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ASYMPTOTIC BEHAVIOUR OF THE SPECTRA OF SYSTEMS
OF MAXWELL EQUATIONS IN PERIODIC COMPOSITE

MEDIA WITH HIGH CONTRAST

KIRILL CHEREDNICHENKO AND SHANE COOPER

Abstract. We analyse the behaviour of the spectrum of the system of Maxwell
equations of electromagnetism, with rapidly oscillating periodic coefficients, subject
to periodic boundary conditions on a “macroscopic” domain (0, T )3, T > 0. We
consider the case where the contrast between the values of the coefficients in different
parts of their periodicity cell increases as the period of oscillations η goes to zero.
We show that the limit of the spectrum as η → 0 contains the spectrum of a
“homogenized” system of equations that is solved by the limits of sequences of
eigenfunctions of the original problem. We investigate the behaviour of this system
and demonstrate phenomena not present in the scalar theory for polarized waves.

§1. Introduction. The behaviour of systems (of Maxwell equations) with
periodic coefficients in the regime of “high contrast” or “large coupling”, that
is, when the ratio between material properties of some of the constituents within
the composite is large, is understood to be of special interest in applications.
This is due to the improved band-gap properties of the spectra for such materials
compared to the usual moderate-contrast composites. A series of recent studies
have analysed asymptotic limits of scalar high-contrast problems, either in the
strong L2 sense (see [11, 12]) or in the norm-resolvent L2 sense (see [2]). These
have resulted in sharp operator convergence estimates in the homogenization of
such problems (i.e. in the limit as the period tends to zero) and have provided
a link between the study of effective properties of periodic media and the
behaviour of waves in such media, in particular their scattering characteristics.
The studies have also highlighted the need to extend the classical compactness
techniques in homogenization to cases where the symbol of the operator involved
is no longer uniformly positive definite, thus leading to “degenerate” problems.
The work [6] has opened a way to one such extension procedure, based on
a “generalized Weyl decomposition”, from the perspective of the strong L2

convergence.
The set of tools developed in the literature is now poised for the treatment

of vector problems with degeneracies such as the linearized elasticity equations
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584 K. CHEREDNICHENKO AND S. COOPER

and the Maxwell equations; these examples are typically invoked in the physics
and applications literature, and are prototypes for wider varieties of partial
differential equations. The recent work [10] has studied the spectral behaviour of
periodic operators with rapidly oscillating coefficients in the context of linearized
elasticity. It shows that the related spectrum exhibits the phenomenon of “partial”
wave propagation, depending on the number of eigenmodes available at each
given frequency. This is close in spirit to the work [7], where “partial wave
propagation” was studied for a wider class of vector problems, with a general
high-contrast anisotropy.

The high-contrast system of Maxwell equations poses an analytic challenge
in view of the special structure of the “space of microscopic variations” (using
the terminology of [6]), which consists of functions that are curl-free on the
“stiff” component, in the case of a two-component composite of a “stiff”
matrix and “soft” inclusions. In the work [1] the authors analysed the two-
scale structure of solutions to the high-contrast system of Maxwell equations in
the low-frequency limit, and derived the corresponding system of homogenized
equations, by developing an appropriate compactness argument on the basis
of the general theory of [6]. In the present paper we consider the associated
wave propagation problem for monochromatic waves of a given frequency by
constructing two-scale asymptotic series for eigenfunctions. We justify these
asymptotic series by demonstrating that for each element of the spectrum of the
homogenized equations there exist convergent eigenvalues and eigenfunctions
for the original heterogeneous problem. Our analysis is set in the context of
a “supercell” spectral problem, that is, the problem of vibrations of a square-
shaped domain with periodicity conditions on the boundary (equivalently seen
as a torus). The problem of the “spectral completeness” of the homogenized
description in question remains open: it is not known, for the full-space problem,
whether there may exist sequences of eigenvalues converging to a point outside
the spectrum of the homogenized problem. This will be addressed in a future
publication, using the method developed in [2].

§2. Problem formulation and main results. In this paper we consider Maxwell
equations for a three-dimensional two-component periodic dielectric composite
when the dielectric properties of the constituent materials exhibit a high degree
of contrast. We assume that the reference cell Q := [0, 1)3 contains an inclusion
Q0,which is an open set with sufficiently smooth boundary. We also assume that
the “matrix” Q1 := Q\Q0 is simply connected Lipschitz set.

We consider a composite with high contrast in the dielectric permittivity εη =
εη(x/η) at points x ∈ η(Q1+m), m ∈ Z3, and x ∈ η(Q0+m), m ∈ Z3, namely

εη(y) =
{
η−2ε0(y), y ∈ Q0,

ε1(y), y ∈ Q1,

where η ∈ (0, 1) is the period and ε0, ε1 are continuously differentiable Q-
periodic positive-definite scalar functions.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579318000062
Downloaded from https://www.cambridge.org/core. Durham University Library, on 09 May 2018 at 09:45:25, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000062
https://www.cambridge.org/core


SPECTRA OF SYSTEMS OF MAXWELL EQUATIONS 585

We also assume moderate contrast in the magnetic permeability, and for
simplicity of exposition we shall set µ ≡ 1. We consider the open cube T :=
(0, T )3 and those values of the parameter η for which T/η ∈ N. By rescaling
the spatial variable (which can also be viewed as non-dimensionalization)
we assume that T = 1 and that η−1

∈ N. We shall study the behaviour
of the magnetic component Hη of the electromagnetic wave of frequency
ω propagating through the domain T occupied by a dielectric material with
permittivity εη(x/η). More precisely, we consider pairs (ωη, Hη) ∈ R+ ×
[H1

# (T)]
3 satisfying the system of equations

curl
(
ε−1
η

(
·

η

)
curl Hη

)
= ω2

ηHη. (2.1)

Notice that solutions of (2.1) are automatically solenoidal, that is, div Hη
= 0.

We seek solutions to the above problem in the form of an asymptotic
expansion

Hη(x) = H0
(

x,
x
η

)
+ ηH1

(
x,

x
η

)
+ η2 H2

(
x,

x
η

)
+ · · · ,

ωη = ω + ηω1 + η
2ω2 + · · · ,

(2.2)

where the vector functions H j (x, y), j = 0, 1, 2, . . . , are Q-periodic in the
variable y. (Note that the terms of order O(η) and higher in the expansion for
ωη will be of no importance in what follows.) Substituting (2.2) into (2.1) and
gathering the coefficients for each power of the parameter η results in a system
of recurrence relations for H j , j = 0, 1, 2, . . . ; see §4. In particular, the function
H0 is an eigenfunction of a limit (“homogenized”) system of partial differential
equations, as described in the following theorem.

THEOREM 2.1. Consider the constant matrix

Ahom
:=

∫
Q1

ε−1
1 (y)(curl N (y)+ I ) dy,

where the vector function N is a solution to the “unit-cell problem”

curl(ε−1
1 [curl N + I ]) = 0 in Q1,

ε−1
1 (curl N + I )× n = 0 on ∂Q0, N is Q-periodic,

(2.3)

in which n is the exterior normal to ∂Q0.
Suppose that ω ∈ R+ and H0(x, y) = u(x)+∇yv(x, y)+ z(x, y), where the

triplet1(u, v, z) ∈ [H1
#curl(T)]

3
× L2(T; H2

# (Q)) × [L
2(T; H1

0 (Q0))]
3 satisfies

1 For a cube T, we denote by H1
# (T), H1

#curl(T), the closures of the set of T-periodic smooth functions
with respect to the norm of H1(T) and the norm(∫

T
| · |

2
+

∫
T
|curl · |2

)1/2
,

respectively. Throughout the paper we only consider real-valued functions and spaces thereof.
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586 K. CHEREDNICHENKO AND S. COOPER

the system of equations

curlx (Ahom curlx u(x)) = ω2
(

u(x)+
∫

Q0

z(x, y) dy
)
, x ∈ T, (2.4)

divy(∇yv(x, y)+ z(x, y)) = 0, (x, y) ∈ T× Q, (2.5)

curly(ε
−1
0 (y) curly z(x, y)) = ω2(u(x)+∇yv(x, y)+ z(x, y)),

(x, y) ∈ T× Q0.
(2.6)

Then:
(1) There exists at least one eigenfrequency ωη for (2.1) such that

|ωη − ω| < Cη, (2.7)

with an η-independent constant C > 0.
(2) Consider the finite-dimensional vector space

Xη := span{Hη
: (2.1) holds, where ωη satisfies (2.7)}.

There exists an η-independent constant Ĉ > 0 such that

inf
H∈Xη

∥∥∥∥H0
(
·,
·

η

)
− H(·)

∥∥∥∥
L2(T)

< Ĉη.

The matrix Ahom is described by solutions to certain degenerate “cell
problems”, as follows. Consider the spaces

V := {v ∈ [H1
# (Q)]

3
: curl v = 0 in Q1} (2.8)

and V⊥, the orthogonal complement of V in [H1
# (Q)]

3 with respect to the
equivalent H1(Q)-norm

‖v‖H1(Q) :=

(∣∣∣∣∫
Q
v

∣∣∣∣2 + ∫
Q
|∇v|2

)1/2

,

associated with the inner product

(v,w)H1(Q) :=

(∫
Q
v

)
·

(∫
Q
w

)
+

∫
Q
∇v · ∇w.

Then
Ahomξ =

∫
Q
ε−1

1 (curl Nξ + ξ), ξ ∈ R3, (2.9)

where Nξ , ξ ∈ R3, is the unique (weak) solution in V⊥ to the problem (2.3), that
is, ∫

Q
ε−1

1 (curl Nξ + ξ) · curl ϕ = 0 for all ϕ ∈ V⊥. (2.10)

Existence and uniqueness of Nξ are discussed in §4.
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SPECTRA OF SYSTEMS OF MAXWELL EQUATIONS 587

Notice that

Ahomξ · ξ = min
U∈[H1

# (Q)]
3

∫
Q1

ε−1
1 (curl U + ξ) · (curl U + ξ), ξ ∈ R3. (2.11)

Indeed, for the functional

Fξ (U ) :=
∫

Q1

ε−1
1 (curl U + ξ) · (curl U + ξ),

we find Fξ (U ) = Fξ (PV⊥U ) for all U ∈ [H1
# (Q)]

3, where PV⊥ is the orthogonal
projection onto V⊥. Therefore, without loss of generality, Fξ can be minimized
on V⊥ for which (2.10) is the corresponding Euler–Lagrange equation.

The variational formulation (2.11) allows one to obtain a representation for
the matrix εhom

stiff such that

εhom
stiff ξ · ξ := inf

u∈H1
# (Q),

∇u=−ξ in Q0

∫
Q1

ε1(∇u + ξ) · (∇u + ξ), ξ ∈ R3, (2.12)

which arises in the homogenization of periodic problems with stiff inclusions;
see [5, §3.2].2

Indeed, as shown in [5, p. 101], the following representation holds:

(εhom
stiff )

−1ξ · ξ = inf
v∈[L2(Q)]3sol,

〈v〉=0

∫
Q1

ε−1
1 (v + ξ) · (v + ξ), ξ ∈ R3. (2.13)

Notice that for each vector v in (2.13) there exists Uv ∈ [H1
# (Q)]

3 such that
v = curl Uv (see [5, pp. 6–7]), and hence∫

Q1

ε−1
1 (v + ξ) · (v + ξ) =

∫
Q1

ε−1
1 (curl(PV⊥Uv)+ ξ) · (curl(PV⊥Uv)+ ξ).

It follows that for all ξ ∈ R3 one has

(εhom
stiff )

−1ξ · ξ = inf
U∈[H1

# (Q)]
3

∫
Q1

ε−1
1 (curl(PV⊥U )+ ξ) · (curl(PV⊥U )+ ξ)

= Ahomξ · ξ.

§3. On the spectrum of the limit problem. In this section we study the set of
values ω2 such that there exists a non-trivial triple (u, v, z) solving the two-scale
limit spectral problem (2.4)–(2.6).
2 The Euler–Lagrange equation for (2.12) is as follows: find u such that ∇u = −ξ in Q0 and∫

Q1
ε1(∇u + ξ) · ∇φ = 0 for all φ ∈ H1

# (Q),∇φ = 0 in Q0.

The equivalent “strong” form of the same problem is to find a Q-periodic function u such that

div(ε1(∇u + ξ)) = 0 in Q1,

∫
∂Q0

ε1(∇u + ξ) · n = 0,

u is continuous across ∂Q0, ∇u = −ξ, in Q0.
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588 K. CHEREDNICHENKO AND S. COOPER

3.1. Equivalent formulation and spectral decomposition of the limit problem.
Let G be the Green function for the scalar periodic Laplacian, that is, for all
y ∈ Q, one has

−1G(y) = δ0(y)− 1, y ∈ Q,G is Q-periodic,

where δ0 is the Dirac delta function supported at zero, on Q considered as a torus.
Then, as the functions v, z solve (2.5), we have v(x, ·) = G ∗ (divy z)(x, ·), and
(2.6) takes the form

curly(ε
−1
0 (y)curly z(x, y))

= ω2
(

u(x)+∇y

∫
Q0

G(y − y′) divy′ z(x, y′) dy′ + z(x, y)
)
,

(x, y) ∈ T× Q0. (3.1)

For the case ω = 0 the set of solutions z to (3.1) subject to the condition
z(x, y) = 0, x ∈ T, y ∈ ∂Q0, is clearly given by L2(T,H0), where H0 :=

{u ∈ [H1
0 (Q0)]

3
: curl u = 0}.

Further, for ω 6= 0, as (3.1) is linear in u(x) and curly∇y = 0, we set

∇y

∫
Q0

G(y − y′) divy′ z(x, y′) dy′ + z(x, y) = ω2 B(y)u(x), (3.2)

where B is a 3 × 3 matrix function whose column vectors B j , j = 1, 2, 3, are
solutions in [H1

# (Q)]
3 to the system

curl(ε−1
0 curlB j ) = e j + ω

2 B j in Q0, (3.3)

curl B j
= 0 in Q1, (3.4)

div B j
= 0 in Q, (3.5)

a(B j ) = 0, (3.6)

where e j , j = 1, 2, 3, are the Euclidean basis vectors and a(B j ) is the
“circulation” of B j , that is defined as the continuous extension, in the sense
of the H1 norm, of the map given by a(φ)i =

∫ 1
0 φi (tei ) dt , i = 1, 2, 3,

for φ ∈ [C∞(Q)]3. Note that, since B j
∈ [H1(Q)]3, equation (3.4) implies

ε−1
0 curl B j

× n|− = 0 on ∂Q0. Furthermore, the system (3.3)–(3.6) implies the
variational problem of finding B j

∈ [H1
# (Q)]

3, subject to the constraints (3.4)–
(3.6), such that the following identity holds:∫

Q0

ε−1
0 curl B j

· curlϕ

=

∫
Q

e j · ϕ + ω
2
∫

Q
B j
· ϕ for all ϕ ∈ [H1

# (Q)]
3 satisfying (3.4)–(3.6).

(3.7)

Indeed, functions ϕ ∈ [H1
# (Q)]

3 which satisfy (3.4) and (3.6) admit (see
Lemma 4.1 below) the representation ϕ = ∇ p+ψ , p ∈ H2

# (Q),ψ ∈ [H
1
0 (Q0)]

3.
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SPECTRA OF SYSTEMS OF MAXWELL EQUATIONS 589

Therefore, it is straightforward to show (3.7) holds for ϕ = ψ if and only if (3.3)
holds. Similarly, one can show (3.7) holds for ϕ = ∇ p if and only if (3.5) holds.

Substituting the representation (3.2) into (2.4) and using the fact that∫
Q
(∇y′G ∗ (divy z)(x, y′)+ z(x, y′)) dy′ =

∫
Q0

z(x, y) dy,

leads to the operator-pencil spectral problem

curl(Ahom curl u(x)) = 0(ω)u(x), x ∈ T, (3.8)

where 0 is a matrix-valued function that vanishes at ω = 0, and for ω 6= 0 has
elements

0i j (ω) = ω
2
(
δi j + ω

2
∫

Q
B j

i

)
, i, j = 1, 2, 3. (3.9)

We denote by H1 the space of vector fields in [H1
# (Q)]

3 that satisfy conditions
(3.4)–(3.6). It can be shown3 that there exist countably many pairs (αk, rk) ∈

R×H1 such that ‖rk
‖[L2(Q)]3 = 1 and

curl(ε−1
0 curl rk) = αkrk in Q0.

Moreover, the sequence (rk)k∈N can be chosen to form an orthonormal basis of
the closure H1 of H1 in [L2(Q)]3 and, upon a suitable rearrangement, one has

0 < α1 6 α2 6 · · · 6 αk 6 · · ·
k→∞
−→ ∞.

Performing a decomposition4 of the functions B j , j = 1, 2, 3, with respect to
the above basis yields

B j
i =

∞∑
k=1

∫
Q rk

j

αk − ω2 rk
i , ω2 /∈ ∪ {αk

}
∞

k=1,

where rk
j , j = 1, 2, 3, are the components of the vector rk, k ∈ N.

Consider the functions φk
∈ [H1

0 (Q0)]
3, k ∈ N, that solve the non-local

problems

3 Note that ||| · ||| := (
∫

Q0
ε−1

0 |curl · |2)1/2 is a norm in H1 equivalent to the [H1(Q)]3 norm, due to the

fact that (|a(·)|2+‖div · ‖2
L2(Q)

+‖curl · ‖2
[L2(Q)]3

)1/2 is an equivalent norm in the space u ∈ [H1
# (Q)]

3.

Therefore, the equation curl ε−1
0 curl u = λu, u ∈ H1, can be written as λ−1u = K u in the sense of the

“energy” inner product generated by the norm |||·||| and K is a compact self-adjoint operator in (H1, |||·|||).
The claim then follows by a standard Hilbert–Schmidt argument.
4 When applying the standard Fourier representation approach with respect to the basis (rk )k∈N, the
vector e j in the right-hand side of (3.3) is treated as an element of the “dual” of H1, the space of linear
continuous functionals on H1.
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590 K. CHEREDNICHENKO AND S. COOPER

curl(ε−1
0 (y) curlφk(y))

= αk
(
∇

∫
Q0

G(y − y′) divφk(y′) dy′ + φk(y)
)
, y ∈ Q0, (3.10)

and satisfy the orthonormality conditions∫
Q0

∫
Q0

(∇2G(y − y′)+ I )φ j (y) · φk(y′) dy dy′ = δ jk, j, k = 1, 2, . . . ,

where ∇2G is the Hessian matrix of G. Using the formula

rk(y) = ∇
∫

Q0

G(y − y′) divφk(y′) dy′ + φk(y), y ∈ Q,

we obtain the following representation for 0:

0i j (ω) = ω
2δi j + ω

4
∞∑

k=1

(
∫

Q0
φk

i )(
∫

Q0
φk

j )

αk − ω2 ,

i, j = 1, 2, 3, ω2 /∈ {0} ∪ {αk
}
∞

k=1. (3.11)

3.2. Analysis of the limit spectrum. Consider the Fourier expansion for the
function u in (3.8):

u(x) =
∑

m∈Z3

exp(2π im · x)û(m), û(m) :=
∫
T

exp(−2π im · x)u(x) dx,

where the integral is taken componentwise. As u solves (3.8), the coefficients
û(m) satisfy the equation

M(m)û(m) = 0(ω)û(m), m ∈ Z3, (3.12)

with the matrix-valued function M given by

Mlp(m) = 4π2
3∑

i, j,s,t=1

εilsms Ahom
i j ε j pt mt

= 4π2(el × m) · Ahom(ep × m), m ∈ Z3, l, p = 1, 2, 3,

where e j , j = 1, 2, 3 are the Euclidean basis vectors. Here ε is the Levi-Civita
symbol:

ε jkl =


1, ( jkl) = (123), (231), (312),
−1, ( jkl) = (132), (321), (213),
0 otherwise.

Notice that, for all m ∈ Z3
\ {0}, zero is a simple eigenvalue of M(m) with

eigenvector m, and since the matrix Ahom is symmetric and positive definite,
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SPECTRA OF SYSTEMS OF MAXWELL EQUATIONS 591

the values of M are also symmetric and positive definite on vectors ξ such that
ξ · m = 0. In particular, for all m ∈ Z3, one has

0(ω)û(m) · m = 0 (3.13)

whenever û(m) is a solution to (3.12). Denote m̃ := |m|−1m and notice
that M(m) = |m|2M(m̃). Further, we denote by ẽ1(m̃) = (ẽ11(m̃), ẽ12(m̃),
ẽ13(m̃)) and ẽ2(m̃) = (ẽ21(m̃), ẽ22(m̃), ẽ23(m̃)) the normalized eigenvectors
of the matrix M(m̃) corresponding to its two positive eigenvalues λ1(m̃) and
λ2(m̃), respectively.

We write û(m) in terms of the basis (ẽ1(m̃), ẽ2(m̃), m̃), as follows:

û(m) = C(m̃)>ũ(m̃)+ α(m̃)m̃, ũ(m̃) ∈ R2, α(m̃) ∈ R,

C(m̃) =
(

ẽ11(m̃) ẽ12(m̃) ẽ13(m̃)
ẽ21(m̃) ẽ22(m̃) ẽ23(m̃)

)
.

Finding a non-trivial solution to problem (3.12)–(3.13) is equivalent to
determining (ũ(m̃), α(m̃)) ∈ R3

\ {0} such that

|m|23(m̃)ũ(m̃) = C(m̃)0(ω)C(m̃)>ũ(m̃)+ α(m̃)C(m̃)0(ω)m̃,
0(ω)C(m̃)>ũ(m̃) · m̃ = −α(m̃)0(ω)m̃ · m̃,

(3.14)

where

3(m̃) :=
(
λ1(m̃) 0

0 λ2(m̃)

)
.

We have thus proved the following statement.

PROPOSITION 3.1. The spectrum of the problem (2.4)–(2.6) is the union of
the following sets.
(1) The elements of {αk

: k ∈ Z} such that the corresponding rk has
zero mean over Q. These are eigenvalues of infinite multiplicity and the
corresponding eigenfunctions H0(x, y) are of the form w(x)rk(y) for an
arbitrary w ∈ L2(T).

(2) The set {ω2
: ∃m ∈ Z3 such that (3.14) holds}, with the corresponding

eigenfunctions H0(x, y) of (2.4)–(2.6) having the form u(x)+∇yv(x, y)+
z(x, y), where u(x) = exp(2π im · x)û(m) is an eigenfunction of
macroscopic problem (3.8) and

∇yv(x, y)+ z(x, y) = ω2 B(y)u(x) a.e. (x, y) ∈ T× Q,

that is, H0(x, y) = (I + ω2 B(y)) exp(2π im · x)û(m).

An immediate consequence of the above analysis is the following result.

COROLLARY 3.1. If the matrix 0(ω) is negative definite, the value λ = ω2

does not belong to the spectrum of (2.4)–(2.6).

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579318000062
Downloaded from https://www.cambridge.org/core. Durham University Library, on 09 May 2018 at 09:45:25, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000062
https://www.cambridge.org/core


592 K. CHEREDNICHENKO AND S. COOPER

Proof. Since M(m̃) admits the spectral decomposition C ′(m̃)3′(m̃)C ′(m̃)>,
where

C ′(m̃) :=

ẽ11(m̃) ẽ12(m̃) ẽ13(m̃)
ẽ21(m̃) ẽ22(m̃) ẽ23(m̃)

m̃1 m̃2 m̃3

 , 3′(m̃) :=

λ1(m̃) 0 0
0 λ2(m̃) 0
0 0 0

 ,
a necessary condition for pairs (m, ω) such that (3.12) has a solution is as
follows:

det(|m|23′(m̃)− C ′(m̃)>0(ω)C ′(m̃)) = 0.

This is not possible since 3′(m̃) is positive semidefinite and, by assumption, the
matrix0(ω) is negative definite, and consequently the matrix C ′(m̃)>0(ω)C ′(m̃)
is also negative definite. �

3.3. Examples of different admissible wave propagation regimes for the effective
spectral problem. In this section we explore the effective wave propagation
properties of high-contrast electromagnetic media. We demonstrate that the sign-
indefinite nature of the matrix-valued function 0 gives rise to phenomena not
present in the case of polarized waves.

Suppose that the inclusion is symmetric under a rotation by π around at
least two of the three coordinate axes. Then the matrices Ahom and 0(ω) are
diagonal (see Appendix): 4π2 Ahom

= diag(a1, a2, a3), 0(ω) = diag(β1(ω),

β2(ω), β3(ω)). Here ai , i = 1, 2, 3, are positive constants and βi , i = 1, 2, 3, are
real-valued scalar functions. Notice that, since |m̃| = 1, the eigenvalues λ1,2(m̃)
of M(m̃) are the solutions to the quadratic equation

λ2
− λ{(a2 + a3)m̃2

1 + (a1 + a3)m̃2
2 + (a1 + a2)m̃2

3}

+ (a1a2m̃2
3 + a2a3m̃2

1 + a1a3m̃2
2) = 0. (3.15)

We will now solve the eigenvalue problem (3.12), equivalently (3.14), for
particular examples of such inclusions.

3.3.1. Isotropic propagation (no “weak” band gaps). If the inclusion Q0 is
symmetric by a π/2-rotation around at least two of the three axes, say x1 and x2,

then a = a1 = a2 = a3 and β(ω) = β1(ω) = β2(ω) = β3(ω). Equation (3.15)
takes the form (λ− a)2 = 0, and therefore λ1(m̃) = λ2(m̃) = a is an eigenvalue
of multiplicity two of M(m̃), with orthonormal eigenvectors given by

ẽ1(m̃) = e2, ẽ2(m̃) = e3 if |m̃1| = 1, (3.16)

and

ẽ1(m̃) =
1√

1− m̃2
1

e1 × m̃, ẽ2(m̃) =
1√

1− m̃2
1

(e1 × m̃)× m̃ if |m̃1| < 1.

(3.17)
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SPECTRA OF SYSTEMS OF MAXWELL EQUATIONS 593

As before, the e j , j = 1, 2, 3, are the Euclidean basis vectors. The system (3.14)
takes the form

a|m|2ũ(m̃) = β(ω)ũ(m̃), α(m̃)β(ω) = 0.

Notice that if ω is a zero of β then necessarily ũ(m̃) is the zero vector. For such
values of ω, the above system is satisfied for any α(m̃), that is, the non-trivial
eigenvectors to (3.12) are parallel to m̃. On the other hand, if β(ω) 6= 0, then
α(m̃) = 0 and ω is an eigenvalue of (3.12) if and only if it solves the equation
β(ω) = a|m|2. In this case ũ(m̃) is an arbitrary element of R2 and û(m) =
C(m̃)>ũ(m̃) is an arbitrary vector of the (two-dimensional) eigenspace spanned
by the vectors ẽ1(m̃) and ẽ2(m̃). Finally, there are no non-trivial solutions û when
β(ω) < 0.

3.3.2. Directional propagation (existence of “weak” band gaps). If the
inclusion Q0 is symmetric by a π/2-rotation around one of the three coordinate
axis, say x1, and by a π -rotation around another axis, say x2, one has a = a1,
b = a2 = a3 and β2(ω) = β3(ω). Here, recalling |m̃| = 1, (3.15) takes the form

(λ− b)(λ− a(1− m̃2
1)− bm̃2

1) = 0,

whence λ1(m̃) = a(1 − m̃2
1) + bm̃2

1, λ2(m̃) = b. There are now two separate
cases to consider.

Case 1. Assume that |m̃1| = 1, that is, the vector m̃ is parallel to the axis of higher
symmetry. Here, M(m̃) = diag(0, b, b) and b is an eigenvalue of multiplicity
two with the eigenspace spanned by the vectors (3.16). The system (3.14) takes
the form

bm2
1ũ(m̃) = β2(ω)ũ(m̃), α(m̃)β1(ω) = 0.

Here, if β2(ω) < 0, then necessarily ũ(m̃) = 0 and non-trivial solutions
û(m) = α(m̃)m̃ exist if and only if β1(ω) = 0. On the other hand, if β1(ω) < 0,
then necessarily α(m̃) = 0 and non-trivial solutions û(m) = C(m̃)>ũ(m̃) exist
if and only if β2(ω) > 0. The first situation only occurs at a discrete set of
values ω, while, unlike in the isotropic case, the second situation can give rise to
intervals each of which contains a sequence of admissible ω, obtained from the
condition

√
β2(ω)/b ∈ N, with a reduced number of eigenmodes. In the case of

the full-space problem these intervals form part of the continuous spectrum of
the problem with a reduced number of propagating modes (“weak band gaps”;
cf. [7, 9, 10]).

Case 2. Assume |m̃1| < 1, that is, the vector m̃ is not parallel to the axis of
higher symmetry. In this case the eigenvectors corresponding to λ1(m̃), λ2(m̃)
are given by ẽ1(m̃), ẽ2(m̃) in (3.17). By setting

0(ω) = diag(β1(ω)− β2(ω), 0, 0)+ β2(ω)I
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594 K. CHEREDNICHENKO AND S. COOPER

it is easy to see that the system (3.14) takes the form

|m|2λ1(m̃)ũ1(m̃) = β2(ω)ũ1(m̃),

(β1(ω)− β2(ω))m̃1

√
1− m̃2

1ũ2(m̃) = α(m̃)((β1(ω)− β2(ω))m̃2
1 + β2(ω)),

|m̃|2λ2(m̃)ũ2(m̃) = (β2(ω)+ (β1(ω)− β2(ω))(1− m̃2
1))ũ2(m̃)

− α(m̃)(β1(ω)− β2(ω))m̃1

√
1− m̃2

1.

(3.18)

If m̃1 = 0, that is, the vector m̃ is perpendicular to the direction of higher
symmetry, then the system (3.18) fully decouples and reduces to

|m|2aũ1(m̃) = β2(ω)ũ1(m̃), |m|2bũ2(m̃) = β1(ω)ũ2(m̃),
α(m̃)β2(ω) = 0.

Suppose β1(ω) (respectively, β2(ω)) is negative for some ω. Then the above
system implies that ũ2(m̃) = 0 (respectively, ũ1(m̃) = 0). In this case, we
see that propagation is restricted solely to the direction of ẽ1(m̃) (respectively,
ẽ2(m̃)), which is orthogonal to the eigenvector(s) corresponding to the negative
eigenvalue of 0(ω). In both situations weak band gaps are present in the similar
full-space problem.

Remark 3.1. Recently there have been several works on the analysis of
problems with “partial” or “directional” wave propagation in the context of
elasticity, where at some frequencies, propagation occurs for some but not for all
values of the wave vector: the analysis of the vector problems for thin structures
of critical thickness [9], the analysis of high-contrast [10], and partially high-
contrast [7] periodic elastic composites. To our knowledge, the effect we describe
here is the first example of a similar kind for Maxwell equations.

Remark 3.2. When the “size” T of the domain T increases to infinity
(equivalently, for a given macroscopic domain, the parameter by which its size
is scaled (see §2) tends to zero), the spectrum of (2.4)–(2.6) converges to a union
of intervals (“bands”) separated by intervals of those values ω2 for which the
matrix 0(ω) is negative definite (“gaps” or “lacunae”). As above, we say that
ω2 belongs to a weak band gap (in the spectrum of (2.4)–(2.6)) if at least one
eigenvalue of 0(ω) is positive semidefinite and at least one eigenvalue of 0(ω)
is negative.

§4. Two-scale asymptotic expansion of the eigenfunctions. Here we give the
details of the recurrent procedure for the construction of the series (2.2). We use
|+ and |− to denote the limit values of the expressions to which these symbols
are attached, on the outside and on the inside of the boundary of the inclusion
Q0, respectively.

Substituting the expansions (2.2) into (2.1) and equating coefficients on η−2,

η−1 and η0, we arrive at the following sets of equations, where x ∈ T is
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a parameter:

curly(ε
−1
1 (y) curly H0(x, y)) = 0, y ∈ Q1, (4.1)

ε−1
1 (y) curly H0(x, y)× n(y)|+ = 0, y ∈ ∂Q0, (4.2)

curly(ε
−1
1 (y) curly H1(x, y))

= −(curly ε
−1
1 (y) curlx + curlx ε−1

1 (y) curly)H0(x, y), y ∈ Q1, (4.3)

(ε−1
1 (y) curly H1(x, y)× n(y)+ ε−1

1 (y) curlx H0(x, y)× n(y))|+ = 0,
y ∈ ∂Q0, (4.4)

curly(ε
−1
1 (y) curly H2(x, y))

= −(curly ε
−1
1 (y) curlx + curlx ε−1

1 (y) curly)H1(x, y)

− curlx ε−1
1 (y) curlx H0(x, y)+ ω2 H0(x, y), y ∈ Q1, (4.5)

(ε−1
1 (y) curly H2(x, y)+ ε−1

1 (y) curlx H1(x, y))× n(y)|+
= ε−1

0 (y) curly H0(x, y)× n(y)|−, y ∈ ∂Q0, (4.6)

and

curly(ε
−1
0 (y) curly H0(x, y)) = ω2 H0(x, y), y ∈ Q0, (4.7)

H0(x, y)|− = H0(x, y)|+, y ∈ ∂Q0. (4.8)

Multiplying equation (4.1) by H0, integrating by parts over Q1 and using (4.2)
shows that curly H0(x, y) = 0, y ∈ Q1. More precisely, for all x ∈ T, we
seek H0(x, ·) from the space V ; see (2.8). Before proceeding, we recall a
characterization of the space V (see [1]) that proves useful in the analysis of
the term H0.

LEMMA 4.1 (Characterization of V ). A function v ∈ [H1
# (Q)]

3 is an element
of the space V if and only if

v(y) = a +∇b(y)+ c(y) a.e. y ∈ Q,

for some a ∈ R3, b ∈ H2
# (Q), c ∈ [H1

0 (Q0)]
3.

Taking into account, via Lemma 4.1, that the leading-order term H0 is of the
form

H0(x, y) = u(x)+∇yv(x, y)+ z(x, y) (4.9)

and substituting (4.9) into equations (4.3)–(4.4), we find that the coefficient H1

has the representation H1(x, y) = N (y) curl u(x)+ H̃1(x, y), up to the addition
of an element of V . Here the term H̃1(x, y) satisfies

curly(ε
−1
1 (y) (curly H̃1(x, y)+ curlx∇yv(x, y))) = 0, y ∈ Q1, (4.10)

ε−1
1 (y)(curly H̃1(x, y)+ curlx∇yv(x, y))× n(y)|+ = 0, y ∈ ∂Q0, (4.11)

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579318000062
Downloaded from https://www.cambridge.org/core. Durham University Library, on 09 May 2018 at 09:45:25, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579318000062
https://www.cambridge.org/core


596 K. CHEREDNICHENKO AND S. COOPER

and N = N (y) is a Q-periodic matrix-valued function whose columns N r
=

N r (y), r = 1, 2, 3, are solutions to the problems

curl(ε−1
1 (y)(curl N r (y)+ er )) = 0, y ∈ Q1,

ε−1
1 (y)(curl N r (y)+ er )× n(y) = 0, y ∈ ∂Q0,

(4.12)

where er is the r th Euclidean basis vector. It is shown [4, 6] that (4.12) admits a
unique solution in V⊥, the orthogonal complement to V in the space [H1

# (Q)]
3.

Looking for H1(x, ·) ∈ [H1
# (Q)]

3 and taking into account the identity
curlx∇y = −curly∇x together with (4.10)–(4.11), we infer that for all x ∈ T
the function h(x, ·) := H̃1(x, ·)−∇xv(x, ·) is a solution in [H1

# (Q)]
3 to

curly(ε
−1
1 (y) curly h(x, y)) = 0, y ∈ Q1,

ε−1
1 (y) curly h(x, y)× n(y)|+ = 0, y ∈ ∂Q0.

In particular, the function h belongs to the space V . Therefore, one has

H1(x, y) = N (y) curlx u(x)+∇xv(x, y), (4.13)

up to the addition of an element of V . (As we discuss in Remark 5.1 below, one
can specify the divergence divy H1(x, y). This, along with the condition that the
y-average of H1 vanishes, defines this additional element of V in a unique way.)

Further, multiplying equation (4.5) by an arbitrary test function φ ∈ V and
integrating over Q1 yields∫

Q1

curly(ε
−1
1 (y) curly H2(x, y)) · φ(y) dy

=

∫
Q1

ω2 H0(x, y) · φ(y) dy −
∫

Q1

curly(ε
−1
1 (y) curlx H1(x, y)) · φ(y) dy

−

(∫
Q1

curlx (ε−1
1 (y) curlx H0(x, y)) · φ(y)

+ curlx (ε−1
1 (y) curly H1(x, y)) · φ(y) dy

)
. (4.14)

We integrate in the left-hand side of (4.14) by parts to determine that∫
Q1

curly(ε
−1
1 (y) curly H2(x, y)) · φ(y) dy

=

∫
∂Q0

ε−1
1 (y)(curly H2(x, y)× n(y)|+) · φ(y) d S(y). (4.15)

Now we perform integration by parts on the individual terms on the right-hand
side of (4.14).
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−

∫
Q1

curly(ε
−1
1 (y) curlx H1(x, y))φ(y) dy

= −

∫
∂Q0

(ε−1
1 (y) curlx H1(x, y)× n(y)|+) · φ(y) d S(y)

by (4.6)
=

∫
∂Q0

{(ε−1
1 (y) curly H2(x, y)× n(y)|+) · φ(y)

− (ε−1
0 (y) curly H0(x, y)× n(y)|−) · φ(y)} d S(y)

=

∫
∂Q0

(ε−1
1 (y) curly H2(x, y)× n(y)|+) · φ(y) d S(y)

+

∫
Q0

curly(ε
−1
0 (y) curly H0(x, y)) · φ(y) dy

−

∫
Q0

ε−1
0 (y) curly H0(x, y) · curly φ(y) dy

by (4.7)
=

∫
∂Q0

(ε−1
1 (y) curly H2(x, y)× n(y)|+) · φ(y) d S(y)

+

∫
Q0

ω2 H0(x, y) · φ(y) dy

−

∫
Q0

ε−1
0 (y) curly H0(x, y) · curly φ(y) dy. (4.16)

Taking into account the representations (4.9) and (4.13), we find that∫
Q1

{curlx (ε−1
1 (y) curlx H0(x, y)) · φ(y)

+ curlx (ε−1
1 (y) curly H1(x, y)) · φ(y)} dy

=

∫
Q1

curlx {ε−1
1 (y) ((I + curl N (y)) curlx u(x)

+ curlx∇yv(x, y)+ curly∇xv(x, y))} ·φ(y) dy

=

∫
Q1

curlx {ε−1
1 (y)(I + curl N (y)) curlx u(x)} · φ(y) dy, (4.17)

where we again make use of the identity curlx∇y = −curly∇x . Finally, equations
(4.14)–(4.17) imply∫

Q1

curlx {ε−1
1 (y)(I + curl N (y)) curlx u(x)} · φ(y) dy

+

∫
Q0

ε−1
0 (y) curly H0(x, y) · curly φ(y) dy

=

∫
Q
ω2 H0(x, y) · φ(y) dy for all φ ∈ V . (4.18)

In what follows we derive the system (2.4)–(2.6) by considering different
choices of the test function φ in the identity (4.18).
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598 K. CHEREDNICHENKO AND S. COOPER

Step 1. Choosing test functions φ ∈ [C∞0 (Q0)]
3 in (4.18), we find that

curly(ε
−1
0 (y) curly H0(x, y)) = ω2 H0(x, y), y ∈ Q0.

Using the representation (4.9) and the identity curly∇y = 0, we arrive at (2.6).

Step 2. Choosing φ = ∇yψ in (4.18), performing integration by parts, using
the identity divy curlx = −divx curly and recalling (4.12) gives∫

Q
ω2 H0(x, y) · ∇yψ dy

=

∫
Q1

curlx {ε−1
1 (y)(I + curl N (y)) curlx u(x)} · ∇yψ(y) dy

= −

∫
Q1

divy curlx {ε−1
1 (y)(I + curl N (y)) curlx u(x)} · ψ(y) dy

=

∫
Q1

divx curly{ε
−1
1 (y)(I + curl N (y)) curlx u(x)} · ψ(y) dy = 0.

Therefore, we deduce that

divy H0(x, y) = 0, y ∈ Q, (4.19)

and, taking into account (4.9), we obtain the equation (2.5).

Step 3. Choosing φ(y) ≡ 1 in the identity (4.18), we find, using the
representation (4.9) once more, that (2.4) holds, where the matrix Ahom emerges
as the result of integrating the expression ε−1

1 (y)(curl N (y)+ I ) with respect to
y ∈ Q1.

In the next section we use the above formal construction of the series (2.2) to
justify the two claims of Theorem 2.1.

§5. Proof of Theorem 2.1. For each η > 0, denote by Aη the operator in the
space5L2

#sol(T) defined in a standard way by the bilinear form (cf. (2.1))∫
T
ε−1
η

(
·

η

)
curl u · curl v, u, v ∈ [H1

# (T)]
3
∩ L2

#sol(T) =: H.

For fixed ω in the spectrum of (2.4)–(2.6), let H0 be a corresponding
eigenfunction. Consider the (unique) solution H̃η

∈ H to the problem

(Aη + I )H̃η
= (ω2

+ 1)H0
(
·,
·

η

)
. (5.1)

Denote also

bη(u, v) :=
∫
T
ε−1
η

(
·

η

)
curl u · curl v +

∫
T

u · v, u, v ∈ [H1
# (T)]

3,

5 We denote by L2
#sol(T) the closure of the set of smooth divergence-free vector fields on T with respect

to the L2(T) norm.
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and (cf. (2.2))

H (2)(·, η) := H0
(
·,
·

η

)
+ ηH1

(
·,
·

η

)
+ η2 H2

(
·,
·

η

)
, (5.2)

where H j , j = 1, 2, are solutions of the system of recurrence relations described
in §4. The existence of solutions H1, H2 is guaranteed by a result established in
[1, Lemma 3.4]. As these solutions are unique up to the addition of an element
from V , we shall choose them as in Remark 5.1.

PROPOSITION 5.1. There exists a constant Ĉ > 0 such that the estimate

|bη(H̃η
− H (2)(·, η), ϕ)| 6 Ĉη

√
bη(ϕ, ϕ) (5.3)

holds for all ϕ ∈ [H1
# (T)]

3.

Proof. Using the definition of the function H̃η and the recurrence relations
(4.1)–(4.8) yields

bη(H̃η
− H (2)(·, η), ϕ)

=

∫
T
ε−1
η

(
·

η

)
curl H̃η

· curlϕ +
∫
T

H̃η
· ϕ

−

∫
T
ε−1
η

(
·

η

)
curl

(
H0
(
·,
·

η

)
+ ηH1

(
·,
·

η

)
+ η2 H2

(
·,
·

η

))
· curlϕ

−

∫
T

(
H0
(
·,
·

η

)
+ ηH1

(
·,
·

η

)
+ η2 H2

(
·,
·

η

))
· ϕ

=

∫
T

F1(·, η) · ϕ +

∫
T

F2(·, η) · η curlϕ. (5.4)

Here, F1, F2 are elements of L2(T) defined for a.e. x ∈ T by

F1(x, η) = −η (χ0(y) curlx (ε−1
0 (y) curly H0(x, y))

+χ1(y) {curlx (ε−1
1 (y) curlx H1(x, y))

+ curlx (ε−1
1 (y) curly H2(x, y))}+H1(x, y)+ ηH2(x, y))|y=x/η,

F2(x, η) = −η (χ0(y)ε−1
0 (y) {curlx H0(x, y)

+ curly H1(x, y)+ η curlx H1(x, y)

+ η curly H2(x, y)+ η2 curlx H2(x, y)}

+χ1(y)ε−1
1 (y) curlx H2(x, y))|y=x/η. (5.5)

Notice that the functions H0
= H0(x, y), H1

= H1(x, y), H2
= H2(x, y) all

belong to the space C∞# (T, H1
# (Q)). Indeed, this is seen to be true for H0 by

Proposition 3.1; in the case of ω = αk we choose w ∈ C∞# (T). The assertions
for H1 and H2 now follow from formula (4.13) for the corrector H1(x, y),
and the boundary-value problem (4.5)–(4.6) for the function H2(x, y). It then
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600 K. CHEREDNICHENKO AND S. COOPER

follows from (5.5) (see, for example, [3, p. 1353]) that ‖F1(·, η)‖L2(T) 6 Cη,
‖F2(·, η)‖L2(T) 6 Cη, and by applying the Hölder inequality to (5.4) we deduce
that

|bη(H̃η
− H (2)(·, η), ϕ)| 6 Cη

(∫
T
|ϕ|2 +

∫
T
|η curlϕ|2

)1/2

,

as required. �

The above proposition implies the following statement.

THEOREM 5.1. There exists a constant C such that the estimate

‖H̃η
− H0(·, ·/η)‖L2(T) 6 Cη

holds for all η.

Proof. Setting ϕ = H̃η
− H (2)(·, η) in the estimate (5.3) yields

Ĉ2η2 > bη(H̃η
− H (2)(·, η), H̃η

− H (2)(·, η)) > ‖H̃η
− H (2)(·, η)‖2L2(T).

The claim of the theorem now follows by noting that in view of (5.2), we have

‖H (2)(·, η)− H0(·, ·/η)‖L2(T) 6 C̃η

for some C̃ > 0, and hence

‖H̃η
− H0(·, ·/η)‖L2(T) 6 ‖H̃

η
− H (2)(·, η)‖L2(T)

+‖H (2)(·, η)− H0(·, ·/η)‖L2(T) 6 (Ĉ + C̃)η,

as required. �

The claims of Theorem 2.1 now follow from the estimate

‖((ω2
+ 1)−1

− (Aη + I )−1)H0(·, ·/η)‖L2(T)

6 (ω2
+ 1)−1

‖H0(·, ·/η)− H̃η
‖L2(T) 6 Cη, (5.6)

where we used the definition (5.1) of the function H̃η and Theorem 5.1. Indeed,
from [8, p. 109], we infer that the quantities dist((ω2

+ 1)−1,Sp((Aη + 1)−1))

and dist((ω2
+ 1)−1 H0(·, ·/η), Xη) are controlled above by the right-hand side

of (5.6), which completes the proof of Theorem 2.1.

Remark 5.1. Note that H (2) is not solenoidal in general, but can be defined
in such a way that it is “close” to a solenoidal field, thanks to equation (4.19)
(equivalently, (2.5)) and the special choice of the function H1 so that

divx H0(x, y)+ divy H1(x, y) = 0 a.e. (x, y) ∈ T× Q.

The function H (2) thus defined is η-close to the eigenspace Xη in the norm of
[H1

# (Q)]
3.
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A. Appendix. Symmetry of Ahom and 0(ω) under rotations. Suppose that A ∈
[L∞(Q)]3×3 is symmetric such that A > ν I on Q1, ν > 0, and A ≡ 0 on Q0.
Consider the matrix

Ahom
pq :=

∫
Q

A(curl N q
p + δpq), p, q ∈ {1, 2, 3},

where N q is the unique solution to the problem (cf. [6], [1, Lemma 3.4] and
(4.12) above for A = ε−1

1 χ1, where χ1 is the characteristic function of Q1)

curl(A[curl N q
+ eq ]) = 0, N q

∈ {u ∈ [H1
# (Q)]

3
: A curl u = 0}⊥.

Here the superscript “⊥” denotes the orthogonal complement in [H1
# (Q)]

3.

Notice that if, for fixed ζ ∈ R3, we multiply each of the above equations by
ζq , then we obtain

Ahomζ =

∫
Q

A(curl Nζ + ζ ), (A.1)

where the vector Nζ , whose components are
∑

q N q
pζq , p = 1, 2, 3, is the unique

solution to the problem

curl(A[curl Nζ + ζ ]) = 0, Nζ ∈ {u ∈ [H1
# (Q)]

3
: A curl u = 0}⊥. (A.2)

It is clear that the matrix representation of the bounded linear mapping ζ 7→∫
Q A(curl Nζ + ζ ) is equal to Ahom. The following property holds.

PROPOSITION A.1. Suppose that σ is a rotation such that σQ = Q and
assume that

A(y) = σ−1 A(σ y)σ, y ∈ Q. (A.3)

Then Ahom inherits the same symmetry, that is, one has

Ahom
= σ−1 Ahomσ. (A.4)

In particular, if (A.3) holds for all π/2-rotations, then one has Ahom
kl = Ahom

lk = 0
for all l 6= k.
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602 K. CHEREDNICHENKO AND S. COOPER

Proof. For each u ∈ [H1
# (Q)]

3 let w be the solution of the vector equation

(curl curlw(y))α =
3∑

l,m,r,s=1

σsαεslmσmr
∂ul(y)
∂yr

, α = 1, 2, 3,

in the space {
w ∈ [H1

# (Q)]
3
: divw = 0,

∫
Q
w = 0

}
.

It is clear that such a solution exists. We denote by û the vector field curlw.
A direct calculation, using the property σ−1

= σ>, yields

curly′ u(σ−1 y′) = σ curl û(σ−1 y′). (A.5)

Therefore, for all ϕ ∈ [H1
# (Q)]

3, the above equality and the assumption (A.3)
imply ∫

Q
A(y′) curly′ u(σ−1 y′) · curly′ ϕ(σ

−1 y′) dy′

=

∫
Q

A(σ y)σ curl û(y) · σ curl ϕ̂(y) dy

=

∫
Q

A(y) curl û(y) · curl ϕ̂(y) dy.

Hence, a function u ∈ [H1
# (Q)]

3 solves∫
Q

A(y′) curly′ u(σ−1 y′) · curly′ ϕ(σ
−1 y′) dy′

=

∫
Q

f (y′) · curly′ ϕ(σ
−1 y′) dy′ for all ϕ ∈ [H1

# (Q)]
3, (A.6)

if and only if û solves∫
Q

A(y) curl û(y) · curl ϕ̂(y) dy

=

∫
Q
σ−1 f (σ y) · curl ϕ̂(y) dy for all ϕ̂ ∈ [H1

# (Q)]
3. (A.7)

Let us now prove (A.4). For fixed ξ, ζ ∈ R3 let Nξ be the unique solution to
(A.2) and set u(y) := Nξ (σ y), y ∈ Q. By (A.1), assumption (A.3) and (A.5) we
deduce that

Ahomξ · ζ =

∫
Q

A(y′)(curly′ Nξ (y′)+ ξ) · ζ dy′

=

∫
Q

A(y′)(curly′ u(σ−1 y′)+ ξ) · ζ dy′
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(A.5)
=

∫
Q

A(y′)(σ curl û(σ−1 y′)+ ξ) · ζ dy′

y′=σ y
=

∫
Q

A(σ y)(σ curl û(y)+ ξ) · ζ dy

(A.3)
=

∫
Q

A(y)(curl û(y)+ σ−1ξ) · σ−1ζ dy. (A.8)

Since Nξ (y′) solves (A.2), u(σ−1 y′) solves (A.6) for f (y′) = −A(y′)ξ and
therefore û solves (A.7) where, by (A.3), σ−1 f (σ y) = −σ−1 A(σ y)ξ =
−A(y)σ−1ξ . Hence, the solution Nσ−1ξ to (A.2), for ζ = σ−1ξ , is the projection
of û onto the space {u ∈ [H1

# (Q)]
3
: A curl u = 0}⊥ and the expression in (A.8)

equals Ahomσ−1ξ · σ−1ζ. The assertion (A.4) follows, in view of the arbitrary
choice of ξ, ζ, and the equality σ Ahomσ−1

= σ−1 Ahomσ which holds since σ
is unitary and Ahom is symmetric. �

COROLLARY A.1. If (A.3) holds for σ = σk, where σk is the rotation by π
around the xk-axis, then Ahom

kl = 0, for all l 6= k.

Proof. Indeed, say for k = 1, (A.4) takes the formAhom
11 Ahom

12 Ahom
13

Ahom
21 Ahom

22 Ahom
23

Ahom
31 Ahom

32 Ahom
33

 =
 Ahom

11 −Ahom
12 −Ahom

13

−Ahom
21 Ahom

22 Ahom
23

−Ahom
31 Ahom

32 Ahom
33

 ,
and hence Ahom

12 = Ahom
21 = Ahom

13 = Ahom
31 = 0. �

Similarly, direct calculation proves the following statement.

COROLLARY A.2. If (A.3) holds for σ = σk, where σk is the rotation by π/2
around the xk-axis, then Ahom

kl = 0, for all l 6= k and Ahom
ii = Ahom

jj , i, j 6= k.

PROPOSITION A.2. Let χ0 be the characteristic function of the set Q0.
Suppose that the set Q and the coefficient A = ε−1

0 χ0 I are invariant under a
rotation σ , that is, σQ = Q and A = ε−1

0 χ0 I satisfies (A.3), or equivalently,

ε−1
0 (σ y)χ0(σ y) = ε−1

0 (y)χ0(y) a.e. y ∈ Q. (A.9)

Then for all ω2 /∈ {0}∪{αk
}
∞

k=1 the matrix 0(ω), defined by (3.9) and (3.3)–(3.6),
satisfies the property

0(ω) = σ0(ω)σ−1
= σ−10(ω)σ.

Proof. We make use of the representation (3.11) for 0(ω) and of the
equations (3.10) for the functions φk .
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604 K. CHEREDNICHENKO AND S. COOPER

Multiplying (3.10) by ψ ∈ [C∞0 (Q0)]
3 and integrating by parts yields∫

Q0

ε−1
0 (y) curlφk(y) · curlψ(y) dy

= αk
∫

Q0

∫
Q0

G(y − y′) divφk(y′) divψ(y) dy′ dy

+αk
∫

Q0

φk(y) · ψ(y) dy. (A.10)

We claim that the functions σφk(σ−1
·) satisfy the identity (A.10) with Q0

replaced by σQ0 := {y ∈ Q : σ−1 y ∈ Q0}. We show this by treating each
term in (A.10) separately. It is clear that∫

σQ0

σφk(σ−1 ỹ) · σψ(σ−1 ỹ) d ỹ =
∫
σQ0

φk(σ−1 ỹ) · ψ(σ−1 ỹ) d ỹ

ỹ=σ y
=

∫
Q0

φk(y) · ψ(y) dy. (A.11)

Furthermore, by utilizing the identity

curlỹ(σψ(σ
−1 ỹ)) = (curlψ)(σ−1 ỹ) a.e. ỹ ∈ σQ0 for all ψ ∈ [H1

0 (Q0)]
3,

which holds due to the fact that σ is a rotation, as well as property (A.9), we
obtain ∫

σQ0

ε−1
0 (ỹ) curlỹ(σφ

k(σ−1 ỹ)) · curlỹ(σψ(σ
−1 ỹ)) d ỹ

ỹ=σ y
=

∫
Q0

ε−1
0 (y) curlφk(y) · curlψ(y) dy. (A.12)

Finally, it is clear that div (σ F(σ−1
·)) = (div F)(σ−1

·) for vector fields F and
therefore∫

σQ0

∫
σQ0

G(ỹ − ỹ′) divỹ(σφ
k(σ−1 ỹ)) divỹ(σψ(σ

−1 ỹ′)) d ỹ′ d ỹ

ỹ=σ y,
ỹ′=σ y′
=

∫
Q0

∫
Q0

G(σ (y − y′)) divφk(y) divψ(y′) dy′ dy

=

∫
Q0

∫
Q0

G(y − y′) divφk(y) divψ(y′) dy′ dy,

where the invariance of the Green function G under the rotation σ holds due to
the assumption σQ = Q.

The proof is concluded by combining the definition of 0(ω) via (3.9), (3.3)–
(3.6) and formula (3.11) applied twice, namely for the inclusion σQ0, which
coincides with Q0 due to (A.9), and the inclusion Q0 itself:
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0(ω) = ω2
+ ω4

∞∑
k=1

(
∫
σQ0

σφk(σ−1
·))⊗ (

∫
σQ0

σφk(σ−1
·))

αk − ω2

= ω2σσ−1
+ ω4

∞∑
k=1

(
∫

Q0
σφk)⊗ (

∫
Q0
σφk)

αk − ω2

= σ0(ω)σ−1, ω2 /∈ {0} ∪ {αk
}
∞

k=1,

as required. �

By analogy with Corollaries A.1 and A.2 we obtain the following statement.

COROLLARY A.3. Under the conditions of Proposition A.2 with σ = σk,

where σk is a rotation by π around the xk-axis, 0kl(ω) = 0 for all l 6= k, ω2 /∈

{0} ∪ {αk
}
∞

k=1. Moreover, if σk is a rotation by π/2 around the xk-axis, then
0ii(ω) = 0jj(ω) for i, j 6= k.
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