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Abstract

This paper extends the non-uniform rational basis spline (NURBS) plasticity frame-
work of Coombs et al. [11] and Coombs and Ghaffari Motlagh [10] to include non-associated
plastic flow. The NURBS plasticity approach allows any smooth isotropic yield envelope
to be represented by a NURBS surface whilst the numerical algorithm (and code) remains
unchanged. This paper provides the full theoretical and algorithmic basis of the non-
associated NURBS plasticity approach and demonstrates the predictive capability of the
plasticity framework using both small and large deformation problems. Wherever pos-
sible errors associated with the constitutive formulation are specified analytically and if
not numerical analyses provide this information. The rate equations within the plasticity
framework are integrated using an efficient and stable implicit stress update algorithm
which allows for the derivation of the algorithmic consistent tangent which ensures opti-
mum convergence of the global out of balance force residual when used in boundary value
simulations.

The important extension provided by this paper is that the evolution of plastic strain
is decoupled from the yield surface normal. This allows the framework to model more
realistic material behaviour, particularly in the case of frictional plasticity models where
an associated flow rule is known to significantly overestimate volumetric dilation leading to
spurious results. This paper therefore opens the door for the NURBS plasticity formulation
to be used for a far wider class of material behaviour than is currently possible.

Keywords:
elasto-plasticity, constitutive modelling, non-associated flow, non-uniform rational basis
spline (NURBS), stress integration, finite-element analysis

1. Introduction

Constitutive models that provide incremental relationships between stress and strain
are essential for boundary value analysis of engineering problems. Within this, one of the
most common classes of material behaviour is elasto-plasticity where the elastic region of
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stress space is bounded by a yield surface. On this yield surface the material will undergo
elasto-plastic material behaviour and countless yield envelopes have been proposed since
the works of Tresca [21] and von Mises [15]. However, the form of the yield function
impacts on the stress integration algorithm which is required to convert the rate form
of the plasticity equations into an incremental form that can be used in boundary value
simulations (using the finite element method for example). This issue was overcome by
the non-uniform rational basis spline (NURBS) plasticity framework of Coombs et al. [11]
and Coombs and Ghaffari Motlagh [10] which allowed an smooth isotropic yield envelope
to be integrated using the same numerical algorithm. However, [11] and [10] were limited
to the case of associated plastic flow where the form of the yield surface governs both the
yielding of the material and the evolution of plastic strains. This limits the form of material
behaviour that can be predicted and, in the case of frictional plasticity models, leads to
a significant overestimation of volumetric dilation. This paper overcomes this limitation
by decoupling the evolution of plastic strains from the yield surface normal leading to a
non-associated plastic flow constitutive framework.

In this paper we do not attempt to review all of the constitutive models available in
the literature, instead an interested reader is refereed to the work of Yu [24] for a general
review of constitutive models. In the specific area of NURBS plasticity, beyond the work
of [10, 11], the only other paper that the authors are aware of is that of Coelho et al.
[3] who construct NURBS response surfaces in biaxial strain and stress space based on
curve fitting to experimental data. This is quite different to the approach of [10, 11],
and that advocated in this paper, where a NURBS yield envelope is constructed and then
used within a conventional plasticity formulation. This approach provides a constitutive
formulation which is valid for generalised, six-component, stress and strain space.

The NURBS plasticity formulation is combined with an implicit predictor-corrector
stress integration algorithm [22] to provide an incremental relationship between stress and
strain. Several papers have compared different stress integration algorithms and, as with
the vast array of constitutive models, in this paper we do not attempt to review them.
In this case the interested reader is refereed to the works of Anandarajah [1] and Safaei
et al. [17], amongst others. The reasons for adopting an implicit algorithm in this paper
are twofold: (i) they rigorously enforce the consistency conditions at the updated stress
state (and in the case of NURBS plasticity, throughout the process) and (ii) allow for
the derivation of the algorithmic consistent tangent that ensures asymptotic quadratic
convergence of the global residual when used within a boundary value simulation.

The layout of the paper is as follows, Section 2 provides the theoretical framework
for hardening non-associated flow NURBS-based plasticity, including the definition of the
NURBS surface and the non-associated flow rule, isotropic hardening through the move-
ment of control points, the form of stress integration used and the technique of energy
mapped stress that allows us to interpret the stress integration method as a geometric
projection. Section 3 provides details on the numerical implementation including the back-
ward Euler stress integration process and the algorithmic consistent tangent. Numerical
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examples are presented in Section 4 and, finally, conclusions are drawn in Section 5.
The majority of the paper is presented in tensor form using index notation, the notable

exception is the numerics that are presented in matrix-vector form for ease of implementa-
tion. Due to the geometric nature of the method presented in this manuscript, the majority
of the paper is presented in principal stress and strain space with the following ordering of
the principal stresses

σ1 ≥ σ2 ≥ σ3,

with tensile stresses taken as positive. Note that although the equations are presented in
principal stress space we can do this without loss of generality of the final result as the
principal quantities are simply transferred back to generalised quantities at the end of the
algorithm. Generalised, 6-component, stress and strain quantities are denoted using (̂·).

2. Non-associated flow NURBS plasticity

This section provides the essential equations required for an isotropically hardening
NURBS surface with non-associated plastic flow. There is significant overlap between the
theory presented here and that of Coombs et al. [11] (for perfect plasticity with associated
flow) and Coombs and Ghaffari Motlagh [10] (for isotropic hardening with associated flow),
however the repetition is retained for the sake of clarity and to provide a self-contained
formulation. For more detailed information on the construction of NURBS-based surfaces
see the work of Piegl and Wayne [16] and the paper of Coombs et al. [11] for the particular
case of perfect plasticity yield envelopes.

A general NURBS surface can be expressed as

Sk(ξ, η) =

n∑
i=0

m∑
j=0

Ri,j(ξ, η)(Ck)i,j , (1)

where k is the physical index, Ck are the control point positions and n and m are the
number of control points in the local ξ and η directions1. The NURBS basis functions,
Ri,j , are given by

Ri,j(ξ, η) =
Ni,p(ξ)Nj,q(η)wi,j

n∑
k=0

m∑
l=0

Nk,p(ξ)Nl,q(η)wk,l

, (2)

where Ni,p and Nj,q are the pth and qth-degree B-spline basis functions (see [12, 16], amongst
others), ξ and η are the local positions within the knot vectors and wi,j are the weights
associated with the control points.

1Note that the total number of control points used to define the surface is n×m.
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2.1. NURBS-based yield envelopes

Starting from the equation for a NURBS surface (1), a NURBS-based yield envelope
[10, 11] can be expressed as

f =
(
σi − Si(ξ, η)

)
(S,σ )i = 0, (3)

where (S,σ )i is the surface outward normal (that is, the partial derivative of S with respect
to stress) and σi the principal stress state. The yield surface separates stress space into
two regions: an elastic region where f < 0 and an inadmissible region where f > 0. The
boundary between these two regions (f = 0) is used to identify the point of yielding and
stress states on this surface will undergo elasto-plastic deformation. The outward normal
to the yield envelope can be obtained through the cross product of the two local derivatives

(S,σ )i = (S,η ×S,ξ )i = εijk(S,η )j(S,ξ )k, (4)

where εijk is the Levi-Civita tensor2. See [16] for efficient algorithms for the calculation of
the derivatives of the NURBS surface with respect to the local coordinates. Figure 1 (i)
shows a bi-quadratic spherical NURBS surface with the form

f = σiσi − r2
y = 0,

where ry is the radius of the yield envelope. The control points used to define the surface
are shown by the red points and different surfaces can be obtained by moving the positions
of the control points and/or modifying the basis functions, Ri,j . Figure 1 (ii) also shows
a number of outward normals, (S,σ )i, to the spherical yield surface.

The number of control points required to define a NURBS plasticity yield surface will
depend on the form of the yield function. The number of control points needed for some
widely used yield envelopes are:

• von Mises: open ended cylinder, quadratic NURBS curve in the deviatoric direction
to define the circular cross section using 8 control points combined with a straight
line in the hydrostatic direction using a minimum of 2 control points - 16 control
points in total;

• Tresca: prismatic regular hexagon, linear NURBS curve in the deviatoric direction
to define the hexagonal cross section using 6 control points combined with a straight
line in the hydrostatic direction using a minimum of 2 control points - 12 control
points in total;

2εijk = 0 if i = j, j = k or k = i, εijk = 1 for even permutations of i, j and k and εijk = −1 for odd
permutations of i, j and k.
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• Drucker-Prager frictional cone: quadratic NURBS curve in the deviatoric direction
to define the circular cross section using 8 control points combined with a straight
line in the hydrostatic direction using a minimum of 2 control points - 16 control
points in total; and

• Mohr-Coulomb frictional cone: linear NURBS curve in the deviatoric direction to
define the irregular hexagonal cross section using 6 control points combined with a
straight line in the hydrostatic direction using a minimum of 2 control points - 12
control points in total;

However, it may be necessary to use higher order NURBS surfaces in order to be able to
avoid numerical issues with the stress integration algorithm, especially in the case of yield
envelopes with corners [10, 11] (see Section 4.1 for more details for the Drucker-Prager and
Mohr-Coulomb yield surfaces). It is also possible to reduce the number of control points
by only defining the yield surface over a single sextant of stress space, where σ1 ≥ σ2 ≥ σ3,
as is done in this manuscript and in the work of Coombs and Ghaffari Motlagh [10]. For
example, the number of control points required to define a spherical yield surface in all
sextants of stress space is 45 whereas if it is defined in a single sextant only 15 points are
required [10].

Figure 1: Spherical NURBS surface: (i) yield surface and control point net where the control points are
shown by the red-shaded circles and (ii) yield surface with outward normals, (S,σ )i, shown.

For associated flow plasticity theory the outward normal to the yield surface also pro-
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vides the flow direction controlling the evolution of plastic strains, that is

ε̇p
i = γ̇(S,σ )i, (5)

where γ̇ is the scalar plastic multiplier rate (or consistency parameter). This plastic mul-
tiplier rate must satisfy the Kuhn-Tucker-Karush consistency conditions

f(σi, ε
p
i ) ≤ 0, γ̇ ≥ 0 and f(σi, ε

p
i )γ̇ = 0, (6)

where the yield envelope is a function of plastic strain, εp
i , to allow for hardening/softening

of the surface. These conditions enforce that the material must either be on the yield
surface undergoing elasto-plastic deformation (f = 0 and γ̇ ≥ 0) or inside the yield surface
with purely elastic behaviour (f ≤ 0 and γ̇ = 0).

2.2. Non-associated flow

In the case of non-associated flow the evolution of plastic strains is decoupled from the
spatial gradient of the yield envelope. The plastic strains evolve according to

ε̇p
i = γ̇(g,σ )i, (7)

where (g,σ )i is the gradient of the plastic potential surface.
Previous attempts to extend the NURBS plasticity framework to include non-associated

flow have directly specified the flow direction at the control points rather than specifying
the geometry of a plastic potential surface (see Coombs [5]). However, when specifying the
flow direction at the control points, it is only possible to recover associated flow over the
entire yield surface if there is no coupling between the local knot coordinates (ξ, η). One
example is the prismatic von Mises yield surface

f = ρ− ρy = 0, (8)

where the deviatoric stress is ρ =
√

2J2, J2 = 1
2(sisi), si = σi − 1

3

∑3
k=1 σk and ρy is the

deviatoric radius of the yield surface. When defined using NURBS plasticity, this surface
combines a circle in the ξ (deviatoric) direction with a line in the η (hydrostatic) direction.
In this case the radius of the yield surface is not dependent on the η value. However,
if we introduce a hydrostatic dependency and extend the von Mises surface to that of
Drucker-Prager (D-P) [14], with the form

f = ρ+ β(ζ − ζa) = 0, (9)

the deviatoric and hydrostatic directions are coupled and we loose the ability to recover as-
sociated plastic flow over the entire yield surface. In (9) ζ = 1√

3

∑3
k=1 σk is the hydrostatic

stress, β = tan(φ) is the opening angle of the cone, φ is the friction angle, ζa = c
√

3 cot(φ)
is the location of the cone’s tensile apex and c is the material’s cohesion.
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Before moving onto the proposed formulation, the error associated with defining the
direction of plastic flow at the control points is investigated for the D-P yield surface with
a friction angle of φ = π/9 (20◦ degrees) and a cohesion of 0Pa. The NURBS yield surface
was defined over the hydrostatic range of ζ ∈ [−2,−1]Pa using the following knot vectors

Ξξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4} and Ξη = {0, 0, 1, 1},

and weights

wξ = {1, 2−
1
2 , 1, 2−

1
2 , 1, 2−

1
2 , 1, 2−

1
2 , 1} and wη = {1, 1},

with a linear and quadratic bases in the hydrostatic (local η) and deviatoric (local ξ)
directions, respectively. The direction of plastic flow was defined using the approach of
Coombs [5] as

(g,σ )k =

n∑
i=0

m∑
j=0

Rgi,j(ξ, η)
(
(G,σ )k

)
i,j
, (10)

where (G,σ )k are the flow directions at the control points and the NURBS basis functions
Rgi,j(ξ, η) are calculated in the same way as (2). The flow direction was defined using the
following knot vectors

Ξgξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4} and Ξgη = {0, 0, 1, 1},

and weights
wgξ = {1, 1, 1, 1, 1, 1, 1, 1, 1} and wgη = {1, 1},

where the weights in the ξ direction have been modified to exactly recover associated plastic
flow for a von Mises yield surface. As with the yield surface geometry, the flow direction has
linear and quadratic bases in the hydrostatic (local η) and deviatoric (local ξ) directions,
respectively.

The control points positions and associated flow directions for the D-P surface were
arranged as shown in Figure 2. In all cases the flow directions at the control points had
a radial deviatoric direction with the appropriate hydrostatic component for the specified
friction angle such that the vector was normal to the cone in the hydrostatic direction (as
shown in Figure 2 (i)).

Figure 3 (i) shows the variation in the error of the non-associativity of the plastic flow
direction with the deviatoric local position on the yield surface, where the error is defined
as

ef = 1− (S,σ )i(g,σ )i
||(S,σ )j || · ||(g,σ )k||

∈ [0, 2], (11)

where ||(·)|| denotes the L2-norm of (·). The plastic flow direction was calculated using
(10) and the normal to the yield surface using (4). Note that Figure 3 (i) only shows the
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Figure 2: Control point positions and flow directions for a portion of a D-P yield surface: (i) ζ versus ρ
and (ii) deviatoric sections through the yield surface.

variation of the error in the ξ direction as the error does not vary in the hydrostatic local
direction, η. There is zero error (recovering associated plastic flow) when the control points
coincide with the yield surface whereas the error is maximum at the control point local
positions that do not coincide with the surface. This error is due to the coupling between
the ξ and η directions and increases with an increasing angle of friction, φ, as shown in
Figure 3 (ii). In all cases the maximum error is located at ξ = 0.5, 1.5, 2.5 and 3.5 and
reduces to zero as φ→ 0.

The error in the flow direction is due to the presence of the cross product in (4) meaning
that it is not possible to specify the flow direction at the control points and guarantee the
recovery of associated plastic flow. That is, even when attempting to recover associated
flow, in general

(S,η ×S,ξ )k 6=
n∑
i=0

m∑
j=0

Rgi,j(ξ, η)
(
(G,σ )k

)
i,j

(12)

where

(S,(·) )k =

n∑
i=0

m∑
j=0

∂Ri,j(ξ, η)

∂(·)
(Ck)i,j (13)

and (·) refers to ξ or η, as required. It is only possible to recover associated flow over
the entire yield surface when the form of the yield function in the ξ and η directions are
independent. For example, for the cylindrical von Mises surface the yield radius (in the
ξ direction, for example) does not depend on η parametric coordinate but this is not the
case for the Drucker-Prager yield envelope where the yield radius varies with η.

In this paper we adopt a more conventional approach, in terms of plasticity theory, and
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Figure 3: Error in the direction of plastic flow when specifying the flow direction at the control points: (i)
variation with ξ for φ = 20◦ and (ii) maximum error with friction angle with φ ∈ [0, 30] degrees.

specify the geometry of the plastic potential surface using control points. In the case of
associated plastic flow the plastic potential control point positions coincide with those used
to define the geometry of the yield surface. The gradient of the plastic potential surface
therefore given by

(g,σ )i = (g,η ×g,ξ )i = εijk(g,η )j(g,ξ )k, (14)

where g(ξ, η) is the plastic potential surface

gk(ξ, η) =
n∑
i=0

m∑
j=0

Rgi,j(ξ, η)(Gk)i,j (15)

and Gk are control point coordinates that control the shape of the surface. Note that it is
not necessary to have the same basis functions from the direction of plastic flow as used to
describe the geometry of the yield surface however it is assumed that a single set of control
points control the form of both the yield, Sk, and plastic potential, gk, surfaces.

2.3. Isotropic hardening

Consistent with the work of Coombs and Ghaffari Motlagh [10], in this paper the yield
surface is allowed to expand or contract isotropically according to the level of inelastic
straining at a material point, such that

Ck = h(εp
i )C0

k , (16)
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where the superscript (·)0 denotes the original control point coordinates and h(εp
i ) con-

trols the expansion/contraction of the control points. For linear isotropic hardening the
incremental evolution of h is given by

h(∆εp
i ) = hn + α||∆εp

i ||, (17)

where hn = h
(
(εp
n)i
)

is the value of the hardening function from the previously converged
state and α controls the hardening/softening rate and equals zero in the case of perfect
plasticity. Initially the hardening parameter is taken to be unity, that is h0 = 1.

2.4. Stress integration

As with the other NURBS plasticity papers [10, 11], we use an implicit elastic predictor,
plastic corrector scheme. The starting point for the stress integration algorithm is the
previously converged, or initial, stress state, σni and hardening parameter, hn. This state
is then subjected to a strain increment, ∆εi, giving an elastic trial stress state of

σti = σni + ∆σi, where ∆σi = De
ij∆εj and σni = De

ij(ε
e
n)j . (18)

De
ij is the linear elastic stiffness matrix and (εe

n)j is the elastic strain from the previously
converged, or initial, state. This trial stress state should be checked against the yield
criteria for the material under consideration and if it exceeds to yield envelope then it
must be corrected back onto an appropriate stress state on the yield surface. This return
stress state, σri , is give by

σri = σti −∆σp
i , where ∆σp

i = De
ij∆ε

p
j (19)

and ∆εpj = ∆γ(g,σ )j is the plastic strain increment and ∆γ the incremental plastic multi-
plier. Once the incremental plastic multiplier has been obtained the updated elastic strain
is given by

(εe
n+1)i = (εe

n)i + ∆εi −∆εp
i , (20)

and the updated hardening parameter, h, from (17). The remaining question is how to
obtain the incremental hardening parameter, ∆γ, or the return stress state, σri , such that
the other quantities can be determined? In this paper we adopt a closest point projection
(CPP) implicit stress integration algorithm to arrive at the updated stress state. This
corresponds to the minimisation [18] of(

σri − σti
)
Ce
ij

(
σrj − σtj

)
, (21)

with respect to the return stress σri whilst satisfying the Kuhn-Tucker-Karush consistency
conditions (6), where Ce

ij = (De
ij)
−1 is the elastic compliance matrix. An important point

which is often overlooked it that despite this process being referred to as a CPP, the return
stress is not the closest point geometrically in standard stress space, but rather the stress
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that minimises (21). The only case where the CPP is the geometric closest point on the
yield surface from the trial stress state is when the Poisson’s ratio is zero and Ce

ij = E−1δij ,

where E is the Young’s modulus and δij the Kronecker delta tensor3. However, in this
paper we adopt the non-associated flow version of energy-mapped ςi space (EMSS) [7, 13]
to reduce this CPP minimisation to the problem of finding the point on the yield envelope
that the normal to the plastic potential surface passes through when intersecting with a
trial point outside of the surface. The use of EMSS converts (21) to

1

E

(
ςri − ςti

)(
ςri − ςti

)
=
(
σri − σti

)
Ce
ij

(
σrj − σtj

)
(22)

essentially removing the influence of Poisson’s ratio, ν, when finding the energy-mapped
return stress state ςri . The following transformation converts between conventional and
energy-mapped stress space

ςi = Tijσj , where Tij =
(√

1− 2ν −
√

1 + ν
)
/3 + δij

√
1− ν. (23)

This mapping leads to a squashing and a stretching of the yield surface in the hydrostatic
and deviatoric directions respectively, as shown in Figure 4 (i) for a spherical yield surface
with ν = 0.2 and ν = 0.4. Once the closest point solution in energy-mapped stress space
has been found, the solution can be transformed back to conventional stress space. For a
NURBS yield surface we only need to map the control point coordinates for the yield, (Ck),
and plastic potential, (Gk), surfaces into energy-mapped space, the rest of the NURBS
information remains unchanged.

3. Numerical implementation

Consistent with the perfect plasticity associated plastic flow implementation of Coombs
et al. [11], here we use a coarse initial subdivision algorithm to provide the initial starting
point for a backward Euler (bE) implicit stress integration process. This is to provide
an initial estimate for the local positions within the knot vectors, ξ and η in (3) that
act as the primary unknowns in the CPP problem (in addition to the updated hardening
parameter). The rest of the section is focused on the implicit stress integration algorithm
and the derivation of the algorithmic consistent tangent. However, before focusing on the
stress integration algorithm we first propose a new method to determine if the material is
undergoing elastic or elasto-plastic deformation.

3Note, there may be some special forms of non-linear elasticity where the Poisson’s ratio goes to zero
for certain stress (or strain) states. However, in order for the return state to be the geometrically closest
point on the yield surface, the Poisson’s ratio would need to be zero over the entire return path, not just
at the instantaneous point on the yield surface.
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Figure 4: Spherical NURBS surface: (i) yield surface in energy-mapped stress space for three values of
Poisson’s ratio, ν (modified from [11]) and (ii) points used to estimate the yield function value in one
sextant of stress space.

3.1. Yield function estimate

Determining the return stress state on the NURBS surface is only required for stress
states undergoing elasto-plastic deformation. However, the yield function for NURBS plas-
ticity (3) requires the return stress state and associated outward normal, therefore in previ-
ous NURBS plasticity approaches even for elastic stress states the appropriate return state
on the yield surface must be determined. In this paper we propose an alternative technique
to predict if the material is undergoing elasto-plastic deformation without determining the
return stress state.

The distance between the trial point and a point on the NURBS surface in the direction
of the yield surface outward normal, (S,σ )i, is

kd =
(
Si(ξ, η)− σti

)
(S,σ )i. (24)

In the case of a convex surface, if the trial stress state, σti , is inside or on the yield surface
then kd ≥ 0 for all points, Si(ξ, η), on the NURBS yield envelope. However, if kd < 0 for
any (ξ, η) then the trial stress state is outside of the yield surface. It is not possible to
check that all points on the NURBS surface. Instead a parametric grid of (ξ, η) points are
checked where the locations are evenly distributed within that local knot coordinates, that
is

ξd = (ξmin : ∆ξ : ξmax) and ηd = (ηmin : ∆η : ηmax),

where ∆ξ = (ξmax − ξmin)/(nd − 1), ∆η = (ηmax − ηmin)/(nd − 1) and nd is the number of
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points considered in each direction. These trial knot locations are shown in Figure 4 (ii)
by the white-filled circles in a single sextant of principal stress space for a spherical yield
surface. The trial stress state outside of the yield surface is also shown by the black-filled
circle as are the vectors used in (24) for two of the trial yield surface points.

3.2. Subdivision algorithm

In this paper we adopt an implicit bE algorithm to determine the updated local position
on the yield surface, (ξ, η), and new size of the surface, controlled by h. In order to start of
the Newton process of the bE algorithm an initial estimate of the return position and the
hardening parameter. Consistent with the work of Coombs et al. [11], a coarse subdivision
process is used for the initial estimate of ξ and η whereas, consistent with [10], the previous
value of the hardening parameter provides the starting point for h.

The trial local position on the frozen yield surface (that is, h = hn) for the implicit
algorithm is selected finding the minimum

ed = 1− (ςti − ςSi)(
ςS,ς )i

||ςti − ςSi|| · ||( ςS,ς )i||
∈ [0, 2], (25)

for an initial set of candidate points on the yield surface, where ςSi and ςgi are the energy-
mapped yield and plastic potential surfaces. See [11] for details of the subdivision algorithm
used to determine the candidate points on the yield surface.

3.3. Implicit stress integration

The energy-mapped stress space bE stress integration algorithm contains three un-
knowns

{x} = {ξ η h}T (26)

which satisfy the following residuals

{r} =
{

(ςti − ςni )( ςg,ξ )i (ςti − ςni )( ςg,η )i h− h̃
}T

= {0}. (27)

The tangent directions to the plastic potential surface, ( ςg,ξ )i and ( ςg,η )i, are obtained
through taking the derivative of the energy mapped plastic potential surface with respect
to the local coordinates

( ςg,(·) )k =
n∑
i=0

m∑
j=0

∂Rgi,j(ξ, η)

∂(·)
( ςGk)i,j , (28)

where (·) is ξ or η depending on the required derivative.
The first two residuals in (27) ensure that the return path in EMSS is in the direction of

the energy mapped plastic flow rule and the third that the hardening function has reached

13



a stationary value at the update stress state, where

h̃ = hn + α||∆εp
i || and ∆εp

i = Ce
ijT
−1
jl (ςtl − ςnl ). (29)

In the above equation ∆σp
i = T−1

jl (ςtl − ςnl ) is the plastic stress increment over the stress
return path. The unknowns are updated through a standard Newton-Raphson process

{δxk} = −
[
∂r

∂x

]−1

{rk−1} and {xk} = {xk−1}+ {δxk}, (30)

where k denotes the Newton-Raphson iteration number. The derivatives required for the
Jacobian matrix, [∂r/∂x], are provided in Appendix B. As with the algorithm for associ-
ated flow perfect plasticity, the stress return path for NR procedure described in this paper
starts and remains in the yield envelope. This leads to inherently stable stress numerics
as it eliminates one of the issues associated with bE stress integration, namely the form of
the yield function outside of the yield surface and its impact on the efficiency and stability
of the stress return process. For example, inappropriately constructed yield equations can
contain local minima and/or spurious auxiliary surfaces outside of the true yield envelope
which can trap a returning stress state.

3.4. Algorithmic consistent tangent

Specification of the algorithmic consistent tangent allows for asymptotic quadratic con-
vergence of the global out of balance force residual [19]. The tangent is first constructed in
principal stress space and then transformed into six-component stress space using the prin-
cipal directions associated with the trial elastic strain state (see Appendix A for details).
Following the approach of [4], we can linearise the constitutive model into the following
form 

[Ce] + ∆γ[g,σσ ] {0} {g,σ }
−{∆h̃,σ }T 1 −∆h̃,∆γ

{S,σ }T f,h 0


︸ ︷︷ ︸

[Aalg ]−1


{dσ}
dh

d∆γ

 =


{dεe

t}
0

0

 , (31)

where the derivatives are determined at the updated stress state. ∆h̃ is the incremental
form of the hardening function, and in the case of linear isotropic hardening

∆h̃ = α||∆εp
i ||. (32)

The derivative of the flow direction with respect to stress is

(g,σσ )ij =
∂(g,σ )i
∂ξ

∂ξ

∂σj
+
∂(g,σ )i
∂η

∂η

∂σj
. (33)
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The derivatives of the local knot coordinates with respect to stress can be obtained from the
inversion of the Jacobian matrix linking the local NURBS coordinates with the principal
stress directions, that is

[J ] =
[
(S,ξ )i (S,η )i (S,σ )i

]
. (34)

The normal to the NURBS surface, (S,σ )i provides the third direction, orthogonal to the
tangent vectors, in the transformation. The derivatives associated with the hardening
function are

(∆h̃,σ )i = α
(∆εp)j
||∆εp

k||
∆γ(g,σσ )ij and ∆h̃,∆γ = α

(∆εp)i
||∆εp

k||
(g,σ )i. (35)

The derivative of the yield function with respect to h is

f,h = −(S,h )i(S,σ )i. (36)

Multiplying both sides of (31) by [Aalg], allows us to obtain the principal components of
the consistent tangent, [Dalg], as

{dσ}
dh

d∆γ

 =


[Dalg] {Aalg12 } {A

alg
13 }

{Aalg21 }T Aalg22 Aalg23

{Aalg31 }T Aalg32 Aalg33



{dεe

t}
0

0

 . (37)

The plasticity model presented in this paper has been expressed in principal com-
ponents. It is therefore necessary to detail the mapping of this model into generalised
6-component space. The equations to convert the stress and strain measures into 6-
component space are given in Appendix A, the appendix also details the transformation
of the algorithmic (or elasto-plastic) stiffness matrix and the shear components of the algo-
rithmic consistent tangent stiffness matrix. A pseudo-code for the isotropically hardening
non-associated flow NURBS plasticity model is given in Figure 5 that details fully the steps
required in calculating the updated stress state and hardening parameter.

4. Numerical simulations

This section provides material point and boundary value simulations to demonstrate
the performance of the constitutive model and the numerical stress integration algorithm
described in the previous sections. However, before the numerical examples are presented
we first need to define the NURBS plasticity models.

4.1. Non-associated flow plasticity models

This section provides the NURBS and control point information for the two plasticity
models used in the numerical analysis presented in this paper, namely the D-P and Mohr-
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1. INPUT: physical ({εt}, E, ν, hn) & NURBS information.

(a) Transform the trial elastic strain, {εt}, into its principal components and store the
associated eigenvectors.

(b) Calculate the principal (elastic) trial stress, {σt} = [De]{εt}.

(c) Calculate the control point positions with h = hn.

(d) Transform the trial stress, {σt}, the control point locations and the control point flow
directions to energy mapped stress space, (23).

(e) Determine the value of the yield function based on the procedure given in Section 3.1.

(f) IF f > tol (elasto-plastic behaviour)

i. Determine the closest point between the trial stress state, {ςt}, and the non-
associated flow hardening NURBS surface in energy mapped stress space, also
obtaining hn+1, based on the bE stress integration algorithm given in Section 3.3;

ii. transform the return stress state, {ςcp}, back to conventional stress space;
iii. calculate the updated elastic strain, {εen+1} = [De]−1{σn+1}; and
iv. determine the algorithmic consistent tangent matrix, [Da lg], from (37).

(g) ELSE (elastic behaviour)

i. updated stress equal to the trial stress, {σn+1} = {σt};
ii. updated elastic strain equal to the trial strain, {εen+1} = {εt};
iii. algorithmic tangent equal to the elastic tangent, [Dalg] = [De]; and
iv. maintain the original hardening parameter, hn+1 = hn.

(h) END IF

(i) Transform the principal components (updated stress, elastic strain and consistent
tangent) back to generalised space using the eigenvectors stored at step (a) - see
Appendix A.

2. OUTPUT: {σn+1}, {εen+1}, hn+1 and [Dalg]

Figure 5: Pseudo-code for the non-associated flow isotropically hardening NURBS constitutive model.
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Coulomb (M-C) yield surfaces.

4.1.1. Drucker-Prager

The majority of the NURBS information for the D-P yield surface has already been
given in Section 2.2. However, the D-P yield surface (9) contains a tensile apex which poses
an issue for the stress return algorithm presented in this paper as the derivatives of the
NURBS surface are undefined at this point. Here we follow the same approach as Coombs
et al. [11] and Coombs and Ghaffari Motlagh [10] and locally round the apex, as shown
in Figure 6 with ζa = 0. The yield surface is shown in both hydrostatic versus deviatoric
stress space and principal stress space for both the original and rounded surfaces. The
knot vector and associated control point weights for the grey curve shown in Figure 6 (i)
are

Ξη = {0, 0, 0, 1, 1, 2, 2, 2} and wη = {1, 1, 1, cos(ϑ/2), 1}.

This knot and weight vector replaces those defined in Section 2.2 for the η direction. The
radius of the rounding curve can be obtained from the point where the true and rounded
curves depart, point C in Figure 6 (i), that is

R = ζC
tan(φ)

cos(φ)
, (38)

where ζC < ζa and the arc angle is ϑ = π/2 − φ. The hydrostatic locations of points D
and E can be subsequently obtained from ζC and R, where point D lies on the intersection
between the original yield curve and a line of constant hydrostatic pressure from the tensile
limit of the rounded surface. It is clear from Figure 6 (i) that introducing rounding at the
apex of the yield surface generates a region were stress states should be undergoing elastic
behaviour or located on the true yield surface that are actually outside of the NURBS
surface and therefore inadmissible. However, the maximum hydrostatic error due to the
rounding is [10]

error = (ζa − ζC)

(
1 +

β

cos(φ)

)
,

which can be controlled through setting an appropriate value of ζC. It is also important to
note that the degree of rounding shown in Figure 6 is for visualisation purposes only and
is in excess of that used in the numerical analyses.

The ξ-direction knot vectors and control point weights for both the yield and the plastic
potential surfaces defined in a single sextant of stress space are

Ξξ = {0, 0, 0, 1, 1, 1} and wξ = {1, 2−
1
2 , 1},

where the η-direction information is given above. Combining these gives the thick grey
and black dashed curves shown in Figure 6, where βg = tan(ψ) is the opening angle of the
plastic potential surface and ψ ∈ [0, φ] is the dilation angle.
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Figure 6: Drucker-Prager yield surface in: (i) hydrostatic, ξ, versus deviatoric, ρ, stress space and (ii)
principal stress space showing both the rounded and original cones (note that the degree of rounding is for
visualisation purposes only and is in excess of that used in the numerical analyses).

4.1.2. Mohr-Coulomb

The M-C yield surface can be defined as

f = kσ3 − σ1 − σc where k =
1 + sin(φ)

1− sin(φ)
and σc = 2c

√
k. (39)

c and φ are the cohesion and the friction angle of the material, respectively. In this paper
the M-C yield surface is represented using a bi-quadratic NURBS surface with a locally
rounded tensile apex using the same approach as for the D-P surface. The M-C yield
surface also is only C0 continuous at both the compression and extension meridians and
this will cause issues for the stress integration algorithm which requires the first derivative
of the yield surface with respect to stress. We therefore introduce local rounding into the
yield surface around these two meridians.

Figure 7 (i) shows a deviatoric section through the NURBS M-C yield surface (thick
grey solid line) and the true M-C yield surface (thin black dashed line) in one sextant of
stress space. In the figure, the deviatoric radius has been normalised by the yield radius
on the compression meridian and the normalised radius on the extension meridian is given
by

ρ̄e =
2 + k

2k + 1
, (40)

in the case of φ = 20◦, ρ̄e = 0.795. Both of the meridians of the NURBS surface have been
rounded by the same length, δ, where θe and θc are the arc angles for the extension and
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Figure 7: Mohr-Coulomb: (i) normalised deviatoric section through the yield surface and (ii) rounded yield
surface in principal stress space (note that the degree of rounding is for visualisation purposes only and is
in excess of that used in the numerical analyses).

compression meridians, given by

θe =
π

2
− arcsin

(
ρ̄e
√

3

2A

)
and θc =

π

2
− arcsin

(√
3

2A

)
(41)

with A =
√
ρ̄2
e − ρ̄e + 1. The deviatoric section is constructed using seven control points as

shown in Figure 7 (i) and the knot vectors for the yield surface defined in a single sextant
of stress space are

Ξξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 3} and Ξη = {0, 0, 0, 1, 1, 2, 2, 2},

and weights are

wξ = {1, cos(θe/2), 1, 1, 1, cos(θc/2), 1} and wη = {1, 1, 1, cos(ϑ/2), 1}.

This results in 35 control points being required to define the M-C yield surface in a single
sextant of stress space. The NURBS (black line) and true (thin grey line) M-C yield
surfaces are shown for all sextants of stress space in Figure 7 (ii), where, as with the D-P
surface, the rounding has been exaggerated for visualisation purposes.

The maximum normalised deviatoric radius error at the compression or extension
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meridian is given by

e(·) = δ

(
1

sin(θ(·))
− 1

tan(θ(·))

)
, (42)

where the subscript (·) can be e or c for the extension of compression meridians, respectively.
Figure 8 (i) shows the variation of the normalised error versus local knot position for φ = 0◦,
10◦, 20◦, 30◦ and 40◦. In all cases the maximum error is located at the compression meridian
(ξ = 3) and in the special case of zero friction angle both the compression and extension
meridians have the same maximum error. In this case the M-C surface reduces to the Tresca
yield surface; a regular prismatic hexagonal yield surface aligned with the hydrostatic axis.
As the friction angle increases the error at the compression meridian increases whereas the
error at the extension meridian reduces, this is clearly shown in Figure 8 (ii) where the
error at the compression/extension meridian is reported for φ ∈ [0, 40] degrees.

Figure 8: M-C errors associated with the rounded meridians: (i) normalised error versus local knot position
for φ = 0◦, 10◦, 20◦, 30◦ and 40◦ and (ii) maximum normalised error versus friction angle for the compression
and extension meridians.

4.2. Material point investigations

Before analysing some boundary problems we will first investigate the performance of
the non-associated plastic flow NURBS plasticity framework at a material point (or stress-
strain) level. In all cases two subdivisions (see Coombs et al. [11] for details) were applied
before the bE stress return algorithm and nd was set to 5 for the yield function estimation
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resulting in 25 points being checked on the yield surface to determine if the stress state
was undergoing elastic or elasto-plastic behaviour.

4.2.1. Drucker-Prager error analysis

This section analyses the errors associated with the implicit stress integration algorithm
for a perfect plasticity D-P yield surface with non-associated flow. The material had a
Young’s modulus of 100Pa and a Poisson’s ratio of 0.2. The cohesion was set to 0.49Pa,
the friction angle to φ = π/9 (20◦ degrees) and the final 0.1Pa of the yield surface apex
was rounded4. The errors associated with the stress return algorithm were evaluated using
dilation angles of π/18 and π/36 (10◦ and 5◦ degrees).

The stress state was initially located on the shear meridian in one of the sextants of
stress space with a hydrostatic stress of ζ = 0kPa. This point was then subjected to a
stress increment that took the trial stress state outside of the yield envelope. The space of
trial states explored was ρt/ρn ∈ [1, 6], where the t and n subscripts denote the trial and
starting locations.

The errors associated with the trial state are shown in Figure 9, using the following
normalised error measure

error =
||{σNURBS} − {σe}||

||{σe}||
, (43)

where {σNURBS} is the stress return location associated with the NURBS model and {σe}
is the exact stress return5. The errors associated with ψ = π/18 and ψ = π/36 are shown
on the right and left of the thick black line, respectively. The starting point for ψ = π/18
is shown by the white-shaded circle whereas the red-shaded circle is the starting point for
the ψ = π/36 analysis.

Although errors of almost 20% are present in the model, exactly the same level of errors
are observed in the D-P yield surface integrated with a conventional implicit stress inte-
gration procedure. As expected with any predictor-correction stress integration algorithm,
the error increases as the tangential proportion of the stress increment increases. Errors
also increase with increasing non-associativity, with ψ = π/18 having a maximum error of
1.66 × 10−1 whereas for the ψ = π/36 the maximum error was 1.92 × 10−1, again this is
due to the return path having a larger tangential component relative to the yield surface
normal direction.

4.2.2. Mohr-Coulomb error analysis

This section analyses the errors associated with the implicit stress integration algorithm
for a perfect plasticity M-C yield surface with associated and non-associated flow. The

4Note that although the apex of the yield surface was rounded, not stress states returned to the rounded
part of the yield surface in this analysis.

5The exact stress state was approximated by using a conventional implicit stress return algorithm for
the D-P model with the stress increment applied in 1000 sub steps.
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Figure 9: Stress return error analysis for D-P with non-associated flow with ψ = π/18 and ψ = π/36. The
inner circle shows a deviatoric section through the yield surface and the white and red filled circles the
starting points for the ψ = π/18 and ψ = π/36 error analyses, respectively.

material had a Young’s modulus of 100Pa and a Poisson’s ratio of 0.2. The cohesion was
set to 0.49Pa and the friction angle to 20◦ and the final 0.1Pa of the yield surface apex was
rounded. Figure 10 shows the errors in the NURBS stress return algorithm for the case
of associated plastic flow. The M-C implementation of Clausen et al. [2] which explicitly
includes the corners at the compression and shear meridians and the hydrostatic apex was
taken as the reference solution for the stress integration algorithm Three different cases
were examined, namely the comparison of a rounded NURBS surface with:

(A) δ = 0.1 with [2] where the strain increment was applied in a single step;

(B) δ = 0.1 with [2] where the strain increment was applied in 1,000 sub steps; and

(C) δ = 0.01 with [2] where the strain increment was applied in 1,000 sub steps.

In all cases the strain increment was applied to the NURBS plasticity model in a single
step. The errors associated with the stress return algorithm, as evaluated by (43), are
shown over two sextants for the three cases in Figure 10. The thick black and red lines
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show a section through the yield surface for δ = 0.1 and δ = 0.01, respectively. In all cases
the stress state started at the intersection of the shear meridian and the yield surface with
zero hydrostatic stress, as shown by the identified stress states in the figure.

Figure 10: Stress return error analysis for M-C with associated plastic flow: (A) single step comparison of
the NURBS surface with δ = 0.1 and the true M-C surface, (B) 1,000 sub steps with δ = 0.1 and (C) 1,000
sub steps with δ = 0.01.

When comparing the true and rounded surfaces when subjected to the strain increment
in a single step (region A in Figure 10) the non-zero errors exist in the trial regions that
return to the rounded part of the yield surface. As expected from (42), the larger errors
are associated with the compression meridian and symmetry is observed in the error dis-
tribution as the starting point is irrelevant when applying the strain increment in a single
step. The maximum error for any trial point was 8.02× 10−2.

Subdividing the strain increment into 1,000 sub steps with the same level of local
rounding (region B in Figure 10) gives a maximum error of 1.59× 10−1 and this maximum
error is located close to the extension meridian in the adjacent sextant to the initial stress
state (the σ1 > σ3 > σ2 sextant in Figure 10). Interestingly reducing the length of the

23



meridian rounding actually increases the maximum error in the stress return, with region
C having a maximum error of 1.86× 10−1. This is because more points get trapped in the
corner region that should actually return to the planar part of the yield surface. However,
reducing the local rounding length does reduce the errors in the sextant of the initial stress
state, as shown by the σ3 > σ1 > σ2 sextant in Figure 10.

Table 1 gives the maximum errors for the M-C model with associated (grey shaded
row) and non-associated plastic flow. As with the D-P model, the maximum error increases
with increasing non-associativity and with decreasing δ. The M-C yield surface with sharp
corners (δ = 0) had the largest error for the reason explained above. The maximum number
of N-R iterations for any of the trial stress states on any of the NURBS rounded M-C yield
surfaces to find the updated stress state was 5.

Table 1: Maximum stress return errors for M-C with non-associated plastic flow, where n is the number
of sub-steps and the letters A, B and C correspond to the same combinations of meridian rounding and
sub-steps as used in Figure 10.

A B C true M-C [2]
φ ψ δ = 0.1, n = 1 δ = 0.1, n = 1000 δ = 0.01, n = 1000 δ = 0, n = 1000

20◦ 20◦ 0.80× 10−1 1.59× 10−1 1.86× 10−1 1.92× 10−1

20◦ 10◦ 0.96× 10−1 2.18× 10−1 2.41× 10−1 2.43× 10−1

20◦ 5◦ 1.06× 10−1 2.58× 10−1 2.74× 10−1 2.79× 10−1

20◦ 2.5◦ 1.13× 10−1 2.91× 10−1 3.03× 10−1 3.05× 10−1

20◦ 0◦ 1.19× 10−1 3.29× 10−1 3.36× 10−1 3.41× 10−1

4.3. Boundary value simulations

This section presents the results from boundary value simulations to demonstrate the
performance of the proposed non-associated flow NURBS plasticity framework. In all cases
two subdivisions (see Coombs et al. [11] for details) were applied before the bE stress return
algorithm and nd was set to 5 for the yield function estimation resulting in 25 points being
checked on the yield surface to determine if the stress state was undergoing elastic or
elasto-plastic behaviour.

4.3.1. Plane strain rigid footing

The first analysis is that of a 1m wide plane strain rigid footing displacing into a
weightless 10m by 5m domain with a Young’s modulus of E = 1× 107kPa and a Poisson’s
ratio of ν = 0.48. The yielding of the material was governed by a perfect plasticity D-P
yield envelope (9) with cohesion of c = 490kPa and a friction angle of θ = π/9 (20◦ degrees).
Dilation angles of 20◦ and 10◦ degrees were considered with the second case requiring a
non-associated flow rule.
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The problem was analysed using a mesh comprising of 135 eight-noded bi-quadratic
quadrilateral elements integrated using reduced four-point quadrature. Due to symmetry
only half of the problem was modelled and the mesh detail around the corner of the footing
is shown in the inset figure. The mesh is the same as that used by [6, 8, 9, 11, 20], amongst
others. A vertical displacement of 4mm was applied to the footing over 20 equal loadsteps.

Figure 11: Rigid footing: normalised pressure versus displacement response with a D-P constitutive model.

The normalised pressure versus displacement response is shown in Figure 11 along with
an inset figure showing the mesh detail around the rigid footing. B is the footing width,
p is the footing pressure and v is the vertical displacement of the footing. The associate
flow (AF) NURBS plasticity response (long dashed line) is compared with the result of
de Souza Neto et al. [20] (discrete points) and that of a conventional backward Euler (bE)
closest point projection implementation of the D-P yield surface (thick grey line). Excellent
agreement is seen between the three results.

The non-associated flow result with ψ = π/18 (10◦ degrees) is also presented in Fig-
ure 11 for both the conventional bE (thick grey line) and the NURBS (short dashed line)
models. As with the associated flow results, excellent agreement is seen between the two
models. Figure 12 shows the deformed mesh around the footing for associated (top) and
non-associated (bottom) plastic flow where the mesh has been shaded by the vertical dis-
placement with dark grey being the maximum downwards displacement. The original mesh
is shown by the fine dashed line and the displacements have been exaggerated by ×20. The
associated flow case exhibits excessive volumetric dilation in the region adjacent to the foot-
ing leading to unrealistic heaving of the ground surface. Reducing the dilation angle from
π/9 (20◦) to π/18 (10◦) significantly reduces the heave leading to a more realistic deformed
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surface profile.

Figure 12: Rigid footing: deformed mesh for the associated (top) and non associated flow (bottom) D-P
model with a ×20 displacement magnification.

This rigid footing problem was also analysed using the M-C yield function. Figure 13
gives the normalised pressure versus displacement response for a perfect plasticity M-C
model with cohesion of c = 490kPa and a friction angle of θ = π/9 (20◦ degrees) for both
associated and non-associated (ψ = π/18) plastic flow. The same mesh and elastic material
properties used for the D-P analysis were used but in this case a displacement of 3mm was
imposed using 20 equal displacement-controlled loadsteps. The results using the NURBS
plasticity framework (discrete points) are presented alongside the implicit implementation
of Clausen et al. [2] (solid grey lines). In both cases excellent agreement is seen between the
two plasticity approaches and the normalised limit pressures agree well with the analytical
limit pressure of p/c = 14.84, as shown by the dashed black line.

The rigid footing problem is now analysed using a mixture of D-P and M-C yield
surfaces. The same mesh and elastic material properties as used in the previous analyses
were used in this case and a displacement of 3mm was imposed using 20 equal displacement-
controlled loadsteps. The different material models were randomly assigned at an element
level and the distribution of the different constitutive models is shown in Figure 14 where
the white and grey elements represent the D-P and M-C models, respectively. Only the
NURBS information changed in order to simulate the different materials and the underlying
numerics for the stress integration was the same in all cases. Both the M-C and D-P yield
surfaces had a cohesion of c = 490kPa and a friction angle of θ = π/9 (20◦ degrees).
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Figure 13: Rigid footing: normalised pressure versus displacement response with a M-C constitutive model.

Figure 15 shows the normalised pressure versus displacement response for this distribution
of constitutive models with associated and non-associated (ψ = π/18) plastic flow. The
responses when all of the elements used associated flow M-C and D-P models are also
shown using dashed lines. The mixed constitutive model associated flow simulation has
the potential to predict a response in the grey-shaded region of the figure depending on
the number, and the distribution, of the elements using the different material models. As
with the previous analyses, the NURBS plasticity response, shown by the discrete points,
is compared with a conventional bE implementation and excellent agreement is seen for
both for the associated flow and non-associated flow simulations.

4.3.2. Finite deformation cavity expansion

This section presents the finite deformation expansion of a cylindrical cavity under
internal pressure. The problem was modelled using an updated Lagrangian finite element
formulation with the following assumptions:

1. multiplicative decomposition of the deformation gradient into elastic and plastic com-
ponents;

2. linear behaviour between Kirchhoff stress and elastic logarithmic strain; and

3. exponential map of the plastic flow.

27



Figure 14: Rigid footing: constitutive model distribution over the finite element mesh, where the white and
grey elements are represented using the D-P and M-C models, respectively.

Figure 15: Rigid footing: normalised pressure versus displacement response with a mixture of D-P and
M-C constitutive models.
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The combination of these assumptions allows the infinitesimal strain format of stress in-
tegration algorithms to be maintained whilst extending the boundary value analysis to
include finite deformation mechanics. See Coombs [4] for details of the large deformation
formulation adopted in this paper.

The problem was modelled using a two-dimensional axisymmetric finite element code
and had an inner radius of 1m and a fixed outer radius of 2km (to approximate an infinite
domain). The inner radius, a0, was expanded to 5m using 20 equal displacement-controlled
loadsteps. The perfect plasticity M-C material had the following material parameters:
Young’s modulus of 100MPa, Poisson’s ratio of 0.3, cohesion of 70kPa and a friction an-
gle of π/9 (20◦). Dilation angles of π/9 (20◦), π/18 (10◦) and 0 were considered. 150
fully-integrated eight-noded elements were used to analyse the problem and the size of the
elements were progressively increased by a factor 1.1 from the inner to the outer surface (the
inner and outer elements had radial lengths of 0.124mm and 182m, respectively). The an-
alytical solution for this problem, assuming perfect plasticity M-C constitutive behaviour,
was given by Yu and Houlsby [23].

Figure 16 shows the normalised internal pressure versus normalised radius response
for the three dilation angles, where p is the internal pressure and a the current radius.
The response of the NURBS plasticity model is shown by discrete points with the dilation
angles of ψ = 20◦, 10◦ and 0◦ being represented using white, grey and black filled circles
respectively. The analytical solution given by Yu and Houlsby [23] is shown by the dashed
black lines. The NURBS plasticity framework shows good agreement with the analytical
solution for all of the dilation angles.

Table 2 gives the global Newton-Raphson (N-R) residual for loadsteps 1, 2, 3, 19 and 20
with ψ = π/18. The global tolerance was 1×10−06 and the maximum number of iterations
for any loadstep was 5. The data presented in the table shows quadratic (or near quadratic)
convergence of the global out of balance force, demonstrating the correct implementation
of the algorithmic consistent tangent for large deformation elasto-plasticity.

Table 2: Finite deformation cavity expansion: global N-R iteration residuals for loadsteps 1, 2, 3, 19 and
20 with ψ = π/18. The convergence tolerance was 1× 10−06.

loadstep

NR it. 1 2 3 19 20

1 3.548×10−01 1.645×10−01 8.019×10−02 3.549×10−03 3.283×10−03

2 6.375×10−01 5.050×10−03 1.084×10−03 1.260×10−06 9.958×10−07

3 2.414×10−02 1.819×10−06 3.129×10−07 3.817×10−11 -

4 4.566×10−05 2.585×10−10 - - -

5 6.581×10−10 - - - -

29



Figure 16: Finite deformation cavity expansion: expansion versus normalised internal pressure with a M-C
constitutive model.

5. Conclusions

This paper has presented for the first time an extension of the NURBS plasticity frame-
work of Coombs et al. [11] to include non-associated plastic flow. Information regarding
the shape and size of the yield and plastic potential surfaces is stored at control points
covering one sextant of stress space. This allows any smooth isotropic convex yield surface
to be included within the plasticity formulation without modification of the numerics used
for the stress integration. Within this, the implicit backward Euler stress update procedure
contains three unknowns, namely the local position of the updated stress state on the yield
surface and the updated hardening parameter. Therefore, introducing non-associated flow
does not increase the number of unknowns in the stress integration algorithm as compared
to the associated flow NURBS hardening formulation of Coombs and Ghaffari Motlagh [10].
In addition, when solving for these unknowns the current estimate for the updated stress
state remains on the yield envelope and satisfies the consistency condition throughout the
process. This results in a stable stress integration algorithm as, unlike in conventional
closest point projection schemes, the stress state cannot be trapped in a local minimum
or converge to an axillary surface outside of the true yield envelope (see [6] for more in-
formation on the impact of the form of the yield function on the stability of the bE stress
integration process).

Unlike previous attempts to extend the NURBS plasticity framework to non-associated
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flow, in this paper the geometry of the plastic potential surface is represented at the control
points. This guarantees the ability to recover associated plastic flow for any surface. This
is not possible when specifying the flow direction at the control points due to the presence
of a cross product in the yield surface normal.

This paper has also proposed a new method to estimate if a trial stress state in inside
(elastic) or outside (elasto-plastic) of the yield surface. This reduces the computational
cost of the constitutive model as the closest point to the yield envelope only needs to be
determined for those stress states undergoing elasto-plastic material behaviour.

The numerical examples included in this paper have quantified the errors associated
with the stress integration process for both the Drucker-Prager and Mohr-Coulomb yield
envelopes and where possible the maximum errors associated with yield surface smoothing
have been specified analytically. The performance of the plasticity framework has also
been demonstrated through a number of small strain and finite deformation finite element
analyses where analytical or existing numerical results exist. Within this, the correct
derivation and implementation of the algorithmic tangent has been confirmed through the
convergence rate of the global out of balance force residual.

The key extension provided by this paper is that the evolution of plastic strain is
decoupled from the yield surface normal. This allows the plasticity formulation to model
a more diverse range of material behaviour and, in the case of frictional plasticity, predict
a more realistic volumetric response, avoiding the excessive dilation seen with associated
plastic flow.
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Appendix A. Shear components and stress transformation

The constitutive model presented in this paper has been expressed in principal form.
It is therefore necessary to detail the mapping of this model into generalised 6-component
space. However, before this can be achieved it is necessary to specify the shear components
of the algorithmic stiffness matrix so these can also be mapped to generalised stress space.

The shear terms of the modified elastic stiffness matrix are given by

[Dc
G] = [AG][De

G], (A.1)

where [De
G] is a three-by-three matrix containing the shear components of the elastic stiff-

ness matrix, the modification matrix for the shear components is given by [2]

[AG] =


1 +

∆σp
1−∆σp

2
σr1−σr2

0 0

0 1 +
∆σp

1−∆σp
3

σr1−σr3
0

0 0 1 +
∆σp

2−∆σp
3

σr2−σr3

 . (A.2)

The stiffness matrix used in (A.4) is therefore

[D] =

[
[Dalg] [0]

[0] [Dc
G]

]
, (A.3)
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where [0] is a three-by-three matrix full of zeros and [Dalg] is the principal elastic stiffness
matrix from (37).

The following relations can be used to transform between six-component and principal
stress and strain space

{σ̂} = [Q]T

{
{σ}
{0}

}
, {ε̂} = [Q]−1

{
{ε}
{0}

}
and [D̂] = [Q]T [D][Q], (A.4)

where (̂·) denotes the six-component stress and strain quantities. The transformation
matrix is given by

[Q] =



(q1)2 (q2)2 (q3)2 q1q2 q2q3 q3q1

(q4)2 (q5)2 (q6)2 q4q5 q5q6 q6q4

(q7)2 (q8)2 (q9)2 q7q8 q8q9 q9q7

2q1q4 2q2q5 2q3q6 q1q5 + q4q2 q2q6 + q5q3 q3q4 + q6q1

2q4q7 2q5q8 2q6q9 q4q8 + q7q5 q5q9 + q8q6 q6q7 + q9q4

2q7q1 2q8q2 2q9q3 q7q2 + q1q8 q8q3 + q2q9 q9q1 + q3q7


,

(A.5)

where the components qi are associated with the trial elastic strain eigenvectors

[q] =


q1 q4 q7

q2 q5 q8

q3 q6 q9


.

(A.6)
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Appendix B. Jacobian matrix

The components of the Jacobian matrix, [∂r/∂x], required for the backward Euler stress
integration algorithm (30) are

∂r1

∂η
= −(S,η )i(g,η )i + (ςti − ςni )(g,ηη )i, (B.1)

∂r1

∂ζ
= −(S,ζ )i(g,η )i + (ςti − ςni )(g,ηζ )i, (B.2)

∂r1

∂h
= −(S,h )i(g,η )i, (B.3)

∂r2

∂η
= −(S,η )i(g,ζ )i + (ςti − ςni )(g,ζη )i, (B.4)

∂r2

∂ζ
= −(S,ζ )i(g,ζ )i + (ςti − ςni )(g,ζζ )i, (B.5)

∂r2

∂h
= −(S,h )i(g,ζ )i, (B.6)

∂r3

∂η
= −(h̃,∆εp )i(∆ε

p,η )i, (B.7)

∂r3

∂ζ
= −(h̃,∆εp )i(∆ε

p,ζ )i and (B.8)

∂r3

∂h
= 1− (h̃,∆εp )i(∆ε

p,h )i. (B.9)

See Piegl and Tiller [16] for efficient methods of calculating the first derivatives of the
NURBS basis functions. The derivative of the yield surface respect to the hardening
function is

(S,h )i =
Si
h
. (B.10)

The derivative of the plastic strain increment with respect to h is

(∆εp,h )i = −Ce
ijT
−1
jk (ςn,h )k (B.11)

and the derivatives of the plastic strain increment with respect to η and ζ are

(∆εp,η )i = −Ce
ijT
−1
jk (S,η )k and (∆εp,ζ )i = −Ce

ijT
−1
jk (S,ζ )k. (B.12)

The derivative of the hardening function with respect to the plastic strain increment is

(h̃,∆εp )i = α
∆εp

i

||∆εp||
(B.13)
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Note the relative magnitudes of the residuals in (27), with the first two residuals will be of
the order of stress squared and the third close to unity. Normalising the first two residuals
(and the appropriate entries in the Jacobian matrix) with respect to Young’s modulus
reduces the potential for ill conditioning of the Jacobian matrix.
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