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Abstract 9 

Implementation of proxy models, such as emulators might reduce the computational time 10 

required in a variety of reservoir simulation studies. By definition, an emulator uses reservoir 11 

properties as input parameters in a statistical model constructed from simulator outputs. 12 

However, incorporation of petrophysical properties distributions in all model grid-blocks 13 

implies too many input parameters for direct emulation. Currently, most employments of 14 

emulation only consider single-value parameterization of reservoir properties.  15 

In this work, we propose a methodology to consider spatially-distributed properties, such as 16 

porosity and permeability, in reservoir emulation technique. First, we present the process of 17 

finding a procedure to deal with geostatistical realizations in the emulator and then implement it 18 

in a risk quantification application. Construction of an emulator in a probabilistic approach 19 

involved: selection of a base model, definition of uncertain inputs, selection of outputs to be 20 

emulated, sampling inputs to generate scenarios, simulation of scenarios, and building the 21 

emulator. As an application, we used emulators to generate risk curves at the final production 22 

time of a synthetic reservoir model.  23 

By implementing the proposed procedure, we showed that emulators can provide reliable 24 

results during risk analysis in oilfield development. Furthermore, with emulators it is possible to 25 

generate risk curves that reproduce simulations results at a lower computational cost. 26 

It can be expected that parameterization of petrophysical properties will boost the 27 

applicability of the reservoir emulation technique. For instance, emulators can significantly 28 

reduce both the time and computational resources demanded in various reservoir studies for 29 

high heterogeneity and complex reservoir models such as found in the Brazilian pre-salt area. 30 

Keywords: Risk, Petrophysical uncertainty, Proxy model, Reservoir, Simulation. 31 

1. Introduction 32 

During the initial stage of oilfield development, as described by Schiozer et al. (2015), a 33 

reservoir characterization under uncertainties is required to build possible scenarios. Reservoir 34 
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petrophysical properties distributions are among the numerous features that must be described at 35 

this point. 36 

From well, core and seismic data it is possible to model spatial distributions for properties 37 

like porosity and permeability, which constitute the reservoir numerical model. So, under 38 

uncertainties, and, in a probabilistic approach, several geostatistical realizations are possible for 39 

a reservoir model. Depending on the purpose of the study, we can generate from hundreds to 40 

thousands of equiprobable geo-realizations. Combinations of these realizations with other 41 

structural, technical and/or economic uncertainties compose the different reservoir model 42 

scenarios. 43 

This inherent uncertainty about reservoir features and behavior translates into a necessity of 44 

quantifying the associated risk to this lack of knowledge. Among the available tools for risk 45 

appraisal we have production risk curves. In petroleum studies context, these curves might 46 

correspond to cumulative oil, gas, or water, prospect net-present-value, among other objective 47 

functions. 48 

For a thorough generation process of risk curves, the uncertain solution space must be 49 

covered with a representative sample of all possible reservoir scenarios. Depending on the 50 

complexity of the model and available computational resources, reservoir studies that 51 

implement the numerical simulator can demand an excessive computational effort and CPU 52 

time, i.e., the amount of time used for processing reservoir numerical models. 53 

Among the alternatives to circumvent this issue we find: (1) simplifications and variations of 54 

the statistical treatment (Schiozer et al., 2016), (2) sophisticated selection of representative 55 

models (Meira et al., 2015) and (3) use of low fidelity models such as proxy models (Zubarev, 56 

2009). 57 

Proxies, also known as surrogates, are mathematical representations (e.g. regression, kriging, 58 

neural networks, Bayesian emulators etc.) that try to mimic reservoir numerical simulator 59 

outputs at a lower computational cost. The inputs of a proxy model are reservoir model 60 

attributes and its outputs can be observables such as fluid production rates, bottom-hole 61 

pressures, fluid saturation, pressure distributions and so forth. 62 

Therefore, as a substitute of the simulator that can be used to survey the uncertain space, 63 

proxy models might be applied in diverse applications within reservoir studies such as history 64 

matching (Craig et al., 1996), sensitivity analysis (Cullick et al., 2006), uncertainty assessment 65 

(Slotte et al., 2008; Mohaghegh et al., 2006), production strategy selection (Avansi et al., 2009), 66 

production forecasting and risk analysis (Amorim et al., 2012; Polizel et al., 2017).  67 

Furthermore, given the role of uncertainty in reservoir studies, the Bayesian framework 68 

represents a natural approach in the proxy-building context (Craig et al., 1996; Cumming et al., 69 

2009). Some previous works in petroleum studies have been carried out involving reservoir 70 

Bayesian emulation. For instance, Cumming and Goldstein (2009) used emulation technique to 71 
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history-match reservoir models, which were generated by parameterizing reservoir properties 72 

maps with multipliers. Ferreira et al. (2014) used emulators in uncertainty reduction 73 

quantification given availability of production data. Later, Ferreira et al. (2015) showed a 74 

methodology to use 4D seismic data to improve uncertainty reduction by using emulation of 75 

water saturation maps. 76 

These works demonstrate the applicability of emulation but they are characterized by single-77 

value parameterizations of reservoir properties. For instance, Cumming and Goldstein (2009) 78 

accounted for porosity and permeability maps by using multipliers in pre-defined regions. In 79 

fact, most of employments of proxy models (Cullick et al., 2006; Slotte et al., 2008; Zubarev, 80 

2009; He et al., 2016) have been restrained to single-value parameterizations of spatially-81 

distributed properties. As noticed by Mohaghegh et al. (2006), this restriction of proxy models 82 

is mainly due to “curse of dimensionality” given the high number of parameters that define a 83 

reservoir geological model. Besides, single-value parameterizations do not preserve geological 84 

consistency (spatial covariance model) required in a thorough treatment of petrophysical 85 

uncertainty (Chambers et al., 2000). An attempt to solve the issue was proposed by Zabalza-86 

Mezghani et al., (2004). They introduced a joint-model method (JMM) that combines geo-87 

realizations and proxy-models to account for geological uncertainty in computationally-88 

expensive applications such as risk analysis. As shown by Santos et. al, (2017), implementation 89 

of JMM is difficult for complex cases and present technical and practical disadvantages when 90 

compared with other methods such as DLHG proposed by Schiozer et al., (2016). Discretized 91 

Latin Hypercube combined with geo-realizations (DLHG), represents well the treatment of 92 

geological uncertainty and reduces the computational cost in some reservoir studies. Still, 93 

because of their low computational cost, proxy-models show promise in applications where 94 

evaluation of a high number of reservoir scenarios is required. 95 

Geostatistical uncertainty, represented by geo-realizations, is not trivial to be consistently 96 

captured by single-value parameterizations. Also, using property values at each grid cell as 97 

inputs in the proxy construction is unfeasible because of the high number of blocks of a typical 98 

model. Thus, there is a need to pre-process reservoir properties distributions to be considered as 99 

inputs in emulation procedure. This would allow dealing with petrophysical uncertainty in a 100 

variety of reservoir studies where emulation can be implemented and computational and human 101 

effort might be reduced. 102 

2. Objective 103 

The main goal of this work is to present a procedure that considers uncertainty of spatially-104 

distributed reservoir properties, such as porosity and permeability, in emulation of reservoir 105 

model behavior.  106 
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Besides, we build emulators for chosen objective functions with different sizes of training 107 

dataset and then generate production risk curves to compare with simulation results. Based on 108 

those results, we establish quality criteria to evaluate emulators that can reproduce risk curves 109 

obtained with simulation.  110 

Finally, we assess the implementation of emulator in risk analysis in terms of error and total 111 

computational cost in comparison with the simulator. 112 

3. Methodology 113 

The work proposal concerns the incorporation of petrophysical uncertainty, represented by geo-114 

realizations, as inputs in the building of emulators. Several attempts were made to solve this 115 

issue along the development of this research. The main difficulties rely on the high number of 116 

parameters that define a realization and the non-trivial relationship between the set of 117 

petrophysical properties at each grid-block and well responses. For a typical simulation model, 118 

realizations are characterized by the values of porosity, permeability in the three spatial 119 

directions and net-to-gross ratio (NTG). On the other hand, responses of a given well may 120 

depend upon the characteristics of its region of influence along the production period and this 121 

dependency can be difficult to describe in mathematical terms. 122 

To overcome these challenges and design a procedure that allowed us to build and validate 123 

emulators from realizations, we tested combinations of division of reservoir by zones and 124 

selection of grid points (random, evenly spaced and dimension reduction by Principal Variables 125 

(PV)).  126 

At the end, the procedure with better performance consisted in implementation of dimension 127 

reduction of the number of inputs by selecting variables using the PV method which is based on 128 

principal component analysis (PCA), in combination with flow-based zonation and direct 129 

emulation of objective functions. This allowed us to pick representative points within flux 130 

regions and petrophysical properties for the chosen points were used as input parameters in the 131 

proxy modelling. 132 

3.1. General Methodology 133 

The general methodology used for emulator building and application in reservoir studies is 134 

based on the general proxy-modelling framework adapted from Razavi et al. (2012), Ferreira et 135 

al. (2014) and He et al. (2016). The workflow is divided in five steps as presented in Figure 1. 136 

The main contribution of this work focuses on specific procedure implemented between step 2 137 

and step 3. 138 
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3.1.1. Reservoir Characterization under Uncertainties 139 

The first step of the general methodology consists in the definition of reservoir properties 140 

together with their correspondent uncertainty ranges. For the purposes of this work, we only 141 

consider uncertainties in properties of the geological model represented by geo-realizations. As 142 

referred, a realization is numerically characterized by the spatial distribution values of porosity, 143 

permeability in three spatial directions and net-to-gross ratio. Therefore, the number of 144 

parameters (order of 10�	for a typical simulation model) that characterize a realization depends 145 

on the number of gridblocks of the reservoir numerical model. 146 

3.1.2. Inputs Sampling 147 

A sampling method is required to generate scenarios for the uncertain reservoir model. In this 148 

specific work, we consider only petrophysical uncertainty in our model. Therefore, we do not 149 

require a sampling method to combine uncertainties. Instead, equiprobable geo-realizations 150 

define each possible scenario for the reservoir simulation model. The outputs of simulation runs 151 

are used for proxy model building. Moreover, because our final goal is to construct a tool which 152 

is faster than the simulator for applications such as risk analysis, we evaluate prediction power 153 

of emulators for different sample sizes (training dataset). 154 

3.1.3. Emulator Building 155 

The idea of using reservoir emulation technique consists in estimating proxy models (PM) with 156 

outputs corresponding to some observable of the reservoir dynamics such as cumulative oil 157 

production for reservoirs. Craig et al. (1996) proposed a framework to build emulators. This 158 

consists in building a stochastic representation (emulator) of the computer model (simulator) 159 

outputs for input combinations that were not evaluated. Thus, an emulator takes system 160 

properties (x) as inputs and returns outputs (f	) that correspond to selected observables of the 161 

problem. The contribution of this work relies on the manner of pre-processing a high-162 

dimensional input space that is represented by geostatistical realizations in the reservoir 163 

simulation problems. For the purposes of this work, the objective functions to be emulated are 164 

cumulative oil, water and gas for a future production date. For each selected objective function 165 

we want to emulate, we represent the function as: 166 

f	(x
) =�β	�
�

g	�(x
) + u	(x
) (1) 

In Equation 1, x
 is the subset of input parameters considered in the estimation, β	� are 167 

scalars, g	� are deterministic functions and u	 represents a Gaussian process. In particular, the 168 
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deterministic functions and scalars can be estimated by a step-by-step regression model 169 

selection (Venables & Ripley, 2002) based on Aikake Information Criteria (AIC). In principle, 170 

the Gaussian process is optionally implemented to interpolate residuals, whereas the most of 171 

model output variation is explained by the regression (O’ Hagan, 2006). The AIC-based 172 

modelling used for construction of mathematical models is a linear regression where the terms 173 

are selected by a stepwise algorithm that implements Aikake Information Criteria in Equation 2. 174 

Given a set of possible predictors the stepwise regression runs backward by dropping terms 175 

from the model and looking at improvements of the AIC measure. The selected input variables 176 

that are in the final model are called active variables.  In Equation (2), each model likelihood L 177 

is computed from the model deviance and the variable e.d.f. corresponds to equivalent degrees 178 

of freedom. 179 

AIC = −2 log � + 2 × �. �. � (2) 

3.1.4. Emulator Validation 180 

To guarantee that a built emulator can reproduce reservoir numerical simulator outputs in any 181 

specific part of an application, we must assess the prediction quality of each component	f	, i.e., 182 

objective functions (OF). The purpose of this procedure is to confirm that emulator can 183 

encompass simulator results for a random sampled scenario. The first diagnostic criterion 184 

considered is the statistical fit measure Adjusted-R². This measure is calculated by Equation 3, 185 

where � is the coefficient of determination,   the sample size and ! the number of predictors. 186 

Therefore, Adjusted-R² penalizes the use of spurious variables in the model.   187 

R#$%& = 1 − '(1 − �&)( − 1)
 − ! − 1 ( (3) 

Then, to verify emulator prediction power, a cross-validation test is performed. This process 188 

involves a qualitative analysis (cross-plots) of simulator against emulator outputs for sampled 189 

scenarios (validation data) that are not used in the emulator building process.  190 

Besides, to quantify prediction quality of emulators, we use a measure of discrepancy 191 

between simulation and emulation results known as normalized root mean square error 192 

(�)*+,) defined by Equation 4.  RMSE is a common measure (Chen et al. 2016) of difference 193 

between predictions of a model (emulator output) and the actual or observed values (simulator 194 

output). 195 
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RMSE0 =
1∑ (y4 − y)&56

1∑ (y7 − y)&56
 (4) 

In this case, normalized RMSE is a function of proxy outputs (y4), simulator outputs (y) and 196 

mean (y7) of predictions from the training dataset. The normalization is performed due to the 197 

different orders of magnitude for objective functions. Values of normalized RMSE0 near one 198 

represents a prediction no better than the average of outputs used as training data, and RMSE0 199 

near zero represents an ideal match between the predicted and actual results.  200 

Therefore, we have adjusted-R² (related to training data) and �)*+, (related to validation 201 

data) as measures for diagnostic and emulator quality assessment, respectively (See Table 1). 202 

Emulator errors that can be tolerated may well depend upon the application and the purpose of 203 

the study. As stated in the objectives section, we aim to set quality criteria for validation of 204 

emulators based on the results of our specific application. 205 

Table 1: Summary of indicators used along this work. 

Measure Abbreviation Related to... 

Adjusted Coefficient of 
determination 89 Training data 

Root mean square error 
(normalized) 8:;<= Validation data 

Mean average 
percentage error MAPE Risk curves 

 

3.1.5. Application 206 

Reservoir emulation can be implemented in several applications within reservoir studies. The 207 

interest relies on using emulators to substitute the reservoir numerical simulator in procedures 208 

that demand a high number of scenario evaluations and therefore an extensive computational 209 

effort and time. As such, emulators can be used in several steps within methodologies for 210 

history matching, sensitivity analysis, uncertainty reduction, strategy optimization, risk analysis, 211 

among other applications. In our particular case, we use emulators to generate production risk 212 

curves using several sizes of training dataset. The idea is to find the cheaper (least number of 213 

scenarios for estimation) validated emulator to reproduce simulator results. To do that, we 214 

assess the accuracy of emulator at reproducing risk curve shapes by using an appropriate error 215 

measure, and then we establish quality criteria for emulator validation. Finally, we evaluate the 216 

error and computational cost for implementation of emulator in risk analysis. 217 

To measure the computational cost of implementation of emulation in generation of 218 

production risk curves, we define the implementation time as a sum of total time of simulation 219 
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of training models, the time spent in building the emulator and the simulation time of validation 220 

data.  221 

The error between risk curves is calculated using the mean absolute percentage error 222 

(MAPE). This gives us a quantification of the accuracy of emulator at reproducing the risk curve 223 

obtained with simulation.  For a general case where we have a reference risk curve with points 224 

�>	and a predicted risk curve with points	?>, the MAPE is defined in Equation 5. There are no 225 

hard rules for tolerated MAPE ranges. Accepted intervals may depend upon the specific study 226 

case and purpose. In this case, we define MAPE tolerance based on the results for selected 227 

reference risk curves obtained with simulation for benchmark cases (MAPE between risk curves 228 

obtained with simulation of 500 and 1000 scenarios). For illustration of MAPE measure refer to 229 

Figure 2. 230 

)@?+ = 100
N ×�BP	 − R	R	 B

5

6
 (5) 

 231 

3.2.  Consideration of variation in petrophysical properties for emulation 232 

This work concerns the incorporation of petrophysical uncertainty, represented by geo-233 

realizations, as inputs in building emulators. This means bridging the gap between steps 2 and 3 234 

of the general workflow (Figure 1) when we consider variation in reservoir spatially-distributed 235 

properties. 236 

The strategy for approaching the problem consists in the selection of representative points 237 

within flux regions, which petrophysical properties could explain the variability of the 238 

corresponding well responses. 239 

To devise a procedure that allows us to build emulators from realization inputs, we test 240 

specific workflows. All workflows can be separated in two core components: 1) Variable 241 

selection and 2) Zonation. These two components relate to parameterization of geo-realizations 242 

for use as inputs in emulation. We present the two components separately and then we explain 243 

how we used them for the different tests.  244 

3.2.1. Variable Selection 245 

Given that geo-realizations have the same source data (well logs, sampling, etc.), property 246 

values at each grid cell are correlated involving a stochastic process. For instance, in the model 247 

used in this work, a Sequential Gaussian Simulation (SGS) process is implemented to generate 248 

porosity and permeability spatial property distributions. The high number of parameters that 249 

define a realization is one of the main difficulties to include geological uncertainty in proxy 250 

modeling. For instance, it is unfeasible to estimate regression models by taking information at 251 
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all grid-blocks as inputs because of the high number of observations that would be required to 252 

correctly estimate all regression parameters. Besides, there is a lack of efficient computational 253 

techniques to tackle the challenge (Shan & Wang, 2010). 254 

Hence, the proposal is to use a dimension reduction technique for the input parameter space 255 

to decrease the number of parameters that allow us to distinguish a realization from another. In 256 

the context of statistical inference (Guyon & Elisseeff,  2003; Boukouvalas et al., 2007), 257 

dimension reduction methods can be classified in projection and screening methods. If the 258 

belief is that there exists a smaller dimension representation, projective methods transform 259 

inputs into a manifold spanned by functions of original input values. On the other hand, 260 

screening methods consists in selection of relevant inputs (or disregarding spurious ones) than 261 

can act as predictors for modelling.  262 

In this work, we implemented a selection (screening) of representative points in porosity and 263 

permeability maps for the training set of realizations. Three different procedures for variable 264 

selection are tested: 265 

• Random points: We select random points in the grid to act as a representative 266 

sample of the whole realization. The idea behind this procedure is to select that an arbitrary 267 

collection of points that does not consider distribution of reservoir properties. 268 

• Evenly-spaced points: Spaced points are chosen in the reservoir simulation 269 

model to reduce the number of total grid information in the realization. As in the previous 270 

approach, this procedure does not consider variability of petrophysical properties over 271 

realizations, but attempts to select a homogeneously located sample of points.  272 

• Principal variables: The PV approach is a dimension reduction methodology 273 

based on Principal Component Analysis (PCA) that selects variables that most represent a 274 

problem in a statistical experiment. This method uses a criterion that combines correlation 275 

among variables and loadings on the Principal Components (For more details, see Cumming 276 

and Wooff, 2007).  For our problem, this technique ranks grid points by using the variances and 277 

correlation matrix of property values among the set of realizations, allowing the selection of 278 

representative grid points for each property by their positions in the ranking.  279 

The objective in this component is to represent the geostatistical realizations with a lower 280 

number of parameters. Property values at selected points for porosity and permeability maps are 281 

then used as inputs to emulate well responses. 282 

3.2.2. Zonation  283 

This component aims to define the region of interest for variable selection procedure. Because 284 

of the nature of fluid movements in reservoir, it is expected that well responses are more 285 
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correlated with petrophysical properties of regions where the fluids flow along the production 286 

period. Based on that premise, we tested two different approaches for defining those regions: 287 

• Location-based: In this method, we correlate well responses with properties of grid-288 

blocks near each well by dividing the reservoir in separate regions in accordance 289 

with well locations in the reservoir model. This procedure reduces the number of 290 

inputs parameters that must be treated in tandem.  291 

• Flow-based: In this approach, first we evaluate fluids behavior along the production 292 

period within each well production zone and then define the regions by 293 

distinguishing draining areas. In this case, we can obtain overlapping regions for 294 

different wells. 295 

In both approaches, we look forward to relating input parameters and simulation outputs for 296 

wells corresponding to the same region. 297 

Then, combinations of both components described above configure procedures for “pre-298 

processing” geostatistical realizations as inputs in emulation. The selection of the appropriate 299 

procedure is based on the model performance in accordance to diagnostics and validation 300 

described for step 4 of the general workflow of Figure 1. In Table 2 we present a summary of 301 

tested workflows. 302 

Table 2: Combinations of tested workflows to parameterize geo-realizations. 

Procedure Variable Selection Zonation 

1 Random Location-based 

2 Spaced Location-based 

3 PV Location-based 

4 Random Flow-based 

5 Spaced Flow-based 

6 PV Flow-based 
 

 303 

3.3. Proposed procedure 304 

In this section, we outline the generalization for random case studies of the procedure 305 

(Procedure 6 in Table 2) to consider variation of spatially-distributed properties in reservoir 306 

behavior emulation. The procedure consists in the implementation of a flow-based zonation plus 307 

a selection of variables that considers distribution and variability of petrophysical properties 308 

over a set of realizations, such as Principal Variables.  309 
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Thus, the proposed procedure to parameterize the spatial properties distributions as inputs in 310 

the emulator building can be summarized as: selection of representative grid-block properties 311 

within each well drainage region. As part of the workflow depicted in Figure 1, this is an 312 

intermediate step between the inputs sampling and emulator building that can be considered as a 313 

“pre-process” of inputs as illustrated in Figure 3. 314 

Various approaches can be used for the implementation of the proposal. We present a 315 

procedure (See Figure 4) that was used in the development of this work, but alternatives exist 316 

for each step. 317 

Once the inputs space is sampled in step 2 of the general workflow, the training dataset is 318 

used twice: On one hand, a small set of scenarios is used for zonation of the reservoir model. On 319 

the other hand, the complete set of training scenarios is used in the variable selection after zones 320 

are defined for each well. The suggested procedure is divided in three main steps:  321 

a) Selection of representative models (RMs): As reservoir flow characteristics 322 

depend on the specific scenario, we first propose a selection of representative models for 323 

identification of drainage areas per well. For instance, we can use the method by Meira et al., 324 

(2015) which is based on simulation outputs for the training dataset: oil recovery factor and 325 

cumulative production for oil, water and gas. This method is based on Equation 6 and it consists 326 

in the selection of a set of scenarios	(D), which minimizes a cross-plot function E based on 327 

Euclidean distances between objective function for subsets of training data. (See details in 328 

Meira et al., (2015)). The number of RMs can vary depending on the available resources for 329 

analysis. In this study, we recommend ten representative models, which is a reasonable number 330 

of scenarios to analyze (Figure 5). 331 

FGHIJJ(ℛ) =�FL,NGHIJJ(ℛ)
L,N

=��ΔL,N(P, ℛ)
5

QRSL,N
 (6) 

b) Reservoir zonation: This step consists in a flow analysis for the selected 332 

representative models to identify drainage regions per well. This procedure can be done, for 333 

instance, by phase-velocities streamlines analysis. The analysis consists in assessing the flux 334 

lines along the production period of each well and highlighting the zones where these lines lie. 335 

c) Input variable selection: Once the drainage regions per well and the 336 

representative models are defined, we implement a variable selection method such as Principal 337 

Variables for the inputs of the whole dataset of training scenarios. After Principal Components 338 

decomposition, this method classifies grid point data by TU values calculated by Equation 7, 339 
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selecting variables based on eigenvalues (VW) of the decomposition and variables with high 340 

loadings (XUW) on important PCs (See details in Cumming and Wooff, 2007). In this manner, we 341 

obtain the inputs variables per zone that will be used in the emulation of the corresponding well 342 

response. 343 

h% =�Zλ>\%>]&
^

	_6
 (7) 

4. Case Study 344 

A reference 3D geological model was built based on data from Namorado Field, Campos Basin, 345 

Brazil. It has been used to test and compare different proxy methodologies. In summary, to 346 

build a consistent geological model, we followed the creation of structural, facies and 347 

petrophysical models. 348 

Facies modeling was defined using a Sequential Indicator Simulation (SIS) with vertical 349 

trend (Ravenne et al., 2002). In a general context of applying SIS, it provides 3D realistic 350 

images of the reservoir heterogeneities and is useful for controlling fluid flow and assessing 351 

final uncertainties in production (Seifert & Jensen, 1999). 352 

Petrophysical modeling of porosity was defined using a 3D stochastic modeling, SGS, to 353 

perform the petrophysical modeling of porosity; combining well logs, distribution values for 354 

omni-directional variograms and 3D facies model to control and condition the porosity 355 

distribution (Dubrule, 1998; Kelkar, M., & Perez, 2002). This is a kriging-based method in 356 

which un-sampled locations are visited in a random order until all are visited. Porosity was then 357 

simulated, reproducing per-facies distribution as derived from the blocked well data. The same 358 

SGS algorithm was used to model permeability distribution. 359 

Following the structural and properties modeling, it was necessary to define the rock and 360 

fluid properties. The rock fluid properties, represented by oil and water relative permeability 361 

curves and capillary pressure, were created based on real dataset of four different rock types. 362 

The fluid properties were also modelled through a real PVT data sample. The oil density of the 363 

model is 881.81 kg/m³ (28.97 ºAPI) at stock tank conditions (101.32 kPa and 15.6 ºC). The 364 

bubble point pressure is 20,909.73 kPa and reservoir temperature is 85°C. The oil viscosity (µo), 365 

gas viscosity (µg), the oil (Bo) and gas (Bg) formation volume factor and the solubility ratio 366 

(Rs) are coupled to the PVT curves as shown in Figure 6. Then, in our studies, we used the 367 

results of the black-oil fluid model.  368 

For the purpose of this work in considering the variation of petrophysical properties in 369 

emulation, we selected a two-dimensional representation of the full-field fluid-flow numerical 370 
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simulation model to test and validate the proposed methodology. This model was named as 371 

META-2D (Figure 7). 372 

META-2D comprises a black oil fluid model and reservoir with four vertical producers and 373 

one injector, arranged in a five-spot configuration as shown in Figure 7. This 2D model is 374 

composed of a 400 blocks (20x20x1) in a regularized corner-point grid with mean block 375 

dimensions of 92x92x150 m. The rock compressibility is 5.3 × 10b�	kPab6 and bubble point 376 

pressure is	20,909.7	kPa. The total production time for the model is 20 years under the 377 

following operating and monitoring well conditions: 378 

• Liquid rates are produced with the maximum possible rate for the field, 2,000 379 

m³/day; 380 

• Minimum production pressure is 18,633 kPa (190kgf/cm²); 381 

• Water cut is 90%, maximum gas-oil ratio is 200 m³/m³ and minimum oil rate is 20 382 

m³/day for monitoring and closing conditions for producers, if the condition is 383 

reached; 384 

• Water is injected at the maximum possible rate for the field, 5,000 m³/day; 385 

• Maximum injection pressure is 34,323 kPa (350 kgf/cm²). 386 

Geo-realizations that represent each scenario of the simulation model are characterized by 387 

spatial distributions of effective porosity and permeability (totaling 800 parameters). 388 

Considering that it is a representative model of the full field, the average simulation running 389 

time for a single scenario is 30 seconds. Despite being a fast model, the preliminary goal is to 390 

validate the proposed procedure and then implement it in more complex cases with high 391 

execution time in subsequent studies. 392 

5. Results 393 

In this section, we present the results of implementation of the methodology described 394 

above. First, we show the process of emulator building. Then, we evaluate models obtained with 395 

different training dataset sizes in terms of prediction quality. Next, we use them to generate 396 

production risk curves and compare them with simulation results. Finally, we evaluate the 397 

implementation of emulator in risk analysis in terms of the computational cost and accurateness 398 

respect to simulation results. 399 

Reservoir characterization and sampling 400 

This section describes steps 1-2 of the methodology described. Simulation results for subsets 401 

of 1,000 scenarios (training data), where only petrophysical uncertainty is considered, are used 402 
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to build the proxy models for cumulative oil (gh), gas (ih) and water (jh) production. In 403 

Figure 8, we have the characterization of permeability for the training dataset.  404 

Emulator building and validation  405 

This section comprehends the steps 3-4 of the general methodology. In the first part we 406 

present a description of the process of finding an appropriate procedure to parameterize geo-407 

realizations in order to construct emulators for the chosen objective functions. In the second part 408 

of the section we show the assessment of emulators obtained with the selected procedure for 409 

different sizes of training dataset. 410 

Procedures for emulator building 411 

We selected	gh, ih and jh at final production time as output variables whose behavior we 412 

try to emulate (See Figure 9). On the other hand, input parameters selected from each procedure 413 

(See Table 2) are used in the estimation of regression models for objective functions at each 414 

well. The active variables (subset of the initial selected inputs) are chosen by a stepwise 415 

algorithm based on Aikake Information Criteria used to build regression models.  416 

We tested various procedures to build emulators by selecting random points, evenly-spaced 417 

and using PV for regions defined by location and drainage area for each well. The first attempt 418 

consisted in dividing the reservoir in zones by location (procedures 1-3 in Table 2). 419 

 420 

The location-based zonation procedure consisted in dividing the reservoir in four 421 

proportional regions (each with 100 grid-blocks) in accordance with the location of the four 422 

producers in the model. In Figure 10a, we illustrate the active variables selected for the quadrant 423 

corresponding to the zone of producer 2. 424 

 For this approach, we selected 40 grid-blocks for permeability and 40 for effective porosity 425 

(defined as porosity times net-to-gross, which is used as input in the simulator calculations) per 426 

region, using each one of the three variable-selection methods. The premise was that most of 427 

variability of each well response could be explained by the petrophysical properties of grid 428 

blocks around the well. For the first tested procedures (with location-based zonation), this 429 

turned out to be true for Nk and	Gk. We obtained models with acceptable prediction quality for 430 

those objective functions. However, behavior of cumulative water seemed complex and its 431 

variability could not be explained by this location-based zonation and selection of points with 432 

any of the three approaches. Further tests by taking points outside each region indicated that 433 

behavior of well responses, in particular Wk, was better represented by points spread over the 434 

whole reservoir model. For this reason, we proposed a zonation approach that was based on 435 

drainage area for wells.  436 
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For the flow-based zonation approach (procedures 4-6 in Table 2), streamline analysis 437 

showed that drainage area for each well comprised the whole reservoir extension. Then, we 438 

selected 160 values for permeability and 160 for grid-block effective porosity in the whole 439 

reservoir, using the three variable selection methods. In Figure 10b, we illustrate the active 440 

variables chosen by AIC in the reservoir to explain Nk behavior of well 2. As shown, this 441 

automatically selected gridblocks (explainable variables) are more concentrated around the 442 

corresponding well. 443 

In total, 320 property values (inputs) represented a realization in this approach. This is a very 444 

large number of inputs parameters for the AIC regression algorithm. The strategy was to build 445 

“partial” models for subsets of the 320 and combine the selected active variables by the step-446 

wise algorithm to build a single proxy-model that represented the behavior of each objective 447 

function.  448 

To compare the performance of the proposed procedures we sampled 400 scenarios and 449 

quantified the prediction quality of built emulators by using the	RMSE0. Results are presented in 450 

Table 3. 451 

Table 3: Comparison of performance for tested procedures. Average	RMSEn for 10 trials. 
  Procedures 

  1 2 3 4 5 6 

 Cumulative Oil Np 

PROD1 0.46 0.51 0.44 0.32 0.34 0.25 

PROD2 0.38 0.41 0.37 0.30 0.26 0.23 

PROD3 0.41 0.47 0.40 0.32 0.31 0.25 

PROD4 0.46 0.49 0.44 0.36 0.39 0.29 

 

  Cumulative Gas Gp 
PROD1 0.45 0.51 0.44 0.32 0.33 0.24 

PROD2 0.39 0.41 0.37 0.29 0.25 0.23 

PROD3 0.41 0.48 0.41 0.32 0.32 0.24 

PROD4 0.43 0.46 0.42 0.35 0.39 0.28 

 

  Cumulative Water Wp 
PROD1 0.54 0.54 0.50 0.50 0.47 0.41 

PROD2 0.83 0.83 0.81 0.52 0.44 0.42 

PROD3 0.49 0.53 0.48 0.41 0.39 0.34 

PROD4 0.69 0.70 0.69 0.65 0.57 0.58 
 

 452 

According to results of tests presented in Table 3, Procedure 6 (described in Section 3.3) was 453 

the best performing (lower prediction error measured by	RMSE0) approach that allowed us to 454 

build models explaining the observables behavior as a function of the properties of selected 455 

grid-points within the reservoir. For the purposes of the present work, results and application are 456 

obtained by implementing Procedure 6 to represent geo-realizations in emulation. 457 
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Emulation for selected procedure 458 

In Figure 11, we present the Adjusted-R² for built emulators with procedure 6 as a function 459 

of the number of scenarios used as training data. From this data, we observe that there is not 460 

best case for Adjusted-R², so we must look at the predictive power of those models. Overfitting 461 

cases where Adjusted-R² is high but prediction quality is poor, must not be disregarded. 462 

Therefore, we are treating Adjusted-R² as an indicator (diagnostics) but not as definitive 463 

criterion for model assessment. Non-monotonic trends (Figure 11) for models built with less 464 

than 300 scenarios correspond to smaller number of principal variables selected as predictors for 465 

these cases, given that number of sample size limits the number of predictors for proper 466 

regression. 467 

A cross-validation test was performed to obtain a qualitative evaluation of regression models 468 

of each objective function. For this process, 200 scenarios were sampled and simulated 469 

(Validation data). Figure 12 presents a comparison of cross-validation plots for cumulative 470 

water in well 2 emulators built with 100 and 300 scenarios. As observed, regression models 471 

with higher Adjusted-R² do not perform better at reproducing simulator results than regression 472 

models with smaller coefficient of determination. This result implies an over-fitted regression 473 

for emulators built with a small training dataset that does not work well for validation scenarios. 474 

We are then compelled to assess the prediction power of the built emulators using RMSE. In 475 

summary, we can say Adjusted-R² is a good indicator for emulator prediction power, but it is 476 

not definitive. 477 

Prediction quality assessment 478 

As proposed, we implement RMSE0 to evaluate prediction power of built proxy-models. For 479 

this case we build emulators for 10 different training dataset samples of equal size. Then, we 480 

calculated the average of normalized RMSE0  for each case using a validation dataset. Results 481 

are plotted in Figure 13 as a function of size of training dataset.  482 

A reference RMSE0 curve is established from the training data used in each case. This 483 

prediction error for training data represents a minimum for RMSE0 of validation data given that 484 

emulator is fitted for the training scenarios. From normalized RMSE values found in Figure 13, 485 

we observe that results obtained for validation data are above reference values obtained from 486 

training data, as expected. The superposition of RMSE0 curves for gh and ih is reflecting a 487 

consistency of the procedure since reservoir pressure is above the fluid saturation pressure. 488 

In addition, there is an indication that more training points does not necessarily translate into 489 

more prediction power. The RMSE0 reached a specific plateau for models at all wells for	gh, ih 490 

and some wells for	jh. In the case of	jh, RMSE0 values obtained for PROD4 are above the 491 

reference value in comparison with other wells. This implies a more complex variability of the 492 
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objective function and confirms a lower prediction power as indicated by smaller Adjusted-R² 493 

values. 494 

Being a proxy model, we expect emulator do not reproduce exactly simulation results. Then, 495 

the issue is how much discrepancy we can tolerate. The answer may depend on the application 496 

we consider. For instance, for production strategy optimization studies we might demand better 497 

emulator prediction quality than for uncertainty reduction studies in an initial field development 498 

plan. In this study, we use emulators to substitute simulation in generation production risk 499 

curves at an early phase of oilfield development. Consequently, based on the error estimation 500 

(MAPE) of risk curves obtained for emulators in comparison with simulation results, we 501 

establish a “rule of thumb” criterion that might be used to discern whether a specific emulator 502 

can substitute a simulation study in such application. 503 

Application: Production risk curves 504 

We implement emulators in a risk analysis procedure for oilfield in early stage of production. 505 

We use emulators to generate production risk curves results for the final production time (7,305 506 

days) and compare the results with those obtained by using the reservoir numerical simulator for 507 

a medium fidelity model. For this purpose, we select a risk curve constructed with 1000 508 

simulated scenarios as reference risk curve. 509 

In order to compare risk curves we compute simulator/emulator discrepancy using the mean 510 

absolute percentage error (MAPE). In our specific study case, it was noticed that for MAPE 511 

values close or larger than 0.5%, dissimilarity between risk curves is visually significant. This 512 

means we can use MAPE=0.5% as the tolerated cut-off value for dissimilarity between risk 513 

curves obtained with validated emulator and reference result. 514 
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Table 4: Mean absolute percentage error (MAPE %) for production risk curves. We highlight the case for 
accepted MAPE with smaller training dataset size. 

Training 
dataset 

size 

PROD1 PROD2 PROD3 PROD4 

Np Wp Gp Np Wp Gp Np Wp Gp Np Wp Gp 

100 0.15 0.46 0.10 0.15 0.83 0.20 0.16 0.53 0.14 0.10 0.73 0.15 
150 0.11 0.23 0.17 0.11 0.64 0.12 0.11 0.14 0.12 0.11 0.45 0.13 
200 0.23 0.20 0.22 0.14 0.94 0.09 0.11 0.27 0.11 0.13 0.49 0.15 

250 0.15 0.29 0.15 0.08 1.05 0.12 0.11 0.10 0.09 0.15 0.21 0.16 

300 0.13 0.21 0.14 0.10 0.20 0.10 0.12 0.12 0.11 0.18 0.29 0.19 

350 0.11 0.23 0.11 0.09 0.22 0.07 0.09 0.10 0.07 0.13 0.32 0.14 
400 0.09 0.28 0.09 0.07 0.15 0.08 0.09 0.12 0.10 0.13 0.30 0.12 
450 0.08 0.25 0.10 0.07 0.21 0.08 0.08 0.12 0.07 0.14 0.29 0.12 
500 0.07 0.19 0.07 0.07 0.22 0.08 0.08 0.11 0.07 0.13 0.32 0.13 
550 0.06 0.16 0.07 0.06 0.21 0.07 0.09 0.14 0.09 0.14 0.35 0.15 
600 0.06 0.16 0.07 0.06 0.20 0.08 0.09 0.14 0.09 0.14 0.30 0.14 
650 0.06 0.19 0.07 0.07 0.22 0.08 0.09 0.15 0.09 0.12 0.32 0.12 

700 0.06 0.20 0.06 0.06 0.21 0.08 0.09 0.16 0.08 0.13 0.30 0.12 

750 0.06 0.19 0.06 0.06 0.23 0.08 0.08 0.15 0.07 0.11 0.31 0.11 
800 0.06 0.20 0.07 0.06 0.24 0.08 0.08 0.14 0.07 0.11 0.30 0.11 
850 0.06 0.16 0.06 0.07 0.26 0.08 0.08 0.13 0.07 0.10 0.32 0.11 
900 0.06 0.17 0.06 0.06 0.23 0.07 0.07 0.14 0.07 0.11 0.35 0.10 
950 0.05 0.16 0.06 0.07 0.23 0.07 0.07 0.14 0.07 0.11 0.33 0.10 

1000 0.06 0.18 0.06 0.07 0.23 0.07 0.07 0.13 0.07 0.10 0.38 0.10 
 

 515 

According to MAPE results in Table 4, the case with smaller number of scenarios that meet 516 

this criterion is the emulator built with 300 scenarios (Cross-validation plots for gh emulators 517 

are found in Figure 14). This configures the cheapest validated emulator that can reproduce 518 

simulator results in this application. Then, according to results in Figure 11 and Figure 13, we 519 

can establish the criteria adjusted R-squared greater than 0.8 and normalized RMSE smaller 520 

than 0.5 as quality measure for emulators that reproduce simulator results in this application. 521 

This represents a sufficiency condition based on our specific case, noting that risk curve jh of 522 

PROD4 was reproduced by an emulator outside the recommended criteria ranges. It is also 523 

noted that for number of scenarios greater than 300, differences among MAPE values are not 524 

significant and no relevant variation of predicted risk curves is observed. 525 

As indicated from the MAPE assessment, comparison of risk curves obtained in Figure 15 526 

and Figure 16 shows that the emulator built with 300 sample scenarios is capable of reproducing 527 

production risk curves (1000 trials for emulator and simulator) for gh and jh for all wells at the 528 

selected evaluation time.  Besides, the curve obtained with the simulation outputs of the 300 529 

scenarios is also plotted. Results show that curve constructed with emulator outperforms the risk 530 

curve for 300 simulated scenarios at reproducing the true curve (Sim 1000). In these plots, the 531 

reference point corresponds to a synthetic reality selected for the study case that derives from a 532 
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finer grid model constructed for research purposes. To complement the comparison, Figure 17 533 

shows the results for the field as an integration of individual wells.  534 

Implementation assessment 535 

To compare the computational effort required by using emulation, we record the time spent 536 

in the estimation of regression models for each number of scenarios in the training dataset. 537 

Based on that, we define implementation time as the total time invested in the simulations used 538 

as training data, plus the actual time of estimation of regression models and the time spent in 539 

simulation of validation data. In this assessment, we are not including the human resource 540 

required to learn and implement the emulation technique. 541 

In Figure 18, we plot the calculated implementation time for each case considered for	Nk, 542 

Wk and	ih. The threshold time corresponds to simulation of 500 scenarios which is considered 543 

as “good enough” case compared to reference case according to a MAPE analysis. We find that 544 

the cheapest validated emulator (obtained with 300 scenarios) that reproduces reference risk 545 

curves within the established error tolerance is cheaper (20% less time) than the “good enough” 546 

case using simulation.  547 

6. Conclusions and remarks 548 

Previous works in reservoir emulation dealing with petrophysical uncertainty treated the 549 

problem in a restrictive way. For instance, some of them are characterized by implementation of 550 

multipliers or lack of geological consistency. A validated approach to deal with spatially 551 

distributed inputs, such as permeability and porosity in emulation was proposed and tested in a 552 

risk analysis application. We evaluated the prediction power of emulators built with different 553 

number of initial scenarios and built production risk curves that were assessed against 554 

simulation results. We showed that the proxy-models constructed are able to reproduce 555 

production risk curves for	gh, jh and ih obtained through simulation at the selected evaluation 556 

time within the tolerated discrepancy. Furthermore, according to our analysis: 557 

 558 

• For emulators built with proposed procedure, Adjusted-R² greater than 0.8 and 559 

normalized RMSE smaller than 0.5 represent an “rule of thumb” sufficiency criteria to 560 

validate emulators that can be used to generate production risk curves that match 561 

simulation results within a MAPE tolerance cut-off of 0.5%. For our case study, the 562 

quality criteria were met for emulators built with 300 scenarios. Small improvement in 563 

prediction power is obtained with more training points at the expense of more 564 

computational resources. 565 
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• For our study case and the established criteria, an emulator constructed with 300 566 

scenarios can reproduce reference risk curves obtained with simulation at a cheaper 567 

computational cost (20% less). Despite being a small gain compared to what can be 568 

expected from using proxy models, it can be understood because we are using a model 569 

that represent a portion of a full complex reservoir and which is fast to run.  570 

In this preliminary work, we have implemented the emulator in a straightforward application 571 

because our focus was the development of the procedure for consideration of variability 572 

spatially-distributed properties in emulation. The full potential of this tool is expected to be 573 

more relevant when working with simulation intensive studies (e.g. history-matching 574 

workflows) and complex models such as carbonate reservoirs in Brazilian pre-salts. Because of 575 

the difference between emulator and simulation running times, computational cost saving from 576 

using emulators can be bigger as complexity, heterogeneity and size of reservoir model 577 

increase. Notwithstanding, complex cases also mean more training data for emulators, so the 578 

trade-off between model complexity and computational time saving is a crucial issue of further 579 

research. 580 
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Nomenclature 588 

Latin letters  Unit 

Adj-R² Adjusted coefficient of determination  

\>% PCA loadings  

oN Gas-Formation volume factor  

oI Oil-Formation volume factor  

� Objective function f  

�> Emulated output i  

FGHIJJ Cross-plot function  

p Objective function g  

p>% Deterministic functions  

Gp Cumulative gas production m³ 
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ℎ% PV measure  

! Number of predictors  

L Model likelihood  

n Sample size  

N Number of points in risk curve  

Np Cumulative oil production m³ 

?> Predicted data  

R² Coefficient of determination  

�)*+, Normalized RMSE  

�> Reference data  

�J Gas-Oil ratio  

ℛ Subset of training data  

S Training data  

r> Gaussian Process  

Wp Cumulative water production m³ 

s  Input vector  

st Active variables  

u Simulator outputs  

u4 Proxy outputs  

u7 Mean of training data outputs  

Greek letters   

v>% Regression scalars  

w> PCA eigenvalues  

xN Gas viscosity  

xI Oil viscosity  

Abbreviations   

AIC Aikake information criteria  

CPU Central Processing Unit  

DLHG 
Discretized Latin hypercube with geo-

realizations 
 

JMM Joint-model method  

MAPE Mean average percentage error  

NTG Net-to-gross ratio  

OF Objective function  

PCA Principal component analysis  

PM Proxy Model  
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PV Principal variables  

PVT Pressure-Volume-Temperature  

RM Representative Model  

RMSE Root mean square error  

SGS Sequential Gaussian simulation  

SIS Sequential indicator simulation  
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 676 

Figure Captions 677 

Figure 1: General methodology flowchart for emulator building and application in reservoir studies 678 

Figure 2: Illustration of MAPE. Measure of discrepancy between risk curves obtained with emulation and 679 

simulation. a) Good case. b) Bad case. 680 

Figure 3: Diagram for parameterization of inputs from geostatistical realizations 681 

Figure 4: Suggested procedure for parameterization of inputs from geostatistical realizations. 682 

Figure 5: Illustration of RMs selection method by Meira et al. (2015). Selection of 10 models for study 683 

case. a) Risk curve for field cumulative oil. b) Cross-plot for field cumulative oil and cumulative water. 684 

Figure 6: META-2D – Fluid modeling. (a) oil viscosity (µo) and gas viscosity (µg), (b) oil (Bo) and gas 685 

(Bg)formation volume factor and (c) Gas-oil ratio (Rs). yz is the bubble point pressure. 686 

Figure 7: Grid-block effective porosity map realization for META-2D model. 687 

Figure 8: Permeability (mD) characterization for META-2D model. a) Random geostatistical realization. 688 

b) Mean values for training dataset.  c) Standard deviation for training dataset. 689 

Figure 9: Production variables scenarios used as objective functions in emulation at final production time 690 

7,305 days. a) Scenarios for cumulative oil. b) Scenarios for cumulative water. 691 

Figure 10: Illustration of PV + AIC model selection for emulators built with 300 scenarios for Np of 692 

PROD2. Red dots correspond to porosity and black dots to permeability active variables. a)  Points 693 

selected near well location. b) Points selected for the whole zone. 694 

Figure 11: Summary of emulator building. Adjusted-R² for regression models 695 

 Figure 12: Cross-validation comparison for  Wk emulators. Straight black line represents coincidence of 696 

emulator (Y) and simulator results (T). Coefficient of determination for the model and prediction error 697 

(RMSE0) for validation data are reported. a) Cumulative Water Producer 3. Emulation with 100 scenarios. 698 

b) Cumulative Water Producer 3. Emulation with 300 scenarios. 699 
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Figure 13: Normalized RMSE values as a function of number of scenarios used to build emulator. Results 700 

correspond to average of 10 different samples. 701 

Figure 14: Cross-validation plots between simulator and proxy constructed with 300 scenarios for 702 

Cumulative Oil. Straight black line represents coincidence of emulator (Y) and simulator results (T). a) 703 

Producer 1. b) Producer 2. c) Producer 3. d) Producer 4. 704 

Figure 15: Comparison of Cumulative Oil Np risk curves obtained with 300 scenarios emulator and 705 

reference curve. a) Producer 1. b) Producer 2. c) Producer 3. d) Producer 4. 706 

Figure 16: Comparison of cumulative water Wp risk curves obtained with 300 scenarios emulator and 707 

reference curve. a) Producer 1. b) Producer 2. c) Producer 3. d) Producer 4. 708 

Figure 17: Field results as integration of separate emulators for the four wells. a) Field Cumulative Oil. b) 709 

Field Cumulative Water. c) Field Cumulative Gas. 710 

Figure 18: Implementation time for Np, Wp and Gp emulators. We have emulators with RMSEn smaller 711 

than 0.5 with implementation time less than established threshold. Results for 300 scenarios highlighted 712 

in violet box. 713 

 714 
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Highlights 

• A procedure for consideration of spatially-distributed properties in reservoir behavior 

emulation is proposed.  

• The procedure is based on a selection of representative grid-block properties within well 

drainage regions.  

• Implementation of the proposed procedure in emulator building provides reliable results 

for risk curves generation in oilfield development.  

 


