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Highlights

• NURBS plasticity formulation extended to include non-associated plastic flow.
• Evolution of plastic strain is decoupled from the yield surface normal allowing for more diverse material behaviour.
• Any smooth isotropic convex yield envelope can be represented within the framework.
• NURBS surfaces combined with an implicit backward-Euler-type stress integration algorithm.
• Algorithm inherently stable and efficient as the iterative process starts and remains on the yield surface.

Abstract

This paper extends the non-uniform rational basis spline (NURBS) plasticity framework of Coombs et al. (2016) and Coombs
and Ghaffari Motlagh (2017) to include non-associated plastic flow. The NURBS plasticity approach allows any smooth isotropic
yield envelope to be represented by a NURBS surface whilst the numerical algorithm (and code) remains unchanged. This paper
provides the full theoretical and algorithmic basis of the non-associated NURBS plasticity approach and demonstrates the predictive
capability of the plasticity framework using both small and large deformation problems. Wherever possible errors associated with
the constitutive formulation are specified analytically and if not numerical analyses provide this information. The rate equations
within the plasticity framework are integrated using an efficient and stable implicit stress update algorithm which allows for the
derivation of the algorithmic consistent tangent which ensures optimum convergence of the global out of balance force residual
when used in boundary value simulations.

The important extension provided by this paper is that the evolution of plastic strain is decoupled from the yield surface normal.
This allows the framework to model more realistic material behaviour, particularly in the case of frictional plasticity models where
an associated flow rule is known to significantly overestimate volumetric dilation leading to spurious results. This paper therefore
opens the door for the NURBS plasticity formulation to be used for a far wider class of material behaviour than is currently possible.
c⃝ 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Constitutive models that provide incremental relationships between stress and strain are essential for boundary
value analysis of engineering problems. Within this, one of the most common classes of material behaviour is elasto-
plasticity where the elastic region of stress space is bounded by a yield surface. On this yield surface the material
will undergo elasto-plastic material behaviour and countless yield envelopes have been proposed since the works of
Tresca [1] and von Mises [2]. However, the form of the yield function impacts on the stress integration algorithm which
is required to convert the rate form of the plasticity equations into an incremental form that can be used in boundary
value simulations (using the finite element method for example). This issue was overcome by the non-uniform rational
basis spline (NURBS) plasticity framework of Coombs et al. [3] and Coombs and Ghaffari Motlagh [4] which allowed
any smooth isotropic yield envelope to be integrated using the same numerical algorithm. However, [3] and [4] were
limited to the case of associated plastic flow where the form of the yield surface governs both the yielding of the
material and the evolution of plastic strains. This limits the form of material behaviour that can be predicted and,
in the case of frictional plasticity models, leads to a significant overestimation of volumetric dilation. This paper
overcomes this limitation by decoupling the evolution of plastic strains from the yield surface normal leading to a
non-associated plastic flow constitutive framework.

In this paper we do not attempt to review all of the constitutive models available in the literature, instead an
interested reader is referred to the work of Yu [5] for a general review of constitutive models. In the specific area of
NURBS plasticity, beyond the work of [3,4], the only other paper that the authors are aware of is that of Coelho et al.
[6] who construct NURBS response surfaces in biaxial strain and stress space based on curve fitting to experimental
data. This is quite different to the approach of [3,4], and that advocated in this paper, where a NURBS yield envelope
is constructed and then used within a conventional plasticity formulation. This approach provides a constitutive
formulation which is valid for generalised, six-component, stress and strain space.

The NURBS plasticity formulation is combined with an implicit predictor–corrector stress integration algorithm [7]
to provide an incremental relationship between stress and strain. Several papers have compared different stress
integration algorithms and, as with the vast array of constitutive models, in this paper we do not attempt to review them.
In this case the interested reader is refereed to the works of Anandarajah [8] and Safaei et al. [9], amongst others.
The reasons for adopting an implicit algorithm in this paper are twofold: (i) they rigorously enforce the consistency
conditions at the updated stress state (and in the case of NURBS plasticity, throughout the process) and (ii) allow
for the derivation of the algorithmic consistent tangent that ensures asymptotic quadratic convergence of the global
residual when used within a boundary value simulation.

The layout of the paper is as follows, Section 2 provides the theoretical framework for hardening non-associated
flow NURBS-based plasticity, including the definition of the NURBS surface and the non-associated flow rule,
isotropic hardening through the movement of control points, the form of stress integration used and the technique
of energy mapped stress that allows us to interpret the stress integration method as a geometric projection. Section 3
provides details on the numerical implementation including the backward Euler (bE) stress integration process and
the algorithmic consistent tangent. Numerical examples are presented in Section 4 and, finally, conclusions are drawn
in Section 5.

The majority of the paper is presented in tensor form using index notation, the notable exception is the numerics that
are presented in matrix–vector form for ease of implementation. Due to the geometric nature of the method presented
in this manuscript, the majority of the paper is presented in principal stress and strain space with the following ordering
of the principal stresses

σ1 ≥ σ2 ≥ σ3,

with tensile stresses taken as positive. Note that although the equations are presented in principal stress space we can
do this without loss of generality of the final result as the principal quantities are simply transferred back to generalised
quantities at the end of the algorithm. Generalised, 6-component, stress and strain quantities are denoted using ˆ(·).

2. Non-associated flow NURBS plasticity

This section provides the essential equations required for an isotropically hardening NURBS surface with non-
associated plastic flow. There is significant overlap between the theory presented here and that of Coombs et al.
[3] (for perfect plasticity with associated flow) and Coombs and Ghaffari Motlagh [4] (for isotropic hardening with
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associated flow), however the repetition is retained for the sake of clarity and to provide a self-contained formulation.
For more detailed information on the construction of NURBS-based surfaces see the work of Piegl and Wayne [10]
and the paper of Coombs et al. [3] for the particular case of perfect plasticity yield envelopes.

A general NURBS surface can be expressed as

Sk(ξ, η) =

n∑
i=0

m∑
j=0

Ri, j (ξ, η)(Ck)i, j , (1)

where k is the physical index, Ck are the control point positions and n and m are the number of control points in the
local ξ and η directions.1 The NURBS basis functions, Ri, j , are given by

Ri, j (ξ, η) =
Ni,p(ξ )N j,q (η)wi, j∑n

k=0
∑m

l=0 Nk,p(ξ )Nl,q (η)wk,l
, (2)

where Ni,p and N j,q are the pth and qth-degree B-spline basis functions (see [10,11], amongst others), ξ and η are
the local positions within the knot vectors and wi, j are the weights associated with the control points.

2.1. NURBS-based yield envelopes

Starting from the equation for a NURBS surface (1), a NURBS-based yield envelope [3,4] can be expressed as

f =

(
σi − Si (ξ, η)

)
(S,σ )i = 0, (3)

where (S,σ )i is the surface outward normal (that is, the partial derivative of S with respect to stress) and σi the
principal stress state. The yield surface separates stress space into two regions: an elastic region where f < 0 and
an inadmissible region where f > 0. The boundary between these two regions ( f = 0) is used to identify the point
of yielding and stress states on this surface will undergo elasto-plastic deformation. The outward normal to the yield
envelope can be obtained through the cross product of the two local derivatives

(S,σ )i = (S,η × S,ξ )i = ϵi jk(S,η) j (S,ξ )k, (4)

where ϵi jk is the Levi-Civita tensor.2 See [10] for efficient algorithms for the calculation of the derivatives of the
NURBS surface with respect to the local coordinates. Fig. 1(i) shows a bi-quadratic spherical NURBS surface with
the form

f = σiσi − r2
y = 0,

where ry is the radius of the yield envelope. The control points used to define the surface are shown by the red
points and different surfaces can be obtained by moving the positions of the control points and/or modifying the basis
functions, Ri, j . Fig. 1(ii) also shows a number of outward normals, (S,σ )i , to the spherical yield surface.

The number of control points required to define a NURBS plasticity yield surface will depend on the form of the
yield function. The number of control points needed for some widely used yield envelopes are:

• von Mises: open ended cylinder, quadratic NURBS curve in the deviatoric direction to define the circular cross
section using 8 control points combined with a straight line in the hydrostatic direction using a minimum of 2
control points — 16 control points in total;

• Tresca: prismatic regular hexagon, linear NURBS curve in the deviatoric direction to define the hexagonal cross
section using 6 control points combined with a straight line in the hydrostatic direction using a minimum of 2
control points — 12 control points in total;

• Drucker–Prager frictional cone: quadratic NURBS curve in the deviatoric direction to define the circular cross
section using 8 control points combined with a straight line in the hydrostatic direction using a minimum of 2
control points — 16 control points in total; and

• Mohr–Coulomb frictional cone: linear NURBS curve in the deviatoric direction to define the irregular hexagonal
cross section using 6 control points combined with a straight line in the hydrostatic direction using a minimum
of 2 control points — 12 control points in total.

1 Note that the total number of control points used to define the surface is n × m.
2 ϵi jk = 0 if i = j , j = k or k = i , ϵi jk = 1 for even permutations of i , j and k and ϵi jk = −1 for odd permutations of i , j and k.
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Fig. 1. Spherical NURBS surface: (i) yield surface and control point net where the control points are shown by the red-shaded circles and (ii) yield
surface with outward normals, (S,σ )i , shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

However, it may be necessary to use higher order NURBS surfaces in order to be able to avoid numerical issues
with the stress integration algorithm, especially in the case of yield envelopes with corners [3,4] (see Section 4.1 for
more details for the Drucker–Prager (D–P) and Mohr–Coulomb (M-C) yield surfaces). It is also possible to reduce the
number of control points by only defining the yield surface over a single sextant of stress space, where σ1 ≥ σ2 ≥ σ3,
as is done in this manuscript and in the work of Coombs and Ghaffari Motlagh [4]. For example, the number of
control points required to define a spherical yield surface in all sextants of stress space is 45 whereas if it is defined in
a single sextant only 15 points are required [4].

For associated flow plasticity theory the outward normal to the yield surface also provides the flow direction
controlling the evolution of plastic strains, that is

ε̇
p
i = γ̇ (S,σ )i , (5)

where γ̇ is the scalar plastic multiplier rate (or consistency parameter). This plastic multiplier rate must satisfy the
Kuhn–Tucker–Karush consistency conditions

f (σi , ε
p
i ) ≤ 0, γ̇ ≥ 0 and f (σi , ε

p
i )γ̇ = 0, (6)

where the yield envelope is a function of plastic strain, εp
i , to allow for hardening/softening of the surface. These

conditions enforce that the material must either be on the yield surface undergoing elasto-plastic deformation ( f = 0
and γ̇ ≥ 0) or inside the yield surface with purely elastic behaviour ( f ≤ 0 and γ̇ = 0).

2.2. Non-associated flow

In the case of non-associated flow the evolution of plastic strains is decoupled from the spatial gradient of the yield
envelope. The plastic strains evolve according to

ε̇
p
i = γ̇ (g,σ )i , (7)

where (g,σ )i is the gradient of the plastic potential surface.
Previous attempts to extend the NURBS plasticity framework to include non-associated flow have directly specified

the flow direction at the control points rather than specifying the geometry of a plastic potential surface (see
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Coombs [12]). However, when specifying the flow direction at the control points, it is only possible to recover
associated flow over the entire yield surface if there is no coupling between the local knot coordinates (ξ, η). One
example is the prismatic von Mises yield surface

f = ρ − ρy = 0, (8)

where the deviatoric stress is ρ =
√

2J2, J2 =
1
2 (si si ), si = σi −

1
3

∑3
k=1σk and ρy is the deviatoric radius of the

yield surface. When defined using NURBS plasticity, this surface combines a circle in the ξ (deviatoric) direction
with a line in the η (hydrostatic) direction. In this case the radius of the yield surface is not dependent on the η value.
However, if we introduce a hydrostatic dependency and extend the von Mises surface to that of D–P [13], with the
form

f = ρ + β(ζ − ζa) = 0, (9)

the deviatoric and hydrostatic directions are coupled and we lose the ability to recover associated plastic flow over
the entire yield surface. In (9) ζ =

1
√

3

∑3
k=1σk is the hydrostatic stress, β = tan(φ) is the opening angle of the cone,

φ is the friction angle, ζa = c
√

3 cot(φ) is the location of the cone’s tensile apex and c is the material’s cohesion.
Before moving onto the proposed formulation, the error associated with defining the direction of plastic flow at the

control points is investigated for the D–P yield surface with a friction angle of φ = π/9 (20◦) and a cohesion of 0 Pa.
The NURBS yield surface was defined over the hydrostatic range of ζ ∈ [−2,−1]Pa using the following knot vectors

Ξξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4} and Ξη = {0, 0, 1, 1},

and weights

wξ = {1, 2−
1
2 , 1, 2−

1
2 , 1, 2−

1
2 , 1, 2−

1
2 , 1} and wη = {1, 1},

with a linear and quadratic bases in the hydrostatic (local η) and deviatoric (local ξ ) directions, respectively. The
direction of plastic flow was defined using the approach of Coombs [12] as

(g,σ )k =

n∑
i=0

m∑
j=0

Rg
i, j (ξ, η)

(
(G,σ )k

)
i, j , (10)

where (G,σ )k are the flow directions at the control points and the NURBS basis functions Rg
i, j (ξ, η) are calculated in

the same way as (2). The flow direction was defined using the following knot vectors

Ξ
g
ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4} and Ξ g

η = {0, 0, 1, 1},

and weights

w
g
ξ = {1, 1, 1, 1, 1, 1, 1, 1, 1} and wg

η = {1, 1},

where the weights in the ξ direction have been modified to exactly recover associated plastic flow for a von Mises
yield surface. As with the yield surface geometry, the flow direction has linear and quadratic bases in the hydrostatic
(local η) and deviatoric (local ξ ) directions, respectively.

The control points positions and associated flow directions for the D–P surface were arranged as shown in Fig. 2.
In all cases the flow directions at the control points had a radial deviatoric direction with the appropriate hydrostatic
component for the specified friction angle such that the vector was normal to the cone in the hydrostatic direction (as
shown in Fig. 2(i)).

Fig. 3(i) shows the variation in the error of the non-associativity of the plastic flow direction with the deviatoric
local position on the yield surface, where the error is defined as

e f = 1 −
(S,σ )i (g,σ )i

∥(S,σ ) j∥ · ∥(g,σ )k∥
∈ [0, 2], (11)

and ∥(·)∥ denotes the L2-norm of (·). The plastic flow direction was calculated using (10) and the normal to the yield
surface using (4). Note that Fig. 3(i) only shows the variation of the error in the ξ direction as the error does not vary
in the hydrostatic local direction, η. There is zero error (recovering associated plastic flow) when the control points
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Fig. 2. Control point positions and flow directions for a portion of a D–P yield surface: (i) ζ versus ρ and (ii) deviatoric sections through the yield
surface.

Fig. 3. Error in the direction of plastic flow when specifying the flow direction at the control points: (i) variation with ξ for φ = 20
◦

and
(ii) maximum error with friction angle with φ ∈ [0, 30] degrees.

coincide with the yield surface whereas the error is maximum at the control point local positions that do not coincide
with the surface. This error is due to the coupling between the ξ and η directions and increases with an increasing
angle of friction, φ, as shown in Fig. 3(ii). In all cases the maximum error is located at ξ = 0.5, 1.5, 2.5 and 3.5 and
reduces to zero as φ → 0.

The error in the flow direction is due to the presence of the cross product in (4) meaning that it is not possible
to specify the flow direction at the control points and guarantee the recovery of associated plastic flow. That is, even
when attempting to recover associated flow, in general

(S,η × S,ξ )k ̸=

n∑
i=0

m∑
j=0

Rg
i, j (ξ, η)

(
(G,σ )k

)
i, j (12)
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where

(S,(·))k =

n∑
i=0

m∑
j=0

∂Ri, j (ξ, η)
∂(·)

(Ck)i, j (13)

and (·) refers to ξ or η, as required. It is only possible to recover associated flow over the entire yield surface when
the form of the yield function in the ξ and η directions are independent. For example, for the cylindrical von Mises
surface the yield radius (in the ξ direction, for example) does not depend on η parametric coordinate but this is not
the case for the D–P yield envelope where the yield radius varies with η.

In this paper we adopt a more conventional approach, in terms of plasticity theory, and specify the geometry of the
plastic potential surface using control points. In the case of associated plastic flow the plastic potential control point
positions coincide with those used to define the geometry of the yield surface. The gradient of the plastic potential
surface therefore given by

(g,σ )i = (g,η × g,ξ )i = ϵi jk(g,η) j (g,ξ )k, (14)

where gk(ξ, η) is the plastic potential surface

gk(ξ, η) =

n∑
i=0

m∑
j=0

Rg
i, j (ξ, η)(Gk)i, j (15)

and Gk are control point coordinates that control the shape of the surface. Note that it is not necessary to have the
same basis functions for the direction of plastic flow as used to describe the geometry of the yield surface however it
is assumed that a single set of control points control the form of both the yield, Sk , and plastic potential, gk , surfaces.

2.3. Isotropic hardening

Consistent with the work of Coombs and Ghaffari Motlagh [4], in this paper the yield surface is allowed to expand
or contract isotropically according to the level of inelastic straining at a material point, such that

Ck = h(εp
i )C0

k , (16)

where the superscript (·)0 denotes the original control point coordinates and h(εp
i ) controls the expansion/contraction

of the control points. For linear isotropic hardening the incremental evolution of h is given by

h(∆εp
i ) = hn + α∥∆ε

p
i ∥, (17)

where hn = h
(
(εp

n)i
)

is the value of the hardening function from the previously converged state and α controls the
hardening/softening rate and equals zero in the case of perfect plasticity. Initially the hardening parameter is taken to
be unity, that is h0 = 1.

2.4. Stress integration

As with the other NURBS plasticity papers [3,4], we use an implicit elastic predictor, plastic corrector scheme. The
starting point for the stress integration algorithm is the previously converged, or initial, stress state, σ n

i and hardening
parameter, hn . This state is then subjected to a strain increment, ∆εi , giving an elastic trial stress state of

σ t
i = σ n

i + ∆σi , where ∆σi = De
i j∆ε j and σ n

i = De
i j (ε

e
n) j . (18)

De
i j is the linear elastic stiffness matrix and (εe

n) j is the elastic strain from the previously converged, or initial, state.
This trial stress state should be checked against the yield criteria for the material under consideration and if it exceeds
to yield envelope then it must be corrected back onto an appropriate stress state on the yield surface. This return stress
state, σ r

i , is given by

σ r
i = σ t

i − ∆σ
p
i , where ∆σ

p
i = De

i j∆ε
p
j (19)
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and ∆ϵ
p
j = ∆γ (g,σ ) j is the plastic strain increment and ∆γ the incremental plastic multiplier. Once the incremental

plastic multiplier has been obtained the updated elastic strain is given by

(εe
n+1)i = (εe

n)i + ∆εi − ∆ε
p
i , (20)

and the updated hardening parameter, h, from (17). The remaining question is how to obtain the incremental hardening
parameter, ∆γ , or the return stress state, σ r

i , such that the other quantities can be determined? In this paper we
adopt a closest point projection (CPP) implicit stress integration algorithm to arrive at the updated stress state. This
corresponds to the minimisation [14] of(

σ r
i − σ t

i

)
Ce

i j

(
σ r

j − σ t
j

)
, (21)

with respect to the return stress σ r
i whilst satisfying the Kuhn–Tucker–Karush consistency conditions (6), where

Ce
i j = (De

i j )
−1 is the elastic compliance matrix. An important point which is often overlooked it that despite this

process being referred to as a CPP, the return stress is not the closest point geometrically in standard stress space, but
rather the stress that minimises (21). The only case where the CPP is the geometric closest point on the yield surface
from the trial stress state is when the Poisson’s ratio is zero and Ce

i j = E−1δi j , where E is the Young’s modulus and
δi j the Kronecker delta tensor.3 However, in this paper we adopt the non-associated flow version of energy-mapped ςi

space (EMSS) [15,16] to reduce this CPP minimisation to the problem of finding the point on the yield envelope that
the normal to the plastic potential surface passes through when intersecting with a trial point outside of the surface.
The use of EMSS converts (21) to

1
E

(
ς r

i − ς t
i

)(
ς r

i − ς t
i

)
=
(
σ r

i − σ t
i

)
Ce

i j

(
σ r

j − σ t
j

)
(22)

essentially removing the influence of Poisson’s ratio, ν, when finding the energy-mapped return stress state ς r
i . The

following transformation converts between conventional and energy-mapped stress space

ςi = Ti jσ j , where Ti j =

(√
1 − 2ν −

√
1 + ν

)
/3 + δi j

√
1 − ν. (23)

This mapping leads to a squashing and a stretching of the yield surface in the hydrostatic and deviatoric directions
respectively, as shown in Fig. 4(i) for a spherical yield surface with ν = 0.2 and ν = 0.4. Once the closest point
solution in EMSS has been found, the solution can be transformed back to conventional stress space. For a NURBS
yield surface we only need to map the control point coordinates for the yield, (Ck), and plastic potential, (Gk), surfaces
into EMSS, the rest of the NURBS information remains unchanged.

3. Numerical implementation

Consistent with the perfect plasticity associated plastic flow implementation of Coombs et al. [3], here we use a
coarse initial subdivision algorithm to provide the initial starting point for a bE implicit stress integration process. This
is to provide an initial estimate for the local positions within the knot vectors, ξ and η in (3) that act as the primary
unknowns in the CPP problem (in addition to the updated hardening parameter). The rest of the section is focused
on the implicit stress integration algorithm and the derivation of the algorithmic consistent tangent. However, before
focusing on the stress integration algorithm we first propose a new method to determine if the material is undergoing
elastic or elasto-plastic deformation.

3.1. Yield function estimate

Determining the return stress state on the NURBS surface is only required for stress states undergoing elasto-plastic
deformation. However, the yield function for NURBS plasticity (3) requires the return stress state and associated
outward normal, therefore in previous NURBS plasticity approaches even for elastic stress states the appropriate
return state on the yield surface must be determined. In this paper we propose an alternative technique to predict if the
material is undergoing elasto-plastic deformation without determining the return stress state.

3 Note, there may be some special forms of non-linear elasticity where the Poisson’s ratio goes to zero for certain stress (or strain) states.
However, in order for the return state to be the geometrically closest point on the yield surface, the Poisson’s ratio would need to be zero over the
entire return path, not just at the instantaneous point on the yield surface.
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Fig. 4. Spherical NURBS surface: (i) yield surface in energy-mapped stress space for three values of Poisson’s ratio, ν (modified from [3]) and
(ii) points used to estimate the yield function value in one sextant of stress space.

The distance between the trial point and a point on the NURBS surface in the direction of the yield surface outward
normal, (S,σ )i , is

kd =

(
Si (ξ, η) − σ t

i

)
(S,σ )i . (24)

In the case of a convex surface, if the trial stress state, σ t
i , is inside or on the yield surface then kd ≥ 0 for all points,

Si (ξ, η), on the NURBS yield envelope. However, if kd < 0 for any (ξ, η) then the trial stress state is outside of the
yield surface. It is not possible to check that all points on the NURBS surface. Instead a parametric grid of (ξ, η)
points are checked where the locations are evenly distributed within that local knot coordinates, that is

ξd = (ξmin : ∆ξ : ξmax) and ηd = (ηmin : ∆η : ηmax),

where ∆ξ = (ξmax − ξmin)/(nd − 1), ∆η = (ηmax − ηmin)/(nd − 1) and nd is the number of points considered in
each direction. These trial knot locations are shown in Fig. 4(ii) by the white-filled circles in a single sextant of
principal stress space for a spherical yield surface. The trial stress state outside of the yield surface is also shown by
the black-filled circle as are the vectors used in (24) for two of the trial yield surface points.

3.2. Subdivision algorithm

In this paper we adopt an implicit bE algorithm to determine the updated local position on the yield surface, (ξ, η),
and new size of the surface, controlled by h. In order to start of the Newton process of the bE algorithm an initial
estimate of the return position and the hardening parameter are required. Consistent with the work of Coombs et al.
[3], a coarse subdivision process is used for the initial estimate of ξ and η whereas, consistent with [4], the previous
value of the hardening parameter provides the starting point for h.

The trial local position on the frozen yield surface (that is, h = hn) for the implicit algorithm is selected finding
the minimum

ed = 1 −
(ς t

i −
ςSi )(ςS,ς )i

∥ς t
i − ςSi∥ · ∥(ςS,ς )i∥

∈ [0, 2], (25)

for an initial set of candidate points on the yield surface, where ςSi is the energy-mapped yield surface. See [3] for
details of the subdivision algorithm used to determine the candidate points on the yield surface.
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3.3. Implicit stress integration

The EMSS bE stress integration algorithm contains three unknowns

{x} = {ξ η h}
T (26)

which satisfy the following residuals

{r} =

{
(ς t

i − ςn
i )(ςg,ξ )i (ς t

i − ςn
i )(ςg,η)i h − h̃

}T
= {0}. (27)

The tangent directions to the plastic potential surface, (ςg,ξ )i and (ςg,η)i , are obtained through taking the derivative
of the energy mapped plastic potential surface with respect to the local coordinates

(ςg,(·))k =

n∑
i=0

m∑
j=0

∂Rg
i, j (ξ, η)

∂(·)
(ςGk)i, j , (28)

where (·) is ξ or η depending on the required derivative.
The first two residuals in (27) ensure that the return path in EMSS is in the direction of the energy mapped plastic

flow rule and the third that the hardening function has reached a stationary value at the update stress state, where

h̃ = hn + α∥∆ε
p
i ∥ and ∆ε

p
i = Ce

i j T
−1
jl (ς t

l − ςn
l ). (29)

In the above equation ∆σ
p
i = T −1

jl (ς t
l − ςn

l ) is the plastic stress increment over the stress return path. The unknowns
are updated through a standard Newton–Raphson process

{δxk
} = −

[
∂r
∂x

]−1

{r k−1
} and {xk

} = {xk−1
} + {δxk

}, (30)

where k denotes the Newton–Raphson iteration number. The derivatives required for the Jacobian matrix, [∂r/∂x],
are provided in Appendix B. As with the algorithm for associated flow perfect plasticity, the stress return path for
Newton–Raphson procedure described in this paper starts and remains in the yield envelope. This leads to inherently
stable numerics as it eliminates one of the issues associated with bE stress integration, namely the form of the yield
function outside of the yield surface and its impact on the efficiency and stability of the stress return process. For
example, inappropriately constructed yield equations can contain local minima and/or spurious auxiliary surfaces
outside of the true yield envelope which can trap a returning stress state.

3.4. Algorithmic consistent tangent

Specification of the algorithmic consistent tangent allows for asymptotic quadratic convergence of the global out
of balance force residual [17]. The tangent is first constructed in principal stress space and then transformed into
six-component stress space using the principal directions associated with the trial elastic strain state (see Appendix A
for details). Following the approach of [18], we can linearise the constitutive model into the following form⎡⎣[Ce] + ∆γ [g,σσ ] {0} {g,σ }

−{∆h̃,σ }T 1 −∆h̃,∆γ
{S,σ }T f ,h 0

⎤⎦
  

[Aalg ]−1

⎧⎨⎩{dσ }

dh
d∆γ

⎫⎬⎭ =

⎧⎨⎩{dεe
t }

0
0

⎫⎬⎭ , (31)

where the derivatives are determined at the updated stress state. ∆h̃ is the incremental form of the hardening function,
and in the case of linear isotropic hardening

∆h̃ = α∥∆ε
p
i ∥. (32)

The derivative of the flow direction with respect to stress is

(g,σσ )i j =
∂(g,σ )i

∂ξ

∂ξ

∂σ j
+
∂(g,σ )i

∂η

∂η

∂σ j
. (33)
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The derivatives of the local knot coordinates with respect to stress can be obtained from the inversion of the Jacobian
matrix linking the local NURBS coordinates with the principal stress directions, that is

[J ] =

[
(S,ξ )i (S,η)i (S,σ )i

]
. (34)

The normal to the NURBS surface, (S,σ )i provides the third direction, orthogonal to the tangent vectors, in the
transformation. The derivatives associated with the hardening function are

(∆h̃,σ )i = α
(∆εp) j

∥∆ε
p
k∥

∆γ (g,σσ )i j and ∆h̃,∆γ = α
(∆εp)i

∥∆ε
p
k∥

(g,σ )i . (35)

The derivative of the yield function with respect to h is

f ,h = −(S,h)i (S,σ )i . (36)

Multiplying both sides of (31) by [Aalg], allows us to obtain the principal components of the consistent tangent, [Dalg],
as ⎧⎨⎩{dσ }

dh
d∆γ

⎫⎬⎭ =

⎡⎢⎣ [Dalg] {Aalg
12 } {Aalg

13 }

{Aalg
21 }

T Aalg
22 Aalg

23

{Aalg
31 }

T Aalg
32 Aalg

33

⎤⎥⎦
⎧⎨⎩

{dεe
t }

0
0

⎫⎬⎭ . (37)

The plasticity model presented in this paper has been expressed in principal components. It is therefore necessary
to detail the mapping of this model into generalised 6-component space. The equations to convert the stress and
strain measures into 6-component space are given in Appendix A, the appendix also details the transformation of the
algorithmic (or elasto-plastic) stiffness matrix and the shear components of the algorithmic consistent tangent stiffness
matrix. A pseudo-code for the isotropically hardening non-associated flow NURBS plasticity model is given in Fig. 5
that details fully the steps required in calculating the updated stress state and hardening parameter.

4. Numerical simulations

This section provides material point and boundary value simulations to demonstrate the performance of the
constitutive model and the numerical stress integration algorithm described in the previous sections. However, before
the numerical examples are presented we first need to define the NURBS plasticity models.

4.1. Non-associated flow plasticity models

This section provides the NURBS and control point information for the two plasticity models used in the numerical
analysis presented in this paper, namely the D–P and M–C yield surfaces.

4.1.1. Drucker–Prager
The majority of the NURBS information for the D–P yield surface has already been given in Section 2.2. However,

the D–P yield surface (9) contains a tensile apex which poses an issue for the stress return algorithm presented in
this paper as the derivatives of the NURBS surface are undefined at this point. Here we follow the same approach
as Coombs et al. [3] and Coombs and Ghaffari Motlagh [4] and locally round the apex, as shown in Fig. 6 with
ζa = 0. The yield surface is shown in both hydrostatic versus deviatoric stress space and principal stress space for
both the original and rounded surfaces. The knot vector and associated control point weights for the grey curve shown
in Fig. 6(i) are

Ξη = {0, 0, 0, 1, 1, 2, 2, 2} and wη = {1, 1, 1, cos(ϑ/2), 1}.

This knot and weight vector replaces those defined in Section 2.2 for the η direction. The radius of the rounding
curve can be obtained from the point where the true and rounded curves depart, point C in Fig. 6(i), that is

R = ζC
tan(φ)
cos(φ)

, (38)
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Fig. 5. Pseudo-code for the non-associated flow isotropically hardening NURBS constitutive model.

where ζC < ζa and the arc angle is ϑ = π/2 − φ. The hydrostatic locations of points D and E can be subsequently
obtained from ζC and R, where point D lies on the intersection between the original yield curve and a line of constant
hydrostatic pressure from the tensile limit of the rounded surface. It is clear from Fig. 6(i) that introducing rounding
at the apex of the yield surface generates a region were stress states should be undergoing elastic behaviour or located
on the true yield surface that are actually outside of the NURBS surface and therefore inadmissible. However, the
maximum hydrostatic error due to the rounding is [4]

error = (ζa − ζC)
(

1 +
β

cos(φ)

)
,

which can be controlled through setting an appropriate value of ζC. It is also important to note that the degree of
rounding shown in Fig. 6 is for visualisation purposes only and is in excess of that used in the numerical analyses.

The ξ -direction knot vectors and control point weights for both the yield and the plastic potential surfaces defined
in a single sextant of stress space are

Ξξ = {0, 0, 0, 1, 1, 1} and wξ = {1, 2−
1
2 , 1},

where the η-direction information is given above. Combining these gives the thick grey and black dashed curves
shown in Fig. 6, where βg = tan(ψ) is the opening angle of the plastic potential surface and ψ ∈ [0, φ] is the dilation
angle.
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Fig. 6. Drucker–Prager yield surface in: (i) hydrostatic, ξ , versus deviatoric, ρ, stress space and (ii) principal stress space showing both the rounded
and original cones (note that the degree of rounding is for visualisation purposes only and is in excess of that used in the numerical analyses).

4.1.2. Mohr–Coulomb
The M–C yield surface can be defined as

f = kσ3 − σ1 − σc where k =
1 + sin(φ)
1 − sin(φ)

and σc = 2c
√

k. (39)

c and φ are the cohesion and the friction angle of the material, respectively. In this paper the M–C yield surface is
represented using a bi-quadratic NURBS surface with a locally rounded tensile apex using the same approach as for
the D–P surface. The M–C yield surface also is only C0 continuous at both the compression and extension meridians
and this will cause issues for the stress integration algorithm which requires the first derivative of the yield surface
with respect to stress. We therefore introduce local rounding into the yield surface around these two meridians.

Fig. 7(i) shows a deviatoric section through the NURBS M–C yield surface (thick grey solid line) and the true
M–C yield surface (thin black dashed line) in one sextant of stress space. In the figure, the deviatoric radius has been
normalised by the yield radius on the compression meridian and the normalised radius on the extension meridian is
given by

ρ̄e =
2 + k

2k + 1
, (40)

in the case of φ = 20
◦

, ρ̄e = 0.795. Both of the meridians of the NURBS surface have been rounded by the same
length, δ, where θe and θc are the arc angles for the extension and compression meridians, given by

θe =
π

2
− arcsin

(
ρ̄e

√
3

2A

)
and θc =

π

2
− arcsin

(√
3

2A

)
(41)

with A =
√
ρ̄2

e − ρ̄e + 1. The deviatoric section is constructed using seven control points as shown in Fig. 7(i) and
the knot vectors for the yield surface defined in a single sextant of stress space are

Ξξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 3} and Ξη = {0, 0, 0, 1, 1, 2, 2, 2},

and weights are

wξ = {1, cos(θe/2), 1, 1, 1, cos(θc/2), 1} and wη = {1, 1, 1, cos(ϑ/2), 1}.

This results in 35 control points being required to define the M–C yield surface in a single sextant of stress space.
The NURBS (black line) and true (thin grey line) M–C yield surfaces are shown for all sextants of stress space in
Fig. 7(ii), where, as with the D–P surface, the rounding has been exaggerated for visualisation purposes.
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Fig. 7. Mohr–Coulomb: (i) normalised deviatoric section through the yield surface and (ii) rounded yield surface in principal stress space (note
that the degree of rounding is for visualisation purposes only and is in excess of that used in the numerical analyses).

The maximum normalised deviatoric radius error at the compression or extension meridian is given by

e(·) = δ

(
1

sin(θ(·))
−

1
tan(θ(·))

)
, (42)

where the subscript (·) can be e or c for the extension of compression meridians, respectively. Fig. 8(i) shows the
variation of the normalised error versus local knot position for φ = 0

◦

, 10◦, 20◦, 30◦ and 40◦. In all cases the
maximum error is located at the compression meridian (ξ = 3) and in the special case of zero friction angle both
the compression and extension meridians have the same maximum error. In this case the M–C surface reduces to the
Tresca yield surface; a regular prismatic hexagonal yield surface aligned with the hydrostatic axis. As the friction
angle increases the error at the compression meridian increases whereas the error at the extension meridian reduces,
this is clearly shown in Fig. 8(ii) where the error at the compression/extension meridian is reported for φ ∈ [0, 40]
degrees.

4.2. Material point investigations

Before analysing some boundary problems we will first investigate the performance of the non-associated
plastic flow NURBS plasticity framework at a material point (or stress–strain) level. In all cases two subdivisions
(see Coombs et al. [3] for details) were applied before the bE stress return algorithm and nd was set to 5 for the
yield function estimation resulting in 25 points being checked on the yield surface to determine if the stress state was
undergoing elastic or elasto-plastic behaviour.

4.2.1. Drucker–Prager error analysis
This section analyses the errors associated with the implicit stress integration algorithm for a perfect plasticity D–P

yield surface with non-associated flow. The material had a Young’s modulus of 100 Pa and a Poisson’s ratio of 0.2.
The cohesion was set to 0.49 Pa, the friction angle to φ = π/9 (20◦) and the final 0.1 Pa of the yield surface apex was
rounded.4 The errors associated with the stress return algorithm were evaluated using dilation angles of π/18 and
π/36 (10◦ and 5◦).

4 Note that although the apex of the yield surface was rounded, not stress states returned to the rounded part of the yield surface in this analysis.
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Fig. 8. M–C errors associated with the rounded meridians: (i) normalised error versus local knot position for φ = 0
◦

, 10◦, 20◦, 30◦ and 40◦ and
(ii) maximum normalised error versus friction angle for the compression and extension meridians.

The stress state was initially located on the shear meridian in one of the sextants of stress space with a hydrostatic
stress of ζ = 0 kPa. This point was then subjected to a stress increment that took the trial stress state outside of the
yield envelope. The space of trial states explored was ρt/ρn ∈ [1, 6], where the t and n subscripts denote the trial and
starting locations.

The errors associated with the trial state are shown in Fig. 9, using the following normalised error measure

error =
∥{σNURBS} − {σe}∥

∥{σe}∥
, (43)

where {σNURBS} is the stress return location associated with the NURBS model and {σe} is the exact stress return.5 The
errors associated with ψ = π/18 and ψ = π/36 are shown on the right and left of the thick black line, respectively.
The starting point for ψ = π/18 is shown by the white-shaded circle whereas the red-shaded circle is the starting
point for the ψ = π/36 analysis.

Although errors of almost 20% are present in the model, exactly the same level of errors are observed in the D–P
yield surface integrated with a conventional implicit stress integration procedure. As expected with any predictor–
correction stress integration algorithm, the error increases as the tangential proportion of the stress increment
increases. Errors also increase with increasing non-associativity, with ψ = π/18 having a maximum error of
1.66 × 10−1 whereas for the ψ = π/36 the maximum error was 1.92 × 10−1, again this is due to the return path
having a larger tangential component relative to the yield surface normal direction.

4.2.2. Mohr–Coulomb error analysis
This section analyses the errors associated with the implicit stress integration algorithm for a perfect plasticity

M–C yield surface with associated and non-associated flow. The material had a Young’s modulus of 100 Pa and a
Poisson’s ratio of 0.2. The cohesion was set to 0.49 Pa and the friction angle to 20◦ and the final 0.1 Pa of the yield
surface apex was rounded. Fig. 10 shows the errors in the NURBS stress return algorithm for the case of associated
plastic flow. The M–C implementation of Clausen et al. [19] which explicitly includes the corners at the compression

5 The exact stress state was approximated by using a conventional implicit stress return algorithm for the D–P model with the stress increment
applied in 1000 sub steps.
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Fig. 9. Stress return error analysis for D–P with non-associated flow with ψ = π/18 and ψ = π/36. The inner circle shows a deviatoric section
through the yield surface and the white and red filled circles the starting points for the ψ = π/18 and ψ = π/36 error analyses, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

and shear meridians and the hydrostatic apex was taken as the reference solution for the stress integration algorithm.
Three different cases were examined, namely the comparison of a rounded NURBS surface with:

(A) δ = 0.1 with [19] where the strain increment was applied in a single step;
(B) δ = 0.1 with [19] where the strain increment was applied in 1000 sub steps; and
(C) δ = 0.01 with [19] where the strain increment was applied in 1000 sub steps.

In all cases the strain increment was applied to the NURBS plasticity model in a single step. The errors associated
with the stress return algorithm, as evaluated by (43), are shown over two sextants for the three cases in Fig. 10. The
thick black and red lines show a section through the yield surface for δ = 0.1 and δ = 0.01, respectively. In all cases
the stress state started at the intersection of the shear meridian and the yield surface with zero hydrostatic stress, as
shown by the identified stress states in the figure.

When comparing the true and rounded surfaces when subjected to the strain increment in a single step (region A
in Fig. 10) the non-zero errors exist in the trial regions that return to the rounded part of the yield surface. As expected
from (42), the larger errors are associated with the compression meridian and symmetry is observed in the error
distribution as the starting point is irrelevant when applying the strain increment in a single step. The maximum error
for any trial point was 8.02 × 10−2.

Subdividing the strain increment into 1000 sub steps with the same level of local rounding (region B in Fig. 10)
gives a maximum error of 1.59 × 10−1 and this maximum error is located close to the extension meridian in the
adjacent sextant to the initial stress state (the σ1 > σ3 > σ2 sextant in Fig. 10). Interestingly reducing the length of
the meridian rounding actually increases the maximum error in the stress return, with region C having a maximum
error of 1.86 × 10−1. This is because more points get trapped in the corner region that should actually return to the
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Fig. 10. Stress return error analysis for M–C with associated plastic flow: (A) single step comparison of the NURBS surface with δ = 0.1 and the
true M–C surface, (B) 1000 sub steps with δ = 0.1 and (C) 1000 sub steps with δ = 0.01. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

planar part of the yield surface. However, reducing the local rounding length does reduce the errors in the sextant of
the initial stress state, as shown by the σ3 > σ1 > σ2 sextant in Fig. 10.

Table 1 gives the maximum errors for the M–C model with associated (grey shaded row) and non-associated plastic
flow. As with the D–P model, the maximum error increases with increasing non-associativity and with decreasing δ.
The M–C yield surface with sharp corners (δ = 0) had the largest error for the reason explained above. The maximum
number of N–R iterations for any of the trial stress states on any of the NURBS rounded M–C yield surfaces to find
the updated stress state was 5.

4.3. Boundary value simulations

This section presents the results from boundary value simulations to demonstrate the performance of the proposed
non-associated flow NURBS plasticity framework. In all cases two subdivisions (see Coombs et al. [3] for details)
were applied before the bE stress return algorithm and nd was set to 5 for the yield function estimation resulting in
25 points being checked on the yield surface to determine if the stress state was undergoing elastic or elasto-plastic
behaviour.

4.3.1. Plane strain rigid footing
The first analysis is that of a 1 m wide plane strain rigid footing displacing into a weightless 10 m by 5 m domain

with a Young’s modulus of E = 1 × 107 kPa and a Poisson’s ratio of ν = 0.48. The yielding of the material was
governed by a perfect plasticity D–P yield envelope (9) with cohesion of c = 490 kPa and a friction angle of θ = π/9
(20◦). Dilation angles of 20◦ and 10◦ were considered with the second case requiring a non-associated flow rule.
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Table 1
Maximum stress return errors for M–C with non-associated plastic flow, where n is the number of sub-steps and the
letters A, B and C correspond to the same combinations of meridian rounding and sub-steps as used in Fig. 10.

Fig. 11. Rigid footing: normalised pressure versus displacement response with a D–P constitutive model.

The problem was analysed using a mesh comprising of 135 eight-noded bi-quadratic quadrilateral elements
integrated using reduced four-point quadrature. Due to symmetry only half of the problem was modelled. The mesh is
the same as that used by [3,20–23], amongst others. A vertical displacement of 4 mm was applied to the footing over
20 equal loadsteps.

The normalised pressure versus displacement response is shown in Fig. 11 along with an inset figure showing the
mesh detail around the rigid footing. B is the footing width, p is the footing pressure and v is the vertical displacement
of the footing. The associate flow (AF) NURBS plasticity response (long dashed line) is compared with the result
of de Souza Neto et al. [20] (discrete points) and that of a conventional bE CPP implementation of the D–P yield
surface (thick grey line). Excellent agreement is seen between the three results.

The non-associated flow result with ψ = π/18 (10◦) is also presented in Fig. 11 for both the conventional bE
(thick grey line) and the NURBS (short dashed line) models. As with the associated flow results, excellent agreement
is seen between the two models. Fig. 12 shows the deformed mesh around the footing for associated (top) and non-
associated (bottom) plastic flow where the mesh has been shaded by the vertical displacement with dark grey being
the maximum downwards displacement. The original mesh is shown by the fine dashed line and the displacements
have been exaggerated by ×20. The associated flow case exhibits excessive volumetric dilation in the region adjacent
to the footing leading to unrealistic heaving of the ground surface. Reducing the dilation angle from π/9 (20◦) to
π/18 (10◦) significantly reduces the heave leading to a more realistic deformed surface profile.
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Fig. 12. Rigid footing: deformed mesh for the associated (top) and non associated flow (bottom) D–P model with a ×20 displacement magnification.

This rigid footing problem was also analysed using the M–C yield function. Fig. 13 gives the normalised pressure
versus displacement response for a perfect plasticity M–C model with cohesion of c = 490 kPa and a friction angle of
θ = π/9 (20◦) for both associated and non-associated (ψ = π/18) plastic flow. The same mesh and elastic material
properties used for the D–P analysis were used but in this case a displacement of 3mm was imposed using 20 equal
displacement-controlled loadsteps. The results using the NURBS plasticity framework (discrete points) are presented
alongside the implicit implementation of Clausen et al. [19] (solid grey lines). In both cases excellent agreement is
seen between the two plasticity approaches and the normalised limit pressures agree well with the analytical limit
pressure of p/c = 14.84, as shown by the dashed black line.

The rigid footing problem is now analysed using a mixture of D–P and M–C yield surfaces. The same mesh and
elastic material properties as used in the previous analyses were used in this case and a displacement of 3 mm was
imposed using 20 equal displacement-controlled loadsteps. The different material models were randomly assigned
at an element level and the distribution of the different constitutive models is shown in Fig. 14 where the white and
grey elements represent the D–P and M–C models, respectively. Only the NURBS information changed in order to
simulate the different materials and the underlying numerics for the stress integration was the same in all cases. Both
the M–C and D–P yield surfaces had a cohesion of c = 490 kPa and a friction angle of θ = π/9 (20◦). Fig. 15 shows
the normalised pressure versus displacement response for this distribution of constitutive models with associated and
non-associated (ψ = π/18) plastic flow. The responses when all of the elements used associated flow M–C and D–P
models are also shown using dashed lines. The mixed constitutive model associated flow simulation has the potential
to predict a response in the grey-shaded region of the figure depending on the number, and the distribution, of the
elements using the different material models. As with the previous analyses, the NURBS plasticity response, shown
by the discrete points, is compared with a conventional bE implementation and excellent agreement is seen for both
for the associated flow and non-associated flow simulations.

4.3.2. Finite deformation cavity expansion
This section presents the finite deformation expansion of a cylindrical cavity under internal pressure. The problem

was modelled using an updated Lagrangian finite element formulation with the following assumptions:

1. multiplicative decomposition of the deformation gradient into elastic and plastic components;
2. linear behaviour between Kirchhoff stress and elastic logarithmic strain; and
3. exponential map of the plastic flow.
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Fig. 13. Rigid footing: normalised pressure versus displacement response with a M–C constitutive model.

Fig. 14. Rigid footing: constitutive model distribution over the finite element mesh, where the white and grey elements are represented using the
D–P and M–C models, respectively.

The combination of these assumptions allows the infinitesimal strain format of stress integration algorithms to be
maintained whilst extending the boundary value analysis to include finite deformation mechanics. See Coombs [18]
for details of the large deformation formulation adopted in this paper.

The problem was modelled using a two-dimensional axisymmetric finite element code and had an inner radius of
1 m and a fixed outer radius of 2 km (to approximate an infinite domain). The inner radius, a0, was expanded to 5
m using 20 equal displacement-controlled loadsteps. The perfect plasticity M–C material had the following material
parameters: Young’s modulus of 100 MPa, Poisson’s ratio of 0.3, cohesion of 70 kPa and a friction angle of π/9 (20◦).
Dilation angles of π/9 (20◦), π/18 (10◦) and 0 were considered. 150 fully-integrated eight-noded elements were used
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Fig. 15. Rigid footing: normalised pressure versus displacement response with a mixture of D–P and M–C constitutive models.

Table 2
Finite deformation cavity expansion: global N–R iteration residuals for loadsteps 1, 2, 3, 19 and 20 with ψ = π/18. The convergence tolerance
was 1 × 10−06.

N–R it. Loadstep

1 2 3 19 20

1 3.548 × 10−01 1.645 × 10−01 8.019 × 10−02 3.549 × 10−03 3.283 × 10−03

2 6.375 × 10−01 5.050 × 10−03 1.084 × 10−03 1.260 × 10−06 9.958 × 10−07

3 2.414 × 10−02 1.819 × 10−06 3.129 × 10−07 3.817 × 10−11 –
4 4.566 × 10−05 2.585 × 10−10 – – –
5 6.581 × 10−10 – – – –

to analyse the problem and the size of the elements were progressively increased by a factor 1.1 from the inner to the
outer surface (the inner and outer elements had radial lengths of 0.124 mm and 182 m, respectively). The analytical
solution for this problem, assuming perfect plasticity M–C constitutive behaviour, was given by Yu and Houlsby [24].

Fig. 16 shows the normalised internal pressure versus normalised radius response for the three dilation angles,
where p is the internal pressure and a the current radius. The response of the NURBS plasticity model is shown by
discrete points with the dilation angles of ψ = 20

◦

, 10◦ and 0◦ being represented using white, grey and black filled
circles respectively. The analytical solution given by Yu and Houlsby [24] is shown by the dashed black lines. The
NURBS plasticity framework shows good agreement with the analytical solution for all of the dilation angles.

Table 2 gives the global Newton–Raphson (N–R) residual for loadsteps 1, 2, 3, 19 and 20 with ψ = π/18. The
global tolerance was 1 × 10−06 and the maximum number of iterations for any loadstep was 5. The data presented in
the table shows quadratic (or near quadratic) convergence of the global out of balance force, demonstrating the correct
implementation of the algorithmic consistent tangent for large deformation elasto-plasticity.

5. Conclusions

This paper has presented for the first time an extension of the NURBS plasticity framework of Coombs et al. [3] to
include non-associated plastic flow. Information regarding the shape and size of the yield and plastic potential surfaces
is stored at control points covering one sextant of stress space. This allows any smooth isotropic convex yield surface
to be included within the plasticity formulation without modification of the numerics used for the stress integration.
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Fig. 16. Finite deformation cavity expansion: expansion versus normalised internal pressure with a M–C constitutive model.

Within this, the implicit backward Euler stress update procedure contains three unknowns, namely the local position
of the updated stress state on the yield surface and the updated hardening parameter. Therefore, introducing non-
associated flow does not increase the number of unknowns in the stress integration algorithm as compared to the
associated flow NURBS hardening formulation of Coombs and Ghaffari Motlagh [4]. In addition, when solving
for these unknowns the current estimate for the updated stress state remains on the yield envelope and satisfies
the consistency condition throughout the process. This results in a stable stress integration algorithm as, unlike in
conventional closest point projection schemes, the stress state cannot be trapped in a local minimum or converge to
an axillary surface outside of the true yield envelope (see [22] for more information on the impact of the form of the
yield function on the stability of the bE stress integration process).

Unlike previous attempts to extend the NURBS plasticity framework to non-associated flow, in this paper the
geometry of the plastic potential surface is represented at the control points. This guarantees the ability to recover
associated plastic flow for any surface. This is not possible when specifying the flow direction at the control points
due to the presence of a cross product in the yield surface normal.

This paper has also proposed a new method to estimate if a trial stress state in inside (elastic) or outside (elasto-
plastic) of the yield surface. This reduces the computational cost of the constitutive model as the closest point to the
yield envelope only needs to be determined for those stress states undergoing elasto-plastic material behaviour.

The numerical examples included in this paper have quantified the errors associated with the stress integration
process for both the Drucker–Prager and Mohr–Coulomb yield envelopes and where possible the maximum errors
associated with yield surface smoothing have been specified analytically. The performance of the plasticity framework
has also been demonstrated through a number of small strain and finite deformation finite element analyses where
analytical or existing numerical results exist. Within this, the correct derivation and implementation of the algorithmic
tangent has been confirmed through the convergence rate of the global out of balance force residual.

The key extension provided by this paper is that the evolution of plastic strain is decoupled from the yield surface
normal. This allows the plasticity formulation to model a more diverse range of material behaviour and, in the case of
frictional plasticity, predict a more realistic volumetric response, avoiding the excessive dilation seen with associated
plastic flow.
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Appendix A. Shear components and stress transformation

The constitutive model presented in this paper has been expressed in principal form. It is therefore necessary
to detail the mapping of this model into generalised 6-component space. However, before this can be achieved it
is necessary to specify the shear components of the algorithmic stiffness matrix so these can also be mapped to
generalised stress space.

The shear terms of the modified elastic stiffness matrix are given by

[Dc
G] = [AG][De

G], (A.1)

where [De
G] is a three-by-three matrix containing the shear components of the elastic stiffness matrix, the modification

matrix for the shear components is given by [19]

[AG] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 +
∆σ

p
1 − ∆σ

p
2

σ r
1 − σ r

2
0 0

0 1 +
∆σ

p
1 − ∆σ

p
3

σ r
1 − σ r

3
0

0 0 1 +
∆σ

p
2 − ∆σ

p
3

σ r
2 − σ r

3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.2)

The stiffness matrix used in (A.4) is therefore

[D] =

[
[Dalg] [0]

[0] [Dc
G]

]
, (A.3)

where [0] is a three-by-three matrix full of zeros and [Dalg] is the principal elastic stiffness matrix from (37).
The following relations can be used to transform between six-component and principal stress and strain space

{σ̂ } = [Q]T
{
{σ }

{0}

}
, {ε̂} = [Q]−1

{
{ε}

{0}

}
and [D̂] = [Q]T [D][Q], (A.4)

where (·̂) denotes the six-component stress and strain quantities. The transformation matrix is given by

[Q] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(q1)2 (q2)2 (q3)2 q1q2 q2q3 q3q1

(q4)2 (q5)2 (q6)2 q4q5 q5q6 q6q4

(q7)2 (q8)2 (q9)2 q7q8 q8q9 q9q7

2q1q4 2q2q5 2q3q6 q1q5 + q4q2 q2q6 + q5q3 q3q4 + q6q1

2q4q7 2q5q8 2q6q9 q4q8 + q7q5 q5q9 + q8q6 q6q7 + q9q4

2q7q1 2q8q2 2q9q3 q7q2 + q1q8 q8q3 + q2q9 q9q1 + q3q7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A.5)

where the components qi are associated with the trial elastic strain eigenvectors

[q] =

⎡⎣q1 q4 q7
q2 q5 q8
q3 q6 q9

⎤⎦
.

(A.6)

Appendix B. Jacobian matrix

The components of the Jacobian matrix, [∂r/∂x], required for the backward Euler stress integration algorithm (30)
are

∂r1

∂η
= −(S,η)i (g,η)i + (ς t

i − ςn
i )(g,ηη)i , (B.1)

∂r1

∂ζ
= −(S,ζ )i (g,η)i + (ς t

i − ςn
i )(g,ηζ )i , (B.2)

∂r1

∂h
= −(S,h)i (g,η)i , (B.3)
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∂r2

∂η
= −(S,η)i (g,ζ )i + (ς t

i − ςn
i )(g,ζη)i , (B.4)

∂r2

∂ζ
= −(S,ζ )i (g,ζ )i + (ς t

i − ςn
i )(g,ζ ζ )i , (B.5)

∂r2

∂h
= −(S,h)i (g,ζ )i , (B.6)

∂r3

∂η
= −(h̃,∆εp )i (∆εp,η)i , (B.7)

∂r3

∂ζ
= −(h̃,∆εp )i (∆εp,ζ )i and (B.8)

∂r3

∂h
= 1 − (h̃,∆εp )i (∆εp,h)i . (B.9)

See Piegl and Tiller [10] for efficient methods of calculating the first derivatives of the NURBS basis functions. The
derivative of the yield surface with respect to the hardening function is

(S,h)i =
Si

h
. (B.10)

The derivative of the plastic strain increment with respect to h is

(∆εp,h)i = −Ce
i j T

−1
jk (ςn,h)k (B.11)

and the derivatives of the plastic strain increment with respect to η and ζ are

(∆εp,η)i = −Ce
i j T

−1
jk (S,η)k and (∆εp,ζ )i = −Ce

i j T
−1
jk (S,ζ )k . (B.12)

The derivative of the hardening function with respect to the plastic strain increment is

(h̃,∆εp )i = α
∆ε

p
i

∥∆εp∥
. (B.13)

Note the relative magnitudes of the residuals in (27), with the first two residuals will be of the order of stress squared
and the third close to unity. Normalising the first two residuals (and the appropriate entries in the Jacobian matrix)
with respect to Young’s modulus reduces the potential for ill conditioning of the Jacobian matrix.
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