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Abstract  7	
Microbes constantly challenge plants and some can successfully infect their host and 8	

ultimately cause disease. In order to cope against pathogen infection, plants must be ready to 9	

“fight back”. Basal immunity in many cases, is not enough for survival and leads to disease 10	

and ultimately a premature death of the host. However, the plant immune system can be 11	

temporarily and even trans-generationally primed; this ‘primed state’ leads to changes in the 12	

plant involving transcriptional, post-translational, metabolic, physiological and epigenetic 13	

reprogramming, which enables the plant to fine-tuning its defence mechanisms for a rapid 14	

and/or more robust response after abiotic and/or biotic stress. This can ultimately affect 15	

pathogen infection speed and hence decrease its ability to overcome host resistance and the 16	

final outcome of the host-pathogen interaction. The role of the three major PTMs (protein 17	

ubiquitination, phosphorylation and SUMOylation) in plant immunity has been well-18	

established and new PTMs have emerged as plant cell signalling regulators such as S-19	

acylation. However, the role of PTMs on defence priming and how PTM machinery is 20	

affected in primed plants and its connection to plant resistance against biotic/abiotic stress is 21	

not well understood. This review highlights the current state of play of priming-mediated 22	

post-translational reprogramming and explores new areas for future research. 23	
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INTRODUCTION 37	
1. Plant Innate immunity: basal resistance and post-translational modifications 38	
Unlike animal cells, plants depend on their innate immunity due to their lack of somatic 39	

adaptive defences [1]. However, plants are not unprotected against the pathogens and pests 40	

that attack them. They have a developed and sophisticated immune system that must be able 41	

to endure attacks from a wide variety of microorganisms, such as bacteria, oomycetes, fungi 42	

and viruses. Despite the fact that pathogens have different host ranges depending on their 43	

nature and specialization level; it is well-known they have coevolved with plants over 44	

millions of years [2, 3] to develop a way to infect them, and at the same time plants have 45	

developed more or less successful ways to resist infection and disease development. This co-46	

evolutionary development of the plant immune system has been generally accepted and 47	

represented by a zig-zag model [1,4].   48	

Many pathogens, such as oomycetes, aphids and fungi are able to penetrate directly their host 49	

cell wall, unlike plant viruses and bacteria, which depend on natural openings, damaged 50	

tissue or vectors [5]. In order to fight pathogen infection, plants have created a series of 51	

resistance mechanisms. As a first physical defence, plants have a waxy layer on their leaf 52	

surfaces beneath which are a series of cell-wall defences, such as lignin and callose 53	

appositions, so-called papillae. If a pathogen attempts to infect and subsequently cause 54	

disease in the plant it needs to first overcome these physical barriers. These callose-rich 55	

papilla depositions are usually induced ubiquitously in plants	 upon pathogen attack, in 56	

contrast with other types of defence pathways [6].  57	

If a pathogen does manage to penetrate through these layers, the plant needs to be able to 58	

combat it. As a primary defence response, plants have a wide range of specific cell-wall 59	

surface receptor-type proteins called pattern-recognition receptors (PRRs) that respond to 60	

microbes through the sensitive and quick recognition of conserved microbial features [7], 61	

such as chitin, flagella, glycoproteins or lipopolysaccharides, called microbe-associated 62	

molecular patterns (MAMPs) and pathogen-associated molecular patterns (PAMPs), or 63	

molecules released on damaged tissue called damage-associated molecular patters (DAMPs) 64	

[5]. This recognition triggers a set of defence mechanisms in the plant that results in the 65	

activation of PAMP-triggered immunity (PTI) which can prevent the pathogen from infecting 66	

and colonising host tissues. 67	



It has been discovered that successful pathogens have acquired host-specific molecules called 68	

effectors [8] that they release to prevent host recognition of their PAMPs/MAMPs or by 69	

directly suppressing PTI responses [9].  70	

Peptide-based post-translational modifications (PTMs) are regulatory processes that can alter 71	

the function, structure and activity of the proteome. Studies on the role of PTMs in plant 72	

immunity and cell signalling have increased over the last decade [10]. Furthermore, the three 73	

major PTMs, protein phosphorylation, ubiquitination and SUMOylation, are well-known to 74	

mediate PTI and R gene-dependent signalling. PTI-induced mitogen-activated protein kinase 75	

(MAPK) signalling regulates transcription factors through phosphorylation which are in turn 76	

targets for the Small Ubiquitin-like Modifier (SUMO) protein [11]. Plasma membrane-related 77	

proteins are also a target for lipid-based post-translational modifications, including S-78	

acylation, N-myristoylation, prenylation and glycosylphosphatidylinositol (GPI) anchors 79	

[12]. This review briefly examines some key aspects of the three major post-translational 80	

modifications (PTM) (ubiquitination, phosphorylation and SUMOylation) in plant immunity 81	

and defence priming with an aim to provide new insights into current knowledge.   82	

In a constant plant-pathogen arms race, plants acquired a second layer of immune response in 83	

which they can recognise effectors with resistance (R) proteins and subsequently trigger so-84	

called effector-triggered- immunity (ETI) [13]. This coevolution between the pathogen and 85	

the host, where the pathogen avirulence (Avr) gene evolves to avoid recognition and the host 86	

resistance (R) gene changes in order to scan and recognize pathogen MAMPS/PAMPS is 87	

accepted as the distinctive gene-for-gene model [3].  88	

During this plant-pathogen interaction there is an onset of defence systems triggered by the 89	

plant which leads to resistance or, if ineffective, disease development. Many different R and 90	

Avr proteins have been characterized through the years providing a better understanding of 91	

the plant-microbe interactions [14], including the tomato R protein Cf-4 mediating the 92	

recognition of the Cladospodium fulvum effector protein Avr4 [15,16], the potato R protein 93	

R3a that recognises Avr3a effector from Phytophthora infestans [17] and the recognition of 94	

AvrPto from Pseudomonas syringae pv tomato by receptor kinase Pto in tomato [18].  95	

R-mediated resistance is indirectly mediated by PTMs, where resistance (R)-type proteins, 96	

such as SNC1, a TIR-NBS-LRR class disease resistance protein, interact with the SUMO 97	

targets Topless-related 1 and HDA19, a transcriptional co-repressor and histone deacetylase 98	

respectively [11]. Furthermore, SIZ1, a SUMO E3 ligase, negatively regulates salicylic acid 99	

(SA) and PAD4-mediated R-mediated gene signalling and siz1 mutant Arabidopsis plants 100	

constitutively express systemic-acquired resistance (SAR) conferring resistance to the 101	



bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 expressing avrRps4 [19]. 102	

This clearly shows an involvement of PTMs, apart from basal resistance, in induced 103	

resistance (IR) defence mechanism, which can potentially be further exploited to fine-tune 104	

plant immune system in response to elicitor molecules. 105	

2. Novel roles of post-translational modifications in defence priming  106	
Until recently, plant defence mechanisms were explained based on basal immune responses 107	

after pathogen challenge. As stated above, basal resistance, in many cases, is not enough for 108	

survival and leads to disease and ultimately a premature death of the host. However, plants 109	

are capable of defending themselves and fight off pathogen attack through constitutive and 110	

inducible defence mechanisms [20]. 111	

Elicitor molecules can induce resistance in plants, and subsequently can enhance the plant 112	

basal resistance after perception of elicitor signals against pathogen attack [21]. One of the 113	

main mechanisms of induced resistance is priming [22, 23], which enables the plant to fine-114	

tuning its defences for a more rapid and/or more robust response to abiotic and/or biotic 115	

stress [24, 25] and implies activation of systemic responses only when the pathogen reaches 116	

the infection site [24].  117	

The priming process goes under three phases, which are 1) a pre-priming stimulus or ‘naïve’ 118	

phase, followed by 2) a post-priming stimulus or ‘primed phase’ (Figure 2) [26, 27, 28] 119	

which leads to transcriptional, post-translational, metabolic, physiological and epigenetic re-120	

programming [29], such as DNA methylation and histone modification changes; these 121	

changes in chromatin can be mediated by PTMs of histones (H), such as trimethylation of 122	

histone 3 at lysine 4 (H3K4me3).  The elicitor Benzo(1,2,3)-thiadiazole-7-carbothioic acid S- 123	

methyl ester (BTH)-induced histones 3 and 4 methylation and acetylation of WRKY29, 124	

WRKY53 and WRKY6 promoters [28]; histone variants in mammalian cells, such as 125	

phosphorylation and ubiquitination [30] and the histone variant H2A.Z is subject to a variety 126	

of post-translational modifications, including acetylation, ubiquitination, and SUMOylation 127	

[31]; interestingly in Arabidopsis the accumulation of histone H2A substitute H2A.Z has 128	

been proposed to be involved in priming suppressed SA-responsive loci (SArlc), such as PR-129	

1, to be ‘ready’ for transcription [32]. This may provide a link to a ‘post-primed phase’ where 130	

the plant shows an enhanced resistance to pathogen challenge, mainly by a faster and/or 131	

stronger defence response [27, 29]. However, the molecular-basis of the linkage between 132	

some of the previous changes, in particular post-translational modifications (PTMs), such as 133	

protein phosphorylation, ubiquitination, SUMOylation and the more recent lipid-based PTMs 134	

and defence priming still remains unclear, however some evidence has been shown such as in 135	



Arabidopsis the ots1-ots2 double mutant and siz1 mutant show constitutive SAR and 136	

resistance against Pst. DC3000 [19, 33]. Finally, 3) the ‘post-primed state’ has been related to 137	

an increased, more efficient activation of the plant defence response against pathogen attack 138	

(Figure 2) with minimal plant fitness costs [34, 35]. Moreover, the ‘post-primed state’ of the 139	

plant results from an amplified sensitization or perception (increased ‘alertness’) of 140	

immunity-inducing signals, rather than from direct gene induction [24, 36], which reinforces 141	

the importance of PTMs in the primed cell proteome to “fight back” against biotic and/or 142	

abiotic stresses.   143	

 144	

 145	
Figure 1. Model of a general priming process with an elicitor or ‘priming agent’ (adapted from Martinez-146	
Medina et al. 2016). The priming stimulus (e.g. chemical priming agent such as BABA, JA or chitosan) acts on 147	
a pre-primed organism which leads to a ‘primed phase’ and precedes the stress response induced by a triggering 148	
stimulus, such as pathogen infection. After the stress trigger (e.g. pathogen attack), the ‘post-primed’ plant 149	
shows a stronger and more rapid defence response which leads to an enhanced resistance against different 150	
stresses. The amplitude of defence is shown on the y axis and the time on the x axis. 151	

As stated above, the implications of defence priming are numerous; including long-lasting 152	

resistance, changes in transcriptional, post-translational, metabolic and physiological 153	

regulation and even transgenerational primed progeny [34]. Some examples include the non-154	

protein amino acid priming elicitor β-aminobutyric acid (BABA), which can induce 155	

resistance even 28 days after treatment, termed long-lasting resistance, in Arabidopsis 156	



thaliana against Hyaloperonospora arabidopsidis (Hpa) and its priming effect can still be 157	

detected in the next generation, which requires the central transcriptional regulator of basal 158	

and systemic acquired resistance (SAR) protein NPR1 [37, 38].  The phytohormone jasmonic 159	

acid (JA), together with BABA, applied as a seed treatment in tomato, is also able to induce 160	

long-lasting priming against herbivores and powdery mildew (Oidium neolycopersici) at 8-9 161	

weeks after treatment [34] or against B. cinerea [21].  162	

However, both priming agents, JA and BABA also have an impact on plant growth at high 163	

concentrations which must be taken into consideration in order to not over-stress the plant. 164	

Even though priming rarely provides complete resistance in the host against biotic stress and 165	

it is associated with plant fitness costs and trades-off [22, 39, 40, 41], its benefit relies on the 166	

activation of MAMP/DAMP-mediated multi-genic defence response [37] that cannot be 167	

easily overcome by the pathogen.  168	

Thus, to achieve a more efficient defence strategy that is less costly in terms of plant fitness, 169	

it is important, when using priming agents, to assess the effect of the concentration not only 170	

on the activation of plant endogenous defences, but also on the growth and stress tolerance of 171	

the plant. 172	

3. Priming via post-translational modifications as a key regulatory system for the 173	

onset, speed and outcome of the plant defence response against biotic stress 174	

As described above, the three major PTMs, protein phosphorylation, ubiquitination and 175	

SUMOylation have been well-established as being key in plant signalling. It has recently 176	

been showed that PTMs are essential regulatory mechanisms that enable host cells to deploy 177	

defence responses quickly upon pathogen challenge and they can also be targeted by 178	

pathogen effectors [10]. Even though the molecular basis of PTMs role in plant defence 179	

priming is still largely unknown, several studies have acknowledged the importance of 180	

histone acetylation and methylation and transcription factor phosphorylation for the cell to 181	

acquire memory by storing information of PTM-induced changes and thus respond faster and 182	

more robustly towards the same type of stress subsequently [22, 25, 28, 36]. 183	

It has also been hypothesized [24] and recently demonstrated [28] that some priming agents, 184	

such as BABA, BTH and arbuscular mycorrhiza fungi (AMF), are able to transiently and/or 185	

constitutively induce accumulation of cellular molecules, such as mRNAs, reactive oxygen 186	

species (ROS), secondary metabolites and hence induce the increase in protein levels, which 187	

in turn enhances the signalling component of the cellular immunity mechanisms. This process 188	

leads to a more rapid and stronger defence response when the pathogen reaches the primed 189	



cells [23]. It has been hypothesised that the increased abundance of “inactive” immune 190	

signalling regulators in primed cells can be linked to PTMs [32], such as protein 191	

phosphorylation, ubiquitination and SUMOylation. For example, it has been previously stated 192	

that priming agents, such as the SA functional analogue and SAR activator 193	

benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) has been reported to prime 194	

A. thaliana cells by increasing the amount of mitogen-activated protein kinases (MAPK) 195	

[25].  196	

MAPK-mediated phosphorylation is a good example of the PTM machinery, as they are both 197	

a target and a product for PTM. As noted in Section 1, phosphorylation dynamics are pivotal 198	

for MAMP/PAMP perception and PTI and thus for rapid alterations of signalling pathways. 199	

However, they can be pathogen targets to deploy infection also, such as the bacterial type III 200	

effector proteins from Pst DC3000 that targets ROS and MAPK phosphorylation cascades 201	

[42]. Interestingly, this suggests a potential link between priming and phosphorylation, as 202	

after PAMP perception, the immune signalling cascade is transduced by MPK target 203	

phosphorylation. Therefore, there is potential for manipulating the phosphorylation status of 204	

MPKs as well as their substrates for defence priming.  205	

In this case, PAMP/MAMP-based priming elicitors, such as flg22 and chitin-based elicitors, 206	

could have an impact on phosphorylation dynamics by activating the expression of defence-207	

related regulatory gene cascades, such as mitogen-activated protein kinases (MPKs) and 208	

subsequent MPK kinases (MEKKs), which are involved in signal transduction and promoters 209	

of transcription co-activator genes such as the WRKY domain proteins [25], thus 210	

significantly increasing the speed of the defence response and improving  plant-pathogen 211	

interaction outcomes in favour of the host. 212	

Ubiquitination has been commonly associated with protein degradation, protein function 213	

regulation and modulation of plant responses to biotic stress [43]. The plant ubiquitin-214	

proteasome system (UPS) is involved in plant growth, development, abiotic stress responses 215	

and ultimately plant immunity [44].  Ubiquitin E3 ligases are triggered in response to PAMP-216	

based elicitors and effectors [44] and ubiquitination of defence-related genes is essential for 217	

their function, such as the SAR regulatory protein, NPR1, which is translocated into the 218	

nucleus via the UPS [44]. 219	

Signalling-based genes, such as some Avr9/Cf-9 rapidly elicited (ACRE) genes encode 220	

components of signalling cascades, including transcription factors, protein kinases, and 221	

ubiquitination pathway-related proteins, such as, E3 ligases, F-box and U-box proteins [43]. 222	

Thus, targeting priming plant ubiquitination/UPS opens new possibilities to increase the 223	



speed and efficacy of the plant signalling upon pathogen attack. However, the challenge is to 224	

prime the ubiquitin system towards immunity without having an impact in other ubiquitin-225	

related processes, such as plant growth and development. 226	

The role of SUMOylation in disease resistance is an emerging area of importance (Figure 2) 227	

where Arabidopsis SUMO E3 ligase (SIZ1) acts as a negative regulator of SA- and PAD4-228	

mediated signalling in plants against Pst DC3000 expressing avrRps4 [19]. Moreover, the 229	

importance of SUMO conjugation in plant survival under abiotic stress has been described 230	

recently [45]. SUMO conjugation has also been shown to be required to supress defence 231	

signalling in the absence of infection [42]. The question then remains as whether 232	

SUMOylation and other PTMs can be primed in order to facilitate a rapid immune response 233	

to prevent a lethal outcome from disease and lead to resistance.  234	

 235	

 236	

 237	
Figure 2. Model of the molecular basis of defence priming in plant cells and the connection to PTMs. In the 238	
non-primed (left) cell, the plant cell through the nucleus (green circles) remains with basal expression of 239	
defence-related genes and SUMO conjugation (S) represses signalling in pathogen absence. On the primed cell 240	
(right) the priming stimulus induces the nuclear-mediated transcription of mRNA, cleavage of SUMO proteins 241	
and accumulation of inactive post-translationally modified (PTMs) defence-related proteins. After pathogen 242	
challenge both cells trigger expression of signalling cascades and defence-related proteins, however only primed 243	
cells are able to quickly translate and activate the defence-related proteins (red circles) that were modified post-244	



translationally and hence ultimately express a fine-tuned faster defence response that enables the plant to display 245	
antimicrobial proteins (yellow circles) that reduce and/or stop pathogen expansion, whereas non-primed cells 246	
are not able to display quick defence response which leads into infection expansion and disease.  247	

 248	

Interestingly, it has been shown that NPR1 is a SUMO protein target upon salicylic acid (SA) 249	

induction and that NPR1 SUMOylation by SUMO3 is required for its immune activity and 250	

degradation [38]. This clearly shows the potential implications and connection of PTMs and 251	

priming, which is yet to be exploited. It may be possible to find novel PTMs targets, such as 252	

JA-dependent transcription factors, e.g. JAZ and MYC2 are well -known PTM targets, which 253	

would open up multiple implications for PTMs and long-lasting priming against necrotrophic 254	

pathogens.   255	

Few studies have examined this in detail in crop systems. [21] Luna et al., 2016 showed that 256	

a soil drench of BABA at high concentrations (10 mM) and JA (1 mM) on 1-week-old 257	

tomato seedlings abolished plant growth and had lethal effects. The importance of the SUMO 258	

proteases OTS1 and OTS2 has been shown in promoting plant growth under salt stress and 259	

that SUMO1 over-expression has a repressive effect on plant development [46].  Thus, it 260	

would be interesting to investigate further the molecular basis of this common phenotype of 261	

BABA/JA-induced and SUMO1-overexpression related repression of plant development. 262	

Furthermore, ots1 ots2 double mutant has been shown to be more resistant against Pst 263	

DC3000, hence there may be opportunities to exploit these putative common pathways to 264	

boost defence priming and promote growth under stress. 265	

It is well-known that a previous stress stimulus can induce epigenetic changes in the plant 266	

and subsequently enhance its defence mechanisms [28]. Moreover, the link between post-267	

translational modifications (PTMs) and priming has been demonstrated through post-268	

translational modifications of histones at promoter regions of primed defence genes [37]; it 269	

has also been shown that RNA Polymerase V mutants were enriched in H3K4me3 at the 270	

promoter of PR-1 and PDF1.2 defence-related genes, which lead to an enhanced resistance to 271	

Pst [47]. Furthermore, application of the hormone salicylic acid (SA) and Pst DC3000 272	

infection has been linked to the accumulation of the acetylated and methylated versions of 273	

histones H3 (H3Ac), H4 (H4Ac) and H3K4me2, H3K4me3 and HDA19 at the promoter 274	

region of PR-1, WRKY38 and WRKY62. It is postulated that this remodelling of chromatin 275	

of these SA-responsive loci may be repressed by SUMO but not shown [32] and therefore it 276	

is likely that SUMO will have a critical role in defence priming.  	  277	



Conclusions and Perspectives 278	
In a world where human population has increased exponentially in recent decades reaching 279	

7.6 billion in 2017 and projected to reach 8.6 billion by 2030 (United Nations, The 2017 280	

Revision of World Population Prospects), a major challenge in the fight against pathogen 281	

damage to crop yields worldwide is the ineffectiveness of conventional crop protectants due 282	

to pathogen resistance and the fast evolution of pathogens towards their hosts to overcome 283	

resistance and promote disease.   284	

Priming has emerged over the last decade as a promising wide-ranging inducible defence 285	

mechanism with minimal costs in plant development. Multiple examples have shown the 286	

ability of certain molecules to potentiate the plant ‘alertness’ to perceive and subsequently 287	

respond to pathogen attack. The three major post-translational modifications, including 288	

phosphorylation, ubiquitination and SUMOylation are key components of the plant immune 289	

system, cell signalling and they are inter-linked but their roles in defence priming have yet to 290	

be deciphered.  Other PTMs such as S-nitrosylation of proteins, irreversible tyrosine 291	

nitration, acetylation and methylation have emerged as pivotal mechanisms in the plant 292	

immune system with the potential to be primed. Furthermore, there are still many questions 293	

as to how these signals are transmitted intra- and even inter-cellularly? How do primed cells 294	

regulate post-translational modifications? Are PTMs essential for the establishment of 295	

elicitor-induced resistance? What are the molecular mechanisms underlying the priming-296	

related PTMs linked to the fine-tuning and accelerating plant defence responses after 297	

pathogen challenge? 298	

Thus, the potential exploitation of PTMs as priming targets has become a ‘hotspot’ in the 299	

race to find new insights in plant immune responses against biotic/abiotic stresses [32] and 300	

the current availability of appropriate molecular tools will facilitate deciphering the PTM 301	

code for defence priming.  302	

 303	
	  304	
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