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Abstract

A bidispersive porous material is one which has usual pores but addi-
tionally contains a system of micro pores. We consider a fluid saturated
bidispersive porous medium in the vertical layer x ∈ (−1/2, 1/2) with
gravity in the −z (downward) direction. The walls of the layer are main-
tained at different constant temperatures. A suitable Rayleigh number is
defined and we derive a global stability threshold below which no instabil-
ity may arise. We additionally show that the porous layer is stable for all
Rayleigh numbers provided the initial temperature gradient is bounded
in a precise sense.

1 Introduction

Thermal convection in a vertical porous layer where the vertical sides are main-
tained at different constant temperatures is currently a major research topic.
Gill [1] produced a surprising result by showing that convection will not occur
in a vertical porous layer, in the sense that he showed the basic steady solution
is linearly stable to two-dimensional disturbances for all Rayleigh numbers. Re-
finements to Gill’s result addressing the three-dimensional nonlinear problem
were given by Rees [2] and Straughan [3].

Various generalizations of the porous vertical convection problem have subse-
quently appeared including mass diffusion and very interesting use of alternative
boundary conditions, see e.g. Barletta [4, 5, 6], Barletta and Celli [7], Barletta
and Miklavcic [8], Barletta and Storesletten [9], Bera and Khandelwal [10], Celli
et al. [11], Rees [12, 13, 14], Shankar and Shivakumara [15], Shankar et al. [16],
see also other references in Straughan [17].

This article also addresses the porous vertical convection problem but in a
novel context, namely, when the porous medium is one of bidispersive (or double
porosity) type. Thermal convection in a bidispersive porous material was intro-
duced in Nield and Kuznetsov [18], and reviews of recent developments may be
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found in Nield and Bejan [19] and in Straughan [20]. These articles concentrate
on the case where the different porosity scales allow for different temperatures.
Falsaperla et al. [21] adapted the model of Nield and Kuznetsov [18] to allow
for a single temperature field, and the horizontal convection problem where the
layer is heated from below is analyzed by Gentile and Straughan [22] who show
the linear instability and nonlinear stability critical Rayleigh numbers coincide
and they determine these numbers.

A bidispersive porous medium is one where there are pores on a macro
scale and these are called macro pores. However, the porous skeleton may have
cracks or fissures and these give rise to micro pores. Such double porosities
may be created in man made materials, see e.g. the picture on p. 3069 of
Nield and Kuznetsov. Since there are many real life applications of bidispersive
porous materials, see Nield and Bejan [19] and Straughan [20], we deem that
a study of the vertical thermal convection problem is timely and useful. We
address the three-dimensional fully nonlinear stability problem associated with
thermal convection in a fluid saturated bidispersive porous medium and derive
two classes of result. The first establishes a Rayleigh number threshold such
that stability holds for all initial data when the Rayleigh number is below this
threshold. The second demonstrates that the basic solution is nonlinearly stable
for all Rayleigh numbers provided the initial value of the temperature gradient
does not exceed a precise value.

2 Basic equations

We consider a bidispersive saturated porous medium in which the porosity in
the macro pores is φ whereas the porosity in the micro pores is ε. The basic
equations for non-isothermal flow in a bidispersive porous medium with a single
temperature may be derived from the general equations with different temper-
atures of Nield and Kuznetsov [18] as is done in Falsaperla et al. [21]. Let

Uf
i , U

p
i , p

f , pp denote the velocity fields in the macro and micro pores, and the
pressures in the macro and micro pores, and let T denote the temperature. The
governing system of equations is

µ

Kf
Uf
i + ζ(Uf

i − Up
i ) = −pf,i + ρF g αTki ,

µ

Kp
Up
i − ζ(Uf

i − Up
i ) = −pp,i + ρF g αTki ,

(ρc)mT,t + (ρc)f (U
f
i + Up

i )T,i = κm∆T ,

Uf
i,i = 0, Up

i,i = 0 .


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(1)

In these equations µ, ζ, Kf and Kp denote the dynamic viscosity of the satu-
rating fluid, an interaction coefficient, the permeability attached to the macro
pores, and the permeability attached to the micro pores, respectively. In ad-
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dition, ρF is a reference density, g is gravity, α is the coefficient of expansion
of the fluid, k = (0, 0, 1), (ρc)m is the product of the density and specific heat
at constant pressure in the porous medium, (ρc)f is the same in the fluid, and
κm denotes the thermal conductivity of the of the porous medium. Standard
indicial notation is employed throughout with ,i denoting ∂/∂xi .

We suppose the porous medium occupies the vertical layer x ∈ (−L/2, L/2),
(y, z) ∈ R

2. The temperatures on the boundaries x = ±L/2 are fixed with
constant values Tl and Th, where without loss of generality, we assume Th >
Tl. Equations (1) are nondimensionalized with the length, velocity, pressure,
temperature and time scales L, U = κm/L(ρc)f , P = LζU, T ♯ = Th − Tl,
I = (ρc)mL2/κm. Introduce the non-dimensional parameters

γ1 =
µ

Kfζ
, γ2 =

µ

Kpζ
, R =

ρF g αT ♯

ζ U
, (2)

where R is the Rayleigh number. In non-dimensional form (1) may be rewritten

γ1U
f
i + (Uf

i − Up
i ) = −pf,i +RkiT ,

γ2U
p
i − (Uf

i − Up
i ) = −pp,i +RkiT ,

T,t + (Uf
i + Up

i )T,i = ∆T ,

Uf
i,i = 0, Up

i,i = 0 ,


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
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
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













(3)

holding in {x ∈ (−1/2, 1/2)}× {(y, z) ∈ R
2)} × {t > 0}.

The boundary conditions to be satisfied are that Uf
i ni = 0, Up

i ni = 0, on
x = ±1/2, where ni is the unit outward normal to x = ±1/2.

The steady solution to (3) which corresponds to the analogous solution for
a single porosity porous medium as studied by Gill [1], may be found from (3)

as Ū
f
= (Ūf , V̄ f , W̄ f ), Ū

p
= (Ūp, V̄ p, W̄ p), Ūf = Ūp = 0, V̄ f = V̄ p = 0,

T̄ = x, W̄ f = Γ1Rx, W̄ p = Γ2Rx, (4)

where

Γ1 =
γ2 + 2

γ1γ2 + γ1 + γ2
, Γ2 =

γ1 + 2

γ1γ2 + γ1 + γ2
. (5)

Let uf
i , u

p
i , π

f , πp and θ be perturbations to the steady solution (Ūf
i , Ū

p
i , p̄

f , p̄p, T̄ )
and then from (3)-(5) one may show that the perturbations satisfy the equations

γ1u
f
i + (uf

i − up
i ) = −πf

,i +Rkiθ ,

γ2u
p
i − (uf

i − up
i ) = −πp

,i +Rkiθ ,

θ,t + (uf
i + up

i )θ,i + uf + up + (Γ1 + Γ2)Rxθ,z = ∆θ ,

uf
i,i = 0 , up

i,i = 0 ,
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(6)
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holding in {x ∈ (−1/2, 1/2)}×{(y, z) ∈ R
2)}×{t > 0}. In (6) uf = uf

1
, up = up

2
.

The boundary conditions are

uf = up = 0, θ = 0, on x = ±
1

2
, (7)

and in addition (uf
i , u

p
i , π

f , πp, θ) satisfy a plane tiling periodicity in (y, z) plane.
This point is discussed further in Straughan [17], p. 51. For example, the
frequently occurring hexagonal shape is discussed there. Whatever the plane
tiling shape is, its Cartesian product with {x ∈ [−1/2, 1/2]} defines the periodic
cell. The periodic cell which arises is denoted by V.

3 Global stability

We commence by deriving a result of global stability, i.e. for all initial perturba-
tions. By ‖ · ‖ and (· , ·) denote the norm and inner product on the real Hilbert
space L2(V ).

Multiply (6)1 by uf
i , (6)2 by up

i , and integrate over V. Integrate by parts
and use (6)4,5 and the boundary conditions and add the results to derive the
equation

0 = −γ1 ‖ u
f ‖2 −γ2 ‖ u

p ‖2 − ‖ u
f − u

p ‖2 +R(θ, wf + wp). (8)

Next, multiply (6)3 by θ and integrate over V to find after using the boundary
conditions

d

dt

1

2
‖ θ ‖2 + (uf

i + up
i , θθ,i) + (Γ1 + Γ2)R (x θ, θ,z)

= − ‖ ∇θ ‖2 −(θ, uf + up) .
(9)

The cubic term is zero since

(uf
i + up

i , θθ,i) = −
1

2
(uf

i,i + up
i,i , θ

2) +

∮

∂V

(uf
i + up

i )ni θ
2 dA = 0, (10)

where ∂V denote the boundary of V. In addition

(x θ, θ,z) =
1

2

∫

V

∂

∂z
(x θ2) dx = 0 , (11)

once θ satisfies a periodicity condition in y and z. Hence, (9) reduces to

d

dt

1

2
‖ θ ‖2= − ‖ ∇θ ‖2 −(θ, uf + up) . (12)

Next, let λ > 0 be a coupling parameter and form (12)+λ(8) to obtain

d

dt

1

2
‖ θ ‖2=− ‖ ∇θ ‖2 −λγ1 ‖ u

f ‖2 −λγ2 ‖ u
p ‖2

− λ ‖ u
f − u

p ‖2 −(θ, uf + up) +Rλ(θ, wf + wp) .
(13)
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Use the arithmetic-geometric mean inequality on the uf , up, wf and wp terms
in the form
ab ≤ a2/2σ + σb2/2 for a suitable σ > 0 to derive from (13)

d

dt

1

2
‖ θ ‖2≤− ‖ ∇θ ‖2 +

(

1

2λ
+

λR2

2

)(

1

γ1
+

1

γ2

)

‖ θ ‖2

− λγ1 ‖ vf ‖2 −λγ2 ‖ vp ‖2 −λ ‖ u
f − u

p ‖2 ,

(14)

where vf = uf
2
, vp = up

2
. From (14) and the Poincaré inequality π ‖ θ ‖≤‖ ∇θ ‖,

it follows that

d

dt

1

2
‖ θ ‖2≤ −k ‖ θ ‖2 −λγ1 ‖ vf ‖2 −λγ2 ‖ vp ‖2 −λ ‖ u

f − u
p ‖2 , (15)

where

k = π2 −

(

1

2λ
+

λR2

2

)(

1

γ1
+

1

γ2

)

.

Pick λ = 1/R and then (15) leads to exponential decay of ‖ θ(t) ‖2 if k > 0, i.e.
if

R

(

1

γ1
+

1

γ2

)

< π2 . (16)

From equation (8) we use the arithmetic-geometric mean inequality to deduce

γ1 ‖ u
f ‖2 +γ2 ‖ u

p ‖2≤ R2

(

1

γ1
+

1

γ2

)

‖ θ ‖2 . (17)

Thus condition (16) also guarantees exponential decay of ‖ u
f ‖ and ‖ u

p ‖ .
Hence, we have demonstrated that condition (16) leads to global stability.

4 Linear instabilty

In this section we derive the analogue of the Gill [1] result for a bisdispersive
porous medium. This then allows us to compare the linear instability result
with the global nonlinear stability one. This will also allow us to compare our
results to the analogous ones for a single porosity material.

In the next section we address the fully nonlinear problem for stability when
the Rayleigh number is not restricted by (16). The linear instability result
follows as a by product of equation (28) derived there. In fact, if we employ
the linearized equations which arise from (6) then instead of equation (28) one
derives, in the linearized case,

d

dt

1

2
‖∇θ‖2 = −‖∆θ‖2. (18)

If we appeal to inequality (35) then we may show

d

dt

1

2
‖∇θ‖2 ≤ −2π2‖∇θ‖2, (19)
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and after integration,

‖∇θ(t)‖2 ≤ exp(−2π2t) ‖∇θ(0)‖2. (20)

We then employ Poincaré’s inequality to see that

‖θ(t)‖2 ≤
1

π2
exp(−2π2t) ‖∇θ(0)‖2. (21)

An appeal to inequality (17) now shows

γ1‖u
f‖2 + γ2‖u

p‖2 ≤
R2

π2

( 1

γ1
+

1

γ2

)

‖∇θ(0)‖2 exp(−2π2t). (22)

Observe that ‖θ‖, ‖uf‖ and ‖up‖ then decay exponentially regardless of how
large R is. This means that according to linearized theory there is never in-
stability in the vertical bidispersive convection problem. This is thus entirely
analogous to the single porosity result of Gill [1].

5 Stability for all Rayleigh numbers

In this section our goal is to establish an optimal result. Gill [1] showed that
any two-dimensional disturbance to the vertical convection problem in a one
porosity fluid is stable in the linear sense for all values of the Rayleigh number.
We have shown this linear result is true for three - dimensional disturbances in
the bidispersive problem. We shall now show that one may establish a similar
result for the vertical convection problem for a bidispersive porous medium in
three-dimensions, in the fully nonlinear case, but, at the expense of a restriction
on a suitable measure of the initial data.

The starting point is again the perturbation equations (6). Firstly, take curl
curl of (6)1,2 to see that with the aid of (6)4,5

γ1∆uf
i + (∆uf

i −∆up
i ) = R(ki∆θ − kjθ,ij) ,

γ2∆up
i + (∆up

i −∆uf
i ) = R(ki∆θ − kjθ,ij) .







(23)

Next, multiply (6)3 by −∆θ and integrate the result over V. After using the
boundary conditions one may see that

d

dt

1

2
‖ ∇θ ‖2=− ‖ ∆θ ‖2 +(uf + up,∆θ) + (Γ1 + Γ2)R (x θ,z ,∆θ)

+

∫

V

(uf
i + up

i ) θ,i ∆θ dx .
(24)

Now

(x θ,z,∆θ) = −

∫

V

x θ∆θ,z dx

=
1

2

∫

V

∂

∂z

(

x|∇θ|2
)

dx+ (θ, θ,xz) = (θ, θ,xz).

(25)

6



Equations (23) for i = 1 now yield

−γ1∆uf − (∆uf −∆up) = Rθ,xz ,
−γ2∆up + (∆uf −∆up) = Rθ,xz .

}

(26)

Then using (26) we employ (25) to find

(Γ1 + Γ2)R (x θ,z ,∆θ) =Γ1R(θ, θ,xz) + Γ2R(θ, θ,xz)

=Γ1

(

θ, −γ1∆uf − (∆uf −∆up)
)

+Γ2

(

θ, −γ2∆up + (∆uf −∆up)
)

= [−Γ1(γ1 + 1) + Γ2](u
f ,∆θ) + [−Γ2(γ2 + 1) + Γ1] (u

p,∆θ)

=− (uf ,∆θ)− (up,∆θ) ,

(27)

where we have integrated by parts twice and employed the boundary conditions.
Now, employ (27) in (24) to obtain

d

dt

1

2
‖ ∇θ ‖2= − ‖ ∆θ ‖2 +

∫

V

(uf
i + up

i ) θ,i∆θ dx . (28)

The cubic terms are estimated using the inequality

sup
V

|uα| ≤ C ‖ ∆u
α ‖ , (29)

for α = f or p, see e.g. Straughan [17], where C is a constant which depends
on V. We write

∫

V

(uf
i + up

i ) θ,i∆θ dx ≤

(

sup
V

|uf |+ sup
V

|up|

)

‖ ∇θ ‖ ‖ ∆θ ‖

≤ C
(

‖ ∆u
f ‖ + ‖ ∆u

p ‖
)

‖ ∇θ ‖ ‖ ∆θ ‖ .

(30)

One next employs (23) to see that

∆uf
i = −Γ1 R (kjθ,ij − ki∆θ)

∆up
i = −Γ2 R (kjθ,ij − ki∆θ)

}

(31)

Therefore, for α = f or p,

‖ ∆u
α ‖2 = Γ2

α R2

∫

V

(kj θ,ij − ki ∆θ) (kr θ,ir − ki ∆θ) dx

= Γ2

α R2(‖ ∆θ ‖2 − ‖ θ,zz ‖2 − ‖ θ,xz ‖2 − ‖ θ,yz ‖2)

≤ Γ2

α R2 ‖ ∆θ ‖2 ,

(32)

where we have integrated by parts and used the boundary conditions, observing
θ,zz = 0 at x = ±1/2.

Return to (28) and use (30) and (32) to derive

d

dt

1

2
‖ ∇θ ‖2 ≤ − ‖ ∆θ ‖2 +CR (Γ1 + Γ2) ‖ ∇θ ‖ ‖ ∆θ ‖2

= − ‖ ∆θ ‖2 [1− CR (Γ1 + Γ2) ‖ ∇θ ‖] .
(33)
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Now, observe

‖ ∇θ ‖2= −(θ,∆θ) ≤‖ θ ‖ ‖ ∆θ ‖≤
1

π
‖ ∇θ ‖ ‖ ∆θ ‖ (34)

where we have integrated by parts, used the Cauchy-Schwarz inequality and the
Poincaré inequality. From (34) it follows that

π ‖ ∇θ ‖≤‖ ∆θ ‖ . (35)

If now

‖ ∇θ(0) ‖<
1

CR(Γ1 + Γ2)
(36)

then from (33) a continuity argument together with (35) allows one to deduce
‖ ∇θ(t) ‖ decays at least exponentially. Further, from Poincaré’s inequality we
obtain the same decay for ‖ θ(t) ‖ and then an appeal to (17) ensures similar
decay for ‖ u

f ‖ and ‖ u
p ‖ .

We have, therefore, established that provided (36) holds the vertical bidis-
persive convection problem is stable for all values of the Rayleigh number R.

Inequality (36) may be perceived as a strong restriction on the H1 norm
of the initial temperature field since the right hand side becomes vanishingly
small as R → ∞. However, it is entirely equivalent to the situation in the
single porosity case as found by Straughan [3]. To understand this we need to
recognize that the Rayleigh number Rs used by Straughan [3] is defined as

Rs =
ρc

κm

Kfαg(Th − TL)L

(µ/ρ)
.

The analogous result of Straughan [3] derives nonlinear stability for all Rayleigh
numbers when

‖∇θ(0)‖ <
1

RsC
. (37)

We can identify this result with (36) when we make the identification R = Rsγ1
between the Rayleigh number used here and Rs as used in Straughan [3]. For
the single porosity case we may take Kp = 0, ζ = 0, and then if we take the
limit Kp → 0, ζ → 0, in (36) we find

R(Γ1 + Γ2) = Rsγ1(Γ1 + Γ2) → Rs

( 1

1 + 1/γ1

)

→ Rs.

Thus, (36) is analogous to (37).
In addition, we may employ inequality (17) and the Poincaré inequality to

find
π2

R2
(γ1‖u

f‖2 + γ2‖u
p‖2) ≤

( 1

γ1
+

1

γ2

)

‖∇θ‖2.
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When we combine this with (36) we obtain the following restriction on the initial
velocity fields

π(γ1‖u
f‖2 + γ2‖u

p‖2)1/2 ≤R
( 1

γ1
+

1

γ2

)1/2

‖∇θ(0)‖

≤
( 1

γ1
+

1

γ2

)1/2 1

C(Γ1 + Γ2)
.

Thus, there is a restriction on the size of the initial velocity field, but it does
not depend on the size of R.

Even though inequality (36) does depend on R it represents a restriction
only on the initial temperature gradient. In any case, the decay result obtained
is a fully nonlinear one.

6 Conclusions

We have studied the problem of convection in a fluid saturated bidispersive
porous medium when the porous layer is vertical and the temperatures on the
vertical sides are constant but different and thus in the steady state generate a
temperature gradient and vertical flow.

We have derived a global stability result which shows that for R less than a
critical value one has global stability, i.e. for all initial data. We have further
shown that one has nonlinear stability for all values of R if the initial values of
the gradient of the temperature field are suitably restricted. Since inequality
(36) involves the Rayleigh number R it still leaves open the possibility of a finite
amplitude subcritical instability if (36) and (16) are not satisfied. It would be
interesting to perform numerical computations in three - dimensions to see if
subcritical instabilities can be found in this situation.
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