]; WIBL1-3 underperform with WIBL3 being the closer of the

three but exhibiting an unphysical bump on the free-surface. On increasing the Re to 17.55,

Fig. 4(e-h), the discrepancy between the WIBL1-4 models becomes larger; a similar but less

pronounced effect of the Re is observed in Fig. 3 for moderate L/Lc. The increased discrepancy

is because the Kapitza number is fixed atKa = 1.434 and the shallowness parameter ε increases

with Re (according to the relationship ε =
(2Re/ sin β)1/3

Ka11/6 · L/Lc

) from 0.278 for Re = 12.75 to 0.366

for Re = 17.55 stretching the limit of long-wavelength approximation.

Fig. 5 explores the effect of smaller Kapitza number Ka = 1.069 on the steady-state free

surface profile for Re = 7.0 and 16.0. Those obtained by WIBL1-4 are less pronounced than for

the case Ka = 1.434 and are compared to the experimental curves from Fig. 8 of [35]. Good

agreement between WIBL3 & WIBL4 and the experimental data is achieved for A/L up to

0.2; however, the discrepancy gets larger with increasing A/L and Re, with WIBL1 & WIBL2

noticeably underperforming.

Curves of neutral stability produced for films flowing over a sinusoidally varying substrate

available in the literature are now considered. Matlab’s built-in function contour is used to

obtain contours of ℜ(σ) = 0. The WIBL models for linearised perturbation equations (17) of

up to fourth-order accuracy are considered with the coefficients provided in Appendix C and

the steady-state prefactor taken as gs = 0. Fig. 6 shows the effect of the number of Floquet

harmonics F on the curves of neutral disturbance obtained by WIBL2 for the case considered

in Fig. 1 of [42] with small amplitudes A/L = 0.01, 0.02, 0.04, 0.08; [42] employed a first-order

non-weighted model that, as expected, for such low amplitudes has very good agreement with

WIBL2. However it predicts Reflat = cot β, and as such for comparison purpose the neutral

stability curves are presented in terms of Re/Reflat. Noted that for A/L = 0.01, F = 1 is

sufficient to produce an F -independent neutral stability chart, which then increases to F=2, 4

and 7 for A/L = 0.02, 0.04 and 0.08, respectively. F = 10 is used subsequently for obtaining

computational results.

Fig. 7(a-d) considers the effect of amplitude A/L on curves of neutral disturbance obtained

by WIBL1-4 for the case considered in Fig. 3a of [41] for Ka = 1.434 and large L/Lc =

13.746. Similar to the steady-state free-surface profiles, good agreement between WIBL3 &
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WIBL4 and the N-S solution for A/L up to 0.2 is achieved, with the discrepancy between the

models becoming larger with increasing A/L. WIBL2 is able to capture the main features of

the neutral stability curve for small amplitudes up to A/L = 0.1 only, while WIBL1 greatly

underperforms for all A/L. WIBL4 provides good qualitative agreement to the N-S solution

from [41] for A/L = 0.4 by capturing the short-wave nose present, however it overpredicts its

critical Reylnolds number Recrit by about 30%. Fig. 7(e-h) shows the effect of amplitude A/L

for a smaller Kapitza number Ka = 1.069 as considered in Fig. 3a’ of [41]. For A/L ≤ 0.1

WIBL3 & WIBL4 are seen to be in excellent quantitative agreement with the corresponding

N-S solution. For A/L ≥ 0.2 the performance of the WIBL models is poorer, with only

WIBL4 having qualitatively good agreement with the N-S solution and capable of capturing

the isles of stability and instability; however, the characteristic Recrit is about 10-40% larger as

revealed in the graphical extended inserts provided, while WIBL1-3 significantly underperforms

in predicting the associated stability charts.

The effect of inclination angle on curves of neutral disturbance is explored in Fig. 8 for

moderate L/Lc = 4.982 and Ka = 3.604. Agreement with the N-S solution from Fig. 8c of

[46] is excellent for WIBL2-4 for large β ≥ 10◦, as all models predict the short-wave nose that

was originally reported in [30] very well. WIBL1 is observed to significantly underperform for

the range of inclination angles considered. Fig. 9 shows the effect of L/Lc on curves of neutral

disturbance for moderate Ka = 3.604 and β = 10◦. It is noted that agreement with the N-S

solution from Fig. 9a of [46] is excellent for the WIBL2-4 models, while WIBL1 significantly

underperforms for the considered range of L/Lc.

Fig. 10 considers Qcrit and Recrit/Reflat for the short-wave instability presented in Fig.

8 with L/Lc = 4.982 and Ka = 3.604. The results of the WIBL1-4 models are compared

with the experimental data from Figs. 10 and 12 of [30] and the N-S solution from Fig.

8d of [46]; for consistency Variant1b is presented that corresponds to the maximum growth

rate from all 2(2F + 1) eigenvalues. Experimental Qcrit is obtained from the wavelength of

the short-wave mode at inception as min (L/Lcrit, 1− L/Lcrit) and comparison with WIBL2-4

is excellent in particular for large β showing the decrease in Qcrit in the range β ∈ [10◦, 45◦].

Comparison of Recrit/Reflat is quantitatively good for WIBL2-4 showing a monotonous increase

in Recrit/Reflat in the range β ∈ [10◦, 45◦]. WIBL2-4 underperform for β = 5◦, while WIBL1

significantly underperforms for the entire range of β.

The focus is now shifted to the curves of neutral disturbances produced for films flowing

over smoothed rectangular corrugations, the investigation is motivated by corresponding exper-

imental data obtained for rectangular corrugation in Fig. 15 of [33] that reveals a strong effect

of tip width of the corrugation w on the short-wave instability which appears for w = 0.5 and

becomes strongly pronounced as w is decreased to 0.025. The experimental result was obtained

for A/L = 0.2, however here the amplitude is decreased to A/L = 0.1 to stay within the limit

of long-wavelength approximation.

Fig. 11 shows the effect of the steepness parameter d on curves of neutral disturbance ob-

tained by WIBL3-4 for w = 0.5, Ka = 1.223 and large L/Lc = 27.446. Firstly, the discrepancy

between the WIBL3 and WIBL4 results becomes larger as steepness is decreased from d = 1.0
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to d = 0.5, indicating that the accuracy of the WIBL model is sensitive to this parameter.

Secondly, WIBL4 is capable of predicting the nose of the short-wave instability observed in

the experiments of [33] for rectangular corrugations: the nose is present for d = 1.0, it is

more pronounced for d = 0.6 and finally it decreases in size and shape for d = 0.5. Therefore

the steepness value d = 0.6 was chosen as optimal for further investigation of the effect of

corrugation tip width.

The effect of corrugation tip width w on curves of neutral disturbance obtained by WIBL3-

4 for d = 0.6, Ka = 1.223 and large L/Lc = 27.446 is demonstrated in Fig. 12. Firstly, the

discrepancy between WIBL3 and WIBL4 becomes larger when w is decreased from 0.5 to 0.3

as well as when increased from 0.5 to 0.7. This indicates that the WIBL models are not only

limited by A/L ≪ 1, but also by A/min (W,L−W ) ≪ 1, the latter is the characterisitic

lengthscale for rectangular topography, and as the tip width W gets smaller or larger compared

to L/2 the long-wavelength approximation and parabolic velocity profile become less applicable.

Secondly, WIBL4 is able to capture the nose of the short-wave instability and predict its shape

as w changes becoming narrower and sharper as w is decreased from 0.5 to 0.3, while fully

disappearing as w is increased from 0.5 to 0.7.

4 Conclusions

A theoretical model is presented for exploring gravity-driven free-surface film flow over peri-

odically repeating corrugated substrate and prediction of the conditions leading to the onset

of free-surface instability. The model successfully extends the standard first and second-order

accurate weighted residual integral boundary-layer (WIBL1-2) method to include third- and

fourth-order terms in the long-wavelength expansion, namely WIBL3-4. Steady-state solutions

for the free-surface and linear stability analysis based on Floquet theory are presented and

compared against those from experiments and full Navier-Stokes solutions. Both sinusoidal

and smoothed rectangular corrugations with variable steepness are considered.

The key findings from this investigation are comprised of the following. It is shown that

the model is capable of predicting characteristic patterns of free-surface disturbance and neu-

tral stability curves, including short-wave nose and isles of stability/instability as reported in

experiments for gravity-driven viscous film flow over inclined substrate containing topography.

The WIBL models consists of a trade-off between the accuracy of a full Navier-Stokes computa-

tion and the efficiency of an integral method, therefore presenting a potential attractive means

of extension and utilisation for understanding free-surface film flows over three-dimensional

topographies where the computational times involved remain prohibitively restrictive.

The limitations of WIBL models of different orders of accuracy for a range of the parameter

values of interest are also established. In particular, it is shown that the discrepancies between

the WIBL1-4 models grow with Reynolds number Re, relative amplitude A/L, scaled wave-

length L/Lc, steepness d and the tip width w of the corrugation. As expected the WIBL4 model

is found to be the most accurate and suitable for analysing the stability of liquid film flow over

topography. For sinusoidal topography it is found to provide quantitatively good agreement

10



with corresponding N-S solutions for Reynolds numbers up to Re = 20 and amplitudes up to

A/L = 0.2 with steepness d = 1.0. However, the range of amplitudes for which the WIBL4

model is applicable decreases as the value of the steepness parameter is reduced; for example

for d = 0.6 reasonably good results are produced for amplitudes up to A/L = 0.1 only. It is

also shown that the best agreement with the N-S solutions is achieved for small and moderate

L/Lc and large inclination angles β ≥ 10◦. As to further work, an obvious improvement would

be to the assumption and use of a parabolic velocity profile, (15), to derive the WIBL equations

and as an associated weighting.
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Appendix A Time-Dependent WIBL1-4 Models

Each individual model is obtained by cancelling terms of higher order.
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Appendix B Steady-State WIBL1-4 Models

Each individual model is obtained by cancelling terms of higher order.
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Appendix C Coefficients of Linearised Perturbation Equa-

tions for WIBL1-4 models

Each individual model is obtained by cancelling terms of higher order.
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Figure 1: Schematic of film flow over inclined substrate containing smooth periodic rectangular
corrugations.
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stant tip width and (b) variation of tip width with the steepness held constant.
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Figure 3: WIBL1-4 generated steady-state free surface profiles for films flowing over a sinu-
soidally varying substrate compared with (left column) Fig. 5 and (right column) Fig. 6
from Nguyen and Bontozoglou [17] obtained for β = 45◦, A/L = 0.2, (a-c) L/Lc = 1.057,
Re = 7.5, 15, 22.5, Ka = 5.937, 6.735, 7.250 and (d-g) L/Lc = 3.342, Re = 15, 22.5, 30, 37.5,
Ka = 3.594, 3.869, 4.077, 4.246.
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Figure 4: WIBL1-4 generated steady-state free surface profiles for films flowing over a sinu-
soidally varying substrate compared with Fig. 9 from Trifonov [41] obtained for Ka = 1.434,
L/Lc = 13.746, β = 10◦, (a-d) Re = 12.75 and (e-h) Re = 17.55 for (top to bottom)
A/L = 0.05, 0.1, 0.2, 0.4.
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Figure 5: WIBL1-4 generated steady-state free surface profiles for films flowing over a si-
nusoidally varying substrate compared with Fig. 8 from Schörner et al. [35] obtained for
Ka = 1.069, L/Lc = 13.741, β = 10◦, (a-d) Re = 7.0 and (e-h) Re = 16.0 for (top to bottom)
A/L = 0.05, 0.1, 0.2, 0.4.
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Figure 6: WIBL2 generated curves of neutral disturbance in the Floquet domain (Re/Reflat, Q)
for films flowing over a sinusoidally varying substrate of Fig. 1 from Trifonov [42] showing
the effect of the number of Floquet harmonics F for β = 10◦, Ka = 10, L/Lc = 3, (a-d)
A/L = 0.01, 0.02, 0.04, 0.08.
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Figure 7: WIBL1-4 generated curves of neutral disturbance in the Floquet domain (Re,Q)
for films flowing over a sinusoidally varying substrate compared with (left column) Fig. 3a
and (right column) Fig. 3a’ from Trifonov [41] obtained for β = 10◦, (a-d) Ka = 1.434,
L/Lc = 13.746, A/L = 0.02, 0.05, 0.1, 0.4 and (e-h) Ka = 1.069, L/Lc = 13.741, A/L =
0.05, 0.1, 0.2, 0.4. Insets in bottom figures of both columns show extended range for WIBL4
results.
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Figure 8: WIBL1-4 generated curves of neutral disturbance in the Floquet domain (Re,Q) for
films flowing over a sinusoidally varying substrate compared with Fig. 8c from Schörner et al.
[46] obtained for Ka = 3.604, L/Lc = 4.982, A/L = 0.167 and (a-f) β = 5, 10, 15, 20, 25, 35◦.
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Figure 9: WIBL1-4 generated curves of neutral disturbance in the Floquet domain (Re,Q) for
films flowing over a sinusoidally varying substrate compared with Fig. 9a from Schörner et al.
[46] obtained for Ka = 3.604, A/L = 0.167, β = 10◦ and (a-d) L/Lc = 2.5, 3.5, 4.0, 4.9.
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Figure 10: Comparison of the experimental results of Cao et al. and the N-S results of Schörner
et al. with results from WIBL1-4 for Ka = 3.604, L/Lc = 4.982, A/L = 0.167: (a) critical Flo-
quet parameter vs angle of inclination (Fig. 10 from [30]) and (b) normalised critical Reynolds
number vs angle of inclination (Fig. 12 from [30] and Fig. 8d N-S Variant 1b from [46]).

23



10 15 20 25 30
Re

0
0.1
0.2
0.3
0.4
0.5

Q

(a)

d=1.0, w=0.5 (WIBL3)
d=0.7, w=0.5 (WIBL3)
d=0.6, w=0.5 (WIBL3)
d=0.5, w=0.5 (WIBL3)
d=0.4, w=0.5 (WIBL3)
d=0.3, w=0.5 (WIBL3)

10 15 20 25 30
Re

0
0.1
0.2
0.3
0.4
0.5

Q

(b)

d=1.0, w=0.5 (WIBL4)
d=0.7, w=0.5 (WIBL4)
d=0.6, w=0.5 (WIBL4)
d=0.55, w=0.5 (WIBL4)
d=0.5, w=0.5 (WIBL4)

Figure 11: WIBL3-4 generated curves of neutral disturbance in the Floquet domain (Re,Q)
for films flowing over wall with smoothed rectangular corrugation for Ka = 1.223, A/L = 0.1,
β = 10◦, L/Lc = 27.446, w = 0.5, (a) WIBL3 and (b) WIBL4.
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Figure 12: WIBL3-4 generated curves of neutral disturbance in the Floquet domain (Re,Q)
for films flowing over wall with smoothed rectangular corrugation for Ka = 1.223, A/L = 0.1,
β = 10◦, L/Lc = 27.446, d = 0.6, (a) WIBL3 and (b) WIBL4.
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