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Highlights

• A solution approach for contact problems based on the dual interpolation

boundary face method is proposed.

• The solution approach is divided into outer and inner iterations.

• In the outer iteration, a contact boundary detection scheme is presented

to determine the size of the contact zone.

• The inner iteration is only performed for frictional contact problems to

determine whether the sliding occurs.

• The pressure oscillations near the contact boundary can be treated by the

proposed approach.
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Abstract

The recently proposed dual interpolation boundary face method (DiBFM)

has been shown to have a much higher accuracy and improved convergence

rates compared with the traditional boundary element method. In addition,

the DiBFM has the ability to approximate both continuous and discontinuous

fields, and this provides a way to approximate the discontinuous pressure at a

contact boundary. This paper presents a solution approach for two dimensional

frictionless and frictional contact problems based on the DiBFM. The solution

approach is divided into outer and inner iterations. In the outer iteration, the

size of the contact zone is determined. Then the elements near the contact

boundary are updated to approximate the discontinuous pressure. The inner

iteration is used to determine the contact state (sticking or sliding), and is only

performed for frictional contact problems. To make the system of equations

solvable, the contact constraints and some supplementary equations are also

given. Several numerical examples demonstrate the validity and high accuracy

of the proposed approach. Furthermore, due to the continuity of elements in

DiBFM and the detection of the contact boundary, the pressure oscillations near

the contact boundary can be treated.

Keywords: contact problems; dual interpolation boundary face method;
contact boundary detection; weak discontinuity; contact constraints;
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supplementary equations.

1. Introduction

Contact problems are of great importance in engineering applications, such

as gears, bearings, connecting rod and pin assemblies, etc. The solution to

these problems based on the finite element method (FEM) and boundary ele-

ment method (BEM) has long been an attractive research topic. In this pa-

per, a solution approach based on the dual interpolation boundary face method

(DiBFM) is presented.

The DiBFM was recently proposed by Zhang [1–3], and the method has

been applied to thin-walled structures [4]. Like the Boundary Element Method

(BEM), the method is also based on a boundary integral equation, but by using

CAD geometries directly no geometric error will be introduced [5]. Compared

with the interpolation accuracy of traditional discontinuous elements, the accu-

racy of dual interpolation elements is increased by two orders. In consequence,

the method has been shown to deliver solutions of much higher accuracy, with

improved convergence rates and computational efficiency for most cases [1, 2].

In addition, the method has an ability to naturally and accurately approximate

both continuous and discontinuous fields. It is well known that the pressure from

contact to non-contact region is discontinuous, and this motivates the present

study to use the DiBFM to approximate the discontinuous pressure at contact

boundary.

Schemes to accommodate the pressure discontinuity can be divided into

weak discontinuity models and strong discontinuity models. In weak discon-

tinuity models, the pressure is C0 continuous at a contact boundary, while in

the strong discontinuity models, a pressure jump exists at contact boundary.

A strong discontinuity can be found, for example, when a flat punch comes

into contact with an elastic plane, but these cases are readily addressed since

the contact boundary is known a priori. For this type of problem, the use of

discontinuous elements is an effective method as long as the contact boundary

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

coincides with element endpoints. However, for general contact problems with

an a priori unknown contact boundary, the contact pressure usually exhibits a

weak discontinuity. We remark that where there is a discontinuous contact pres-

sure, the integration accuracy can be difficult to ensure, potentially resulting in

a loss of accuracy [6–9].

To address the weak discontinuity in contact pressure, two types of method

are available: the mesh refining method [10] and the element updating method

[9, 11, 12]. The mesh refining method is simple, but it is very costly and can

become ineffective, especially when the contact boundary moves. The element

updating method requires the calculation of the contact boundary. In [9, 13], the

contact boundary was detected from variation in the normal gap between the

contacting surfaces, since only the displacements form the independent variables

in this penalty method. Conversely, in [12] the contact boundary was found from

variation in the contact pressure. Alternatively, a bisection method may also

be used to detect the contact boundary [14]. In the current paper, the element

updating method is adopted to overcome the effect of the weak discontinuity in

contact pressure. However, unlike [9, 12, 13], both the normal gap and contact

pressure are used to detect the contact boundary. The normal gap is used when

penetration between the two bodies is found, while the contact pressure is used

when a tensile normal traction develops.

The proposed solution approach is divided into outer and inner iteration

loops. In the outer iteration, the size of the contact zone is determined, and

then the elements near the contact boundary are updated to approximate the

discontinuous pressure. In the inner iteration, the contact state (sticking or

sliding) is determined; this is performed only for frictional contact problems.

To make the system of equations solvable, auxiliary equations are required and

these are provided by the contact constraint equations and some supplemen-

tary equations. Numerical examples, without and with friction, are presented

to demonstrate the validity and high accuracy of the proposed approach. In ad-

dition, due to the continuity of the S1 element and the detection of the contact

boundary, the pressure oscillations near the contact boundary can be avoided
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in the proposed approach.

2. A brief introduction of DiBFM

In the DiBFM [1, 2], the elements are called dual interpolation elements. The

elements are composed of a combination of source and virtual nodes. However,

the boundary integral equations are collocated only at the source nodes. That

is to say, the virtual nodes are not used as collocation points. As a result,

the number of linear equations after discretisation is less than the number of

unknown quantities. In order to arrive at a square linear system, the degrees

of freedom relating to all virtual nodes need to be condensed and this can be

achieved by considering additional constraint equations.

In this section, the element in DiBFM is introduced, and the method (the

second-layer interpolation) to condense the degrees of freedom of virtual nodes

will be presented.

2.1. The element in DiBFM

As shown in Figure 1, the nodes of a dual interpolation element are divided

into two groups: source and virtual nodes. Ignoring virtual nodes, it becomes

a traditional discontinuous boundary element. When both the virtual nodes

and the source nodes are taken into account, it is equivalent to a standard

continuous element. In this way, the dual interpolation element is able to unify

the traditional continuous and discontinuous element approaches. As shown in

the Figure, we identify the elements with the notation S1, S2, S3 indicating the

number of source nodes. This notation derives from the fact that the degrees

of freedom relating to the virtual nodes are condensed and in DiBFM they do

not form part of the final linear system being solved.

The addition of the two virtual nodes in these elements means that, in com-

parison with the order of interpolation function of the traditional discontinuous

elements using the source nodes alone, the interpolation in the dual interpolation

elements is increased by two orders. This leads to a considerable improvement

in accuracy [1].
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2.2. The first-layer interpolation

The first-layer interpolation is similar to the interpolation in a traditional

continuous boundary element. The difference is that shape functions relating

to both source nodes and virtual nodes are used, so that in interpolating an

arbitrary quantity ϕ we write

ϕ(ξ) =
nα∑

α=1

Ns
α(ξ)ϕ(Qsα) +

nβ∑

β=1

Nv
β (ξ)ϕ(Qvβ) (1)

where Ns
α(ξ) is the shape function of the αth source node, Nv

β (ξ) is the shape

function of the βth virtual node, ϕ(Qsα) is the nodal value of the αth source

node, and ϕ(Qvβ) is the nodal value of the βth virtual node. nα and nβ are the

total number of source and virtual nodes belonging to the dual interpolation

element, respectively, and ξ ∈ [−1, 1] is the usual local parametric coordinate.

In DiBFM, the virtual nodal value ϕ(Qvβ) is not an independent variable, and its

relation to the value of ϕ at the source nodes is determined by the second-layer

interpolation.

It should be noted that the shape functions Ns
α(ξ) and Nv

β (ξ) in equation (1)

are the Lagrange polynomials one would use in a conventional element having

a number of nodes equal to (nα + nβ). For the S1 element shown in Figure

1(a), then, these would be the standard continuous quadratic shape functions

Nv
1 (ξ) = −0.5ξ(1 − ξ), Ns

1 (ξ) = (1 − ξ)(1 + ξ), Nv
2 (ξ) = 0.5ξ(1 + ξ). Shape

functions for the other cases are provided in [1].

2.3. The second-layer interpolation

The second-layer interpolation is used to construct the relationships between

source nodes and virtual nodes. These relationships can then be used to con-
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dense the degrees of freedom of the virtual nodes. The second-layer interpolation

can be used to approximate both continuous and discontinuous fields.

2.3.1. The moving least square approximation

In this paper, the second-layer interpolation is constructed by the moving

least square (MLS) approximation. In our implementation, the MLS is employed

only to construct the relationships between source and virtual nodes, rather than

evaluate the shape functions at each Gauss point in the boundary integration.

The virtual nodal value can be approximated by the MLS as

ϕ(Qvβ) =
M∑

m=1

ψvsm (ηvβ)ϕ(Qsm) (2)

where M is the total number of source nodes Qsm located in the influence do-

main of the virtual node Qvβ . The term ψvsm (ηvβ) is the MLS shape function

corresponding to source node Qsm, and ηvβ is the parametric coordinate of vir-

tual node Qvβ . This coordinate is used to locate a point on a curve or straight

line, and its value η ∈ [0, 1]. The derivation of equation (2) can be found in [15].

2.3.2. Approximation of continuous and discontinuous fields

The continuous or discontinuous behaviour at an element end point can be

accommodated by simply placing either one or two virtual nodes at the point.

Two virtual nodes are used when approximating a discontinuous field, while only

one virtual node is used when modelling a continuous function. By manipulating

the influence domains of each virtual node, the continuous or discontinuous

fields can be naturally and accurately approximated. To illustrate this feature,

a schematic diagram is shown in Figure 2.

For discontinuous fields, two virtual nodes v0 and v1 are placed at the dis-

continuous boundary, as in Figure 2(a). In the figure, the influence domain of

v0 covers only the three blue source nodes; while the influence domain of v1 cov-

ers only the three red source nodes. Due to these different influence domains,

when using the second-layer interpolation (2) the nodal values at v0 and v1 are

different, allowing discontinuous behaviour.
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Figure 2: Approximation the continuous or discontinuous fields

For the modelling of continuous fields, only a single virtual node, v0, is placed

at the element end point, as shown in Figure 2(b). The domain of influence of

this virtual node in the second-layer interpolation (2) spans both elements to

which it belongs. In this way a continuous approximation is achieved.

In summary, by manipulating the influence domains of virtual node in the

second-layer interpolation, both continuous and discontinuous fields can be nat-

urally and accurately approximated.

2.4. The boundary integral equation

We consider an elastic body ocupying domain Ω ⊂ R2, having boundary

∂Ω ≡ Γ. In the absence of body forces, the boundary integral equation [16] can

be written in the following form for each body

cij(P )uj(P ) =

∫

Γ

Uij(P,Q)tj(Q)dΓ(Q)−
∫

Γ

Tij(P,Q)uj(Q)dΓ(Q), P,Q ∈ Γ

(3)

where uj and tj(j = 1, 2) are the displacement and traction components, respec-

tively, and Uij , Tij are the displacement and traction kernels, or fundamental

solutions. cij(P ) is the coefficient matrix of the jump term that arises from the

strongly singular nature of the integral containing the traction kernel. For 2D

plane-strain problems:

Uij(P,Q) =
1

8πG(1− ν)

[
(3− 4ν)δij ln

1

r
+ r,ir,j

]
(4)

8
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Tij(P,Q) = − 1

4π(1− ν)r

{
∂r

∂n
[(1− 2ν)δij + 2r,ir,j ]− (1− 2ν)(r,inj − r,jni)

}

(5)

where r is the distance between the source node P and the field point Q, n is the

outward normal at point Q, and G and ν are the shear modulus and Poisson’s

ratio, respectively.

3. Frictional Contact problems

3.1. Local contact coordinate system

Consider a node pair, a and b, on the boundaries of two contacting bodies

A and B, as in Figure 3. The common normal for nodes in the contact zone is

defined as follows:

n = nAB =
nAEA − nBEB
||nAEA − nBEB ||

(6)

Here E denotes the Young’s modulus of the body indicated by its subscript.

The tangential direction τ is obtained simply by rotating n through 90◦. The

contact node pair is determined by the closest point projection. In this paper,

the nodes on the less rigid body are projected onto the other contacting body.

The normal direction of the more rigid solid is used to determine the closest

point. The common normal is only used to define the normal direction of the

displacement and traction, and it is not used to determine the closest point.

Figure 3: Definition of the common contact direction
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3.2. Coulomb friction law

The Coulomb friction law defines a limitation for the tangential traction in

the contact zone. The limitation can be written as

|tτ | ≤ µ |tn| (7)

where µ is the coefficient of friction, tτ is the tangential traction and tn is

the normal traction. As long as the tangential traction is sufficiently small

that equation (7) is satisfied, the contacting surfaces will stick to each other.

Otherwise, sliding will occur with tangential traction |tτ | = µ |tn| applying in a

direction opposing the relative motion.

3.3. Contact constraint equations

For any collocation node in the non-contact zone, there are two unknown

variables and two integral equations (Equation (3) for i = 1, 2). However, for

any collocation node in the contact zone, there are four unknown variables, both

tractions and displacements being unknown, but only two integral equations.

Contact constraints will be imposed to provide the required number of auxiliary

equations to reach a solvable, square system. The contact constraint equations

for both frictional and frictionless are presented below.

3.3.1. Frictional contact constraint equations

The contact constraints depend on the contact state. Since the actual con-

tact zone is unknown a priori, we start with a contact zone larger than the actual

contact zone. Then the contact state for any node pair can be classified into

three types: non-contact, sticking and sliding. The constraints are given below

for these three contact states. Besides, it should be noted that the node-to-node

contact scheme is adopted in this paper.

In the non-contact state, both surfaces are traction free. Since the load is

applied incrementally in solving the non-linear frictional contact problem, the

traction is expressed as that from the previous load step plus the incremental
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traction in the current load step. The constraint equations for the contact node

pairs on bodies A and B can therefore be written as:

tAn + ∆tAn = 0; tAτ + ∆tAτ = 0 (8)

tBn + ∆tBn = 0; tBτ + ∆tBτ = 0 (9)

In the sticking state, the normal gap and the tangential relative displacement are

zero, and the traction is the same on the two bodies A and B. The constraints

for the contact node pairs on bodies A and B can therefore be written as:

∆uAn = g −∆uBn ; ∆uAτ = ∆uBτ (10)

tBn + ∆tBn = tAn + ∆tAn ; tBτ + ∆tBτ = tAτ + ∆tAτ (11)

In the sliding state, the normal gap is also zero, and the tangential traction is

equal to the frictional coefficient multiplied by the normal traction. Again, the

traction is the same on the two bodies A and B. The constraints for the contact

node pairs on bodies A and B can therefore be written as:

∆uAn = g −∆uBn ; tAτ + ∆tAτ = ±µ
(
tBn + ∆tBn

)
(12)

tBn + ∆tBn = tAn + ∆tAn ; tBτ + ∆tBτ = tAτ + ∆tAτ (13)

In Equations (8)-(13), ∆uj and ∆tj are the incremental changes in displace-

ments and tractions, due to the current incremental load step; uj and tj are the

total displacements and tractions before the current load step. The superscript

A and B denotes the corresponding contacting body. g denotes the normal

gap at the current load step, and should be updated after each load step. The

definitions of n and τ can be seen in Section 3.1.

3.3.2. Frictionless contact constraint equations

In frictionless contact, only non-contact and sliding states can exist. For the

non-contact state, the non-contact constraint equations (8) and (9) still hold.

For the sliding state, the constraint Equation (13) also holds, but the constraint

Equation (12) needs to be rewritten as

∆uAn = g −∆uBn ; tAτ + ∆tAτ = 0. (14)

11
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3.4. Supplementary equations for a virtual node in the contact zone

Unlike solving a potential problem or more straightforward elasticity prob-

lems, the consideration of contact means that not all degrees of freedom of

virtual nodes are condensed by the second-layer interpolation. In a contact

problem, whether the node is a source node or a virtual node, the contact con-

straints are required to be satisfied. To impose the constraints, the degrees

of freedom relating to the virtual nodes in the potential contact zone are not

condensed, but will be additional system unknowns. As presented in Section

2, the virtual nodes are not used as collocation nodes. Thus, the two integral

equations of the form (3) have not been established, and two auxiliary equations

are required. To provide these equations, the second-layer interpolation (2) is

employed.

3.4.1. Cross-constraint scheme to construct supplementary equations

In the potential contact zone, the displacement and the traction are both

unknown quantities. Then a question is which one requires the second-layer

interpolation to construct the supplementary equations. In this paper, a cross-

constraint scheme is used to construct these equations.

The cross-constraint scheme can be described as follows: if the virtual nodal

normal or tangential traction is a contact constraint, then the second-layer in-

terpolation of the normal or tangential displacement will be used as a sup-

plementary equation. In contrast, if the virtual nodal normal or tangential

displacement is a contact constraint, then the second-layer interpolation of the

normal or tangential traction will be used as a supplementary equation.

For frictionless and frictional contact problems, there are a total of three dif-

ferent contact states (non-contact, sticking and sliding). Thus, the supplemen-

tary equations are also different. The following summarizes the supplementary

equations for different contact states.

12
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3.4.2. Supplementary equations for different contact states

In the non-contact state, both the normal and tangential traction contact

constraints for body A are imposed; see equation (8). Thus, the second-layer

interpolation of the normal and tangential displacement is used as the supple-

mentary equations as below:

∆ud(Q
v
β)A = di

{
M∑

m=1

ψvsm (ηvβ)∆ui(Q
s
m)A

}
; d = (n, τ), i = (x, y). (15)

In the sticking state, both the normal and tangential displacement contact con-

straints for body A are imposed; see equation (10). Thus, the second-layer

interpolation of the normal and tangential traction is used as the supplemen-

tary equations as below:

(td + ∆td)(Q
v
β)A = di

{
M∑

m=1

ψvsm (ηvβ)(ti + ∆ti)(Q
s
m)A

}
; d = (n, τ), i = (x, y).

(16)

In the sliding state, for body A, the normal displacement and tangential traction

constraints are imposed; see equations (12) and (14). Thus, the second-layer

interpolation of normal traction and tangential displacement constraints are

used as the supplementary equations. The two supplementary equations for

virtual node on body A are:

(tn + ∆tn) (Qvβ)A = ni

{
M∑

m=1

ψvsm (ηvβ) (ti + ∆ti) (Qsm)A

}
; i = (x, y); (17a)

∆uτ (Qvβ)A = τi

{
M∑

m=1

ψvsm (ηvβ)∆ui(Q
s
m)A

}
; i = (x, y). (17b)

For nodes on body B, both the normal and tangential traction contact con-

straints are always imposed; see equations (9), (11) and (13). Thus, the equa-

tions for the second-layer interpolation of the normal and tangential displace-

ment are used as the supplementary equations. The two supplementary equa-

tions for virtual node on body B are:

∆ud(Q
v
β)B = di

{
M∑

m=1

ψvsm (ηvβ)∆ui(Q
s
m)B

}
; d = (n, τ), i = (x, y). (18)
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In the above, di is the direction cosine and the Einstein summation convention

is used. Further, ∆ϕd(Q
v
β) = dx∆ϕx(Qvβ) + dy∆ϕy(Qvβ), ϕ = (u, t), d = (n, τ).

The definitions of the variables are the same as those defined in Section 2.3.1

and Section 3.3.

4. Updating the elements near the contact boundary

4.1. Contact boundary detection method

At any stage in the analysis, the size of the contact zone is changed according

to the results of the analysis, progressively refining towards the true contact

zone. The current estimate of the contact zone may be larger or smaller than the

real contact zone, and the contact boundary detection method used to identify

the size of the contact zone for the next iteration is different depending on

whether the size is currently overestimated or underestimated. In this section

we present the method of detecting the contact boundary in both cases.

If the potential contact zone is larger than the real contact zone, after com-

putation a tensile normal traction will develop, which violates a physical con-

straint. In this case, all elements are interrogated to identify the element in

which the contact pressure (normal traction) is partially negative and partially

positive. This element is named the contact boundary element. The updated

location of the contact boundary is found by linear interpolation between the

two nodes on the contact boundary element having normal tractions closest to

tn = 0, one node having a positive normal traction, the other being negative.

The scheme is illustrated in Figure 4.

14
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Figure 4: Boundary detection method in contact boundary element

In Figure 4, the interpolation considers nodes j and k being the two nodes

having a normal traction closest to tn = 0. Let us consider, without loss of

generality, the case tn(j) > 0 and tn(k) < 0, in which case the location of the

contact boundary can be estimated as

x̄ = x(j) +
tn(j)

tn(j)− tn(k)
[x(k)− x(j)] . (19)

In the above equation, x can be the Cartesian coordinate or the parametric

coordinate as required.

A very similar method can be used to locate the contact boundary when the

potential contact zone is smaller than the real contact zone. In this case, at the

current step in the analysis penetration is predicted to occur, also violating a

physical constraint. Here, we find the element where the normal gap is partially

negative and partially positive and, using the normal gap to replace the pressure,

the linear interpolation (19) can be performed again to determine the contact

boundary.

The contact boundary detection repeats until no tensile normal tractions

occur, and no penetration occurs, at any nodes.

4.2. Updating the elements near the contact boundary

In our implementation, the elements near the contact boundary are updated

to approximate the traction, which is allowed to become discontinuous. A fine

mesh can be obtained at the contact boundary, which is more conducive to

15
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the accurate approximation of discontinuous traction. This method differs from

that used in [9, 11, 12], in which the authors moved the adjacent node to the

contact boundary. To illustrate our method, a schematic diagram is shown in

Figure 5.

Figure 5: Updating the elements near the contact boundary

In this Figure, the adjacent elements at the contact boundary are the ele-

ments labelled α and β. The two elements are divided into four sub-elements

α1, α2, β1 and β2, and two virtual nodes are placed at the contact boundary to

model the discontinuous traction. Using this approach, each update of the mesh

near the contact boundary causes the total number of elements to increase by

two.

It should be noted that the final contact boundary is determined when no

normal tension and no penetration occur, and this usually requires multiple

iterations. If the number of elements increases with each iteration, a very dense

mesh may be obtained, which is unnecessarily detrimental to computational

efficiency.

To avoid the above problem, in our implementation, there are two types

of mesh: the original mesh and the updated mesh. In each iteration, having

located the new estimate of the contact boundary, we go back to the original

mesh to generate the updated mesh, as shown in Figure 5. Using this algorithm,

the size of the model does not increase with each iteration and the calculation

16
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proceeds efficiently.

4.3. The solution approach for contact problems

The solution approach based on the DiBFM is summarized in Figure 6.

Loop 1 is the outer iteration, which is used to determine the size of the contact

zone. Loop 2 is the inner iteration, which is employed to determine the contact

state. The inner iteration is performed only for frictional contact problems. For

frictional contact problems, also, the load is applied in increments to arrive at

the correct contact area. We adopt the conditions for convergence from [17–21].

Figure 6: The solution approach for contact problems based on the DiBFM

5. Numerical examples

In this section, three examples are presented. S1 elements will be used in

all examples in which the DiBFM is used. The first example, Hertzian contact,

has an analytical solution, and this is used to demonstrate that the S1 element

in the proposed approach can achieve the accuracy obtained by the traditional

discontinuous quadratic element. Besides, due to the continuity of the S1 ele-

ment and the detection of the contact boundary, the pressure oscillations near

the contact boundary can be treated. The other two examples (with two and

three contact zones) demonstrate further the above advantages of the proposed

approach on problems having different characters.
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5.1. Hertzian contact problem

In the first example we consider an elastic cylinder coming into contact

with a rigid plate. The geometry, material properties, loads and boundary

conditions are shown in Figure 7(a). A very small load, p = 0.4, has been

chosen to give small displacements in order to match closely the assumption of

small deformation in the analytical solution [22], according to which the contact

half-width, b, is

b = 2

√
2R2p(1− ν2)

Eπ
, (20)

and the distribution of the normal contact pressure, pn, is

pn =
4Rp

πb2

√
(b2 − x2). (21)

For the given set of parameters, the contact half-width b = 0.54462.

(a) Computational model (b) Computational mesh

Figure 7: Frictionless Hertzian contact

5.1.1. Comparison with the analytical solution

The contact pressure and the contact half-width are respectively shown in

Figure 8 and in Table 1, and three sets of results (h1, h2 and h3) are presented.

The three sets of results correspond to different meshes used in the potential
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contact zone (−1.276 < x < 1.276), but the mesh in all non-contact regions

remains unchanged throughout. The initial number of elements in the potential

contact zone is 16 (mesh h1), 24 (mesh h2) and 32 (mesh h3).The mesh in the

non-contact zone can be seen in Figure 7(b).

Figure 8: Contact pressure solutions, from different meshes, in the potential contact zone

Table 1: Contact half-width for different mesh

mesh size b∗ error =
∣∣∣ b∗−bb

∣∣∣
h1 0.56511 3.76%

h2 0.55357 1.64%

h3 0.54991 0.94%

From Figure 8, it can be seen that with increasing mesh density in the po-

tential contact zone, the contact pressure becomes almost coincident with the

analytical solution; this provides a graphical demonstration of the convergence

of the proposed approach. Similarly, Table 1 shows the convergence in terms of

the error in the contact half-width (here b∗ denotes the numerical approximation

to the contact half-width, and b is the analytical solution). These results demon-

strate the validity of the proposed approach, including its ability to predict the
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correct extent of the contact region.

5.1.2. Comparison with traditional discontinuous elements

Figures 9 and 10 show comparisons with traditional discontinuous boundary

elements for this Hertzian contact problem. In the figures, the initial number

of elements in the potential contact zone is equal for both methods (mesh h3).

In the traditional method, no contact boundary detection has been performed.

We compare against both traditional constant (Figure 9) and discontinuous

quadratic element (Figure 10) since (i) the constant elements have the same

number of source nodes as the S1 element in our DiBFM analysis, and (ii)

the quadratic elements will have the same underlying order of variation of the

displacements and tractions over the element.

Figure 9: Contact pressure: comparison against traditional constant elements
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Figure 10: Contact pressure: comparison against traditional discontinuous quadratic elements

Figure 11: Contact pressure: comparison against refined traditional discontinuous quadratic

elements

From Figure 9, it can be seen that the accuracy of our proposed approach

(Our) is considerably higher than the traditional constant element (Trad). Fig-

ure 10 shows that the result of our proposed approach (Our) is almost consistent

with that of the traditional discontinuous quadratic element (Trad). However,

obvious pressure oscillations near the contact boundary can be seen in this ele-

ment (Trad). This is due to the fact that (i) the discontinuous element is used
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and (ii) the contact boundary is usually in an element, not at the endpoint of

the element, which reduces the regularity of the solution [9]. In contrast, the

S1 element in DiBFM is a continuous element. Furthermore, due to the contact

boundary detection, the contact boundary is at the endpoint of the element.

Thus, our proposed approach (Our) provides a higher fidelity solution near the

contact boundary than the traditional discontinuous quadratic element (Trad).

Even if the mesh size of the potential contact zone is halved for traditional

discontinuous quadratic element (Trad), this conclusion still holds, see Figure

11.

This study shows that the S1 element in DiBFM can achieve the accuracy

obtained by the traditional discontinuous quadratic element, which proves the

high accuracy of the proposed approach. In addition, due to the continuity of the

S1 element and the detection of the contact boundary, the pressure oscillations

near the contact boundary can be treated in our method.

5.2. A flat rounded punch

In this example, an elastic flat rounded punch comes into contact with an

elastic foundation. The geometry, loads and boundary conditions are shown

in Figure 12(a). The material properties of the punch and the foundation are

equal, both having Young’s modulus E = 200 GPa and Poisson’s ratio ν =

0.3. The example has been solved in [23], and a sharp increase in pressure

is seen to occur at the intersection of the line and the arc. To capture this

large pressure gradient, a fine mesh is used near the intersection. We use 20

elements in (0 < x < 44.5), 10 elements in (44.5 < x < 45.0) and 25 elements

in (45 < x < 45.27), and the mesh in the non-contact zone can be seen in

Figure 12(b). The results of the traditional discontinuous quadratic element

are used for comparison, and the S1 element in DiBFM is again adopted in the

proposed approach. Both frictionless and frictional (µ = 0.1) contact problems

are considered.
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(a) Computational model (b) Computational mesh

Figure 12: A flat rounded punch on a foundation

Figure 13: Contact pressure for frictionless and frictional contact, 0 < x < 44.5
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Figure 14: Contact pressure for frictionless and frictional contact, 44.5 < x < 45

Figure 15: Contact pressure for frictionless and frictional contact, 45 < x < 45.10
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Figure 16: Contact pressure and shear stress for frictional contact (µ = 0.1)

The contact pressure distributions for frictionless and frictional (µ = 0.1)

are shown in Figures 13 to 15. The pressure curves in the three figures corre-

spond to the pressure in different areas. The ‘Trad’ and ‘Trad-friction’ labels

denote the pressure found using traditional discontinuous quadratic elements

for frictionless and frictional contact, respectively. The ‘Our’ and ‘Our-friction’

labels denote the pressure found using our proposed approach for frictionless

and frictional contact, respectively. From the three figures, it can be seen that

the result of the proposed approach using S1 elements is almost consistent with

that of traditional discontinuous quadratic element. In addition, the pressure

oscillations only occur in traditional discontinuous quadratic element, rather

than in S1 element, as shown in Figure 15.

In Figure 16, the pressure and shear stress distributions for µ = 0.1 are

shown. The ‘Trad-press’ and ‘Trad-shear’ labels denote the pressure and shear

stress for traditional discontinuous quadratic elements, respectively. The ‘Our-

press’ and ‘Our-shear’ labels denote the pressure and shear stress in our proposed

approach. The shear stress in the Figure has been divided by the frictional co-

efficient µ. This Figure again shows a good similarity between the results of the

proposed approach and those of traditional discontinuous quadratic elements.
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This study further demonstrates the ability of the S1 element to achieve an

accuracy comparable to that obtained by the traditional discontinuous quadratic

element. Meanwhile, it also demonstrates that the pressure oscillations near the

contact boundary can be treated in our method.

5.3. Multi-contact zone problem

A multi-contact zone frictional contact problem is shown in Figure 17. Con-

tact takes place over three separate contact zones between the punch and the

foundation. For convenience, the three contact zones are called the left, middle

and right contact zone. The curved edge of the upper region (the punch) is mod-

elled using five arcs of radius r = 5. The material parameters of the punch and

the foundation are equal, both having Young’s modulus E = 2000 and Poisson’s

ratio ν = 0.3. The frictional coefficient µ = 0.2. The results using traditional

discontinuous quadratic elements are used for comparison, and the S1 element

in DiBFM is adopted. The initial number of elements in both methods is equal.

To obtain a good contact pressure, a fine mesh is used in the contact zones

(−2.19 < x < 3.81), (−14.19 < x < 15.81) and (−26.19 < x < 27.81). Each

contact zone has 40 elements. The mesh in the non-contact zone can be seen in

Figure 17(b).
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(a) Computational model

(b) Computational mesh

Figure 17: Multi-contact zone problem

Figure 18: Contact pressure and shear stress for left contact zone
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Figure 19: Contact pressure and shear stress for middle contact zone

Figure 20: Contact pressure and shear stress for right contact zone

The pressure and shear stress distributions over the three contact zones for
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µ = 0.2 are shown in Figures 18 to 20. The ‘Trad-press’ and ‘Trad-shear’ labels

denote the pressure and shear stress for traditional discontinuous quadratic ele-

ments, respectively. The ‘Our-press’ and ‘Our-shear’ labels denote the pressure

and shear stress for the S1 element in our solution approach. The shear stress in

the Figures has been divided by the frictional coefficient µ. It can be seen that

the result of the S1 element in the proposed approach is almost coincident with

that of the traditional discontinuous quadratic element. Besides, no pressure

oscillations occur near the contact boundary in our method. These confirm the

conclusions drawn from the first two examples.

6. Conclusions

A solution approach based on the dual interpolation boundary face method

(DiBFM) has been proposed for 2D frictionless and frictional contact problems.

The solution approach is divided into the outer and inner iteration loops. The

size of the contact zone is determined in the outer iteration, while in the inner

iteration the contact state (sticking or sliding) is determined; the inner loop is

only performed for frictional contact problems. To approximate the discontinu-

ous pressure that arises in some classes of contact problem, a contact boundary

detection method has been given, and its validity has been demonstrated by

numerical examples. All presented numerical examples, without and with fric-

tion, have demonstrated that the S1 element in the proposed approach can

achieve the accuracy obtained by traditional discontinuous quadratic boundary

elements. In addition, since the S1 element is a continuous element and the con-

tact boundary is detected, the pressure oscillations near the contact boundary

can be treated in the proposed approach.

Acknowledgements

This work was supported by National Science Foundation of China under

grant number 11772125 and 11472102.

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

References

References

[1] J. Zhang, W. Lin, Y. Dong, A double-layer interpolation method for im-

plementation of BEM analysis of problems in potential theory, Applied

Mathematical Modelling 51 (2017) 250–269.

[2] J. Zhang, W. Lin, Y. Dong, A dual interpolation boundary face method

for elasticity problems, European Journal of Mechanics-A/Solids 73 (2019)

500–511.

[3] J. Zhang, L. Han, W. Lin, Y. Dong, A new implementation of BEM by

an expanding element interpolation method, Engineering Analysis with

Boundary Elements 78 (2017) 1–7.

[4] J. Zhang, Y. Zhong, Y. Dong, Expanding element interpolation method

for analysis of thin-walled structures, Engineering Analysis with Boundary

Elements 86 (2018) 82–88.

[5] J. Zhang, X. Qin, X. Han, G. Li, A boundary face method for potential

problems in three dimensions, International Journal for Numerical Methods

in Engineering 80 (2009) 320–337.

[6] P. Bussetta, D. Marceau, J. Ponthot, The adapted augmented Lagrangian

method: a new method for the resolution of the mechanical frictional con-

tact problem, Computational Mechanics 49 (2012) 259–275.

[7] T. Cichosz, M. Bischoff, Consistent treatment of boundaries with mortar

contact formulations using dual Lagrange multipliers, Computer Methods

in Applied Mechanics and Engineering 200 (2011) 1317–1332.

[8] M. Matzen, T. Cichosz, M. Bischoff, A point to segment contact formula-

tion for isogeometric, NURBS based finite elements, Computer Methods in

Applied Mechanics and Engineering 255 (2013) 27–39.

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
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