
Asymptotic behaviour of the spectra of systems of

Maxwell equations in periodic composite media with

high contrast

Kirill Cherednichenko1 and Shane Cooper2

1Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY,
United Kingdom

2Department of Mathematical Sciences, Durham University, Lower Mountjoy, Stockton Road,
Durham, DH1 3LE, United Kingdom

November 21, 2017

Abstract

We analyse the behaviour of the spectrum of the system of Maxwell equations of electromag-
netism, with rapidly oscillating periodic coefficients, subject to periodic boundary conditions on a
“macroscopic” domain (0, T )3, T > 0. We consider the case when the contrast between the values of
the coefficients in different parts of their periodicity cell increases as the period of oscillations η goes
to zero. We show that the limit of the spectrum as η → 0 contains the spectrum of a “homogenised”
system of equations that is solved by the limits of sequences of eigenfunctions of the original problem.
We investigate the behaviour of this system and demonstrate phenomena not present in the scalar
theory for polarised waves.
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1 Introduction

The behaviour of systems (of Maxwell equations) with periodic coefficients in the regime of “high con-
trast”, or “large coupling” i.e. when the ratio between material properties of some of the constituents
within the composite is large, is understood to be of special interest in applications. This is due to the
improved band-gap properties of the spectra for such materials compared to the usual moderate-contrast
composites. A series of recent studies have analysed asymptotic limits of scalar high-contrast problems,
either in the strong L2-sense (see [11], [12]) or in the norm-resolvent L2-sense, see [2]. These have resulted
in sharp operator convergence estimates in the homogenisation of such problems (i.e. in the limit as the
period tends to zero) and have provided a link between the study of effective properties of periodic media
and the behaviour of waves in such media, in particular their scattering characteristics. The studies have
also highlighted the need to extend the classical compactness techniques in homogenisation to cases when
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the symbol of the operator involved is no longer uniformly positive definite, thus leading to “degenerate”
problems. The work [6] has opened a way to one such extension procedure, based on a “generalised Weyl
decomposition”, from the perspective of the strong L2-convergence.

The set of tools developed in the literature is now poised for the treatment of vector problems with
degeneracies such as the linearised elasticity equations and the Maxwell equations; these examples are
typically invoked in the physics and applications literature, and are prototypes for wider varieties of
partial differential equations (PDE). The recent work [10] has studied the spectral behaviour of periodic
operators with rapidly oscillating coefficients in the context of linearised elasticity. It shows that the
related spectrum exhibits the phenomenon of “partial” wave propagation, depending on the number of
eigenmodes available at each give frequency. This is close in spirit to the work of [7], where “partial wave
propagation” was studied for a wider class of vector problems, with a general high-contrast anisotropy.

The high-contrast system of Maxwell equations poses an analytic challenge in view of the special
structure of the “space of microscopic oscillations” (using the terminology of [6]), which consists of the
functions that are curl-free on the “stiff” component, in the case of a two-component composite of a
“stiff” matrix and “soft” inclusions. In the work [1] the authors analysed the two-scale structure of
solutions to the high-contrast system of Maxwell equations in the low-frequency limit, and derived the
corresponding system of homogenised equations, by developing an appropriate compactness argument on
the basis of the general theory of [6]. In the present paper we consider the associated wave propagation
problem for monochromatic waves of a given frequency by constructing two-scale asymptotic series for
eigenfunctions. We justify these asymptotic series by demonstrating that for each element of the spec-
trum of the homogenised equations their exist convergent eigenvalues and eigenfunctions for the original
heterogeneous problem. Our analysis is set in the context of a “supercell” spectral problem, i.e. the
problem of vibrations of a square-shaped domain with periodicity conditions on the boundary (equiva-
lently seen as a torus). The problem of the “spectral completeness” of the homogenised description in
question remains open: it is not known, for the full-space problem, whether there may exist sequences
of eigenvalues converging to a point outside the spectrum of the homogenised problem. This shall be
addressed in a future publication, using the method developed in [2].

2 Problem formulation and main results

In this paper we consider Maxwell equations for a three-dimensional two-component periodic dielectric
composite when the dielectric properties of the constituent materials exhibit a high degree of contrast. We
assume that the reference cell Q := [0, 1)3 contains an inclusion Q0, which is an open set with sufficiently
smooth boundary. We also assume that the “matrix” Q1 := Q\Q0 is simply connected Lipschitz set.

We consider a composite with high contrast in the dielectric permittivity εη = εη(x/η) at points
x ∈ η(Q1 +m), m ∈ Z3, and x ∈ η(Q0 +m), m ∈ Z3, namely

εη(y) =

{
η−2ε0(y), y ∈ Q0,

ε1(y), y ∈ Q1,

where η ∈ (0, 1) is the period and ε0, ε1 are continuously differentiable Q-periodic positive-definite scalar
functions.

2

21 Nov 2017 01:34:22 UTC

Version 3 - Submitted to Mathematika



We also assume moderate contrast in the magnetic permeability, and for simplicity of exposition we
shall set µ ≡ 1. We consider the open cube T := (0, T )3 and those values of the parameter η for which
T/η ∈ N. By re-scaling the spatial variable (which can also be viewed as non-dimensionalisation) we
assume that T = 1 and that η−1 ∈ N. We shall study the behaviour of the magnetic component Hη of the
electromagnetic wave of frequency ω propagating through the domain T occupied by a dielectric material
with permittivity εη(x/η). More precisely, we consider pairs

(
ωη, H

η
)
∈ R+ × [H1

#(T)]3 satisfying the
system of equations

curl
(
ε−1
η

( ·
η

)
curlHη

)
= ω2

ηH
η. (2.1)

Notice that solutions of (2.1) are automatically solenoidal, i.e. divHη = 0.
We seek solutions to the above problem in the form of an asymptotic expansion

Hη(x) = H0
(
x, xη

)
+ ηH1

(
x, xη

)
+ η2H2

(
x, xη

)
+ . . . , ωη = ω + ηω1 + η2ω2 + . . . , (2.2)

where the vector functions Hj(x, y), j = 0, 1, 2, ..., are Q-periodic in the variable y. (Note that the terms
of order O(η) and higher in the expansion for ωη will be of no importance in what follows.) Substituting
(2.2) into (2.1) and gathering the coefficients for each power of the parameter η results in a system of
recurrence relations for Hj , j = 0, 1, 2, ..., see Section 4. In particular, the function H0 is an eigenfunction
of a limit (“homogenised”) system of PDE, as described in the following theorem.

Theorem 2.1. Consider the constant matrix

Ahom :=

∫
Q1

ε−1
1 (y)

(
curlN(y) + I

)
dy,

where the vector-function N is a solution to the “unit-cell problem”

curl
(
ε−1
1

[
curlN + I

])
= 0 in Q1, ε−1

1

(
curlN + I

)
× n = 0 on ∂Q0, N is Q-periodic, (2.3)

where n is the exterior normal to ∂Q0.
Suppose that ω ∈ R+ and H0(x, y) = u(x) + ∇yv(x, y) + z(x, y), where the triplet1 (u, v, z) ∈[

H1
#curl(T)

]3 × L2
(
T;H2

#(Q)
)
×
[
L2
(
T;H1

0 (Q0)
)]3

, satisfies the system of equations

curlx
(
Ahomcurlxu(x)

)
= ω2

(
u(x) +

∫
Q0

z(x, y)dy
)
, x ∈ T, (2.4)

divy
(
∇yv(x, y) + z(x, y)

)
= 0, (x, y) ∈ T×Q, (2.5)

curly
(
ε−1
0 (y)curlyz(x, y)

)
= ω2

(
u(x) +∇yv(x, y) + z(x, y)

)
, (x, y) ∈ T×Q0. (2.6)

Then:

1For a cube T, we denote by H1
#(T), H1

#curl(T), the closures of the set of T-periodic smooth functions with respect to
the norm of H1(T) and the norm (∫

T
| · |2 +

∫
T
|curl · |2

)1/2

,

respectively. Throughout the paper we only consider real-valued functions and spaces thereof.
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1) There exists at least one eigenfrequency ωη for (2.1) such that

|ωη − ω| < Cη, (2.7)

with an η-independent constant C > 0.
2) Consider the finite-dimensional vector space

Xη := span
{
Hη : (2.1) holds, where ωη satisfies (2.7)

}
.

There exists an η-independent constant Ĉ > 0 such that

inf
H∈Xη

∥∥H0
(
·, ·η
)
−H(·)

∥∥
L2(T)

< Ĉη.

The matrix Ahom is described by solutions to certain degenerate “cell problems”, as follows. Consider
the spaces

V :=
{
v ∈ [H1

#(Q)]3 : curl v = 0 in Q1

}
(2.8)

and V ⊥, the orthogonal complement of V in [H1
#(Q)]3 with respect to the equivalent H1(Q)-norm

‖v‖H1(Q) :=

(∣∣∣∣∫
Q
v

∣∣∣∣2 +

∫
Q
|∇v|2

)1/2

,

associated with the inner product

(v, w)H1(Q) :=

(∫
Q
v

)
·
(∫

Q
w

)
+

∫
Q
∇v · ∇w.

Then

Ahomξ =

∫
Q
ε−1
1 (curlNξ + ξ) , ξ ∈ R3, (2.9)

where Nξ, ξ ∈ R3, is the unique (weak) solution in V ⊥ to the problem (2.3), i.e.∫
Q
ε−1
1 (curl Nξ + ξ) · curl ϕ = 0, ∀ϕ ∈ V ⊥. (2.10)

Existence and uniqueness of Nξ is discussed in Section 4.
Notice that

Ahomξ · ξ = min
U∈[H1

#(Q)]3

∫
Q1

ε−1
1 (curlU + ξ) · (curlU + ξ), ξ ∈ R3. (2.11)

Indeed, for the functional

Fξ(U) :=

∫
Q1

ε−1
1 (curlU + ξ) · (curlU + ξ),
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we find Fξ(U) = Fξ(PV ⊥U) for all U ∈ [H1
#(Q)]3, where PV ⊥ is the orthogonal projection onto V ⊥.

Therefore, without loss of generality, Fξ can be minimised on V ⊥ for which (2.10) is the corresponding
Euler-Lagrange equation.

The variational formulation (2.11) allows one to obtain a representation for the matrix εhom
stiff such that

εhom
stiff ξ · ξ := inf

u∈H1
#(Q),

∇u=−ξ inQ0

∫
Q1

ε1 (∇u+ ξ) · (∇u+ ξ) , ξ ∈ R3, (2.12)

which arises in the homogenisation of periodic problems with stiff inclusions, see [5, Section 3.2].2

Indeed, as shown in [5, p. 101], the following representation holds:

(
εhom
stiff

)−1
ξ · ξ = inf

v∈[L2(Q)]3sol,
〈v〉=0

∫
Q1

ε−1
1 (v + ξ) · (v + ξ) , ξ ∈ R3. (2.13)

Notice that for each vector v in (2.13) there exists Uv ∈ [H1
#(Q)]3 such that v = curlUv, see [5, pp. 6–7],

and hence ∫
Q1

ε−1
1 (v + ξ) · (v + ξ) =

∫
Q1

ε−1
1

(
curl(PV ⊥Uv) + ξ

)
·
(
curl(PV ⊥Uv) + ξ

)
.

It follows that for all ξ ∈ R3 one has(
εhom
stiff

)−1
ξ · ξ = inf

U∈[H1
#(Q)]3

∫
Q1

ε−1
1

(
curl(PV ⊥U) + ξ

)
·
(
curl(PV ⊥U) + ξ

)
= Ahomξ · ξ.

3 On the spectrum of the limit problem

In this section we study the set of values ω2 such that there exists a non-trivial triple (u, v, z) solving the
two-scale limit spectral problem (2.4)–(2.6).

3.1 Equivalent formulation and spectral decomposition of the limit problem

Let G be the Green function for the scalar periodic Laplacian, i.e. for all y ∈ Q one has

−∆G(y) = δ0(y)− 1, y ∈ Q, G is Q-periodic,

2The Euler-Lagrange equation for (2.12) is as follows: find u such that ∇u = −ξ in Q0 and∫
Q1

ε1 (∇u+ ξ) · ∇φ = 0 ∀φ ∈ H1
#(Q), ∇φ = 0 in Q0.

The equivalent “strong” form of the same problem is to find a Q-periodic function u such that

div (ε1 (∇u+ ξ)) = 0 in Q1,

∫
∂Q0

ε1 (∇u+ ξ) · n = 0, u is continuous across ∂Q0, ∇u = −ξ, in Q0.
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where δ0 is the Dirac delta-function supported at zero, on Q considered as a torus. Then, as the functions
v, z solve (2.5), we have v(x, ·) = G ∗ (divyz)(x, ·), and (2.6) takes the form

curly
(
ε−1
0 (y)curly z(x, y)

)
= ω2

(
u(x) +∇y

∫
Q0

G(y − y′) divy′z(x, y
′) dy′ + z(x, y)

)
, (x, y) ∈ T×Q0.

(3.1)
For the case ω = 0 the set of solutions z to (3.1) subject to the condition z(x, y) = 0, x ∈ T, y ∈ ∂Q0, is
clearly given by L2(T,H0), where H0 := {u ∈ [H1

0 (Q0)]3 : curlu = 0}.
Further, for ω 6= 0, as (3.1) is linear in u(x) and curly∇y = 0, we set

∇y
∫
Q0

G(y − y′) divy′z(x, y
′) dy′ + z(x, y) = ω2B(y)u(x), (3.2)

where B is a 3× 3 matrix function whose column vectors Bj , j = 1, 2, 3, are solutions in [H1
#(Q)]3 to the

system

curl
(
ε−1
0 curlBj

)
= ej + ω2Bj in Q0, (3.3)

curlBj = 0, in Q1, (3.4)

divBj = 0, in Q, (3.5)

a(Bj) = 0, (3.6)

where ej , j = 1, 2, 3, are the Euclidean basis vectors and a(Bj) is the “circulation” of Bj , that is defined as

the continuous extension, in the sense of the H1 norm, of the map given by a(φ)i =
∫ 1

0 φi(tei)dt, i = 1, 2, 3,

for φ ∈ [C∞(Q)]3. Note that, since Bj ∈ [H1(Q)]3, the equation (3.4) implies ε−1
0 curlBj × n|− = 0 on

∂Q0. Furthermore, the system (3.3)–(3.6) implies the variational problem of finding Bj ∈ [H1
#(Q)]3,

subject to the constraints (3.4)–(3.6), such that the following identity holds:∫
Q0

ε−1
0 curlBj · curlϕ =

∫
Q
ej · ϕ+ ω2

∫
Q
Bj · ϕ ∀ϕ ∈ [H1

#(Q)]3 satisfying (3.4)–(3.6). (3.7)

Indeed, functions ϕ ∈ [H1
#(Q)]3 which satisfy (3.4), (3.6) admit (see Lemma 4.1 below) the representation

ϕ = ∇p + ψ, p ∈ H2
#(Q), ψ ∈ [H1

0 (Q0)]3. Therefore, it is straightforward to show (3.7) holds for ϕ = ψ
if and only if (3.3) holds. Similarly, one can show (3.7) holds for ϕ = ∇p if and only if (3.5) holds.

Substituting the representation (3.2) into (2.4) and using the fact that∫
Q

(
∇y′G ∗ (divyz)(x, y

′) + z(x, y′)
)
dy′ =

∫
Q0

z(x, y)dy,

leads to the operator-pencil spectral problem

curl
(
Ahomcurl u(x)

)
= Γ(ω)u(x), x ∈ T, (3.8)

where Γ is a matrix-valued function that vanishes at ω = 0, and for ω 6= 0 has elements

Γij(ω) = ω2

(
δij + ω2

∫
Q
Bj
i

)
, i, j = 1, 2, 3. (3.9)
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We denote by H1 the space of vector fields in [H1
#(Q)]3 that satisfy the conditions (3.4)–(3.6). It can be

shown3 that there exist countably many pairs (αk, rk) ∈ R×H1 such that ‖rk‖[L2(Q)]3 = 1 and

curl (ε−1
0 curl rk) = αkrk in Q0.

Moreover, the sequence (rk)k∈N can be chosen to form an orthonormal basis of the closure H1 of H1 in
[L2(Q)]3 and, upon a suitable rearrangement, one has

0 < α1 ≤ α2 ≤ ... ≤ αk ≤ ... k→∞−→ ∞.

Performing a decomposition4 of the functions Bj , j = 1, 2, 3, with respect to the above basis yields

Bj
i =

∞∑
k=1

∫
Q r

k
j

αk − ω2
rki , ω2 /∈ ∪{αk}∞k=1,

where rkj , j = 1, 2, 3, are the components of the vector rk, k ∈ N.
Consider the functions φk ∈ [H1

0 (Q0)]3, k ∈ N, that solve the non-local problems

curl
(
ε−1
0 (y)curlφk(y)

)
= αk

(
∇
∫
Q0

G(y − y′) div φk(y′) dy′ + φk(y)

)
, y ∈ Q0, (3.10)

and satisfy the orthonormality conditions∫
Q0

∫
Q0

(
∇2G(y − y′) + I

)
φj(y) · φk(y′) dy dy′ = δjk, j, k = 1, 2, . . . ,

where ∇2G is the Hessian matrix of G. Using the formula

rk(y) = ∇
∫
Q0

G(y − y′) div φk(y′) dy′ + φk(y), y ∈ Q,

we obtain the following representation for Γ :

Γij(ω) = ω2δij + ω4
∞∑
k=1

(∫
Q0
φki

)(∫
Q0
φkj

)
αk − ω2

, i, j = 1, 2, 3, ω2 /∈ {0} ∪ {αk}∞k=1. (3.11)

3Note that ||| · ||| :=
(∫
Q0
ε−1
0 |curl · |2

)1/2
is a norm in H1 equivalent to the [H1(Q)]3-norm, due to the fact that(

|a(·)|2 + ‖div · ‖2L2(Q) + ‖curl · ‖2[L2(Q)]3

)1/2
is an equivalent norm in the space u ∈ [H1

#(Q)]3. Therefore, the equation

curl ε−1
0 curl u = λu, u ∈ H1, can be written as λ−1u = Ku in the sense of the “energy” inner product generated by the

norm ||| · ||| and K is a compact self-adjoint operator in (H1, ||| · |||). The claim then follows by a standard Hilbert-Schmidt
argument.

4When applying the standard Fourier representation approach with respect to the basis (rk)k∈N, the vector ej in the
right-hand side of (3.3) is treated as an element of the “dual” of H1, the space of linear continuous functionals on H1.
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3.2 Analysis of the limit spectrum

Consider the Fourier expansion for the function u in (3.8):

u(x) =
∑
m∈Z3

exp(2πim · x)û(m), û(m) :=

∫
T

exp(−2πim · x)u(x) dx,

where the integral is taken component-wise. As u solves (3.8), the coefficients û(m) satisfy the equation

M(m)û(m) = Γ(ω)û(m), m ∈ Z3, (3.12)

with the matrix-valued function M is given by

Mlp(m) = 4π2
3∑

i,j,s,t=1

εilsmsA
hom
ij εjptmt = 4π2(el ×m) ·Ahom(ep ×m), m ∈ Z3, l, p = 1, 2, 3,

where ej , j = 1, 2, 3 are the Euclidean basis vectors. Here ε is the Levi-Civita symbol:

εjkl =


1, (jkl) = (123), (231), (312),

−1, (jkl) = (132), (321), (213),

0, otherwise.

Notice that, for all m ∈ Z3 \ {0}, zero is a simple eigenvalue of M(m) with eigenvector m, and since the
matrix Ahom is symmetric and positive-definite, the values ofM are also symmetric and positive-definite
on vectors ξ such that ξ ·m = 0. In particular, for all m ∈ Z3, one has

Γ(ω)û(m) ·m = 0 (3.13)

whenever û(m) is a solution to (3.12). Denote m̃ := |m|−1m and notice that M(m) = |m|2M(m̃).
Further, we denote by ẽ1(m̃) =

(
ẽ11(m̃), ẽ12(m̃), ẽ13(m̃)

)
and ẽ2(m̃) =

(
ẽ21(m̃), ẽ22(m̃), ẽ23(m̃)

)
the nor-

malised eigenvectors of the matrixM(m̃) corresponding to its two positive eigenvalues λ1(m̃) and λ2(m̃)
respectively.

We write û(m) in terms of the basis
(
ẽ1(m̃), ẽ2(m̃), m̃

)
, as follows:

û(m) = C(m̃)>ũ(m̃) + α(m̃)m̃, ũ(m̃) ∈ R2, α(m̃) ∈ R, C(m̃) =

(
ẽ11(m̃) ẽ12(m̃) ẽ13(m̃)

ẽ21(m̃) ẽ22(m̃) ẽ23(m̃)

)
.

Finding a non-trivial solution to the problem (3.12), (3.13) is equivalent to determining
(
ũ(m̃), α(m̃)

)
∈

R3 \ {0} such that

|m|2Λ(m̃)ũ(m̃) = C(m̃)Γ(ω)C(m̃)>ũ(m̃) + α(m̃)C(m̃)Γ(ω)m̃,

Γ(ω)C(m̃)>ũ(m̃) · m̃ = −α(m̃)Γ(ω)m̃ · m̃,
(3.14)

where

Λ(m̃) :=

(
λ1(m̃) 0

0 λ2(m̃)

)
.

We have thus proved the following statement.
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Proposition 3.1. The spectrum of the problem (2.4)–(2.6) is the union of the following sets.

1. The elements of {αk : k ∈ Z} such that the corresponding rk has zero mean over Q. These are
eigenvalues of infinite multiplicity and the corresponding eigenfunctions H0(x, y) are of the form
w(x)rk(y) for an arbitrary w ∈ L2(T).

2. The set
{
ω2 : ∃m ∈ Z3 such that (3.14) holds

}
, with the corresponding eigenfunctions H0(x, y)

of (2.4)–(2.6) having the form u(x) + ∇yv(x, y) + z(x, y), where u(x) = exp(2πim · x)û(m) is an
eigenfunction of macroscopic problem (3.8) and

∇yv(x, y) + z(x, y) = ω2B(y)u(x) a.e. (x, y) ∈ T×Q,

that is H0(x, y) =
(
I + ω2B(y)

)
exp(2πim · x)û(m).

An immediate consequence of the above analysis is the following result.

Corollary 3.1. If the matrix Γ(ω) is negative-definite, the value λ = ω2 does not belong to the spectrum
of (2.4)–(2.6).

Proof. Since M(m̃) admits the spectral decomposition C ′(m̃)Λ′(m̃)C ′(m̃)>, where

C ′(m̃) :=

ẽ11(m̃) ẽ12(m̃) ẽ13(m̃)

ẽ21(m̃) ẽ22(m̃) ẽ23(m̃)

m̃1 m̃2 m̃3

 , Λ′(m̃) :=

λ1(m̃) 0 0

0 λ2(m̃) 0

0 0 0

 ,

a necessary condition for pairs (m,ω) such that (3.12) has a solution is as follows:

det
(
|m|2Λ′(m̃)− C ′(m̃)>Γ(ω)C ′(m̃)

)
= 0.

This is not possible since Λ′(m̃) is positive-semidefinite and, by assumption, the matrix Γ(ω) is negative-
definite and, consequently, the matrix C ′(m̃)>Γ(ω)C ′(m̃) is also negative-definite.

3.3 Examples of different admissible wave propagation regimes for the effective spec-
tral problem

In this section we explore the effective wave propagation properties of high-contrast electromagnetic
media. We demonstrate that the sign-indefinite nature of the matrix-valued function Γ gives rise to
phenomena not present in the case of polarised waves.

Suppose that the inclusion is symmetric under a rotation by π around at least two of the three coor-
dinate axes, then the matrices Ahom and Γ(ω) are diagonal (see Appendix): 4π2Ahom = diag(a1, a2, a3),
Γ(ω) = diag

(
β1(ω), β2(ω), β3(ω)

)
. Here ai, i = 1, 2, 3, are positive constants and βi, i = 1, 2, 3, are real-

valued scalar functions. Notice that, since |m̃| = 1, the eigenvalues λ1,2(m̃) of M(m̃) are the solutions
to the quadratic equation

λ2 − λ
{

(a2 + a3)m̃2
1 + (a1 + a3)m̃2

2 + (a1 + a2)m̃2
3

}
+
(
a1a2m̃

2
3 + a2a3m̃

2
1 + a1a3m̃

2
2

)
= 0. (3.15)

We will now solve the eigenvalue problem (3.12), equivalently (3.14), for particular examples of such
inclusions.
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3.3.1 Isotropic propagation (no “weak” band gaps)

If the inclusion Q0 is symmetric by a π/2-rotation around at least two of the three axes, say x1 and
x2, then a = a1 = a2 = a3 and β(ω) = β1(ω) = β2(ω) = β3(ω). The equation (3.15) takes the form
(λ − a)2 = 0, and therefore λ1(m̃) = λ2(m̃) = a is an eigenvalue of multiplicity two of M(m̃), with
orthonormal eigenvectors given by

ẽ1(m̃) = e2, ẽ2(m̃) = e3 if |m̃1| = 1, (3.16)

and

ẽ1(m̃) =
1√

1− m̃2
1

e1 × m̃, ẽ2(m̃) =
1√

1− m̃2
1

(e1 × m̃)× m̃ if |m̃1| < 1. (3.17)

As before, ej , j = 1, 2, 3, are the Euclidean basis vectors. The system (3.14) takes the form

a|m|2ũ(m̃) = β(ω)ũ(m̃), α(m̃)β(ω) = 0.

Notice that if ω is a zero of β then necessarily ũ(m̃) is the zero vector. For such values of ω, the above
system is satisfied for any α(m̃), i.e. the non-trivial eigenvectors to (3.12) are parallel to m̃. On the other
hand, if β(ω) 6= 0, then α(m̃) = 0 and ω is an eigenvalue of (3.12) if and only if it solves the equation
β(ω) = a|m|2. In this case ũ(m̃) is an arbitrary element of R2 and û(m) = C(m̃)>ũ(m̃) is an arbitrary
vector of the (2-dimensional) eigenspace spanned by the vectors ẽ1(m̃) and ẽ2(m̃). Finally, there are no
non-trivial solutions û when β(ω) < 0.

3.3.2 Directional propagation (existence of “weak” band gaps)

If the inclusion Q0 is symmetric by a π/2-rotation around one of the three coordinate axis, say x1, and
by a π rotation around another axis, say x2, one has a = a1, b = a2 = a3 and β2(ω) = β3(ω). Here,
recalling |m̃| = 1, (3.15) takes the form

(λ− b)(λ− a(1− m̃2
1)− bm̃2

1) = 0,

whence λ1(m̃) = a(1− m̃2
1) + bm̃2

1, λ2(m̃) = b. There are now two separate cases to consider.
Case 1). Assume that |m̃1| = 1, i.e. the vector m̃ is parallel to the axis of higher symmetry. Here,

M(m̃) = diag(0, b, b) and b is an eigenvalue of multiplicity two with the eigenspace spanned by the vectors
(3.16). The system (3.14) takes the form

bm2
1ũ(m̃) = β2(ω)ũ(m̃), α(m̃)β1(ω) = 0.

Here, if β2(ω) < 0, then necessarily ũ(m̃) = 0 and non-trivial solutions û(m) = α(m̃)m̃ exist if and
only if β1(ω) = 0. On the other hand, if β1(ω) < 0, then necessarily α(m̃) = 0 and non-trivial solutions
û(m) = C(m̃)>ũ(m̃) exist if and only if β2(ω) > 0. The first situation only occurs at a discrete set of
values ω, while, unlike in the isotropic case, the second situation can give rise to intervals each of which
contains a sequence of admissible ω, obtained from the condition

√
β2(ω)/b ∈ N, with a reduced number

of eigenmodes. In the case of the full-space problem these intervals form part of the continuous spectrum
of the problem with a reduced number of propagating modes (“weak band gaps”, cf. [7], [9], [10]).
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Case 2). Assume |m̃1| < 1, i.e. the vector m̃ is not parallel to the axis of higher symmetry. In
this case the eigenvectors corresponding to λ1(m̃), λ2(m̃) are given by ẽ1(m̃), ẽ2(m̃) in (3.17). By setting
Γ(ω) = diag(β1(ω)− β2(ω), 0, 0) + β2(ω)I it is easy to see that the system (3.14) takes the form

|m|2λ1(m̃)ũ1(m̃) = β2(ω)ũ1(m̃),(
β1(ω)− β2(ω)

)
m̃1

√
1− m̃2

1 ũ2(m̃) = α(m̃)
(
(β1(ω)− β2(ω))m̃2

1 + β2(ω)
)
,

|m̃|2λ2(m̃)ũ2(m̃) =
(
β2(ω) +

(
β1(ω)− β2(ω))(1− m̃2

1

))
ũ2(m̃)

− α(m̃)(β1(ω)− β2(ω))m̃1

√
1− m̃2

1.

(3.18)

If m̃1 = 0, i.e. the vector m̃ is perpendicular to the direction of higher symmetry, then the system (3.18)
fully decouples and reduces to

|m|2aũ1(m̃) = β2(ω)ũ1(m̃), |m|2bũ2(m̃) = β1(ω)ũ2(m̃), α(m̃)β2(ω) = 0.

Suppose, β1(ω) (resp. β2(ω)) is negative for some ω, then the above system implies that ũ2(m̃) = 0 (resp.
ũ1(m̃) = 0). In this case, we see that propagation is restricted solely to the direction of ẽ1(m̃) (resp.
ẽ2(m̃)), which is orthogonal to the eigenvector(s) corresponding to the negative eigenvalue of Γ(ω). In
both situations weak band gaps are present in the similar full-space problem.

Remark 3.1. Recently, there has been several works on the analysis of problems with “partial” or “di-
rectional” wave propagation in the context of elasticity, where at some frequencies, propagation occurs
for some but not for all values of the wave vector: the analysis of the vector problems for thin structures
of critical thickness [9], the analysis of high-contrast [10], and partially high-contrast [7] periodic elas-
tic composites. To our knowledge, the effect we describe here is the first example of a similar kind for
Maxwell equations.

Remark 3.2. When the “size” T of the domain T increases to infinity (equivalently, for a given macro-
scopic domain the parameter by which its size is scaled, see Section 2, tends to zero), the spectrum of
(2.4)–(2.6) converges to a union of intervals (“bands”) separated by intervals of those values ω2 for which
the matrix Γ(ω) is negative-definite (“gaps”, or “lacunae”). As above, we say that ω2 belongs to a weak
band gap (in the spectrum of (2.4)–(2.6)) if at least one eigenvalue of Γ(ω) is positive-semidefinite and
at least one eigenvalue of Γ(ω) is negative.

4 Two-scale asymptotic expansion of the eigenfunctions

Here we give the details of the recurrent procedure for the construction of the series (2.2). We use |+
and |− to denote the limit values of the expressions to which these symbols are attached, on the outside
and on the inside of the boundary of the inclusion Q0 respectively.

Substituting the expansions (2.2) into (2.1) and equating coefficients in front of η−2, η−1, and η0, we
arrive at the following sets of equations, where x ∈ T is a parameter:

curly
(
ε−1
1 (y)curlyH

0(x, y)
)

= 0, y ∈ Q1, (4.1)

ε−1
1 (y)curlyH

0(x, y)× n(y)
∣∣
+

= 0, y ∈ ∂Q0, (4.2)
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curly
(
ε−1
1 (y)curlyH

1(x, y)
)

= −
(
curly ε

−1
1 (y)curlx + curlx ε

−1
1 (y)curly

)
H0(x, y), y ∈ Q1, (4.3)(

ε−1
1 (y)curlyH

1(x, y)× n(y) + ε−1
1 (y)curlxH

0(x, y)× n(y)
) ∣∣

+
= 0, y ∈ ∂Q0, (4.4)

curly
(
ε−1
1 (y)curlyH

2(x, y)
)

=−
(
curly ε

−1
1 (y)curlx + curlx ε

−1
1 (y)curly

)
H1(x, y)

− curlx ε
−1
1 (y)curlxH

0(x, y) + ω2H0(x, y), y ∈ Q1,
(4.5)

(
ε−1
1 (y)curlyH

2(x, y) + ε−1
1 (y)curlxH

1(x, y)
)
× n(y)

∣∣
+

= ε−1
0 (y)curlyH

0(x, y)× n(y)
∣∣
−, y ∈ ∂Q0,

(4.6)

and

curly
(
ε−1
0 (y)curlyH

0(x, y)
)

= ω2H0(x, y), y ∈ Q0, (4.7)

H0(x, y)
∣∣
− = H0(x, y)

∣∣
+
, y ∈ ∂Q0. (4.8)

Multiplying the equation (4.1) by H0, integrating by parts over Q1, and using (4.2) shows that
curlyH

0(x, y) = 0, y ∈ Q1. More precisely, for all x ∈ T we seek H0(x, ·) from the space V, see (2.8).
Before proceeding, we recall a characterisation of the space V (see [1]) that proves useful in the analysis
of the term H0.

Lemma 4.1 (Characterisation of V ). A function v ∈ [H1
#(Q)]3 is an element of the space V if and only

if
v(y) = a+∇b(y) + c(y) a.e. y ∈ Q,

for some a ∈ R3, b ∈ H2
#(Q), c ∈ [H1

0 (Q0)]3.

Taking into account, via Lemma 4.1, that the leading-order term H0 is of the form

H0(x, y) = u(x) +∇yv(x, y) + z(x, y) (4.9)

and substituting (4.9) into the equations (4.3)–(4.4), we find that the coefficient H1 has the representation
H1(x, y) = N(y) curlu(x) + H̃1(x, y), up to the addition of an element of V . Here the term H̃1(x, y)
satisfies

curly

(
ε−1
1 (y)

(
curly H̃

1(x, y) + curlx∇yv(x, y)
))

= 0, y ∈ Q1, (4.10)

ε−1
1 (y)

(
curly H̃

1(x, y) + curlx∇yv(x, y)
)
× n(y)

∣∣
+

= 0, y ∈ ∂Q0, (4.11)

and N = N(y) is a Q-periodic matrix-valued function whose columns N r = N r(y), r = 1, 2, 3, are
solutions to the problems

curl
(
ε−1
1 (y)

(
curlN r(y) + er

))
= 0, y ∈ Q1, ε−1

1 (y)
(
curlN r(y) + er

)
× n(y) = 0, y ∈ ∂Q0, (4.12)

where er is the rth Euclidean basis vector. It is shown ([4], [6]) that (4.12) admits a unique solution in
V ⊥, the orthogonal complement to V in the space [H1

#(Q)]3.
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Looking for H1(x, ·) ∈ [H1
#(Q)]3 and taking into account the identity curlx∇y = −curly∇x together

with (4.10)–(4.11), we infer that for all x ∈ T the function h(x, ·) := H̃1(x, ·)−∇xv(x, ·) is a solution in
[H1

#(Q)]3 to

curly
(
ε−1
1 (y)curly h(x, y)

)
= 0, y ∈ Q1, ε−1

1 (y)curly h(x, y)× n(y)
∣∣
+

= 0, y ∈ ∂Q0.

In particular, the function h belongs to the space V . Therefore, one has

H1(x, y) = N(y) curlx u(x) +∇xv(x, y), (4.13)

up to the addition of an element of V . (As we discuss in Remark 5.1 below, one can specify the divergence
divyH

1(x, y). This, along with the condition that the y-average of H1 vanishes, defines this additional
element of V in a unique way.)

Further, multiplying the equation (4.5) by an arbitrary test function φ ∈ V and integrating over Q1

yields ∫
Q1

curly
(
ε−1
1 (y)curlyH

2(x, y)
)
· φ(y) dy

=

∫
Q1

ω2H0(x, y) · φ(y) dy −
∫
Q1

curly
(
ε−1
1 (y)curlxH

1(x, y)
)
· φ(y) dy

−
(∫

Q1

curlx
(
ε−1
1 (y)curlxH

0(x, y)
)
· φ(y) + curlx

(
ε−1
1 (y)curlyH

1(x, y)
)
· φ(y) dy

)
. (4.14)

We integrate by parts in the left-hand side of (4.14) to determine that∫
Q1

curly
(
ε−1
1 (y)curlyH

2(x, y)
)
· φ(y) dy =

∫
∂Q0

ε−1
1 (y)

(
curlyH

2(x, y)× n(y)
∣∣
+

)
· φ(y) dS(y). (4.15)

Now we perform integration by parts in the individual terms in the right-hand side of (4.14).

−
∫
Q1

curly
(
ε−1
1 (y)curlxH

1(x, y)
)
φ(y) dy = −

∫
∂Q0

(
ε−1
1 (y)curlxH

1(x, y)× n(y)
∣∣
+

)
· φ(y) dS(y)

by (4.6)
=

∫
∂Q0

{(
ε−1
1 (y)(curlyH

2(x, y)× n(y)
∣∣
+

)
· φ(y)−

(
ε−1
0 (y)curlyH

0(x, y)× n(y)
∣∣
−
)
· φ(y)

}
dS(y)

=

∫
∂Q0

(
ε−1
1 (y)curlyH

2(x, y)× n(y)
∣∣
+

)
· φ(y) dS(y) +

∫
Q0

curly
(
ε−1
0 (y)curlyH

0(x, y)
)
· φ(y) dy

−
∫
Q0

ε−1
0 (y)curlyH

0(x, y) · curly φ(y) dy

by (4.7)
=

∫
∂Q0

(
ε−1
1 (y)curlyH

2(x, y)× n(y)
∣∣
+

)
· φ(y) dS(y) +

∫
Q0

ω2H0(x, y) · φ(y) dy

−
∫
Q0

ε−1
0 (y)curlyH

0(x, y) · curly φ(y) dy (4.16)
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Taking into account the representations (4.9) and (4.13), we find that∫
Q1

{
curlx

(
ε−1
1 (y)curlxH

0(x, y)
)
· φ(y) + curlx

(
ε−1
1 (y)curlyH

1(x, y)
)
· φ(y)

}
dy

=

∫
Q1

curlx

{
ε−1
1 (y)

((
I + curlN(y)

)
curlx u(x) + curlx∇yv(x, y) + curly∇xv(x, y)

)}
· φ(y) dy

=

∫
Q1

curlx

{
ε−1
1 (y)

(
I + curlN(y)

)
curlx u(x)

}
· φ(y) dy, (4.17)

where we again make use of the identity curlx∇y = −curly∇x. Finally, equations (4.14)–(4.17) imply∫
Q1

curlx

{
ε−1
1 (y)

(
I + curlN(y)

)
curlx u(x)

}
· φ(y) dy +

∫
Q0

ε−1
0 (y)curlyH

0(x, y) · curly φ(y) dy

=

∫
Q
ω2H0(x, y) · φ(y) dy, ∀φ ∈ V . (4.18)

In what follows we derive the system (2.4)–(2.6) by considering different choices of the test function
φ in the identity (4.18).

Step 1. Choosing test functions φ ∈
[
C∞0 (Q0)

]3
in (4.18) we find that

curly
(
ε−1
0 (y)curlyH

0(x, y)
)

= ω2H0(x, y) y ∈ Q0.

Using the representation (4.9) and the identity curly∇y = 0, we arrive at (2.6).
Step 2. Choosing φ = ∇yψ in (4.18), performing integration by parts, using the identity divy curlx =

−divx curly and recalling (4.12) gives∫
Q
ω2H0(x, y) · ∇yψ dy =

∫
Q1

curlx

{
ε−1
1 (y)

(
I + curlN(y)

)
curlx u(x)

}
· ∇yψ(y) dy

= −
∫
Q1

divy curlx

{
ε−1
1 (y)

(
I + curlN(y)

)
curlx u(x)

}
· ψ(y) dy

=

∫
Q1

divx curly

{
ε−1
1 (y)

(
I + curlN(y)

)
curlx u(x)

}
· ψ(y) dy = 0.

Therefore, we deduce that
divyH

0(x, y) = 0, y ∈ Q, (4.19)

and taking into account (4.9) we obtain the equation (2.5).
Step 3. Choosing φ(y) ≡ 1 in the identity(4.18) we find, using the representation (4.9) once more, that

(2.4) holds, where the matrixAhom emerges as the result of integrating the expression ε−1
1 (y)

(
curlN(y)+I)

with respect to y ∈ Q1.
In the next section we use the above formal construction of the series (2.2) to justify the two claims

of Theorem 2.1.
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5 Proof of Theorem 2.1

For each η > 0, denote by Aη the operator in the space5 L2
#sol(T) defined in a standard way by the

bilinear form (cf. (2.1))∫
T
ε−1
η

( ·
η

)
curlu · curl v, u, v ∈ [H1

#(T)]3 ∩ L2
#sol(T) =: H.

For fixed ω in the spectrum of (2.4)–(2.6), let H0 be a corresponding eigenfunction. Consider the
(unique) solution H̃η ∈ H to the problem

(Aη + I)H̃η = (ω2 + 1)H0(·, ·η ). (5.1)

Denote also

bη(u, v) :=

∫
T
ε−1
η

( ·
η

)
curlu · curl v +

∫
T
u · v, u, v ∈ [H1

#(T)]3,

and (cf. (2.2))
H(2)(·, η) := H0

(
·, ·η
)

+ ηH1
(
·, ·η
)

+ η2H2
(
·, ·η
)
, (5.2)

where Hj , j = 1, 2, are solutions of the system of recurrence relations described in Section 4. The
existence of solutions H1, H2 is guaranteed by a result established in [1, Lemma 3.4]. As these solutions
are unique up to the addition of an element from V , we shall choose them as in Remark 5.1.

Proposition 5.1. There exists a constant Ĉ > 0 such that the estimate∣∣∣bη(H̃η −H(2)(·, η), ϕ
)∣∣∣ ≤ Ĉη√bη(ϕ,ϕ) (5.3)

holds for all ϕ ∈ [H1
#(T)]3.

Proof. Using the definition of the function H̃η and the recurrence relations (4.1)–(4.8) yields

bη
(
H̃η −H(2)(·, η),ϕ

)
=

∫
T
ε−1
η

( ·
η

)
curl H̃η · curlϕ+

∫
T
H̃η · ϕ

−
∫
T
ε−1
η

( ·
η

)
curl

(
H0
(
·, ·η
)

+ ηH1
(
·, ·η
)

+ η2H2
(
·, ·η )

)
· curlϕ

−
∫
T

(
H0
(
·, ·η
)

+ ηH1
(
·, ·η
)

+ η2H2
(
·, ·η
))
· ϕ

=

∫
T
F 1(·, η) · ϕ+

∫
T
F 2(·, η) · η curlϕ.

(5.4)

5We denote by L2
#sol(T) the closure of the set of smooth divergence-free vector fields on T with respect to the L2(T)-norm.
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Here, F 1, F 2 are elements of L2(T) defined for a.e. x ∈ T by

F 1(x, η) = −η
(
χ0(y)curlx

(
ε−1
0 (y)curlyH

0(x, y)
)

+χ1(y)
{

curlx
(
ε−1
1 (y)curlxH

1(x, y)
)

+ curlx
(
ε−1
1 (y)curlyH

2(x, y)
)}

+H1(x, y) + ηH2(x, y)
)∣∣∣
y=

x
η

,

F 2(x, η) = −η
(
χ0(y)ε−1

0 (y)
{

curlxH
0(x, y) + curlyH

1(x, y) + η curlxH
1(x, y)

+η curlyH
2(x, y) + η2 curlxH

2(x, y)
}

+ χ1(y)ε−1
1 (y)curlxH

2(x, y)
)∣∣∣∣
y=

x
η

. (5.5)

Notice that the functionsH0 = H0(x, y), H1 = H1(x, y), H2 = H2(x, y) all belong to the space C∞#
(
T, H1

#(Q)
)
.

Indeed, this is seen to be true for H0 by Proposition 3.1; in the case of ω = αk we choose w ∈ C∞# (T). The

assertions for H1 and H2 now follow from formula (4.13) for the corrector H1(x, y), and the boundary-
value problem (4.5)–(4.6) for the function H2(x, y). It then follows from (5.5), see e.g. [3, p. 1353], that
||F 1(·, η)||L2(T) ≤ Cη, ||F 2(·, η)||L2(T) ≤ Cη, and by applying the Hölder inequality to (5.4) we deduce
that ∣∣∣bη(H̃η −H(2)(·, η), ϕ

)∣∣∣ ≤ Cη(∫
T
|ϕ|2 +

∫
T
|η curlϕ|2

)1/2

,

as required.

The above proposition implies the following statement.

Theorem 5.1. There exists a constant C such that estimate
∥∥H̃η −H0(·, ·/η)

∥∥
L2(T)

≤ Cη holds for all
η.

Proof. Setting ϕ = H̃η −H(2)(·, η) in the estimate (5.3) yields

Ĉ2η2 ≥ bη
(
H̃η −H(2)(·, η), H̃η −H(2)(·, η)

)
≥
∥∥H̃η −H(2)(·, η)

∥∥2

L2(T)
.

The claim of the theorem now follows, by noting that in view of (5.2) we have∥∥H(2)(·, η)−H0(·, ·/η)
∥∥
L2(T)

≤ C̃η

for some C̃ > 0, and hence∥∥H̃η −H0(·, ·/η)
∥∥
L2(T)

≤
∥∥H̃η −H(2)(·, η)

∥∥
L2(T)

+
∥∥H(2)(·, η)−H0(·, ·/η)

∥∥
L2(T)

≤ (Ĉ + C̃)η,

as required.

The claims of Theorem 2.1 now follow from the estimate∥∥((ω2 + 1)−1 − (Aη + I)−1
)
H0(·, ·/η)

∥∥
L2(T)

≤ (ω2 + 1)−1
∥∥H0(·, ·/η)− H̃η

∥∥
L2(T)

≤ Cη, (5.6)

where we used the definition (5.1) of the function H̃η and Theorem 5.1. Indeed, from [8, p. 109], we infer
that the quantities dist

(
(ω2 + 1)−1, Sp

(
(Aη + 1)−1

))
and dist

(
(ω2 + 1)−1H0(·, ·/η), Xη

)
are controlled

above by the right-hand side of (5.6), which completes the proof of Theorem 2.1.
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Remark 5.1. Note that H(2) is not solenoidal in general, but can be defined in such a way that it is
“close” to a solenoidal field, thanks to the equation (4.19) (equivalently, (2.5)) and the special choice of
the function H1 so that

divxH
0(x, y) + divyH

1(x, y) = 0 a.e. (x, y) ∈ T×Q.

The function H(2) thus defined is η-close to the eigenspace Xη in the norm of [H1
#(Q)]3.

Appendix: Symmetry of Ahom and Γ(ω) under rotations

Suppose that A ∈
[
L∞(Q)

]3×3
is symmetric such that A ≥ νI on Q1, ν > 0, and A ≡ 0 on Q0. Consider

the matrix

Ahom
pq :=

∫
Q
A
(
curlN q

p + δpq
)

p, q ∈ {1, 2, 3},

where N q is the unique solution to the problem (cf. [6], [1, Lemma 3.4] and (4.12) above for A = ε−1
1 χ1,

where χ1 is the characteristic function of Q1)

curl
(
A [curlN q + eq]

)
= 0, N q ∈ {u ∈ [H1

#(Q)]3 : A curlu = 0}⊥.

Here the superscript “⊥” denotes the orthogonal complement in [H1
#(Q)]3. Notice that if, for fixed ζ ∈ R3,

we multiply each of the above equations by ζq, then we obtain

Ahomζ =

∫
Q
A
(
curlNζ + ζ

)
, (5.7)

where the vector Nζ , whose components are
∑

qN
q
p ζq, p = 1, 2, 3, is the unique solution to the problem

curl
(
A [curlNζ + ζ]

)
= 0, Nζ ∈

{
u ∈ [H1

#(Q)]3 : A curlu = 0
}⊥
. (5.8)

It is clear that the matrix representation of the bounded linear mapping ζ 7→
∫
QA

(
curlNζ + ζ

)
is equal

to Ahom. The following property holds.

Proposition 5.2. Suppose that σ is a rotation such that σQ = Q and assume that

A(y) = σ−1A(σy)σ, y ∈ Q. (5.9)

Then Ahom inherits the same symmetry, i.e. one has

Ahom = σ−1Ahomσ. (5.10)

In particular, if (5.9) holds for all π/2-rotations, then one has Ahom
kl = Ahom

lk = 0 for all l 6= k.
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Proof. For each u ∈ [H1
#(Q)]3 let w be the solution of the vector equation

(
curl curlw(y)

)
α

=
3∑

l,m,r,s=1

σsαεslmσmr
∂ul(y)

∂yr
, α = 1, 2, 3,

in the space {
w ∈ [H1

#(Q)]3 : divw = 0,

∫
Q
w = 0

}
.

It is clear that such a solution exists. We denote by û the vector field curlw. A direct calculation, using
the property σ−1 = σ>, yields

curly′u(σ−1y′) = σcurl û(σ−1y′). (5.11)

Therefore, for all ϕ ∈ [H1
#(Q)]3, the above equality and the assumption (5.9) imply∫

Q
A(y′)curly′ u(σ−1y′) · curly′ ϕ(σ−1y′) dy′ =

∫
Q
A(σy)σcurl û(y) · σcurl ϕ̂(y) dy

=

∫
Q
A(y)curl û(y) · curl ϕ̂(y) dy.

Hence, a function u ∈ [H1
#(Q)]3 solves∫

Q
A(y′)curly′ u(σ−1y′) · curly′ ϕ(σ−1y′) dy′ =

∫
Q
f(y′) · curly′ ϕ(σ−1y′) dy′ ∀ϕ ∈ [H1

#(Q)]3, (5.12)

if and only if û solves∫
Q
A(y)curl û(y) · curl ϕ̂(y) dy =

∫
Q
σ−1f(σy) · curl ϕ̂(y) dy ∀ϕ̂ ∈ [H1

#(Q)]3. (5.13)

Let us now prove (5.10). For fixed ξ, ζ ∈ R3 let Nξ be the unique solution to (5.8) and set u(y) :=
Nξ(σy), y ∈ Q. By (5.7), assumption (5.9) and (5.11) we deduce that

Ahomξ · ζ =

∫
Q
A(y′)

(
curly′ Nξ(y

′) + ξ
)
· ζ dy′ =

∫
Q
A(y′)

(
curly′u(σ−1y′) + ξ

)
· ζ dy′

(5.11)
=

∫
Q
A(y′)

(
σcurl û(σ−1y′) + ξ

)
· ζ dy′

y′=σy
=

∫
Q
A(σy)

(
σcurl û(y) + ξ

)
· ζ dy

(5.9)
=

∫
Q
A(y)

(
curl û(y) + σ−1ξ

)
· σ−1ζ dy. (5.14)

Since Nξ(y
′) solves (5.8), u(σ−1y′) solves (5.12) for f(y′) = −A(y′)ξ and therefore û solves (5.13) where,

by (5.9), σ−1f(σy) = −σ−1A(σy)ξ = −A(y)σ−1ξ. Hence, the solution Nσ−1ξ to (5.8), for ζ = σ−1ξ, is
the projection of û onto the space {u ∈ [H1

#(Q)]3 : A curlu = 0}⊥ and the expression in (5.14) equals

Ahomσ−1ξ · σ−1ζ. The assertion (5.10) follows, in view of the arbitrary choice of ξ, ζ, and the equality
σAhomσ−1 = σ−1Ahomσ which holds since σ is unitary and Ahom is symmetric.
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Corollary 5.1. If (5.9) holds for σ = σk, where σk is the rotation by π around the xk-axis, then
Ahom
kl = 0, for all l 6= k.

Proof. Indeed, say for k = 1 (5.10) takes the formA
hom
11 Ahom

12 Ahom
13

Ahom
21 Ahom

22 Ahom
23

Ahom
31 Ahom

32 Ahom
33

 =

 Ahom
11 −Ahom

12 −Ahom
13

−Ahom
21 Ahom

22 Ahom
23

−Ahom
31 Ahom

32 Ahom
33

 ,

and hence Ahom
12 = Ahom

21 = Ahom
13 = Ahom

31 = 0.

Similarly, direct calculation proves the following statement.

Corollary 5.2. If (5.9) holds for σ = σk, where σk is the rotation by π/2 around the xk-axis, then
Ahom
kl = 0, for all l 6= k and Ahom

ii = Ahom
jj , i, j 6= k.

Proposition 5.3. Let χ0 be the characteristic function of the set Q0. Suppose that the set Q and the
coefficient A = ε−1

0 χ0I are invariant under a rotation σ, i.e. σQ = Q and A = ε−1
0 χ0I satisfies (5.9), or

equivalently,
ε−1
0 (σy)χ0(σy) = ε−1

0 (y)χ0(y) a.e. y ∈ Q. (5.15)

Then for all ω2 /∈ {0} ∪ {αk}∞k=1 the matrix Γ(ω), defined by (3.9), (3.3)–(3.6), satisfies the property

Γ(ω) = σΓ(ω)σ−1 = σ−1Γ(ω)σ.

Proof. We make use of the representation (3.11) for Γ(ω) and of the equations (3.10) for the functions
φk.

Multiplying (3.10) by ψ ∈ [C∞0 (Q0)]3 and integrating by parts yields∫
Q0

ε−1
0 (y)curlφk(y) · curlψ(y) dy = αk

∫
Q0

∫
Q0

G(y − y′) div φk(y′) divψ(y) dy′dy

+ αk
∫
Q0

φk(y) · ψ(y) dy. (5.16)

We claim that the functions σφk(σ−1·) satisfy the identity (5.16) with Q0 replaced by σQ0 := {y ∈ Q :
σ−1y ∈ Q0}. We show this by treating each term in (5.16) separately. It is clear that∫

σQ0

σφk(σ−1ỹ) · σψ(σ−1ỹ) dỹ =

∫
σQ0

φk(σ−1ỹ) · ψ(σ−1ỹ) dỹ
ỹ=σy

=

∫
Q0

φk(y) · ψ(y) dy. (5.17)

Furthermore, by utilising the identity

curlỹ
(
σψ(σ−1ỹ)

)
= (curlψ)(σ−1ỹ) a.e. ỹ ∈ σQ0 ∀ψ ∈

[
H1

0 (Q0)
]3
,

which holds due to the fact that σ is a rotation, as well as the property (5.15), we obtain∫
σQ0

ε−1
0 (ỹ)curlỹ

(
σφk(σ−1ỹ)

)
· curlỹ

(
σψ(σ−1ỹ)

)
dỹ

ỹ=σy
=

∫
Q0

ε−1
0 (y)curlφk(y) · curlψ(y) dy. (5.18)
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Finally, it is clear that div
(
σF (σ−1·)

)
= (divF )(σ−1·) for vector fields F and therefore∫

σQ0

∫
σQ0

G(ỹ − ỹ′) divỹ
(
σφk(σ−1ỹ)

)
divỹ

(
σψ(σ−1ỹ′)

)
dỹ′dỹ

ỹ=σy,
ỹ′=σy′

=

∫
Q0

∫
Q0

G
(
σ(y − y′)

)
div φk(y) divψ(y′) dy′dy

=

∫
Q0

∫
Q0

G
(
y − y′) div φk(y) divψ(y′) dy′dy,

where the invariance of the Green function G under the rotation σ holds due to the assumption σQ = Q.
The proof is concluded by combining the definition of Γ(ω) via (3.9), (3.3)–(3.6) and the formula (3.11)

applied twice, namely for the inclusion σQ0, which coincides with Q0 due to (5.15), and the inclusion Q0

itself:

Γ(ω) = ω2 + ω4
∞∑
k=1

(∫
σQ0

σφk(σ−1·)
)
⊗
(∫

σQ0
σφk(σ−1·)

)
αk − ω2

= ω2σσ−1 + ω4
∞∑
k=1

(∫
Q0
σφk

)
⊗
(∫
Q0
σφk

)
αk − ω2

= σΓ(ω)σ−1, ω2 /∈ {0} ∪ {αk}∞k=1,

as required.

By analogy with Corollary 5.1, Corollary 5.2 we obtain the following statement.

Corollary 5.3. Under the conditions of Proposition 5.2 with σ = σk, where σk is the rotation by π
around the xk-axis, then Γkl(ω) = 0 for all l 6= k, ω2 /∈ {0} ∪ {αk}∞k=1. Moreover, if σk is a rotation by
π/2 around the xk-axis, then Γii(ω) = Γjj(ω) for i, j 6= k.
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