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Highlights
e A solution approach for contact problems based on the dual interpolation
boundary face method is proposed.
e The solution approach is divided into outer and inner iterations. <g&
e In the outer iteration, a contact boundary detection scheme is pl%

to determine the size of the contact zone.

e The inner iteration is only performed for frictional contact problems to

determine whether the sliding occurs.

e The pressure oscillations near the contact bo@»n:;e treated by the
proposed approach.
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Abstract

The recently proposed dual interpolation boundary face.méthod (DiBFM)
has been shown to have a much higher accura¢y and improved convergence
rates compared with the traditional boundary=elemient method. In addition,
the DiBFM has the ability to approximate both“continuous and discontinuous
fields, and this provides a way to approximate the discontinuous pressure at a
contact boundary. This paper presents asolution approach for two dimensional
frictionless and frictional contact problems based on the DiBFM. The solution
approach is divided into eluteriand inner iterations. In the outer iteration, the
size of the contact zone ishydetermined. Then the elements near the contact
boundary are updated/to approximate the discontinuous pressure. The inner
iteration is used to determine the contact state (sticking or sliding), and is only
performed{for | frictional contact problems. To make the system of equations
solvable, the contact constraints and some supplementary equations are also
given. Several numerical examples demonstrate the validity and high accuracy
of the proposed approach. Furthermore, due to the continuity of elements in
DiBFM and the detection of the contact boundary, the pressure oscillations near
the contact boundary can be treated.
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supplementary equations.

1. Introduction

Contact problems are of great importance in engineering applications, such
as gears, bearings, connecting rod and pin assemblies, etc. The solutionito
these problems based on the finite element method (FEM) and boundary ele-
ment method (BEM) has long been an attractive research topic! \In/this pa-
per, a solution approach based on the dual interpolation boundary face method
(DiBFM) is presented.

The DiBFM was recently proposed by Zhang [1-3], and the method has
been applied to thin-walled structures [4]. Like thé'Boundary Element Method
(BEM), the method is also based on a boundary integral equation, but by using
CAD geometries directly no geometric error will be introduced [5]. Compared
with the interpolation accuracy of traditional discontinuous elements, the accu-
racy of dual interpolation elements is, increased by two orders. In consequence,
the method has been shown to“deliver solutions of much higher accuracy, with
improved convergence rates-and computational efficiency for most cases [1, 2].
In addition, the method has an ability to naturally and accurately approximate
both continuous and discentintous fields. It is well known that the pressure from
contact to nonsContact region is discontinuous, and this motivates the present
study to usethe DiBFM to approximate the discontinuous pressure at contact
boundary.

Schemes to accommodate the pressure discontinuity can be divided into
weak discontinuity models and strong discontinuity models. In weak discon-
tinuity’models, the pressure is C° continuous at a contact boundary, while in
the strong discontinuity models, a pressure jump exists at contact boundary.
A strong discontinuity can be found, for example, when a flat punch comes
into contact with an elastic plane, but these cases are readily addressed since
the contact boundary is known a priori. For this type of problem, the use of

discontinuous elements is an effective method as long as the contact boundary



coincides with element endpoints. However, for general contact problems with
an a priori unknown contact boundary, the contact pressure usually exhibits a
weak discontinuity. We remark that where there is a discontinuous contact pres-
sure, the integration accuracy can be difficult to ensure, potentially resulting in
a loss of accuracy [6-9].

To address the weak discontinuity in contact pressure, two types of method
are available: the mesh refining method [10] and the element updatinig method
[9, 11, 12]. The mesh refining method is simple, but it is very-costly,and can
become ineffective, especially when the contact boundary moves. The element
updating method requires the calculation of the contact boundazy. In [9, 13], the
contact boundary was detected from variation in the normal-gap between the
contacting surfaces, since only the displacementsform the independent variables
in this penalty method. Conversely, in [12] theieontact.boundary was found from
variation in the contact pressure. Alternatively,“a  bisection method may also
be used to detect the contact boundary [14]). In the current paper, the element
updating method is adopted to overcomeithe effect of the weak discontinuity in
contact pressure. However, unlike {9, 12, 13], both the normal gap and contact
pressure are used to detect the contact boundary. The normal gap is used when
penetration between the two, bodies is found, while the contact pressure is used
when a tensile normaltraction develops.

The propesedisolution approach is divided into outer and inner iteration
loops. Indthe outer iteration, the size of the contact zone is determined, and
then the elements near the contact boundary are updated to approximate the
diseentinuous pressure. In the inner iteration, the contact state (sticking or
sliding) Jis determined; this is performed only for frictional contact problems.
To make the system of equations solvable, auxiliary equations are required and
these are provided by the contact constraint equations and some supplemen-
tary equations. Numerical examples, without and with friction, are presented
to demonstrate the validity and high accuracy of the proposed approach. In ad-
dition, due to the continuity of the S1 element and the detection of the contact

boundary, the pressure oscillations near the contact boundary can be avoided



in the proposed approach.

2. A brief introduction of DiBFM

In the DiBFM [1, 2], the elements are called dual interpolation elements. Thé
elements are composed of a combination of source and virtual nodes. Howéver,
the boundary integral equations are collocated only at the source nodes. That
is to say, the virtual nodes are not used as collocation points. As a result,
the number of linear equations after discretisation is less than the number of
unknown quantities. In order to arrive at a square linearssystem, the degrees
of freedom relating to all virtual nodes need to be coundensed and this can be
achieved by considering additional constraint equations.

In this section, the element in DiBFM is infroduceds#and the method (the
second-layer interpolation) to condense the degrees of freedom of virtual nodes

will be presented.

2.1. The element in DiBFM

As shown in Figure 1, the nodeés of a dual interpolation element are divided
into two groups: source and virtual nodes. Ignoring virtual nodes, it becomes
a traditional discontinuousiboundary element. When both the virtual nodes
and the source nodes/are taken into account, it is equivalent to a standard
continuous element. In this way, the dual interpolation element is able to unify
the traditional continuous and discontinuous element approaches. As shown in
the Figure, weiidentify the elements with the notation S1, S2, S3 indicating the
number of source nodes. This notation derives from the fact that the degrees
of freedom relating to the virtual nodes are condensed and in DiBFM they do
not form part of the final linear system being solved.

The addition of the two virtual nodes in these elements means that, in com-
parison with the order of interpolation function of the traditional discontinuous
elements using the source nodes alone, the interpolation in the dual interpolation
elements is increased by two orders. This leads to a considerable improvement

in accuracy [1].
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Figure 1: Dual interpolation elements in 2D problems: (a) S1, (b) S2, and (c) S3.

2.2. The first-layer interpolation

The first-layer interpolation is similar to the interpolation in a‘traditional
continuous boundary element. The difference is that shape functions,relating
to both source nodes and virtual nodes are used, so that_in interpolating an

arbitrary quantity ¢ we write

nao np
P(&) = Y NIOW(@:) + D> N5E€)p(Qh) (1)
a=1 B=1

where N2 (£) is the shape function of the ath

source node, Ng(§) is the shape
function of the S virtual node, ©(Q?) is thé"hodal value of the a® source
node, and ¢(Q7}) is the nodal value of the B virtual node. na and ng3 are the
total number of source and virtual modes belonging to the dual interpolation
element, respectively, and.&%€y[—1, 1] is the usual local parametric coordinate.
In DiBFM, the virtualsiodal valite ¢(Q}) is not an independent variable, and its
relation to the valuéof ¢ at the source nodes is determined by the second-layer
interpolation.

It should be notedthat the shape functions N (£) and Ng(§) in equation (1)
are the/hagrange polynomials one would use in a conventional element having
a numbet of nodes equal to (na + nf3). For the S1 element shown in Figure
1(a), then; these would be the standard continuous quadratic shape functions
NPE= —05¢(1 — &), N7 () = (1 - &)(1 + €), N5 (€) = 0.5¢(1 + &). Shape

functions for the other cases are provided in [1].

2.8. The second-layer interpolation

The second-layer interpolation is used to construct the relationships between

source nodes and virtual nodes. These relationships can then be used to con-



dense the degrees of freedom of the virtual nodes. The second-layer interpolation

can be used to approximate both continuous and discontinuous fields.

2.83.1. The moving least square approximation

In this paper, the second-layer interpolation is constructed by the moving
least square (MLS) approximation. In our implementation, the MLS is employed
only to construct the relationships between source and virtual nodes, rather than
evaluate the shape functions at each Gauss point in the boundary integration.

The virtual nodal value can be approximated by the MLS as

P(Qf) = errm)e(@s,) (2)

m=1
where M is the total number of source nodes @3, located in the influence do-
main of the virtual node Q3. The term ¢ }(n5) is*the MLS shape function

corresponding to source node @;,, and nguis, the parametric coordinate of vir-
tual node Qj. This coordinate is uséd to locate a point on a curve or straight

line, and its value n € [0, 1]. Thesderivation of equation (2) can be found in [15].

2.8.2. Approximation of continuous and discontinuous fields

The continuous orsdiscontinnous behaviour at an element end point can be
accommodated by simply placing either one or two virtual nodes at the point.
Two virtual nodes,are used when approximating a discontinuous field, while only
one virtual'mode is used when modelling a continuous function. By manipulating
the influence domains of each virtual node, the continuous or discontinuous
fields can be/naturally and accurately approximated. To illustrate this feature,
a schematic diagram is shown in Figure 2.

For discontinuous fields, two virtual nodes vy and vy are placed at the dis-
continuous boundary, as in Figure 2(a). In the figure, the influence domain of
vg covers only the three blue source nodes; while the influence domain of v; cov-
ers only the three red source nodes. Due to these different influence domains,
when using the second-layer interpolation (2) the nodal values at vy and vy are

different, allowing discontinuous behaviour.
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Figure 2: Approximation the continuous or discontinuoeus fields

For the modelling of continuous fields, only a single virtualmode, vg, is placed
at the element end point, as shown in Figure 2(b). The domain of influence of
this virtual node in the second-layer interpelation®(2) spans both elements to
which it belongs. In this way a continuous,approximation is achieved.

In summary, by manipulating the influence’domains of virtual node in the
second-layer interpolation, both continuous-and discontinuous fields can be nat-

urally and accurately approximated.

2.4. The boundary integral, equation

We consider anelastic \body ocupying domain Q C R?, having boundary
00 =T. In theabsence of body forces, the boundary integral equation [16] can

be writtendn the following form for each body

o (BfustP) ¥ U4(P.QLQar(@) - [ Tu(P.Quw(Qar(@. P.QeT

3)
where w; and ¢;(j = 1,2) are the displacement and traction components, respec-
tively, and U;;,T;; are the displacement and traction kernels, or fundamental
solutions. ¢;;(P) is the coefficient matrix of the jump term that arises from the
strongly singular nature of the integral containing the traction kernel. For 2D

plane-strain problems:

1 1
Ui (P,Q) = 8rG(1 =) (3 —4v)d;;In 7 AT (4)



1 or
Ti;(P,Q) = T — ) {8n (1= 2v)d; + 2rr 5] — (1 = 2v)(rim; — 7 jm3)
(5)
where r is the distance between the source node P and the field point @), n is the
outward normal at point @), and G and v are the shear modulus and Poisson’s

ratio, respectively.

3. Frictional Contact problems

3.1. Local contact coordinate system

Consider a node pair, a and b, on the boundaries of two_contacting bodies
A and B, as in Figure 3. The common normal for nodes.in the contact zone is

defined as follows:
nAEA — np EB

(6)

=n =
AR T I B~ usEg]]

Here E denotes the Young’s modulus of the. body indicated by its subscript.
The tangential direction 7 is obtaineéd, simply by rotating n through 90°. The
contact node pair is determinedeby. the closest point projection. In this paper,
the nodes on the less rigid body are.projected onto the other contacting body.
The normal direction of{the more rigid solid is used to determine the closest
point. The common/normaliis/only used to define the normal direction of the

displacement and traction,/and it is not used to determine the closest point.

Figure 3: Definition of the common contact direction



3.2. Coulomb friction law

The Coulomb friction law defines a limitation for the tangential traction in

the contact zone. The limitation can be written as
Itr] < pltsl (7)

where p is the coefficient of friction, ¢, is the tangential traction and“, is
the normal traction. As long as the tangential traction is suffigiently small
that equation (7) is satisfied, the contacting surfaces will stigk to each other.
Otherwise, sliding will occur with tangential traction |¢.| =.u |[s| applying in a

direction opposing the relative motion.

3.8. Contact constraint equations

For any collocation node in the non-contact zone, there are two unknown
variables and two integral equations (Equation (3) for ¢ = 1,2). However, for
any collocation node in the contact zene, there are four unknown variables, both
tractions and displacements being unknewn, but only two integral equations.
Contact constraints will be imposedito provide the required number of auxiliary
equations to reach a solvable, square system. The contact constraint equations

for both frictional and frictienléss are presented below.

3.3.1. Frictionalicontact’constraint equations

The contact constraints depend on the contact state. Since the actual con-
tact zone'is unknown a priori, we start with a contact zone larger than the actual
contactizone.” Then the contact state for any node pair can be classified into
three types: non-contact, sticking and sliding. The constraints are given below
for these three contact states. Besides, it should be noted that the node-to-node
contact scheme is adopted in this paper.

In the non-contact state, both surfaces are traction free. Since the load is
applied incrementally in solving the non-linear frictional contact problem, the

traction is expressed as that from the previous load step plus the incremental

10



traction in the current load step. The constraint equations for the contact node

pairs on bodies A and B can therefore be written as:
A4 Atd =0, A+ A2 =0 (8)
tBrAtB =0, tP+AtP=0 (9)
In the sticking state, the normal gap and the tangential relative displacement are

zero, and the traction is the same on the two bodies A and B. The/Constraints

for the contact node pairs on bodies A and B can therefore be written, as:
Ault = g— AuB; Aud = AuP (10)
tB 4 At =4 4 At P 4 AP =1AL A2 (11)
In the sliding state, the normal gap is also zero#and the tangential traction is
equal to the frictional coefficient multiplied by themormal traction. Again, the

traction is the same on the two bodies A and B. The constraints for the contact

node pairs on bodies A and B can thérefore’be ‘written as:
Aupy = g — Auffemite - Kt = +p ()] + At7) (12)
tB 4 AP =+ At 1B 4 AtE =12 4 A2 (13)
In Equations (8)-(13);*Aujand At; are the incremental changes in displace-
ments and tractions, die to'the current incremental load step; u; and ¢; are the
total displacements and/tractions before the current load step. The superscript
A and B.denotes the corresponding contacting body. ¢ denotes the normal

gap at’the current load step, and should be updated after each load step. The

definitions of n and 7 can be seen in Section 3.1.

3.8:2./Frictionless contact constraint equations

In frictionless contact, only non-contact and sliding states can exist. For the
non-contact state, the non-contact constraint equations (8) and (9) still hold.
For the sliding state, the constraint Equation (13) also holds, but the constraint

Equation (12) needs to be rewritten as

Ault =g — Aul; 2 At =0. (14)

11



3.4. Supplementary equations for a virtual node in the contact zone

Unlike solving a potential problem or more straightforward elasticity prob-
lems, the consideration of contact means that not all degrees of freedom of
virtual nodes are condensed by the second-layer interpolation. In a contact
problem, whether the node is a source node or a virtual node, the contact.con-
straints are required to be satisfied. To impose the constraints, the“degrees
of freedom relating to the virtual nodes in the potential contact zone are not
condensed, but will be additional system unknowns. As presented imSection
2, the virtual nodes are not used as collocation nodes. Thus, the two integral
equations of the form (3) have not been established, and twesauxiliary equations
are required. To provide these equations, the second-layer interpolation (2) is

employed.

3.4.1. Cross-constraint scheme to construct supplementary equations

In the potential contact zone, the displacement and the traction are both
unknown quantities. Then a question is. which one requires the second-layer
interpolation to construct the supplementary equations. In this paper, a cross-
constraint scheme is usedto construct these equations.

The cross-constraint scheme/can be described as follows: if the virtual nodal
normal or tangentialitraction is a contact constraint, then the second-layer in-
terpolation ofsthe normal or tangential displacement will be used as a sup-
plementary equation. In contrast, if the virtual nodal normal or tangential
displagémentis a contact constraint, then the second-layer interpolation of the
normal or tangential traction will be used as a supplementary equation.

For frictionless and frictional contact problems, there are a total of three dif-
ferent contact states (non-contact, sticking and sliding). Thus, the supplemen-
tary equations are also different. The following summarizes the supplementary

equations for different contact states.

12



3.4.2. Supplementary equations for different contact states

In the non-contact state, both the normal and tangential traction contact
constraints for body A are imposed; see equation (8). Thus, the second-layer
interpolation of the normal and tangential displacement is used as the supple-

mentary equations as below:

Aud(Q%)A =d; { Z 7/nyf(77;§)ﬁuz(an)A} ; d= (an)vi = (:c,y) (15)

In the sticking state, both the normal and tangential displacement contact con-
straints for body A are imposed; see equation (10). Thius, the second-layer
interpolation of the normal and tangential traction isfused as the supplemen-

tary equations as below:

M
(ta + Ata)(Qp)" = d; { > bt + AL fn)A} od=(n,7),i = (z,y).

(16)
In the sliding state, for body A, the normal displacement and tangential traction
constraints are imposed; see equations (12) and (14). Thus, the second-layer
interpolation of normal traction and-tangential displacement constraints are
used as the supplementary equations. The two supplementary equations for

virtual node on body Ajare:

M
(tn + Aty) (QF)E = m; {Z U (ng) (8 + Ati) (an)A} poi=(x,y); (17a)

m=1
Au (@) = {Z e () Aui(Q5, )A} ;i=(z,). (17b)

m=1
For nodes on body B, both the normal and tangential traction contact con-
straints are always imposed; see equations (9), (11) and (13). Thus, the equa-
tions for the second-layer interpolation of the normal and tangential displace-
ment are used as the supplementary equations. The two supplementary equa-

tions for virtual node on body B are:
Aud(@ﬁ =d; {Zﬂ)vé Auz Qb ) }; d= (naT)vi: (l‘vy) (18)

13



In the above, d; is the direction cosine and the Einstein summation convention
is used. Further, Apq(Qf) = dzAps(Q) + dyApy(QR), ¢ = (u,t),d = (n,7).
The definitions of the variables are the same as those defined in Section 2.3.1

and Section 3.3.

4. Updating the elements near the contact boundary

4.1. Contact boundary detection method

At any stage in the analysis, the size of the contact zone is changed according
to the results of the analysis, progressively refining towards thestrue contact
zone. The current estimate of the contact zone may bedarger or smaller than the
real contact zone, and the contact boundary detection method used to identify
the size of the contact zone for the next iteration, is different depending on
whether the size is currently overestimated or tnderestimated. In this section
we present the method of detecting the contactiboundary in both cases.

If the potential contact zone is larger. than the real contact zone, after com-
putation a tensile normal traction will . develop, which violates a physical con-
straint. In this case, all elements are interrogated to identify the element in
which the contact pressure (normal traction) is partially negative and partially
positive. This element is- named the contact boundary element. The updated
location of the/ontact boundary is found by linear interpolation between the
two nodes on the contact boundary element having normal tractions closest to
t, = 0y%one node having a positive normal traction, the other being negative.

The seheme is ‘illustrated in Figure 4.

14



Boundary Point

Figure 4: Boundary detection method in contact boundary element

In Figure 4, the interpolation considers nodes j and k“beingithe’two nodes
having a normal traction closest to ¢, = 0. Let us ensider, without loss of
generality, the case ¢,,(j) > 0 and ¢, (k) < 0, in which case the location of the
contact boundary can be estimated as

tn(4)
tn(j) — tnlk)

In the above equation, x can be the Cartésian coordinate or the parametric

& =a(j) +

[z(ky= =(5)] - (19)

coordinate as required.

A very similar method eamnbe used to locate the contact boundary when the
potential contact zone,is smaller than the real contact zone. In this case, at the
current step in the‘analysis penetration is predicted to occur, also violating a
physical constraint. Herey we find the element where the normal gap is partially
negative and partiallypositive and, using the normal gap to replace the pressure,
the linear interpolation (19) can be performed again to determine the contact
boundary.

The ,contact boundary detection repeats until no tensile normal tractions

oceury’and no penetration occurs, at any nodes.

4.2. Updating the elements near the contact boundary

In our implementation, the elements near the contact boundary are updated
to approximate the traction, which is allowed to become discontinuous. A fine

mesh can be obtained at the contact boundary, which is more conducive to

15



the accurate approximation of discontinuous traction. This method differs from
that used in [9, 11, 12], in which the authors moved the adjacent node to the

contact boundary. To illustrate our method, a schematic diagram is shown in

Figure 5.
a
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the nth
.te Ilt“i (2S5 ,81 ,82
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® source node

—:v contact boundary ovirtual node 5

Figure 5: Updating the elements,near theycontact boundary

In this Figure, the adjacent elements,at the contact boundary are the ele-
ments labelled o and . The twoselements are divided into four sub-elements
aq, s, 41 and B, and twe virtual nodes are placed at the contact boundary to
model the discontinuous traction. Using this approach, each update of the mesh
near the contact boundary causes the total number of elements to increase by
two.

It should be noted that the final contact boundary is determined when no
normal’ tension_and no penetration occur, and this usually requires multiple
iterations. If'the number of elements increases with each iteration, a very dense
mesh may be obtained, which is unnecessarily detrimental to computational
efficiency.

To avoid the above problem, in our implementation, there are two types
of mesh: the original mesh and the updated mesh. In each iteration, having
located the new estimate of the contact boundary, we go back to the original
mesh to generate the updated mesh, as shown in Figure 5. Using this algorithm,

the size of the model does not increase with each iteration and the calculation

16



proceeds efficiently.

4.8. The solution approach for contact problems

The solution approach based on the DiBFM is summarized in Figure 6.
Loop 1 is the outer iteration, which is used to determine the size of the contact
zone. Loop 2 is the inner iteration, which is employed to determine the contact
state. The inner iteration is performed only for frictional contact problems. For
frictional contact problems, also, the load is applied in incremeunts to/arrive at

the correct contact area. We adopt the conditions for convergence from [17-21].

Loop 1: Determine the size of contact zone

Update the contact virtual nodal double-layer interpolation;

Update the type of contact constraints(contact or non-contact);

Solve the system equation and check the contact boundary is convergence;
If the contact zone is not convergence, updating the element near the
contact boundary and then to Loop 1; else continue to Loop 2;

s e b e

Loop 2: Determine the nodal contact status (for frictional contact)

Update the contact virtual nodal double-layer interpolation;

Update the type of contact constraints(sticking or sliding);

Solve system equation and check whether the contact status is changed;
If the contact status is changed, then to Loop 2; else stop.

ol ol o

Figure 6: The solution approach for contact problems based on the DiBFM

5. Numerical examples

In this section, three examples are presented. S1 elements will be used in
all examples in which the DiBFM is used. The first example, Hertzian contact,
has an analytical solution, and this is used to demonstrate that the S1 element
in'the-proposed approach can achieve the accuracy obtained by the traditional
discontinuous quadratic element. Besides, due to the continuity of the S1 ele-
ment and the detection of the contact boundary, the pressure oscillations near
the contact boundary can be treated. The other two examples (with two and
three contact zones) demonstrate further the above advantages of the proposed

approach on problems having different characters.

17



5.1. Hertzian contact problem

In the first example we consider an elastic cylinder coming into contact
with a rigid plate. The geometry, material properties, loads and boundary
conditions are shown in Figure 7(a). A very small load, p = 0.4, has been
chosen to give small displacements in order to match closely the assumption of
small deformation in the analytical solution [22], according to which the‘contact

half-width, b, is
2R?p(1 — v?)

b=2
En ’

(20)

and the distribution of the normal contact pressure, p,, is

4R,
Dn = W—bf\/ (b2 — 22). (21)
For the given set of parameters, the contact half-width b = 0.54462.

p=04

IR REEINY

R=8

|||||||||||||||||||

(a)Computational model (b) Computational mesh
Figure 7: Frictionless Hertzian contact
5.1.1. Comparison with the analytical solution
The contact pressure and the contact half-width are respectively shown in

Figure 8 and in Table 1, and three sets of results (h1l, h2 and h3) are presented.

The three sets of results correspond to different meshes used in the potential

18



contact zone (—1.276 < x < 1.276), but the mesh in all non-contact regions
remains unchanged throughout. The initial number of elements in the potential
contact zone is 16 (mesh hl), 24 (mesh h2) and 32 (mesh h3).The mesh in the

non-contact zone can be seen in Figure 7(b).

analytic

74 —a— h1
h2
6

pressure

T T T T T T g
0400 0.425 0450 0.475 0500 0525 0550 0575

T T T T T T 4 T T T
0.0 01 02 0.3 04 0.5 06
X

Figure 8: Contact pressure solutions; from different meshes, in the potential contact zone

Tablé 1. Contact half-width for different mesh

mesh size b* error = b*b’ b
hl 0.56511 3.76%
h2 0.55357 1.64%
h3 0.54991 0.94%

From Figure 8, it can be seen that with increasing mesh density in the po-
tential contact zone, the contact pressure becomes almost coincident with the
analytical solution; this provides a graphical demonstration of the convergence
of the proposed approach. Similarly, Table 1 shows the convergence in terms of
the error in the contact half-width (here b* denotes the numerical approximation
to the contact half-width, and b is the analytical solution). These results demon-

strate the validity of the proposed approach, including its ability to predict the
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correct extent of the contact region.

5.1.2. Comparison with traditional discontinuous elements

Figures 9 and 10 show comparisons with traditional discontinuous boundary
elements for this Hertzian contact problem. In the figures, the initial number
of elements in the potential contact zone is equal for both methods (mesh h3).
In the traditional method, no contact boundary detection has been performed.
We compare against both traditional constant (Figure 9) and,diseontinuous
quadratic element (Figure 10) since (i) the constant elements have jthe same
number of source nodes as the S1 element in our DiBFM analysis, and (ii)
the quadratic elements will have the same underlying order of variation of the

displacements and tractions over the element.
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Figure 9: Contact pressure: comparison against traditional constant elements
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FigureA1: \Contaetr pressure: comparison against refined traditional discontinuous quadratic

elements

From Figure 9, it can be seen that the accuracy of our proposed approach
(Our) is considerably higher than the traditional constant element (Trad). Fig-
ure 10 shows that the result of our proposed approach (Our) is almost consistent
with that of the traditional discontinuous quadratic element (Trad). However,
obvious pressure oscillations near the contact boundary can be seen in this ele-

ment (Trad). This is due to the fact that (i) the discontinuous element is used
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and (ii) the contact boundary is usually in an element, not at the endpoint of
the element, which reduces the regularity of the solution [9]. In contrast, the
S1 element in DiBFM is a continuous element. Furthermore, due to the contact
boundary detection, the contact boundary is at the endpoint of the element,
Thus, our proposed approach (Our) provides a higher fidelity solution near/the
contact boundary than the traditional discontinuous quadratic elementATrad):
Even if the mesh size of the potential contact zone is halved for/traditional
discontinuous quadratic element (Trad), this conclusion still holds, see Figure
11.

This study shows that the S1 element in DiBFM can achieve the accuracy
obtained by the traditional discontinuous quadratic elementswhich proves the
high accuracy of the proposed approach. In addition, due to'the continuity of the
S1 element and the detection of the contact boundary, the pressure oscillations

near the contact boundary can be treatedyin our ‘method.

5.2. A flat rounded punch

In this example, an elastic flat,rounded punch comes into contact with an
elastic foundation. The geometry, loads and boundary conditions are shown
in Figure 12(a). The material properties of the punch and the foundation are
equal, both having Young’s ‘modulus £ = 200 GPa and Poisson’s ratio v =
0.3. The example has Peen solved in [23], and a sharp increase in pressure
is seen to Occur at the intersection of the line and the arc. To capture this
large pressure,gradient, a fine mesh is used near the intersection. We use 20
elements in (0 < z < 44.5), 10 elements in (44.5 < z < 45.0) and 25 elements
in (45 <’z < 45.27), and the mesh in the non-contact zone can be seen in
Figure 12(b). The results of the traditional discontinuous quadratic element
are used for comparison, and the S1 element in DiBFM is again adopted in the
proposed approach. Both frictionless and frictional (x = 0.1) contact problems

are considered.

22



ACCEPTED MANUSCRIPT

A
(PR | S
(a) Computational model (b) Computational my

Figure 12: A flat rounded punch on undation

200 - - - - - -

— Trad ;
Trad-friction | !
175
—&— Qur
! : —— Qur-friction
150 ; : : ; : :
5
s 125
2
=
@ 100
(=%

o

50 4--

re 13: Contact pressure for frictionless and frictional contact, 0 < z < 44.5

23



500 4 Trad O T
Trad-friction
—a&— Our

500 4 —— Qur-friction
w
& 400 ~
£
[
2
2 300 o---
Q.

200

100 T T T T r T T T T

445 446 447 448 44.9 45.0

Figure 14: Contact pressure for frictionless and frictiohal contact, 44.5 < x < 45

800
—Trad
700 4 — Trad-friciton
—&—Our
500 o —— Our-friciton
& 500 4
$
o 400 4
= |
w
E 300 4
o
200 4
100 4
0 T : {
4500 45 08 4510

Figure.15: Contact pressure for frictionless and frictional contact, 45 < x < 45.10

24



200

200 Tradpress
3 ------- Trad-shear
Qur-press

160
7004

160 600

—— Qurshear

140

120

100 -

60

traction(MPa)

60 -

40

20

Figure 16: Contact pressure and shear stress for frictional contact (1 = 0.1)

The contact pressure distributions for frictionless and frictional (p = 0.1)
are shown in Figures 13 to 15. The pressure curves in the three figures corre-
spond to the pressure in different areas. The ‘Trad’ and ‘Trad-friction’ labels
denote the pressure found using ‘traditional discontinuous quadratic elements
for frictionless and frictional®eentact, respectively. The ‘Our’ and ‘Our-friction’
labels denote the pressure,found using our proposed approach for frictionless
and frictional contaet, respectively. From the three figures, it can be seen that
the result of the proposed approach using S1 elements is almost consistent with
that of traditional discontinuous quadratic element. In addition, the pressure
oscillations only occur in traditional discontinuous quadratic element, rather
than inS1 element, as shown in Figure 15.

In Figure 16, the pressure and shear stress distributions for g = 0.1 are
shown? The ‘Trad-press’ and ‘Trad-shear’ labels denote the pressure and shear
stress for traditional discontinuous quadratic elements, respectively. The ‘Our-
press’ and ‘Our-shear’ labels denote the pressure and shear stress in our proposed
approach. The shear stress in the Figure has been divided by the frictional co-
efficient . This Figure again shows a good similarity between the results of the

proposed approach and those of traditional discontinuous quadratic elements.
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This study further demonstrates the ability of the S1 element to achieve an
accuracy comparable to that obtained by the traditional discontinuous quadratic
element. Meanwhile, it also demonstrates that the pressure oscillations near the

contact boundary can be treated in our method.

5.3. Multi-contact zone problem

A multi-contact zone frictional contact problem is shown in Figure®d7. Con-
tact takes place over three separate contact zones between the_puneh and the
foundation. For convenience, the three contact zones are called the left; middle
and right contact zone. The curved edge of the upper regién (the punch) is mod-
elled using five arcs of radius » = 5. The material parameters of the punch and
the foundation are equal, both having Young’s medulus £ = 2000 and Poisson’s
ratio v = 0.3. The frictional coefficient © =0:2..The results using traditional
discontinuous quadratic elements are used for comparison, and the S1 element
in DiBFM is adopted. The initial number of/lements in both methods is equal.
To obtain a good contact pressure, a fine mesh is used in the contact zones
(—2.19 < z < 3.81), (—14.19 < ».< 15.81) and (—26.19 < = < 27.81). Each
contact zone has 40 elements. “The mesh in the non-contact zone can be seen in

Figure 17(b).
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Figure 20: Contact pressure and shear stress for right contact zone

The pressure and shear stress distributions over the three contact zones for
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= 0.2 are shown in Figures 18 to 20. The ‘Trad-press’ and ‘Trad-shear’ labels
denote the pressure and shear stress for traditional discontinuous quadratic ele-
ments, respectively. The ‘Our-press’ and ‘Our-shear’ labels denote the pressure
and shear stress for the S1 element in our solution approach. The shear stress in
the Figures has been divided by the frictional coeflicient u. It can be seen that
the result of the S1 element in the proposed approach is almost coincident, with
that of the traditional discontinuous quadratic element. Besides, no pressuré
oscillations occur near the contact boundary in our method. These confirm the

conclusions drawn from the first two examples.

6. Conclusions

A solution approach based on the dual interpolation boundary face method
(DiBFM) has been proposed for 2D frictionlessand frictional contact problems.
The solution approach is divided into the\oufer,and inner iteration loops. The
size of the contact zone is determined in the outer iteration, while in the inner
iteration the contact state (stickinguor'sliding) is determined; the inner loop is
only performed for frictional.contact jproblems. To approximate the discontinu-
ous pressure that arises/in,some|classes of contact problem, a contact boundary
detection method has been given, and its validity has been demonstrated by
numerical examples. All presented numerical examples, without and with fric-
tion, have demonstrated that the S1 element in the proposed approach can
achieve the‘accuracy obtained by traditional discontinuous quadratic boundary
eleménts/ In ‘addition, since the S1 element is a continuous element and the con-
tact boundary is detected, the pressure oscillations near the contact boundary

can besreated in the proposed approach.
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