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Abstract

We study theoretically shear banding in soft glassy materials subject to large amplitude time-periodic shear flows, considering separately the

protocols of large amplitude oscillatory shear strain, large amplitude square or triangular or sawtooth strain rate, and large amplitude oscilla-

tory shear stress. In each case, we find shear banding to be an important part of the material’s flow response to a broad range of values of the

frequency x and amplitude of the imposed oscillation. Crucially, and highly counterintuitively, in the glass phase, this persists even to the

lowest frequencies accessible numerically (in a manner that furthermore seems consistent with its persisting even to the limit of zero fre-

quency x! 0), even though the soft glassy rheology model in which we perform our calculations has a purely monotonic underlying consti-

tutive curve of shear stress as a function of shear rate, and is therefore unable to support shear banding as its true steady state response to a

steadily imposed shear of constant rate. We attribute this to the repeated competition, within each flow cycle, of glassy aging and flow rejuve-

nation. Besides reporting significant banding in the glass phase, where the flow curve has a yield stress, we also observe it at noise tempera-

tures just above the glass point, where the model has a flow curve of power law fluid form. In this way, our results suggest a predisposition to

shear banding in flows of even extremely slow time-variation, for both aging yield stress fluids and for power law fluids with sluggish relaxa-

tion timescales. We show that shear banding can have a pronounced effect on the shape of the Lissajous–Bowditch curves that are commonly

used to fingerprint complex fluids rheologically. We therefore counsel caution in seeking to compute such curves in any calculation that

imposes upfront a homogeneous shear flow, discarding the possibility of banding. We also analyze the stress response to the imposed strain

waveforms in terms of a “sequence of physical processes”. VC 2018 The Society of Rheology. https://doi.org/10.1122/1.5023381

I. INTRODUCTION

A broad class of disordered soft materials, including

emulsions [1], foams [2], colloids [3,4], microgels [5], and

star polymers [6], share in common several notable rheologi-

cal properties. In nonlinear flows, their steady state flow

curve of shear stress r as a function of shear rate _c is often

fit to the form r ¼ ry þ a _cn with n< 1, corresponding to

yield stress fluid behavior for ry > 0 and power law fluid

behavior for ry ¼ 0. In the regime of linear response, under

a small amplitude oscillatory shear strain, their viscoelastic

storage and loss moduli, G0ðxÞ and G00ðxÞ, are often in the

near constant ratio, with G00=G0 typically about 0.1, and with

both functions showing only a weak or negligible frequency

dependence down to the lowest accessible frequencies.

Consistent with the existence of these sluggish relaxation

modes, another striking feature is that of rheological aging

[7], in which a sample’s flow response becomes progres-

sively more solidlike as a function of its own age tw, defined

as the time since it was freshly prepared at time t¼ 0, for

example, by loading it into a rheometer and preshearing it,

before a test deformation is later applied after a waiting time

t ¼ tw. The application of a sustained shear flow will, how-

ever, typically halt this aging process and rejuvenate the

sample to a steady state with an effective age set by the

inverse flow rate 1= _c.

These shared rheological features have been attributed to

the generic presence in these materials of the underlying

“glassy” features of structural disorder (e.g., in a disordered

packing of emulsion droplets or foam bubbles) and metasta-

bility (e.g., in the large energy barriers involved in stretching

soap films, which impede droplet rearrangements). The term

“soft glassy materials” has accordingly been coined to

describe them [8,9].

In the rheological literature, soft glasses are often also

referred to as yield stress fluids. Recently, these have been

suggested to fall into two broad categories: “simple” and

“viscosity bifurcating” [9,10] yield stress fluids. Among these,

viscosity bifurcating fluids [10–13] typically exhibit a strong

time dependence (sometimes called thixotropy) in their tran-

sient rheological response. Furthermore, under a sustained

applied shear flow, they typically exhibit shear banding, with

their steady state flow field comprising macroscopic bands of

differing viscosities, with layer normals in the flow-gradient

direction. This ability to support steady state shear bands is

thought to stem from a nonmonotonicity in the underlying

constitutive curve of shear stress as a function of shear rate (as

pertaining to initially homogeneous flow states). In contrast,

simple yield stress fluids [14–16] typically show much weaker

thixotropy and are thought to have a monotonic constitutive

curve, being thereby incapable of exhibiting shear banding as

their steady response to a sustained applied shear flow (at least

in the absence of concentration coupling).

Beyond the steady state shear banding just described,

recent years have seen an increasing realization that shear
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bands might also form quite generically in flows that involve

a strong time-dependence [17,18], even in materials that

have a purely monotonic underlying constitutive curve and

are therefore incapable of supporting shear bands as their

steady state response to a sustained applied shear flow of

constant rate. (In fact, this prediction applies not only to soft

glassy materials but also to complex fluids more generally

[9,19], though we restrict our attention to soft glasses in this

work.) To date, this concept has been investigated in detail

in the transiently time-dependent flows of shear startup and

step stress, as we now summarize.

In shear startup, an initially well rested sample is subject

at some time t ¼ tw to the switch-on of a shear rate _c that is

held constant thereafter. Measured in response to this is the

material’s shear stress startup curve as a function of the time

(or equivalently of the accumulated strain) since the incep-

tion of the flow. Typically, this signal rises initially linear at

early times, before displaying an overshoot after which the

stress finally falls to attain its steady state value as pre-

scribed by the material’s flow curve at the given imposed

shear rate.

In Ref. [19], it was suggested that the presence of this

overshoot should generically predispose a material to the for-

mation of shear bands, at least transiently, as the stress

declines from its overshoot to the final steady state value. (In

this steady state, the flow field may either remain banded, in

a viscosity bifurcating fluid or heal back to homogeneous

flow, in a simple yield stress fluid with a monotonic underly-

ing constitutive curve.) This phenomenon has indeed been

widely observed: experimentally, in carbopol gel [20,21],

Laponite clay [13,22], a non-Brownian fused silica suspen-

sion [23], and waxy crude oil [24]; in molecular simulations

of a colloidal gel [25], polymeric fluids [26], and molecular

glasses [27,28]; and in theoretical studies of a model foam

[29,30], the soft glassy rheology (SGR) and fluidity models

[9,18,31], the shear transformation zone model of amorphous

elastoplastic solids [32,33], a mesoscopic model of plasticity

[34], and a model of polymer glasses [35]. In cases where

the height of the stress overshoot increases as a function of

the age of the sample before shearing commenced, the sever-

ity of the shear banding is predicted to increase accordingly.

In a step stress experiment, an initially well rested sample

is subject at some time t ¼ tw to the switch-on of a constant

stress r that is held constant thereafter. Measured in response

to this is the material’s creep curve cðtÞ, often reported as its

time-differential _cðtÞ. In soft glasses, this signal typically dis-

plays an initial regime of slow creep in which _c progressively

decreases over time, followed (for stress values r > ry) by

a yielding process in which _c increases to finally attain its

value as prescribed by the steady state flow curve at the given

stress. In Ref. [19], it was suggested that a material should

be generically predisposed to the formation of shear bands

during this yielding process that follows the initial regime

of slow creep, during the time-interval over which the time-

differentiated creep curve simultaneously curves up and slopes

up as a function of time and the sample starts flowing. This

phenomenon has indeed been observed: experimentally, in

carbopol gel [36,37], carbon black [38,39], and a colloidal

glass [40]; in particle based simulations of colloidal glasses

[41]; and in stochastic simulations of the SGR model [9,19].

In the shear startup and step stress protocols just

described, the time-dependence is transient in nature, typi-

cally persisting for just a few strain units during the time

taken to establish a final steady flow out of an initial rest

state. In consequence, for a simple yield stress fluid at least,

the associated shear banding is itself transient: The bands

that form as the material initially yields and starts flowing

then subsequently heal away to give a homogeneous final

steady state. (A viscosity bifurcating fluid can instead main-

tain bands even in steady state, due to the nonmonotonic

underlying constitutive curve).

In view of this, an important question of fundamental

principle is whether an imposed flow that has a sustained
time-dependence can give rise to correspondingly sustained

shear banding, even in a simple yield stress fluid that is

unable to support banding as its ultimate steady state

response to a steadily imposed shear flow of constant rate.

Indeed, intuitively, we might expect a square wave caricature

of a large amplitude oscillatory strain to correspond to a

repeating sequence of forward then reverse shear startup

runs. In any regime, in which these repeated startup events

are associated with an overshoot in the signal of stress as a

function of strain, we might intuitively expect shear banding

in each half cycle, associated with these overshoots.

Likewise, we might intuitively expect a square wave carica-

ture of a large amplitude oscillatory stress to correspond to a

repeated sequence of positive then negative step stress

experiments. In any regime, in which each repeated step is

associated with a yielding process of the kind discussed

above for the simpler protocol of a single step stress, we

might intuitively expect to find shear banding associated

with these yielding events in each half cycle.

In what follows, we investigate this scenario by studying

the response of the SGR model [8,42], in its form as

extended to allow for the possibility of heterogeneous shear

flows [43], to several different large amplitude time-periodic

imposed shear flows. We consider in turn the protocols of

large amplitude oscillatory shear strain (LAOStrain), large

amplitude square wave strain rate, large amplitude triangle

wave strain rate, large amplitude sawtooth strain rate, and

large amplitude oscillatory shear stress (LAOStress). In each

case, we shall demonstrate shear banding to be an important

part of the flow response across a wide range of values of the

amplitude c0 (or r0) and frequency x of the imposed flow.

In the limit of zero frequency x! 0 of the imposed

oscillation, our initial intuition might lead us to expect to

recover a situation in which the system simply quasistatically

sweeps up and down its steady state flow curve during the

course of each cycle, with the flow remaining homogeneous

at all times (in a simple yield stress fluid at least). Crucially,

however—and counterintuitively—in the glass phase, we

shall find that banding persists even at the lowest frequencies

accessible numerically, in a manner that furthermore appears

consistent with the idea that it would persist even to the limit

x! 0, where this is accessible numerically. We emphasize

that this is true even for the simple yield stress fluids consid-

ered here, which have a purely monotonic underlying
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constitutive curve and are unable to support banding as their

true steady state response to a sustained applied shear of con-

stant rate _c. We shall show that this arises from a repeated

competition, within each cycle, between glassy aging and

flow-rejuvenation: The sample ages (with its typical stress

relaxation timescale s increasing) during the weak flow

phase of each cycle, and then is rejuvenated during the

strong flow phase (with s decreasing). Put simply, an aging

material has no fixed intrinsic stress relaxation rate 1=s com-

pared to which we can set the driving frequency x to be

small and expect to recover steady state response. This sce-

nario has far reaching implications for the flow behavior of

aging glassy materials, in suggesting a possible generic pre-

disposition to shear banding even in flows of arbitrarily slow

time-dependence.

The protocol of large amplitude oscillatory shear (LAOS)

[44] has been the focus of intense interest in the rheology

community in recent years, in particular, for its suggested

use in “fingerprinting” complex fluids via a series of tests in

which the amplitude and frequency of the imposed oscilla-

tion are separately varied. At high frequencies, a material’s

elastic response is probed. At low frequencies, viscous

response might a priori be expected (although in the aging

materials of interest here that idea should be treated with

caution in view of the remarks of the previous paragraph).

Large amplitudes flows probe nonlinear response, while lin-

ear viscoelastic response is recovered for small amplitudes.

In the context of yield stress fluids, LAOS has been stud-

ied both experimentally [2,4,45–53] and theoretically

[2,42,45–47,51,54–57]. In terms of a consideration of shear

banding in this protocol, however, few experiments have

directly imaged the flow field across the sample, although

strain localization was reported in foam in Ref. [2] and in

concentrated suspensions in Ref. [49]. In similar spirit, all

the theoretical studies of which we are aware have simply

assumed the flow to remain homogeneous, discarding

upfront the possibility of banding.

A central contribution of this work is to suggest that aging

yield stress fluids might generically be expected to exhibit

shear banding in LAOS, and furthermore that the presence of

banding has a major influence on the measured bulk rheolog-

ical signals. Indeed, we shall show that a system’s

Lissajous–Bowditch curves can differ strongly when calcu-

lated within the assumption of a purely homogeneous flow,

compared with a calculation that allows bands to form. This

suggests that attempts to rheologically fingerprint a fluid

without taking banding properly into account—as is wide-

spread in much of the existing theoretical LAOS literature—

should be treated with caution.

In a previous Letter [58], we announced the basic result

that an aging yield stress fluid, as modeled by the SGR

model in its glass phase, can exhibit shear banding in large

amplitude time-periodic shear strain protocols. That study

was restricted to the model’s glass phase, where its noise

temperature parameter (defined below) x< 1, presenting

numerical results for the single value x¼ 0.3. The present

paper contains a much more detailed discussion of the results

announced in Ref. [58]. It also extends our study to a much

broader range of noise temperatures, including those above

the glass point, x> 1, where the model shows power law

fluid behavior, with no yield stress. We report significant

banding here too, suggesting that the scenario is applicable

not only to aging yield stress fluids but also to power law flu-

ids with sluggish relaxation timescales. This manuscript also

gives new results for shear banding of soft glasses in large

amplitude oscillatory stress.

The paper is structured as follows. In Sec. II, we define

the flow protocols to be considered. Section III outlines the

SGR model in which we shall perform the study, together

with our simulation method and some results used to bench-

mark it. We then present our results: In Sec. V, for shear

banding in LAOStrain; in Sec. VI, for large amplitude square

or triangular or sawtooth wave strain rates; and in Sec. VII,

for LAOStress. Section VIII discusses our conclusions.

II. FLOW PROTOCOLS

In this section, we define the rheological protocols to be

studied throughout the paper. In each case, we shall consider

a sample of fluid that is freshly prepared at some time t¼ 0

and then left to age undisturbed for a waiting time tw before

the periodic flow is switched on. (We shall discuss in Sec. III

the way in which we model a freshly prepared sample in the

SGR model).

For the imposed flow, we shall consider several different

possible waveforms, listed as follows. For each strain-

imposed waveform, the strain amplitude will be denoted as

c0, and the strain-rate amplitude as _c0. Likewise, in the

stress-imposed waveform, the stress amplitude is denoted as

r0 and the amplitude of the rate of change of the stress is

denoted as _r0.

• LAOStrain, here cðtÞ ¼ c0 sinðxðt� twÞÞ [see Fig. 1(a)].
• Large amplitude square wave strain rate, in which the

strain rate periodically switches between equal positive

and negative values, with a switching time p=x. The asso-

ciated strain signal is triangular [see Fig. 1(b)].
• Large amplitude triangular wave strain rate, in which the

strain rate is piecewise linear and continuous in value but

with repeated slope discontinuities [see Fig. 1(c)].
• Large amplitude sawtooth wave strain rate, in which the

strain rate is piecewise linear with repeated discontinuities

in value [see Fig. 1(d)].
• LAOStress, here r ¼ r0 cosðxðt� twÞÞ [see Fig. 1(e)].

After many cycles have been performed, in any regime,

where significant shear banding arises, the response of the

system becomes (at least to excellent approximation) invari-

ant from cycle-to-cycle t! tþ 2p=x and independent of

the waiting time tw before the flow commenced. For an ini-

tial waiting time tw ¼ 10:0, this state of cycle-to-cycle

invariance is typically achieved after 50 cycles.

Except where stated, all our results below are for an initial

waiting time tw ¼ 10:0 and for a run in which 50 cycles are

performed before we then start taking measurements. Such

results have therefore achieved cycle-to-cycle invariance.

Indeed, to obtain better statistics in calculating the
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Lissajous–Bowditch curves, we generally average the data

over the 50th–100th cycles.

An entirely feasible experimental protocol, however,

would be to wait for the sample to become highly aged

before then performing a LAOS run comprising just a few

tens of cycles. Accordingly, we shall also present data for

tw !1 (i.e., initializing the sample in equilibrium above

the glass point), performing only 50 cycles before we then

average the system’s response over the next 50 cycles.

(During those 50 cycles over which we average, a small

degree of time-variation does in fact occur, during the sys-

tem’s slow transient evolution to the state of cycle-to-cycle

invariance after 1000 cycles.) Such data are clearly not in a

state of cycle-to-cycle invariance, but do correspond to the

experimentally feasible situation of an old sample subject to

a few tens of LAOS cycles.

At lower strain amplitudes, in the absence of shear band-

ing, indefinite cycle-to-cycle aging is expected even after

many cycles. This has been studied in detail previously [7]

and we do not consider it further here.

To seed the formation of shear bands, we add a small per-

turbation to the initial condition, such that the effective initial

sample age as a function of position y across the rheometer

gap of width Ly is tw½1þ � cosð2py=LyÞ� with � ¼ 0:1. In

obtaining the result of Fig. 8 only, we also (in order to mitigate

noise) included a toy model of flow cell curvature, by render-

ing the shear stress a function of position across the cell r½1þ
j cosð2py=LyÞ� with j ¼ 0:01. (In true planar shear, the stress

must be uniform across the cell, giving j¼ 0).

III. SGR MODEL

We perform our study within the SGR model, which we

now summarize, referring the reader to Refs. [8,42,43] for

complete details. The model considers an ensemble of ele-

ments, each of which is taken to correspond to a local meso-

scopic region of a soft glassy material comprising (say) a

few tens of emulsion droplets. Each element is assigned local

continuum variables of shear strain l and stress kl, with k
constant, which describe the elastic deformation of this

region of material relative to a state of locally undeformed

equilibrium. The macroscopic stress of the sample as a whole

is taken to be the average over the local elemental stresses

rðtÞ ¼ k

ð
dE

ð
dl lPðE; l; tÞ: (1)

The elements are then taken to undergo loading and acti-

vated hopping dynamics in an energy landscape of traps, as

follows. Under an imposed deformation, each element experi-

ences a buildup of local elastic stress such that, between hops,

the local intratrap strain of each element affinely follows the

macroscopic strain field, _l ¼ _c. These local stresses are then

intermittently released by local plastic yielding events. Each

such yielding event is taken to correspond to the hopping of an

element out of one trap and into another. These hopping events

are modeled as being dynamically activated: An element in

a trap of depth E and with local shear strain l is assigned a

probability per unit time of yielding given by s�1ðE; lÞ ¼ s�1
0

exp ½�ðE� ð1=2Þkl2Þ=x�. In this expression, the parameter

x is an effective mean field noise temperature that is

intended to model in a mean field way coupling with other

yielding events elsewhere in the sample. Upon yielding, an

element instantaneously resets its local stress to zero and

selects its new energy barrier at random from a distribution

qðEÞ ¼ expð�E=xgÞ. In a freshly prepared sample, we

assume a distribution PðE; lÞ ¼ qðEÞdðlÞ, corresponding to

a well rested system just quenched from a high noise

temperature.

This exponential “prior” distribution qðEÞ confers a broad

spectrum of yielding times PðsÞ and results in a glass phase

for x < xg in which the model exhibits rheological aging, with

the typical relaxation timescale increasing linearly with the

system’s age tw in the absence of flow. The application of a

sustained flow, however, rejuvenates the sample and restores

it to an effective age that is set by the inverse flow rate 1= _c.

Throughout, we use units in which xg¼ 1, k¼ 1, and s0 ¼ 1.

FIG. 1. The large amplitude time-periodic shear flows that we shall consider: (a) oscillatory strain, (b) square wave strain rate, (c) triangle wave strain rate, (d)

sawtooth strain rate, and (e) oscillatory stress. For each of (a) to (e), the top panel shows the strain (or stress) and the bottom panel shows the corresponding

rate. The horizontal axis is the same in each subpanel.
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The steady state flow curve rð _cÞ of shear stress as a func-

tion of shear rate has a yield stress ryðxÞ for noise tempera-

ture x< 1 in the glass phase, beyond which it rises

monotonically according to r� ry � _c1�x. This gives sim-

ple yield stress fluid behavior, precluding steady state band-

ing. For noise temperatures 1 < x < 2, the flow curve is of

power law fluid form, with r � _cx�1. For x> 2, we recover a

Newtonian flow curve with r � _c.

So far we have described the model in its original form

[8,42], which is spatially homogeneous and unable to

account for any heterogeneous flow effects such as shear

banding. In Refs. [19,43], we provided an extension to the

model to allow for the formation of shear bands coexisting

with layer normals in the flow gradient direction y. This

adopts a 1D approach in which the velocity is confined to the

flow direction x and varies only in the flow-gradient direction

y, with the y coordinate discretized into i ¼ 1…n streamlines

of equal spacing Ly=n, for a sample of thickness Ly between

rheometer plates at y ¼ 0; Ly. The shear rate field is then

_ciðtÞ as the coordinate y varies across the streamlines

i ¼ 1…n. At any streamline i, this is related to the fluid

velocity v in the x direction by the spatially discretized deriv-

ative _cðyÞ ¼ dvðyÞ=dy, i.e., _ci ¼ ðviþ1 � vi�1Þ=ð2Ly=nÞ.
Although the shear rate field does not vary in x, each

streamline has its own subensemble of j ¼ 1…m SGR ele-

ments, with the shear stress of the ith streamline defined as

ri ¼ ðk=mÞ
P

j lij. In this way, this 1D model essentially

comprises a series of SGR models stacked in the y direction,

coupled by a 1D Stokesian force balance, which we now

describe.

In zero Reynolds number conditions of creeping flow,

which we assume throughout, the condition of force balance

imposes, in this 1D approach, that the shear stress must

remain uniform across all streamlines at all times,

riðtÞ ¼ rðtÞ. However, suppose a hop occurs at element ij
when its local strain is l ¼ ‘, reducing the stress on that

streamline. With the model as described so far, this poten-

tially violates force balance. To correct for this, we restore

force balance by updating all elements on the same stream-

line i according to l! lþ ‘=m. This ensures uniform stress

across streamlines, but with an overall sample stress that is

incorrectly unchanged compared with that before the hop.

To ensure a properly reduced global stress after the hop, we

then update all elements on all streamlines as l! l� ‘=mn.

The scenario of force balance just described implements

the propagator implied by Stokesian balance in the single spa-

tial dimension y, with translational invariance imposed in x. A

2D approach would instead be possible, using the 2D propa-

gator discussed in detail in Ref. [59] and used in 2D elasto-

plastic lattice models in Ref. [60]. (Indeed, Ref. [59] describes

how its 2D propagator reduces to 1D upon integrating over

the flow direction x.) We expect our 1D approach to be well

suited to the problem in hand here, of studying shear bands

that form with layer normals in the flow gradient direction.

To account for the structure of the interface between any

shear bands that form [61], we further incorporate a small

stress diffusivity between neighboring streamlines. To do so,

after the hop of an element with strain ‘ on streamline i as

just described, we further adjust the strain of three randomly

chosen elements on each adjacent streamline i61 by

‘wð�1;þ2;�1Þ, with w small.

Our numerical simulations of this model are performed

using an event-driven waiting time Monte Carlo algorithm

[43,62,63]. In each “event,” the next element to yield is

selected stochastically: The probability Pij that the next ele-

ment to yield is the jth particle on the ith streamline is

Pij ¼ rij=
P

ijrij, given an elemental hop rate rij ¼ s�1ðEij; lijÞ
¼ s�1

0 exp ½�ðEij � ð1=2Þkl2
ijÞ=x�. The time interval dt to the

next hop is also selected in a stochastic way:

dt ¼ �lnðsÞ=
P

ijrij, where s is a random number selected

from a uniform distribution between 0 and 1. All results

reported are converged with respect to increasing the number

of streamlines n and the number of elements per streamline

m. For further details of this simulation method, the reader is

referred to Ref. [43].

As a check of our code, we compared the results of runs

with a single streamline n¼ 1, for which the flow is

FIG. 2. Results of our waiting-time Monte Carlo simulations (symbols) for

the homogeneous form of the SGR model subject to LAOStrain, compared

with independent results for the same quantities obtained from analytical

expressions (lines). Panel (a) shows the storage G0 (filled symbols) and loss

G00 (unfilled symbols) modulus for the fundamental mode; and panel (b)

shows the residual q measuring the weight in all higher modes. For each

quantity, curves top to bottom are for frequency values x ¼ 10�1ð�Þ, 10�2

(blue unfilled circle), 10�3 (red unfilled triangle). The noise temperature

x¼ 1.5, above the glass transition. Number of streamlines n¼ 1, number of

SGR elements per streamline m¼ 1000. We thank Professor Peter Sollich

for providing us with the data from the analytical expressions [42].
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homogeneous by definition, with those of analytical calcula-

tions for the original homogeneous model [7,42]. We did so

for both small and large amplitude oscillatory strain and

stress, and for the model’s transient and steady state response

to a shear startup and an imposed step stress. We do not

show data for all these, but a sample comparison is shown in

Fig. 2 for LAOStrain at a noise temperature x¼ 1.5 above

the glass point. Ignoring the transient behavior, the stress

response to such a deformation can be written as

rðtÞ ¼ c0 G0 sinðxtÞ þ G00 cosðxtÞ
� �

þ drðtÞ ; (2)

where G0ðx; c0Þ and G00ðx; c0Þ are the storage and loss mod-

uli that characterize the response of the system at the level of

the fundamental mode, with the all the higher harmonic stress

contributions being measured by the residual qðx; c0Þ, where

q2 ¼

ð
dt dr tð Þ½ �2ð
dt r tð Þ½ �2

: (3)

To within numerical noise, we find an excellent agreement

between these quantities computed within our stochastic

simulation and the same quantities computed from analytical

expressions.

IV. REPORTED MEASURES

In what follows, we shall be interested in the extent to

which the response of a sample to large amplitude time-

periodic shear protocols is shear banded, for different values

of the amplitude and frequency of the imposed oscillation.

To characterize the degree of shear banding in the sample at

any time t, we measure the spatial variance in the shear rate

across the flow cell

D _c tð Þ ¼ 1

N0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h _c2ii � h _ci

2
i

q
; (4)

where h� � �ii denotes an average across streamlines. For

LAOStrain, the normalization factor N0 ¼ _c0. For large

amplitude square/triangular/sawtooth wave strain rate,

N0 ¼ xc0. In normalizing in this way by a quantity that

scales with the peak strain rate over the cycle as a whole,

rather than the strain rate _cðtÞ at the given time t, Eq. (4) in

fact provides a conservative estimate of the degree of band-

ing [while also reducing the error that can arise due to noise

when the instantaneous rate _cðtÞ is used instead]. In

LAOStress, the normalization factor N0 is defined as the

maximum shear rate observed at any point in the cycle.

(Therefore, in LAOStress, N0 is calculated numerically,

whereas in imposed-strain protocols it is known upfront).

In summarizing the response of the system over a broad

range of values of the amplitude and frequency of the

imposed flow, we sometimes instead report the degree of

banding as defined in Eq. (4), now averaged over a cycle

Dc _c ¼ hD _cðtÞiT ; (5)

where h� � �iT denotes a time average over a cycle. Indeed, to

reduce noise, we further average Dc _c over the N ¼ 50–100 th

cycles. Typically, a value Dc _c > 0:5 in this cycle-averaged

measure corresponds to significant banding seen in visual

inspection of the velocity profiles. For large amplitude oscilla-

tory stress, we report the degree of banding maximized over a

cycle, Dm _c.

Finally, we shall find it useful to characterize the way in

which the effective age of the sample varies as a function of

time over a cycle. To do this, we define

h1=siðtÞ ¼
Xi¼n

i¼1

Xj¼m

j¼1

exp ð�ðEij � kl2
ijÞ=xÞ=ðmnÞ; (6)

the inverse of which gives a measure of the sample’s age.

All our results below are presented for just a single simu-

lation run, apart from in Fig. 8, which averages over 25 runs.

V. RESULTS: LAOSTRAIN

In this section, we report our results for the response of

the SGR model to a LAOStrain. In Fig. 3, a complete cycle

of the oscillation is shown for three different values of the

noise temperature: Two in the glass phase, x¼ 0.3 (top row)

and x¼ 0.7 (middle row), and one just above the glass point,

x¼ 1.1 (bottom row). The amplitude c0 and frequency x of

the imposed oscillation is the same in each case. The origin

of time is chosen to be that at which the strain rate switches

from negative to positive (inset in the top left panel). For

each noise temperature, we show the stress as a function of

time over one cycle (first column), snapshot shear banded

profiles at three different times (second column), the degree

of shear banding as a function of time over the cycle (third

column), and the inverse of the average stress relaxation

time, which can be taken as effectively being the inverse

sample age, as a function of time (fourth column). The sam-

ple age before shearing commenced tw ¼ 10 for the noise

temperatures x ¼ 0:3; 0:7 in the glass phase in the top two

rows, while tw !1 (corresponding to a sample initialized

in equilibrium) for the noise temperature x¼ 1.1 above the

glass point in the bottom row.

Consider the first half of the cycle, during which the strain

rate is positive and the sample is straining in the forward

direction. Initially, when the strain rate has only just

switched from negative to positive after the end of the previ-

ous cycle, the imposed flow is weak and the sample is old

and aging. This can be seen by the fact that the inverse effec-

tive sample age (fourth column) as defined by Eq. (6) is ini-

tially small and decreasing. The associated rheological

response is accordingly predominantly elastic, with the stress

initially increasing approximately linearly with the time and

accumulating strain (first column).

As the shear rate progressively increases toward its maxi-

mum positive value at the end of the first quarter cycle, the

effect of the stronger shear is then to rejuvenate the sample,

with h1=si increasing to a maximum. Associated with this

rejuvenation is an overshoot in the stress as a function of
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time, with the sample then yielding into a flowing regime

where the stress remains relatively constant as a function of

time. As the shear rate progressively drops toward the end of

the first half cycle, the stress likewise drops and the inverse

age decreases (i.e., the sample ages again). The same

sequence of processes then repeats in reverse, with appropri-

ate changes in sign, during the second half of the cycle in

which the strain rate is negative and the sample strains in the

reverse direction.

Closely associated with the stress overshoot and subse-

quent process of yielding during each half of the cycle is the

formation of shear bands. This can be seen by the snapshot

velocity profiles, vðyÞ ¼
Ð y

0
_cðy0Þdy0, in the second column,

which deviate strongly from the linear form they would have

in the absence of banding. At any time t, we take as a mea-

sure of the degree of banding the quantity defined in Eq. (4).

Our results for this quantity as a function of time over the

cycle are shown in the third column of Fig. 3. As can be

seen, this measure increases sharply around the time of the

stress overshoot, then subsequently decays.

Comparing the three rows in Fig. 3, we find that the

response is broadly the same in the model’s glass phase,

where its underlying steady state flow curve has a yield

stress, and just above the glass point, where the flow curve is

of power law fluid form. The lower noise temperatures, how-

ever, show a more pronounced alternation between aging

and rejuvenation within each cycle and a stronger stress

overshoot. The peak of the degree of banding over a cycle is

also slightly stronger for x< 1.

As seen by comparing the third and fourth columns of

Fig. 3, there is a strong temporal correlation between the

degree of shear banding and the inverse sample age averaged

across the sample. To explore the link between these two

quantities in more detail, we now examine the spatial cross-

correlation between the local shear rate inside the sample

and the local inverse sample age. To do this, we measure the

normalized cross-correlation between the local inverse sam-

ple age ð1=sÞðyÞ and shear rates _cðyÞ at different streamlines

as shown in Fig. 4. The discrete cross-correlation function

between _c; 1=s between streamlines j apart is defined as

q _cð1=sÞðjÞ ¼
Xn�j�1

i¼0

_c iþ jð Þ � _c
� � 1

s
ið Þ � 1

s

� �
; j � 0

q _cð1=sÞ �jð Þ; j < 0 ;

8>><
>>:

(7)

where i indicates streamline number, n is the total number of

streamlines, and the overline denotes the mean across the sam-

ple. The normalized cross-correlation function is given by

q̂ _cð1=sÞðjÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q _c _c 0ð Þqð1=sÞð1=sÞ 0ð Þ
q q _cð1=sÞðjÞ ; (8)

where q _c _cð0Þ is the autocorrelation function for _c. Similar to

the stress-signal, this normalized cross-correlation function

q̂ _c;1=s can then be averaged over multiple cycles to reduce

the noise and expressed as a function of distance y/L rather

than the streamline number.

The normalized cross-correlation function allows us to

explore how the spatial correlation between the inverse sam-

ple age and local shear rate depends on the weighting factor

w for stress diffusivity. From Fig. 4(b), it is clear that width

FIG. 3. Response of the SGR model to LAOStrain of amplitude c0 ¼ 1:59 and frequency x ¼ 0:001 for three different noise temperatures: x¼ 0.3 (top row),

x¼ 0.7 (middle row), and x¼ 1.1 (bottom row). Sample age before shearing commenced tw ¼ 10 for x ¼ 0:3; 0:7, and tw !1 (i.e., sample initialized in equi-

librium) for x¼ 1.1. Data shown for cycle number N¼ 50. Signals show: (first column) Shear stress as a function of time over a cycle, (second column) snap-

shot shear banded velocity profiles normalized by V0 ¼ _c0L at three times over a cycle, (third column) degree of shear banding as a function of time over a

cycle, and (fourth column) inverse effective sample age as a function of time over a cycle. Flow profiles in the second column are shown for the times indicated

by the corresponding symbols in the other columns. Number of streamlines n¼ 100. Number of SGR elements per streamline, m¼ 100. Diffusivity, w¼ 0.1.

Toy curvature parameter, j¼ 0. Initial heterogeneity, � ¼ 0:1.
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of the cross-correlation hq̂ _c;1=sðyÞi increases with increasing

weighting factor of diffusivity, as is to be expected. The

maximum amplitude of the correlation is highest immediately

following the stress overshoot and decreases as the shear rate

changes direction as shown in Fig. 4(d), which can also be

qualitatively inferred by comparing the _c; 1=s profiles given

in Fig. 4(c). Thus, over a LAOS cycle, the average inverse

sample age can indicate shear banding, and the local inverse

sample age is correlated with the region of shear banding.

A common way of visualizing the response of a viscoelas-

tic material to an imposed LAOStrain is parametrically to plot

the stress as a function of strain over the course of a cycle, to

give the so-called elastic Lissajous–Bowditch (ELB) curve; or

as a function of strain-rate over the course of cycle to give the

viscous Lissajous–Bowditch (VLB) curve [64]. A grid of such

figures plotted for different values of the amplitude c0 and fre-

quency x of the imposed oscillation then gives a so-called

Pipkin diagram, which is commonly used for rheologically

fingerprinting viscoelastic fluids.

Our results for Pipkin diagrams computed in the SGR

model are shown in Figs. 5 and 6, in the ELB and VLB rep-

resentations, respectively. In each case, we explore the same

three noise temperatures as in Fig. 3, although now the initial

sample age before shearing commenced tw¼10 in each case.

The solid lines pertain to the heterogeneous model that takes

shear banding into account. The dashed lines are for simula-

tions that impose upfront a purely homogeneous flow, disal-

lowing any possibility of shear banding.

FIG. 4. (a) Oscillatory shear stress response of an SGR model with noise temperature x¼ 0.3 at c0 ¼ 1:59, and x ¼ 0:001 for different weighting factors w ¼
0:05; 0:1; 0:15 of stress diffusivity; and (b) the corresponding normalized cross correlation between local shear rate _cðyÞ and inverse age ð1=sÞðyÞ at the time

indicated by � are shown. For w¼ 0.1, the (c) shear rate, inverse age profiles, and (d) normalized cross-correlation are shown at different times marked by the

symbols in (a). The other model parameters are n¼ 100, m¼ 100, j¼ 0, e¼ 0.1 and tw¼ 10.
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For a simple linear elastic solid, the ELB curve would

comprise a straight line through the origin. In contrast, a

purely viscous liquid would give an ellipse. In the SGR

model, the ELB curves for low imposed strain amplitudes

indeed show purely elastic response. (We do not present

these here.) In contrast, for strain amplitudes c0 > 1, we see

highly nonlinear ELB curves. Strongly nonlinear ELB curves

have been observed experimentally in soft glassy materials

in Refs. [48,53,54].

These ELB curves contain essentially the same informa-

tion as discussed in the context of Fig. 3 above, but with

time now as a hidden parameter that increases as the curve is

explored in the clockwise direction during the course of any

LAOS cycle. The bottom-left to top-right sector corresponds

to the positive strain-rate half of the cycle, in which the sam-

ple is straining in the forward direction. With this in mind,

we now identify in the ELB curves a sequence of physical

processes [54] corresponding to the alternating competition

FIG. 5. ELB curves for the homogeneous (dashed lines) and heterogeneous

(solid lines) SGR model in LAOStrain for noise temperatures x ¼ 0:3;
0:7; 1:1 in panels (a)–(c) downward. Initial sample age before shearing com-

menced tw ¼ 10 in each case. In the heterogeneous calculations, the instan-

taneous degree of banding D _c is indicated by the color-scale. The grid of

values of c0;x is the same in each panel and indicated by crosses in Fig. 7.

Data averaged over 50th to 100th cycles. Heterogeneous calculations have

number of streamlines n¼ 25, number of SGR elements per streamline

m¼ 100, diffusivity w¼ 0.05, toy cell curvature j¼ 0, and initial heteroge-

neity � ¼ 0:1. Homogeneous calculations have m¼ 1000 SGR elements.

FIG. 6. VLB curves for the homogeneous (dashed lines) and heterogeneous

(solid lines) SGR model in LAOStrain for noise temperatures. Parameter

values as in Fig. 5. Thin dotted lines show steady state flow curve rð _cÞ.
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over the course of each cycle between glassy aging and flow

rejuvenation and between elastic and viscous response.

The bottom-left of the ELB curve corresponds to the time

at which the strain-rate switches from negative to positive

and the sample starts being sheared in the forward direction.

Initially, this shear is of low rate and the sample accordingly

is old and aging (for the low frequencies x < 1 to which the

SGR model applies), with rather elastic rheological response:

The stress initially increases linearly with strain. As the shear

rate then progressively increases during the first quarter

cycle, the increasingly strong shearing acts to rejuvenate the

sample. We then see a yielding process in which the stress

goes through an overshoot as a function of strain, before

declining to a flowing regime in which it remains almost

constant. The same sequence of processes then repeats in

reverse, during the negative straining half cycle, clockwise

from top right to bottom left in the ELB curve.

In each of the ELB curves, the colorscale shows the degree

of banding D _c at any point in the cycle. Consistent with our

discussion of Fig. 3 above, we find the appearance of shear

banding to be closely associated with an overshoot in the sig-

nal of stress as a function of strain in the ELB curves.

Typically, shear bands form as the overshoot is approached

and persist for some time as the stress declines afterward.

This behavior is strongly reminiscent of transient shear band-

ing associated with stress overshoot in the startup of shear of

a constant rate [18], as summarized in Sec. I above.

For an ergodic viscoelastic fluid with a fixed characteristic

stress relaxation time s, we expect a sequence of LAOS

experiments repeated with the same amplitude c0 for pro-

gressively lower values of the imposed frequency x to reveal

a progression from elasticlike response in the high frequency

regime xs� 1 to viscouslike response in the low frequency

regime xs	 1. Furthermore, in the limit x! 0, we expect

to recover a scenario in which the fluid repeatedly sweeps

quasistatically up and down its viscous steady state flow

curve as the strain rate slowly increases and decreases over

the course of each cycle. A Lissajous Bowditch plotted in

the viscous representation of stress as a function of strain

rate should then correspond to the fluid’s underlying steady

state flow curve. For any material in which the constitutive

curve is purely monotonic, shear banding would be impossi-

ble in this quasistatic limit. Such a scenario was indeed

explored in ergodic polymeric fluids in Refs. [65,66].

However, in the glass phase x< 1 of the SGR model, we

find no such progression with decreasing frequency leftward

along any row of the Pipkin grids in Figs. 5(a), 5(b), 6(a),

and 6(b). Even at the lowest accessible frequencies, we still

observe strongly elastic response, in some part of the cycle

at least, with the stress increasing almost linearly with strain

in the ELB representation rðcÞ. In the viscous representation

rð _cÞ, we never find the VLB curve to approach the underly-

ing steady state flow curve: Instead, it displays markedly

open loops even at the lowest frequencies accessible numeri-

cally. Furthermore, we find that strong shear banding like-

wise persists, despite the underlying constitutive curve being

monotonic.

This highly counterintuitive behavior arises from a basic

competition within each cycle between glassy aging in the

low shear rate phase of the cycle alternating with flow-

induced rejuvenation, yielding, and the associated shear

banding in the high shear rate part of the cycle. Put simply,

an aging material has no fixed characteristic relaxation rate

1=s against which we can set the frequency x of the imposed

oscillation to be small. This finding has far reaching implica-

tions for the flow of aging soft glasses, suggesting a strong

predisposition to shear banding even in imposed flow proto-

cols of arbitrarily slow time-variation [67].

In contrast, for noise temperatures x> 1 above the mod-

el’s glass point, the underlying flow curve is of power law

fluid form. In the absence of flow, true aging is absent [7],

although very long transients associated with sluggish relax-

ation timescales may nonetheless still arise. In consequence,

in a sequence of LAOS experiments performed at fixed oscil-

lation amplitude c0 for progressively smaller values of the

imposed frequency x, the ELB and VLB curves enclose a

progressively smaller area. For noise temperatures far

enough above the glass point and low enough frequencies,

the VLB curves eventually tend to the steady state flow

curve, with no associated shear banding. However, for the

noise temperature x¼ 1.1 considered here, only just above

the glass point, we have not been able to access low enough

frequencies to see a return to purely homogeneous response.

It would be interesting in future work to explore the response

in the low frequency limit for noise temperature just above

the glass point.

In Figs. 5 and 6, we have discussed the response of the

SGR model to a series of LAOStrain experiments with a set

of imposed amplitude and frequency values ðc0;xÞ arranged

on a 3
 3 grid. To explore more fully the regimes of ampli-

tude and frequency in which significant banding arises, we

show in the left panels [(a), (c), (e)] of Fig. 7 full dynamic

phase diagrams, respectively, for each of the three noise tem-

peratures x ¼ 0:3; 0:7; 1:1. In any such phase diagram, each

coordinate pair ðc0;xÞ corresponds to a LAOStrain experi-

ment performed with those given ðc0;xÞ. Represented by the

colorscale at each ðc0;xÞ is then the cycle-averaged degree

of banding Dc _c, as defined in Eq. (5), arising in a LAOS

experiment performed with that given strain amplitude and

frequency. We have checked that a value Dc _c > 0:5 corre-

sponds to strongly visually apparent banding in the flow

profiles.

For all the noise temperatures shown, both in the glass

phase and just above the glass point, we find significant

banding across a significant region of the plane of imposed

strain amplitude and frequency: Roughly, in the glass phase

x< 1, for strain amplitudes c0 > 1 and strain rate amplitudes

_c0 ¼ c0x < _c0cðxÞ. (Lines of constant strain rate are shown

by the dashed lines in Fig. 7.) The value _c0cðxÞ of the strain

rate amplitude below which significant banding is observed

clearly decreases with increasing noise temperature x.

Accordingly, the degree of banding for a given pair of values

of imposed oscillation and frequency c0;x decreases with

increasing x. This can be understood by appreciating that for

increasing values of x in the model’s glass phase, we see less

pronounced aging. Indeed, true aging is eliminated in favor

of long transient evolution to a sluggish steady state for

x> 1. Accordingly, the repeated aging and rejuvenation that

568 R. RADHAKRISHNAN AND S. M. FIELDING



underpins the triggering of shear banding in each cycle

becomes less pronounced with increasing x.

Inspecting again the color maps of the degree of banding

as a function of imposed strain amplitude and frequency in

the phase diagrams of Fig. 7, we see that (at any noise tem-

perature x) the transition from nonbanded to banded flow, in

a series of LAOS experiments performed at a fixed value of

the frequency x and progressively increasing amplitude c0,

appears to be rather sharp. This transition is investigated in

Fig. 8, where we indeed see a rather sharp transition to band-

ing with increasing strain amplitude.

Most theoretical studies of LAOS to date have imposed

upfront a homogeneous shear flow, discarding any possibility

of shear banding. However, our results in Figs. 5 and 6 show

the danger of calculating rheological fingerprints (ELB or

VLB curves) within any such assumption. In each panel of

Figs. 5 and 6, the solid line shows the Lissajous–Bowditch

curve in a calculation that properly allows for banding, while

the dashed line shows the corresponding curve in a calcula-

tion that disallows banding and imposes homogeneous flow.

As can be seen, the presence of shear banding can cause a

strong discrepancy between these two curves, particularly

for strain amplitudes that are only just in the nonlinear

regime.

To explore this discrepancy further, in the right panels [(b),

(d), (f)] of Fig. 7, we show as a color map in the plane of

imposed strain amplitude and frequency the maximum

difference in stress Dmr between the homogeneous and hetero-

geneous calculations. For numerical convenience, this is mea-

sured over a time interval T=10 following the peak in the

stress signal for the heterogeneous flow, where T is the time-

period of the oscillation. (This is indeed the time-interval when

any difference between the two signals is most pronounced.)

As can be seen, for the noise temperatures x ¼ 0:3; 0:7 in the

glass phase, a strong discrepancy between the homogeneous

and heterogeneous calculations is observed for imposed strain

amplitudes just into the nonlinear regime c0 � 1. For the noise

temperature x¼ 1.1 above the glass point, where the model

shows ergodic power law fluid behavior, this discrepancy is

essentially nonexistent. (However, strong discrepancies were

reported in a model of ergodic polymeric fluids in Ref. [66].)

An important message of this work is therefore to counsel cau-

tion in seeking to fingerprint complex fluids via theoretical cal-

culations that assume homogeneous flow.

Finally, in this section on LAOStrain, we seek to interpret

the ELB curves of the heterogeneous SGR model within the

framework of a “sequence of physical processes,” as intro-

duced by Rogers et al. in Ref. [54] and applied to yield stress

and power law fluids in Ref. [55]. In particular, we shall

compute the various nonlinear quantities proposed by

Rogers et al. as being useful measures of the response of

yielding materials in LAOStrain. With this in mind, in the

left panels of Fig. 9, we show again ELB curves for our three

different noise temperatures x ¼ 0:3; 0:7; 1:1, respectively,

in panels from top to bottom. In each case, we show results

for a fixed value of the cycle frequency x ¼ 10�3, for sev-

eral different values of the imposed strain amplitude c0.

For each such curve, we then computed the storage and

loss moduli, G0 and G00, as defined in Eq. (2). These are plot-

ted as a function of the imposed strain amplitude c0 in the

top right panel of Fig. 9, by the filled and open circles,

respectively. The elastic modulus decreases with increasing

FIG. 8. Transition from nonbanded to banded flow in the SGR model at a

noise temperature x¼ 0.3 in a series of LAOS experiments performed at a

fixed frequency x ¼ 0:1 for increasing values of the strain amplitude c0.

Device curvature j ¼ 0:01, sample age tw ¼ 10:0; � ¼ 0:1, and w¼ 0.05.

Data averaged over 50th to 100th cycles and over 25 separate simulation

runs. m¼ 1600 and n¼ 75.FIG. 7. Left panels [(a), (c), and (e)]: Dynamic phase diagrams showing the

cycle-averaged degree of banding in the heterogeneous form of the SGR

model in LAOS for x ¼ 0:3; 0:7; 1:1, respectively. Dashed lines show con-

stant _c0. The
 indicate the grid of c0;x values explored in more detail in

the ELB and VLB curves of Figs. 5 and 6. Initial sample age tw ¼ 10:0 for

all three noise temperatures. Data averaged over 50th to 100th cycles. Right

panels [(b), (d), and (f)] show counterpart discrepancy between the ELB

curves calculated within the assumption of homogeneous flow and those cal-

culated allowing for shear banding, for the same parameters. Number of

streamlines n¼ 25, number of SGR elements per streamline m¼ 100, diffu-

sivity w¼ 0.05, toy cell curvature j¼ 0, and initial heterogeneity � ¼ 0:1.
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c0: Initially, gently in the linear regime c0�1, then much

more rapidly in the nonlinear regime c0 � 1. The loss modu-

lus G00 instead initially increases with c0 in the linear regime,

before showing a peak then subsequently decreasing in the

nonlinear regime. These forms are consistent with the earlier

results of Ref. [42]. In the linear regime, G0 > G00, with the

reverse true in the strongly nonlinear regime. Both quantities

decrease with increasing noise temperature x, for all values

of the imposed strain amplitude c0. In the nonlinear regime,

all the quantities shown in Fig. 9 are in a state of cycle-to-

cycle invariance (to excellent approximation) [68]. In the

linear regime, the values of G0 and G00 slowly age. This was

studied previously [7] and we do not consider it further here.

The storage modulus G0 is intended to characterize the

material’s elastic response. As just noted, it decreases dra-

matically through the nonlinear regime to become small at

high values of the imposed strain amplitude c0. While this

may be a reasonable representation of the response of the

material integrated over an entire cycle, G0 nonetheless fails

to capture the obvious region of elastic response that persists

even at large imposed strain amplitudes, in the part of the

ELB curves near flow reversal at cðtÞ ¼ 6c0, where the

FIG. 9. [(a), (c), and (e)] Elastic Lissajous curves of the SGR model in LAOStrain at a noise temperature x ¼ 0:3; 0:7; 1:1, respectively. In each case, the oscil-

lation frequency x ¼ 10�3, with curves shown for values of the strain amplitude c0 ¼ 1; 2:51; 6:31; 10. (b) The cage modulus Gc (�), storage modulus G0 (�),

and loss modulus G00 (�) extracted from a family of curves, as a function of imposed strain amplitude for the same frequency x ¼ 10�3. (d) Maximum stress

rmax (�) and dynamic yield stress rdyn (�). (f) Strain acquired at the stress maxima since strain reversal cac (�) as defined in the main text. Lower and upper

dotted lines in (f) show cac ¼ c0 and cac ¼ 2c0, respectively. Initial sample age tw ¼ 10:0. Data averaged over 50th to 100th cycles. Number of streamlines

n¼ 25, number of SGR elements per streamline m¼ 100, diffusivity w¼ 0.05, toy curvature parameter j¼ 0, initial heterogeneity � ¼ 0:1. In each of [(b), (d),

and (f)], the color coding with respect to noise temperature matches that of [(a), (c), and (e)].
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stress rðtÞ is small. Recall the steeply sloping sections of the

ELB curves in Fig. 9(a).

To characterize this regime of elastic response near flow

reversal, Rogers et al. defined the “cage modulus”

Gc ¼
dr
dc

				
r¼0

: (9)

Our results for this quantity, extracted from the ELB curves

of Figs. 9(a), 9(c), and 9(e), are shown in Fig. 9(b). In the lin-

ear viscoelastic regime c0 ! 0, it was proved analytically in

[54] for these yielding materials that Gc ¼ G0 þ G002=G0. We

have verified that this relation is indeed satisfied for our data.

Beyond the linear regime, the cage modulus remains almost

constant across the full range of c0 considered, even as the

storage modulus falls dramatically at large c0. In this way,

the cage modulus is able to capture the intracycle elasticity

observed for small stresses near strain reversal in the ELB

curves, even at large values of the imposed strain amplitude

c0. At any given imposed c0, the cage modulus Gc decreases

with increasing noise temperature x.

Another measure that is commonly discussed in relation

to yield stress fluids is that of the “yield stress” itself. Indeed

several different quantitative definitions are commonly used

to characterize this intuitive concept [69]. Broadly, the stress

above which the material starts flowing is termed the static

yield stress, while the stress below which it stops flowing is

called the dynamic yield stress. In the SGR model, the maxi-

mum stress that can be maintained indefinitely without the

material flowing with a nonzero strain rate at long times (the

“static yield stress”), and the minimum stress obtained in

sweeping the imposed strain rate _c ! 0 (the “dynamic yield

stress”) are the same, and give a well defined “yield stress”

ryðxÞ that is nonzero for x< 1 [7].

In this context of oscillatory flows, Rogers et al. [54]

sought to obtain measures of the yield stress from the ELB

curves. In particular, they defined the static yield stress to be

maximum stress rmax in the ELB curve, and the dynamic

yield stress rdyn to be the value of the stress at the point

where the strain is maximum, cðtÞ ¼ c0. We have marked

these quantities on the ELB curves of Figs. 9(a), 9(c), and

9(e) by filled and open squares, respectively. Figure 9(d)

plots the same quantities (with the same symbol key) as a

function of imposed strain amplitude c0. In the linear visco-

elastic regime c0 ! 0, the two quantities coincide and follow

a linear elastic increase with c0. In the nonlinear regime

c0 � 1, they start to separate, with the dynamic quantity rdyn

becoming lower than the static one rmax. At any fixed c0,

both rmax and rdyn decrease with increasing noise tempera-

ture x, as expected. However, there is a clear difference

between the dependence of the static yield stress rmax on the

imposed strain amplitude c0 in the nonlinear regime c0 � 1

for noise temperatures in the glass phase and those above the

glass point. In the glass phase, it is roughly constant. Above

the glass point, it increases with increasing c0.

Another measure commonly discussed for yield stress flu-

ids is that of the yield strain. Several different definitions

again exist. In the present context of LAOStrain, we consider

cac, defined as the strain acquired between the point of strain

reversal (where c ¼ �c0) and the point of absolute maximum

stress in the cycle following the strain reversal [i.e., the point

shown by the filled squares in Fig. 9(a)]. Our results for this

quantity are shown in Fig. 9(f), with solid squares. In the lin-

ear viscoelastic regime, the ELB curve is a straight line

through the origin, giving cac ¼ 2c0.

The trends reported in the SGR model in Fig. 9(d) for

rmax and rdyn and in Fig. 9(f) for cac broadly resemble those

reported experimentally in star polymers [54], a hard sphere

suspension [51], and a colloidal gel [70], though we do not

attempt quantitative comparison.

VI. RESULTS: LARGE AMPLITUDE SQUARE/
TRIANGLE/SAWTOOTH WAVE STRAIN RATE

In Sec. V, we presented the results of theoretical calcula-

tions suggesting that soft glassy materials exhibit shear band-

ing in LAOStrain, across a broad range of values of the

amplitude c0 and frequency x of the imposed oscillation. In

the glass phase, we showed that this effect persists even at

the lowest frequencies accessible numerically, even though

the model’s underlying constitutive curve is purely mono-

tonic, rendering it incapable of supporting shear bands as the

true steady state response to a steadily imposed shear of con-

stant rate. We interpreted this counterintuitive behavior as

arising from an alternating competition within each cycle

between glassy aging in the low strain rate phase, and flow-

rejuvenation in the high strain rate phase.

In this section, we show that same scenario also arises in

other large amplitude time-periodic shear strain protocols.

While being far from conclusive (we perform our calcula-

tions in just one particular model of soft glasses, for four dif-

ferent strain-imposed waveforms), this finding has

potentially far reaching implications for the rheology of soft

glasses more generally, in suggesting a rather generic predis-

position to shear banding in time-varying flows of any wave-

form, even in the limit of an arbitrarily slow time-variation.

With these remarks in mind, we consider now the proto-

cols of large amplitude square, triangle and sawtooth wave

strain rate, as sketched in Figs. 1(b)–1(d). (These imposed

flows are in fact the basis functions for examining the oscil-

latory shear stress response of materials as proposed by

Klein et al. [71].) Corresponding to the dynamic phase dia-

gram of the cycle averaged degree of shear banding Dc _c
shown in Fig. 7 for oscillatory shear flow, the counterpart

phase diagrams for these other three protocols are shown in

the left panels of Fig. 10, for a single noise temperature in

the model’s glass phase. We indeed observe significant band-

ing for a large range of values of the amplitude c0 and fre-

quency x of the imposed oscillation, for all three protocols.

Perhaps surprisingly, even the quantitative degree of banding

is similar in each case, and is seen over a similar region of

the c0;x plane, though with slightly less banding in the saw-

tooth case.

In the right panels (b), (d), and (f) of Fig. 10, we show

ELB curves corresponding to the grid of c0;x values indi-

cated in the counterpart phase diagrams in panels (a), (c),

and (e). In each case, we find a sequence of physical
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processes similar to that described above for LAOStrain.

The local degree of banding D _cðtÞ is indicated by the color

scale round each cycle. As can be seen, the onset of banding

is again closely associated with the stress overshoot in each

case, closely reminiscent of banding associated with stress

overshoot in the simpler protocol of shear startup [18]. As in

LAOStrain, we see a significant difference between the ELB

curves as calculated allowing shear bands to form (solid

lines) and those for purely homogeneous shear (dashed

lines), particularly for imposed strain amplitudes in the

region of transition from no banding to banding.

To characterize in more detail the ELB curves of these

three alternative protocols, we discuss finally the nonlinear

measures discussed in the context of LAOStrain in Sec. V.

As seen in panel (a) of Fig. 11, the cage modulus is approxi-

mately the same for all the four protocols. The maximum

stress rmax and the stress rdyn at the point of flow reversal

c ¼ c0 are shown in panel (b). The strain cac acquired

between the point of flow reversal and the point at which the

stress attains its maximum value is shown in panel (c). For

all four protocols, in the linear regime, we see essentially

elastic response in which each of rmax, rdyn, and cac

increases linearly with the strain amplitude c0 (though with a

lower prefactor for rdyn and cac in the case of the sawtooth

wave because its imposed strain range is 0 to c0, compared

with �c0 to c0 for the other three protocols).

FIG. 10. Left panels [(a), (c), and (e)]: Dynamic phase diagrams showing the cycle-averaged degree of shear banding in the heterogeneous form of the SGR

model in large amplitude square, triangle, and sawtooth strain rate, respectively. Dashed lines show constant _c0. Right panels [(b), (d), and (f)] show counter-

part ELB curves for the homogeneous (dashed lines), and heterogeneous (solid lines) models for the grid of c0;x values indicated by
 in the left panels. In

the heterogeneous calculations, the instantaneous degree of banding D_c is indicated by the color-scale. Noise temperature x¼ 0.3. Initial sample age tw ¼ 10:0.

Data averaged over 50th to 100th cycles. Heterogeneous runs have number of streamlines n¼ 100, number of SGR elements per streamline m¼ 100, diffusiv-

ity w¼ 0.1, initial heterogeneity � ¼ 0:1, and toy curvature parameter j¼ 0. Homogeneous runs have m¼ 1000 SGR elements.
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VII. RESULTS: LARGE AMPLITUDE OSCILLATORY
STRESS

As summarized in Sec. I above, when an initially well

rested sample of soft glass of some age t ¼ tw is subject to

the switch-on of a stress that is held constant thereafter, it

initially shows a regime of slow creep in which the strain

rate progressively reduces over time. For imposed stresses

above the yield stress, this regime of slow creep is then fol-

lowed by a yielding process in which the strain rate increases

toward its final flowing state on the flow curve. During the

time interval in this yielding process over which the strain

rate signal simultaneously curves and slopes upward as a

function of time, the sample is predicted to be unstable to the

formation of shear bands [19].

Intuitively, we might expect a LAOStress protocol loosely

to correspond to a repeating sequence of positive and nega-

tive step stresses. If a yielding process arises following each

of these steps in each half cycle, we might then intuitively

expect to see the formation of shear bands associated with

that yielding, by analogy with the banding seen in the sim-

pler step stress protocol just described. With this in mind, we

now consider finally the response of the SGR model in

LAOStress, in its glass phase x< 1.

In Fig. 12 (top), we plot as a color-scale the degree of

shear banding maximized over a cycle for a wide range of

LAOStress experiments of imposed stress amplitude r0 and

frequency x. As can be seen, significant shear banding arises

across a broad region of the plane of r0;x. Banding persist

even at the lowest frequencies accessible numerically (in a

manner apparently consistent with it persisting to the limit of

zero frequency x! 0, where this is accessible numerically),

FIG. 11. (a) Cage modulus Gc, (b) maximum stress rmax (filled symbols)

and dynamic yield stress rdyn (open symbols), and (c) strain acquired

between the point of strain reversal and that of maximum stress. In each

case, data are shown for LAOStrain (�), square wave strain rate (red filled

square), triangular wave strain rate (blue filled triangle), and sawtooth strain

rate (green filled diamond). Noise temperature x¼ 0.3. Initial sample age

tw ¼ 10:0. Data averaged over 50th to 100th cycles. The lower and upper

dotted lines in (c) show cac ¼ c0 and cac ¼ 2c0, respectively. Number of

streamlines n¼ 100, number of SGR elements per streamline m¼ 100, ini-

tial heterogeneity � ¼ 0:1, toy cell curvature j¼ 0, and diffusivity w¼ 0.1.

FIG. 12. Top: Dynamic phase diagram showing shear banding in oscillatory

shear stress protocol for the SGR model with a noise temperature x¼ 0.3.

Bottom: Viscous Lissajous Bowditch curves corresponding to
 symbols in

the top panel, with the degree of banding shown by the color scale. Initial

sample age tw ¼ 10:0, data averaged over 50th to 100th cycles. Thin dotted

lines show steady state flow curves rð _cÞ. Number of streamlines n¼ 25,

number of SGR elements per streamline m¼ 100, diffusivity w¼ 0.05, ini-

tial heterogeneity � ¼ 0:1, and toy cell curvature j¼ 0.
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as in the strain-imposed protocols considered in Secs. V and

VI, despite the model’s underlying flow curve being purely

monotonic, precluding banding as the true steady state

response to a constant imposed shear stress.

In the lower panel, we present the corresponding VLB

curves for the grid of values of imposed stress amplitude r0

and frequency x marked by crosses in the top panel. The

time-dependent degree of shear banding is shown as a color-

scale round each cycle. The results can be understood as fol-

lows. For most of the cycle, the stress is below the yield stress,

and the shear rate is accordingly small. Once the stress

exceeds the yield stress, the sample yields and starts to flow

(at low frequencies at least—at higher frequencies, there is

insufficient time for this to occur). Associated with this yield-

ing process is indeed the formation of shear bands, as pre-

dicted by our intuitive argument above. Noting that the shear

banding only arises in a relatively small portion of the cycle

in LAOStress, we chose in our color-map in the left panels to

show the degree of banding maximized over a cycle.

The response of the system as a function of time round a

cycle is shown in more detail in Fig. 13. Consistent with the

preceding discussion, shear bands form in time-regimes

where the stress exceeds the yield stress, and the material

rejuvenates and starts to flow.

VIII. CONCLUSIONS

In this work, we have studied in detail the response of soft

glassy materials, including both yield stress fluids and power

law fluids, to large amplitude time-periodic flow protocols,

in the context of the SGR model. For each of LAOStrain,

large amplitude square wave strain rate, large amplitude tri-

angular wave strain rate, large amplitude sawtooth strain

rate, and LAOStress, we find the response of the system to

be significantly shear banded, for a wide range of values of

the amplitude c0 (or r0) and frequency x of the imposed

oscillation. Indeed, our results (in the glass phase x< 1 at

least) suggest that in the limit x! 0, significant banding

will be present for all imposed strain amplitudes in the non-

linear regime (with a smaller range of amplitudes implicated

for larger frequencies). We emphasize that this is true even

though the model’s underlying constitutive curve is purely

monotonic, such that its steady state response to a steadily

imposed shear of constant rate is incapable of supporting

shear bands. We attribute this to a repeated competition,

within each cycle, of glassy aging and flow rejuvenation.

In the four strain-imposed protocols, the formation of

shear bands in each half cycle appears closely associated

with the presence of a stress overshoot in the elastic

Lissajous Bowditch curve of stress as a function of strain, in

close analogy to the transient shear banding associated with

stress overshoot in shear startup studied previously [18–21].

Loosely and intuitively, therefore, we interpret LAOStrain

(and the other strain-imposed protocols) in terms of a repeat-

ing series of forward and reverse shear startup flows.

Likewise, in the stress-imposed protocol, the formation of

shear bands in each half cycle appears closely associated

with a yielding process, just beyond the point at which the

stress first exceeds the yield stress in the underlying constitu-

tive curve. Again, this closely mirrors the transient shear

banding associated with yielding following the imposition of

a step stress studied previously [19,36]. Loosely and intui-

tively, therefore, we interpret LAOStress in terms of a

repeating sequence of positive and negative step stress

experiments.

Our results suggest a possible generic predisposition of

aging glassy materials to flow in a heterogeneous, shear

banded manner when subject to large amplitude time-

varying flows of even arbitrarily slow time-variation. It

would be very interesting to investigate this suggestion fur-

ther, both experimentally and in molecular simulations of

glassy systems.
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