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Abstract 
 
Peatlands globally are at risk of degradation through increased susceptibility to erosion as a result 
of climate change. Quantification of peat erosion and an understanding of the processes responsible 
for their degradation is required if eroded peatlands are to be protected and restored. Owing to the 
unique material properties of peat, fine-scale microtopographic expressions of surface processes 
are especially pronounced and present a potentially rich source of geomorphological information, 
providing valuable insights into the stability and dominant surface process regimes. We present a 
new process-form conceptual framework to rigorously describe bare peat microtopography and use 
Structure-from-Motion (SfM) surveys to quantify roughness for different peat surfaces. Through the 
first geomorphological application of a survey-grade structured-light hand-held 3D imager (HhI), 
which can represent sub-millimetre topographic variability in field conditions, we demonstrate that 
SfM identifies roughness signatures reliably over bare peat plots (<1 m2), although some smoothing 
is observed. Across 55 plots, the roughness of microtopographic types is quantified using a suite of 
roughness metrics and an objective classification system derived from decision tree analysis with 
98% success. This objective classification requires just five roughness metrics, each of which 
quantifies a different aspect of the surface morphology. We show that through a combination of 
roughness metrics, microtopographic types can be identified objectively from high resolution survey 
data, providing a much-needed geomorphological process-perspective to observations of eroded 
peat volumes and earth surface change. 
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1. Introduction 
 

Globally, peatlands contain 30−50% of all carbon stored in soils (Gorham, 1991) much of which is 
at risk of degradation through climate change (Gallego-Sala and Prentice, 2012), increasing its 
susceptibility to erosion. Once vegetation is removed, bare peat surfaces can be subject to 
accelerated erosion, the rate of which is determined by the dominant agent of erosion. Bare upland 
peat is particularly subject to erosion by water, wind and frost, alongside chemical oxidation (peat 
wastage) (Evans and Warburton, 2007). Thus, there is an urgent need to understand erosion drivers 
and ways of building resilience into human-disturbed peatland systems. Yet, existing 
geomorphological data is very sparse. 
 
Blanket peat covers 7.5% of the British Isles (Tallis et al., 1997) where there has been widespread 
erosion and large carbon losses exacerbated by human interventions over the past century (Evans 
and Warburton, 2007). Erosion by flowing water is the dominant component in most UK peatlands; 
but local topography exerts a strong control in determining process dominance (Evans and 
Warburton, 2007). This has yet to be quantified accurately. Bare peat surface microtopography is 
especially dynamic and patchy; different surface processes leave distinctive topographic roughness 
signatures and local surface microtopography can adjust rapidly in response to changing processes 
over relatively short timescales (Foulds and Warburton, 2007). For example, rainsplash leaves a 
pitted surface while surface wash results in linear grooves distinguished from wind-formed features 
due to their orientation (Evans and Warburton, 2007). Areas of peat deposition are smoother, while 
processes that increase sediment supply (freeze-thaw, desiccation) result in highly fragmented 
surfaces of small-scale roughness and aggregates (Repo et al., 2006). Roughness varies subtly with 
dominant process and can be classified according to process regimes (Bower, 1959; Evans and 
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Warburton, 2007). The microtopography which results has a major impact on local water tables 
(Charman, 2002), surface aerodynamic roughness (Warburton 2003), overland flow hydraulics 
(Dunkerley, 2002), aeration (oxidation) of the acrotelm surface layer (Birnie, 1993) and gaseous 
emissions (Repo et al., 2009). 
 
Quantification of peat erosion has traditionally relied on sediment budgets extrapolated from local 
point-based direct measurements of erosion and deposition (e.g. erosion pins) (Evans and 
Warburton, 2005; Evans et al., 2006). While such measurements provide valuable information on 
peatland dynamics, they are limited in terms of process understanding by the paucity of specific 
process measurements and inherent spatial and temporal averaging (Warburton, 2003). High-
resolution topographic survey techniques can be applied to partly address these limitations. Airborne 
LiDAR (or ALS) provides high-resolution (~m) topography with decimetre accuracy at landscape 
scales. In peatlands ALS has been used to explore the topographic context of gully erosion (Evans 
and Lindsay, 2010); however, gully erosion is only one component of peat erosion. Small-scale 
erosion features cannot be detected and the contribution of other peat surface processes such as 
surface wash, rainsplash and wind erosion to total erosion volumes remains unclear.  
 
High resolution topographic survey data can quantify sediment losses from peatlands and thereby 
evaluate the effectiveness of peatland restoration schemes (e.g. to feed into the UK Peatland Code; 
IUCN UK Peatland Programme, 2017). Similar methods are now relatively commonplace throughout 
geomorphology (Williams, 2012). However, high resolution data sets contain a wealth of hitherto 
untapped information on surface properties that can help elucidate not just the extent of topographic 
change, but also infer the process through which these changes occurred by quantifying and 
examining topographic roughness signatures (Smith, 2014). The roughness of bare peat surfaces is 
important because surface roughness has feedbacks with near-surface sediment transfer 
mechanisms (Evans and Warburton, 2005) while the relative magnitude and direction of the 
sediment transfer process can be inferred from close inspection of the surface roughness at small 
scales. Peatlands represent an ideal case study of such an approach, since the low dry density of 
peat (~0.1 t m-3) means that volumetric removal of peat is ~15 times greater than that represented 
by an equivalent dry mass of mineral material (Evans and Warburton, 2007). This property renders 
peat more susceptible to entrainment and transport; consequently, a wide range of surface features 
have been observed representing a range of processes. Moreover, it also means that these systems, 
being more susceptible to large volumetric changes, are ideal for the construction of morphometric 
sediment budgets. If peat microtopographic-types can be identified objectively from topographic data 
sets, this opens up a wealth of new information to inform geomorphological process interpretations. 
 
Recent work has identified the potential of terrestrial laser scanning (TLS) to represent fine-scale 
topographic variability of peatlands (Anderson et al., 2010; Luscombe et al., 2015) and to quantify 
erosion and deposition in peatlands (Grayson et al., 2012) through the construction of morphometric 
sediment budgets. In addition, Structure-from-Motion (SfM) has emerged as a potential alternative 
(Mercer and Westbrook, 2016) and has been used extensively to quantify the microtopography and 
erosion of soil surfaces (e.g. Castillo et al., 2012; Ouédraogo et al., 2014; Nouwakpo et al., 2014;  
Bauer et al., 2015; Kaiser et al., 2015). SfM, typically coupled with Multi-View Stereo (MVS) 
algorithms, generates point clouds from aerial or oblique imagery using consumer-grade digital 
cameras, without the need for expensive hardware (James and Robson, 2012; Westoby et al., 2012; 
Fonstad et al., 2013; Smith et al., 2015). SfM-MVS data are typically less precise than obtained with 
TLS though this depends on survey range. A recent synthesis of 50 SfM surveys in geomorphology 
by Smith and Vericat (2015) demonstrated the dependence of SfM-MVS accuracy (root-mean 
squared error, RMSE) on survey range, observing a ratio of 1:639 (though James et al. (2017) 
suggest that this can be improved to 1:1000 with more robust photogrammetric workflows). Thus, 
SfM from 150 m altitude imagery is of similar accuracy to ALS and is potentially better than TLS from 
short ranges using ground-based imagery (Smith and Vericat, 2015). However, validating the 
capabilities of SfM-MVS at short ranges in the field is problematic owing to the lack of superior 
reference data (Eltner et al., 2016).  
 
Most recently, portable 3D hand-held imagers (HhI) have become available that use a single-frame 
coding method from structured light imaging. They are typically used in surface metrology to test the 
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quality of finished manufactured surfaces, as part of forensic crime scene investigations and in the 
construction industry to survey areas with limited access (OR3D, 2015). The mobility, ruggedness 
and versatility of HhIs renders them ideal for peatland geomorphology. While other researchers have 
adapted the similar and more affordable (~£100) Microsoft® KinectTM sensor for geomorphological 
data collection (e.g. Mankoff and Russo, 2013; Hämmerle et al., 2014; Chávez et al., 2014; Tortini 
et al., 2014; Thomsen et al., 2015; Nicholson et al. 2016), the KinectTM was initially designed to detect 
human motion in an indoor environment and is not best suited to use in the field, being readily 
saturated by sunlight in an outdoor setting (Chávez et al., 2014). 
 

The overall aims of this study are (i) to establish an objective and reproducible classification of bare 
peat surface microtopography from high resolution topographic data; and (ii) to test whether close-
range SfM-MVS can provide topographic data of sufficient precision to allow this classification to 
be used in practice. To address these aims, we present three objectives: 

(1) To outline a new conceptual framework of peat surface roughness types by relating 
observed forms to the dominant processes responsible for their formation; 

(2) To establish whether SfM-MVS can meaningfully reproduce millimetre-scale roughness 
metrics that can be used to examine topographic roughness signatures of peat surfaces 
through validation against HhI data; and 

(3) To objectively define a typology of peat roughness based on plot-scale (<1 m2) SfM-MVS 
surveys and a range of roughness metrics. 

 
2. Conceptual framework of peat surface roughness 

Bare peat is highly responsive to changing environmental forces acting at the near surface and 
characteristic microtopographies emerge in response to rainfall, surface wash, wind action and 
fluctuations in surface temperature (both heating (drying, desiccation) and freezing) (Bower, 1959; 
Evans and Warburton, 2007) (Figure 1).  Bower (1959) was one of the first observers to recognise 
that the detailed surface features of bare peat retain evidence in their microtopography of relative 
importance of the interaction between material properties and the main agents of surface erosion. 
Therefore spatial and temporal variations in surface roughness reflect contrasts in the physical 
properties of the peat and key erosion processes acting in combination (Evans and Warburton, 
2007).  
 
[FIGURE 1] 
 
In terms of the processes which generate small scale irregularities of the peat surface, the direct 
impact of rainfall, surface wash, wind action and changes in surface temperature (freezing and 
drying) are recognised as the key natural drivers in conditioning bare peat roughness (Evans and 
Warburton, 2007). Figure 2 provides a conceptual model of process-form linkages of bare peat 
surfaces. The diagram is a matrix showing the relationships between the four key surface processes 
and the typical surface roughness characteristics resulting from these interactions. The framework 
proposed in Figure 2 provides a comprehensive assessment of the ‘natural’ processes operating on 
bare upland peat surfaces and is designed to capture the key process-form relationships caused by 
wind, rain and temperature variations acting on bare peat surfaces. Each of the panels in the matrix 
represents a schematic showing the typical two dimensional (cross-section) form and scale of the 
surface roughness. Each panel shows a length scale of 1 m and a vertical scale of 0.1 m. Generally 
the scale of the observed roughness will increase with intensity of process, e.g. roughness increases 
along a trajectory from the bottom-left to top-right in each of the panels. The 1 m length scale is 
significant because for the purposes of this paper bare peat surface microtopography is operationally 
defined as small-scale surface features whose repeated structures are recognised at scales of < 1 
m. The scale of these features is therefore generally smaller than the typical microforms (e.g. 
mounds, haggs, and ridges) included in the ecological classification of mires (Lindsay, 1995; 
Warburton, 2003) but generally larger than the engineering classification of peat structure which is 
based on texture and macrofossil content (Radforth, 1969). In the square matrix shown in Figure 2, 
examples of surface roughness types associated with the four panels of the leading diagonal are 
also shown in Figure 1 for comparison with the schematic. 

 
[FIGURE 2] 
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The physical basis for this framework is well-established from decades of field observations (Bower, 
1959; Bower, 1961; Warburton, 2003; Evans and Warburton, 2007; Foulds and Warburton, 2007) 
but this is the first time this has been brought together in terms of a process-form conceptual model. 
Peatland scientists have had a long-term interest in surface microtopography but this has mostly 
concentrated on vegetated surfaces (Pearsall, 1956; Lindsay et al., 1985; Pellerin et al., 2006). Bare 
peat surfaces have not been systematically described. The conceptual framework shows the typical 
roughness types associated with the key process regimes, shown in the panels of the leading 
diagonal. Rainfall results in a pitted surface whose roughness increases with intensity resulting in a 
typical toothed surface of raised pedestals (Figure 1a) (Bower, 1959). If this occurs in association 
with surface wash and/or wind-driven rain then there is a directional flux of eroded peat which leads 
to the development of asymmetrical roughness aligned in the direction of the prevailing wind or local 
slope (Warburton, 2003). If the flux is high enough then small microterraces or benches (vertical 
relief c. 0.1 m) can develop (Figure 1f) (Evans and Warburton, 2007). Surface wash will tend to 
transport eroded peat along hydraulic gradients ponding in surface depressions, infilling the local 
microtopography and generally producing a smooth surface (Figure 1b). If this occurs in association 
with wind, microterraces can develop whose upper surfaces are smoothed by the wash process 
forming small peat flats (Hulme and Blyth, 1985; Warburton, 2003).  
 
Prolonged exposure of bare peat surfaces to wind results in surface desiccation and the 
development of a surface crust (Foulds and Warburton, 2007) (Figure 1c). With increased duration 
the crust may be locally entrained and rolled over producing ridges of dry peat projecting up to 0.1 
m above the general surface. Under wet conditions and high wind-driven sediment flux features akin 
to climbing ripples are observed and these leave distinct small-scale wind ridges (Figure 1e) (Evans 
and Warburton, 2007). Changes in temperature also have an important impact on surface 
roughness. Both prolonged warm temperatures (local drought) and cold winter temperatures 
(surface freezing) can lead to surface desiccation resulting initially in small scale cracking which with 
prolonged duration can result in large desiccation cracks exceeding several decimetres in depth 
(Figure 1d) (Francis, 1990). In the presence of moisture (under rain and surface wash conditions) 
freezing temperatures can result in local frost heave which breaks up the surface and produces frost-
fluff or nubbins (Washburn, 1979; Repo et al., 2006). Therefore it can be seen that there is a clear 
link between the dominant process regimes acting on a bare peat surface and the characteristic 
types of roughness which evolve. Although some equifinality is evident in the resultant 
microtopography (e.g. surface wash and wind-driven rain), subtleties in the roughness can be used 
to differentiate the dominant processes which have acted to produce the characteristic roughness 
forms. 
 
The framework proposed in Figure 2 applies to ‘natural’ processes operating on bare upland peat 
surfaces and is based on past research and direct observations of surfaces over multiple years 
(Evans and Warburton, 2007). It provides a clear framework for generating hypotheses that can be 
tested by quantitative measurements and usefully identifies examples where different processes 
result in similarity of form (equifinality). The classification in Figure 2 can be extended to include 
other processes such as peat mining (Campbell et al., 2002; Tuukkanen et al., 2014), animal 
trampling (Pellerin et al., 2006) and burning (Maltby et al., 1990) which also act to influence surface 
roughness; but in this initial test our assessment is deliberately restricted to include the dominant 
natural processes acting on peat surfaces.  
 

3. Methods and Study Site 
 
3.1 Study Site 
The study area is located in the Moor House–Upper Teesdale National Nature Reserve in the North 
Pennine uplands in Northern England (Figure 3). The bedrock geology is part of the Carboniferous 
series composed of interbedded sandstone, shale and limestone which is overlain by periglacial 
deposits of reworked till and overbank deposits. The clay-rich nature of the basal sediments allows 
development of blanket peat even on limestone bedrock. Ombrotrophic blanket peat is the dominant 
soil type and varies in depth from 1 to 3 m, but can locally exceed 9 m. It is estimated that 
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approximately 17% of the blanket peat cover is eroded (Garnett and Adamson, 1997), with dendritic 
gullying dominating on lower angled slopes and linear gullying on the steeper slopes (Bower, 1961).  
 
On flatter ground areas of bare peat occur and the study site, Moss Flats, is a 0.5 ha area of bare 
peat (2014 estimate) which forms a significant erosional subsystem of the Rough Sike catchment 
(Figure 3). Average erosion rates are 0.47 t ha a-1 (Warburton, 2003). The bare peat surface (Figures 
1 and 3) consists of a mosaic of flats, terraces, pedestals, wind ridges and haggs representing an 
assemblage of typical erosional and deposition forms associated with an active area of upland bare 
peat. The climate is ‘Upland Maritime’ being characterized by cool, cloudy and wet conditions 
(Manley, 1942, 1943; Smithson, 1985). High winds are common and annual precipitation is 
approximately 2000 mm. The prevailing wind direction is from the southwest. In winter ground 
surface freezing occurs in the upper few centimetres of the peat and during summer periods of 
reduced rainfall, short periods of drought result in surface desiccation of the peat (Foulds and 
Warburton, 2007). Surveys took place in April 2016 on a mild day with no rainfall. As such, some 
roughness types were not exhibited (e.g. desiccation cracking, frost fluff). 
 
[FIGURE 3] 
 
3.2 Structure from Motion Multi-View Stereo (SfM-MVS) Surveys 
 
To characterize the millimetre-scale variability of peat surface microtopography, 55 bare peat plots 
were surveyed using Structure-from-Motion with Multi-View Stereo (SfM-MVS) photogrammetric 
techniques, following the guidance outlined in Smith et al. (2015) and detailed below. Plots were 
between 0.5 and 0.9 m2 and were typically surveyed in groups of four within a single SfM-MVS 
survey. Using a Panasonic DMC-TZ60 camera (focal length 4 mm which is a 35-mm focal length 
equivalent of 25 mm), oblique convergent 18 Megapixel images were taken from viewpoints 
surrounding the plots that were ~1.5 m above ground to mitigate against the doming effect as 
described in James and Robson (2014). Approximately 34 images were taken for each survey and 
angular changes of < 20° between adjacent camera locations were ensured to facilitate correct 
identification and matching of keypoints (Moreels and Peronas, 2007; Bemis et al., 2014). The 
resulting ground pixel size was sub-mm (~0.7 mm). Plots were distributed over Moss Flats to 
incorporate the greatest possible range of surface roughness types and topographic variability and 
to provide good spatial coverage across the bare peat area (Figure 3). The clustering of plots in 
groups of around four permitted the evaluation of both the inherent variability in the microtopography 
(at a single location) and larger-scale effects of aspect, topographic position and exposure to the 
wind (i.e. to check that the results were consistent across the site for a given microtopographic type). 
Plots were classified according to their microtopography into a four-fold classification system based 
upon the scheme outlined in Section 2: peat flats (14 plots), pedestals (8 plots), wind ridges (20 
plots) and microterraces (13 plots). Note that not all of the microtopographic types outlined in Section 
2 were identified at the site during the April 2016 surveys as several roughness types are only 
emergent following particular environmental conditions. 
 
Photographs were imported into Agisoft Photoscan Professional 1.2.5 and SfM algorithms 
implemented, estimating simultaneously camera positions, camera intrinsic parameters and scene 
geometry. See James and Robson (2012) and Smith et al. (2015) for further details. Georeferencing 
was performed using 5 survey disc targets of 50 mm diameter surrounding each survey area that 
were surveyed using a Leica TS15i reflectorless total station (TPS). Three-dimensional co-ordinates 
were recorded in a local co-ordinate system. Averaging ten readings for each target yielded a sub-
mm precision in TPS co-ordinates. Survey disc targets were identified in the imagery and the 3D co-
ordinates from the total station survey were then imported and a linear similarity transformation 
performed to scale and georeference each SfM point cloud. Georeferencing errors were all sub-cm, 
with the majority of surveys <4 mm and identified to within ~3 pixels. MVS image matching algorithms 
were performed to produce final dense point clouds with an average point density of ~1.4 Mn points 
m-2 (i.e. 1.4 points mm-2). Point clouds were then imported into CloudCompare (Girardeau-Montaut, 
2016) and plots were linearly detrended and normal vectors of each point computed. 
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Since some roughness metrics are calculated using a Digital Elevation Model (DEM) while others 
are calculated using the point cloud directly, two output topographic data products were required for 
roughness analysis (section 3.4):  

(1) A 5 mm resolution DEM was generated using the mean point elevation in each cell (following 
Mercer and Westbrook, 2016); 

(2) A sub-sampled point cloud was generated through octree subsampling (level 7), a data 
decimation step that reduces the point density, ensures a more uniform point distribution in 
3D space where data are available (octree cell size was typically 7 mm) and prevents clusters 
of points from influencing the results.  

 
Neither DEMs nor point clouds were interpolated. For the three plots used to evaluate SfM against 
the HhI, an additional 1 mm resolution DEM was generated using the mean elevation observed in 
each cell to examine the limits of the SfM data, though the 5 mm DEMs were used for roughness 
analysis. 
 
3.3 Hand-Held Imager 
 
Three plots comprising a range of roughness types were also surveyed using a Mantis Vision F5 
Short-Range 3D Imager to provide a reference topographic data set. Since, to the authors’ 
knowledge, this study represents the first use of a survey-grade hand held 3D imaging system in 
geomorphology, the instrument will be described in detail. 
 
The Mantis Vision F5-Short Range Hand-held 3D Imager (hereafter referred to as a Hand-held 
Imager or HhI) operates using near infrared structured light technology similar to the aforementioned 
KinectTM sensor. Near infrared light is projected through a mask containing a proprietary single-
coded-light pattern. This pattern is projected onto a 3D surface in a single instantaneous snapshot. 
The deformation pattern is then sensed by the instrument and using index information in the 
structured light, active triangulation algorithms can determine a full 3D image. The nature of the 
codification method permits a point density of ~50,000 points per frame that is an order of magnitude 
greater than alternative systems. With a rate of 10 frames-per-second, the HhI is thus capable of 
acquiring 0.5 Mn points per second (OR3D, 2015). The data is then downloaded into Mantis Vision’s 
3D production software where each frame is converted into a dense point-cloud. Owing to the short 
time interval between frames (0.1 s) each frame is then registered with the previous to create a final 
dense model and an automatic global alignment process reduces any misalignment during the cloud 
registration process. The point spacing of a single frame is ~1.6 mm (at 0.5 m range) though since 
the 3D surface is derived from a composite of multiple frames, the final point density is unlimited. 
The stated 3D point accuracy of the F5-SR is 0.05 mm, though trials suggest such accuracies are 
not always achievable (Kersten et al., 2016). The system compares favourably with the maximum 
point accuracy of the Kinect TM (~1 mm; Tortini et al., 2014) which Lachat et al. (2015) found to be 
challenging for accurate 3D modelling even in an indoor setting.  
 
The HhI hardware consists of a video camera and a projector, both of which are integrated into a 
grab handle (Figure 4). It is ideally suited to small-scale geomorphological investigation as it weighs 
just 0.6 kg, is rugged for use in an outdoor environment and can be used in a wide range of lighting 
conditions (from complete darkness to direct sunlight as it is resistant to sun flashes). The operating 
range is 0.3 – 0.8 m with a maximum field of view of 0.55 x 0.65 m (though note that a longer range 
version of the F5 is also available with a maximum range of 4.5 m). The short exposure time (3 ms) 
means that the device captures scene geometry in free motion and thus can be mobile around 
complex scene geometries. Video data are displayed on an attached control unit; however, data 
processing does not take place until after the survey is complete. Manual movements of the sensor 
require co-ordination with the display live-view, and in practice the speed and quality of data 
collection are influenced by operator experience (Kersten et al., 2016). For this study, high resolution 
plot surveys were conducted in a matter of seconds. To improve the registration of individual frames 
(especially on flat relatively featureless surfaces), geometric objects (cuboids, cylinders, etc.) were 
placed near each plot corner. In addition, despite the low sensitivity to ambient light, the plot was 
kept in the shade during the final surveys which took place on a bright sunny day. 
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[FIGURE 4] 
 
Alignment of the HhI point clouds with those derived from SfM-MVS was achieved by manually 
picking >5 common tie-points in each survey. Since alignment errors are similar to anticipated 
differences between survey methods, the focus of this study is not of a direct quantitative evaluation 
of point elevations (e.g. through a DEM of Difference). Instead, the focus of this study is to compare 
the ability of each method to represent individual features on the peat surface and, crucially, to 
quantitatively compare roughness metrics calculated from each data set. A 1 mm resolution HhI 
DEM of each plot was generated, again using the mean elevation within each cell. 
 
3.4 Roughness Analysis 
 
Roughness metrics each provide a particular summary of the topographic variability of a given 
surface (typically at a ‘sub-grid’ scale) focusing on a specific aspect of that surface. As such, no 
single quantity can be defined uniquely as roughness (Smith, 2014) and complex surfaces cannot 
be described fully by a finite number of parameters (Gadelmawla et al., 2002). In this exploratory 
analysis, a range of roughness metrics were computed to determine those that best discriminate 
different peat surface microtopographic types. In this application we use the methodology to 
distinguish between peat flats, microterraces, wind ridges and pedestals (Figures 1 and 2). Following 
the classification of roughness metrics and discussion in Smith (2014), the parameters examined 
here are divided into six categories (see Table 1): 
 

(1) Bulk amplitude parameters: these quantify elevation variance of the points normal to a 
surface (often described as ‘relief’) and do not take into account the spatial relationship 
between each point. Such amplitude parameters are often calculated from the probability 
distribution of elevation values, by far the most common of which is the standard deviation of 
elevations σz that is seen almost as a ‘default’ roughness parameter in geomorphological 
literature (e.g. Sankey et al., 2010; Nield et al., 2011; Brasington et al., 2012). In addition to 
σz, skewness and kurtosis of the probability distribution were calculated (Aberle and Nikora, 
2006; Aberle et al., 2010) and, since the topographic data were non-normally distributed 
(albeit with only minor departures from normal), the inter-quartile range is calculated as a 
non-parametric alternative. 
 

(2)  Localised elevation differences: while the above parameters provide a summary over the 
whole plot (~0.7 m2), other authors have estimated roughness at a much smaller scale 
(relative to the DEM extent) and summarised these localised elevation variance values over 
the whole plot (e.g. Riley et al., 1999; Sankey et al., 2011). Here three scales of local 
calculation were evaluated. First, using a 50 mm sampling window (identified as the typical 
dimension of a pedestal or wind ridge) the deviation of each point from a best-fit plane over 
the sampling window was calculated and the median value across the plot reported. To 
represent the largest local roughness features in the suite of roughness metrics, the 95th 
percentile of the plot deviations was also reported. Second, following the tradition of reporting 
nearest-neighbour elevation differences for DEMs (in this case of 5 mm resolution), the 
maximum and root-mean squared (RMS) differences between neighbouring grid cells were 
computed (the latter of which is termed ‘ruggedness’ by Riley et al., 1999). Finally, at the 
finest scale, the mean elevation range within each 5 mm cell was calculated. 
 

(3) Spacing parameters: these evaluate the density of features identified on the surface. Using 
the 5 mm DEM of each plot, peaks and pits were identified through analysis of the elevation 
of each cell relative to the 8 neighbours and the density of these features within each plot 
calculated.  

 
(4) Hybrid parameters: these combine both elevation variability and spacing aspects and, as 

such, are typically slope-related terms. Compared with amplitude parameters, hybrid 
parameters are much more dependent on sample spacing. The mean and standard deviation 
of all local slopes on the 5 mm DEM were calculated, with the latter found to be a useful 
measure for morphometric analysis by Grohmann et al. (2011). The statistical variability of 
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the normals of the slopes can be an informative roughness metric; Woodcock (1977) and 
McKean and Roering (2004) use the orientation tensor method to compute the three 
normalised eigenvalues (S1, S2, S3) that describe the amount and nature (i.e. uniaxial cluster 
or girdle) of clustering of vector orientations. The logarithms of two ratios (ln(S1/S2) and 
ln(S2/S3)) are computed. Where S1 is higher than other eigenvalues, orientation data are 
clustered (as might be expected of a smooth surface); where both S1 and S2 are higher than 
S3, a girdle-like pattern is observed (McKean and Roering, 2004). Although these metrics are 
often computed together for graphical analysis, here they are both individually included in the 
exploratory search for an objective classification of peat surface roughness types.  
 
So-called ‘tortuosity’ measures as used commonly in geomorphology (e.g. Morgan et al., 
1988; Moser et al., 2007) are also considered as ‘hybrid’ parameters. These compute the 
ratio of a measured surface profile length with that of the equivalent straight line. Here the 
tortuosity of orthogonal profiles from all rows and columns of the DEM was calculated and 
the mean value reported. Similarly the frontal area per unit planar area was calculated and 
averaged across all cardinal directions. As wind erosion is commonly observed on peat 
surfaces, the aerodynamic roughness height z0 (a combination of frontal area and amplitude 
measurements, following the raster-based implementation in Smith et al., 2016) was also 
estimated for each cardinal direction and the mean value reported.  

 
(5) Geostatistics and multi-scale parameters: semivariograms are commonly used to 

represent the variation of a vertical length scale with increasing lag distance. Semivariograms 
were calculated for each plot and, where a spherical model provided a good degree of fit (in 
all but two cases), the fitted range and sill values recorded (Oliver and Webster, 1986). Power 
spectra were also calculated for each surface; these also represent the way in which 
roughness or spectral power varies with wavelength. Radially-averaged power spectra 
decompose the observed topographic variation into different scales (following a two-
dimensional Fourier decomposition) and have been shown to exhibit scale invariance such 
that a power-law equation can be fit between spectral power and wavelength (Turcotte, 
1997). The slope of the power spectral density function was calculated following Aberle et al. 
(2010). 
 

(6) Anisotropy parameters: these evaluate the extent to which topographic variability is 
isotropic and may identify features aligned to prevailing wind or water flow directions, for 
example. The geostatistical range and sill described above were calculated in directional 
semivariograms with 22.5 degree windows (as per Vázquez et al., 2005) and the ratio of the 
minimum and maximum values used to represent the degree of anisotropy (with values 
approaching unity being isotropic). z0 and surface frontal area were also calculated for each 
cardinal direction and the anisotropy of these estimated in the same way. The anisotropy of 
tortuosity was also calculated in this manner using just the orthogonal profile values. 
 

[TABLE 1] 
 
In total, 26 roughness metrics were computed for each surface. For a metric to be useful, it must be 
robust for characterising the feature of interest given the data quality available. Rarely is SfM-MVS 
evaluated in its ability to represent roughness (Eltner et al., 2016); however, such validation is 
essential if peat surface types are to be identified from SfM-MVS derived roughness values. Thus, 
each roughness metric was calculated using both SfM-MVS data and HhI data on the three plots 
where both data were available (5mm DEMs were used for roughness calculation). Differences 
between roughness values reflect both the differences between the survey methods (as discussed 
in a recent methodological comparison by Thomsen et al., 2015) and the robustness of the 
roughness metric in representing the feature of interest. If a roughness metric is sensitive to 
methodological differences, then it is of limited use for an objective classification using SfM data. 
Thus, for inclusion in the objective classification of bare peat surface types, it needs to be 
demonstrated that the roughness metric is reliable and can discriminate between surface types 
regardless of survey method. In comparing roughness metrics between surface types and survey 
methods, there are 4 possible scenarios: 
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(i) Identical values for each method: differences in survey precision have no effect on the 
value of the roughness metric. The values for each surface type are identical for the 
different survey methods. 

(ii) Systematic offset: the SfM model may not be able to recreate the sub-mm details 
observed in the HhI model so differences between the absolute values of a roughness 
metric would be expected. However, if the difference between them is systematic (e.g. 
HhI values consistently higher than SfM values) then it will not influence the objective 
classification.  

(iii) Offset is bigger than differences between microtopographic types: the order of 
microtopographic types may be the same for each survey method, but there is some 
overlap in the roughness metric values. While not ideal, this would still be acceptable for 
the objective classification as, crucially, the order is preserved. 

(iv) Metric is non-robust to survey precision: the lower precision of the SfM data 
influences the roughness metric in a non-systematic way. Relative to the HhI value, some 
surfaces exhibit higher roughness values while others exhibit lower roughness values. 
The order of the surface types is not preserved and thus the surface is not adequately 
represented by the SfM topographic model when judged on this roughness metric. 

For the objective classification described below, scenarios (i) and (ii) are advantageous, though (iii) 
is also acceptable. Scenario (iv) is not appropriate as the roughness value is dominated by the survey 
method rather than reflecting the ‘true’ surface. 
 
3.5 Objective classification of microtopographic surfaces 
 
Decision trees were used to identify and describe structural patterns in the data and identify peat 
microtopographic type (i.e. an objective variable) in terms of a suite of roughness metrics (i.e. 
explanatory variables). Decision tree analysis has been used previously in many geomorphological 
investigations, including landform detection from remotely sensed imagery (e.g. Schneevoigt et al., 
2008); landslide susceptibility assessment (e.g. Saito et al., 2009) and to classify land cover (e.g. 
Pal and Mather, 2003). It is a computationally fast technique that makes no statistical assumptions. 
The Weka software programme was used to produce a method of classifying the peat surfaces 
based on the calculated roughness metrics. The J48 top-down recursive ‘divide-and-conquer’ 
classification method was used, based on the C4.5 statistical classifier and used to generate a 
decision tree (Witten et al., 2011). The J48 classifier was used to identify the minimum number of 
roughness metrics needed to correctly classify peat microtopographic roughness with information 
theory-based heuristics used to select each node based on quantification of entropy in terms of 
‘information gain’. All roughness metrics were normalized prior to analysis. The classification 
program was run using all the peat surfaces as a training data set to establish the maximum accuracy 
and produce the best possible decision tree.  
 
While the final decision tree used all surfaces to train the classifier, two tests the decision tree 
approach were performed, separating the data into training and validation sets. First, 66% of the 
total data were used as training data and the model then evaluated on the remaining 34% to provide 
an independent check on the ability of roughness metrics to distinguish between these surface types. 
As a second test of model performance, a ten-fold cross-validation was performed where instances 
are split into ten equal sized sets divided into two groups (9 sets for training and 1 set for validation). 
The performance of the model is computed as the average of ten repetitions with a different set as 
the training set for each repetition. 
 

4. Results 
 
First, section 4.1 examines the ability of SfM to represent the fine details of the peat surface through 
comparison of the 1 mm DEMs generated through SfM and the HhI. Section 4.2 then quantitatively 
tests the ability of SfM to reproduce roughness metrics of peat surfaces, using the HhI data as a 
reference. Section 4.3 then summarises roughness values for all SfM plots. Finally, an objective 
classification of bare peat surfaces is presented in section 4.4 using these SfM-derived roughness 
metrics. 
 



10 
 

4.1 SfM-MVS Comparison with HhI data 
 
Registration of each of the HhI point clouds with the corresponding SfM-MVS point cloud yielded an 
RMSE between tie-points of 1.25-1.77 mm (Table 2). These values are similar to the overall cloud-
to-cloud (C2C) elevation differences of 1.40-2.95 mm calculated between all points in the clouds 
(Girardeau-Montaut, 2016). Therefore, absolute differences between point co-ordinates are not 
analysed further as point precision is more likely to limit the roughness analysis than accuracy. The 
stated precision of the HhI was also tested by scanning a planar target surface adjacent to a plot. 
Based on ~26,600 observations, the median absolute deviation from the plane was just 0.197 mm. 
 
[TABLE 2] 
 
To demonstrate clearly the differences between HhI and SfM-MVS topographic data, 1 mm 
resolution DEMs are presented (without interpolation of missing points; see Figures 5 and 6); 
however, roughness analysis are conducted at 5 mm more suited to the SfM-MVS data. The 1 mm 
DEMs below clearly demonstrate the superior precision of the HhI data which is less apparent in the 
5 mm DEMs. However, since some roughness metrics use sub-grid scale information, this finer scale 
is still important and allows identification of the limits of the SfM-MVS method as applied here. At 1 
mm DEM resolution, the lower point density of the SfM-MVS surface models is apparent (Figure 5). 
The largest differences between the two survey methods were observed at either elevation extreme: 
the HhI presented microtopographic protrusions as being higher and pits as being deeper than the 
SfM-MVS model. Features are resolved more sharply with the HhI, indicating that some smoothing 
is taking place in the SfM-MVS workflow.  
 
These differences are clearer when comparing a smaller subsection of each comparison plot as the 
fine details are more readily apparent (Figure 6). The HhI resolves tiny details of the surfaces; for 
example, small fibrous elements lying on the peat flat surface are seen as a sharp peak (2.73 mm 
wide, 1.45 mm high) in the transect across the HhI data (Figure 6, right panel). From the 
orthophotograph (left panel) it appears that this feature is just 2.5 mm in width, but is not detectable 
in the SfM-MVS DEM (left arrow). Given the linear nature of the feature and lack of surrounding 
peaks, this is unlikely to be an alignment error. The co-incidence of this peak with a feature in the 
orthophotograph, along with the sub-millimetre plane deviations described above, lends support to 
the use of the HhI data as a validation dataset, able to reproduce sub-millimetre topographic 
variability that is smoothed out of SfM-based models. 
 
A similar comparison can be made on the microterrace plot, where elevation profiles cover both a 
small particle of unfragmented plant material (arrow close to A) and a pronounced bird footprint 
indented into the otherwise relatively flat peat surface. In both cases, the vertical extent of the feature 
is greater in the HhI model (wood 3.0 mm high, footprint 10.7 mm deep) than in the SfM model (1.7 
mm and 8.7 mm respectively) (Figure 6). Inspection of elevation ranges of each plot confirms that 
this effect is present throughout the data. Smoothing does appear to have taken place in the SfM-
MVS data with the footprint appearing 25% wider in the SfM model; visual inspection of each DEM, 
particularly the microterrace, confirms the effect with sharper images more clearly resolved in the 
HhI DEMs. 
 
At the pedestal plot, the HhI had difficulty in representing the full surface microtopography, with large 
data gaps evident throughout the plot. From Figure 6 it seems that while some of these gaps are 
located in shadows, others are not and (from comparison with the SfM DEM) cover areas of both 
high and low elevation. The gaps are most prevalent on surfaces with a normal vector facing towards 
the top of the plot as displayed in Figures 5 and 6, which suggests that the most likely cause is that 
an insufficient range of viewpoints were sampled during the field survey. 
 
[FIGURE 5] 
 
[FIGURE 6] 

 
4.2. Comparison of roughness metrics by survey method 
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Roughness metrics were calculated based on the full plots, like the examples shown in Figure 5. 
Here we describe the ability of SfM to characterise a roughness metric robustly in a way that is 
consistent with the more accurate HhI values. Both SfM and HhI data were available for 3 plots 
covering a range of roughness types; where the ordering of roughness values is consistent between 
methods, the metric is considered reliable, especially so when there is no overlap between values 
for different plots. Figure 7 shows each value scaled to represent the proportion of the range between 
the smallest and largest value (i.e. all smallest values plot at 0, all largest values plot at 1, a value 
halfway between the two plots at 0.5). Owing to data gaps in the HhI topographic models (Figure 6), 
some caution is required in the interpretation of the roughness differences, as the reference HhI 
topographic models do not fully represent the true surface, especially for the pedestal plot. However, 
the roughness values were calculated on a 5 mm resolution DEM (whereas the DEMs in Figures 5 
and 6 are 1 mm resolution) or the octree-resampled point cloud (~ 7 mm resolution), therefore the 
data gaps are reduced in these DEMs.  
 
In general, the pedestal plot exhibits the highest roughness values and the peat flat plot the lowest, 
though with a substantial number of exceptions. The HhI values also typically plot higher than the 
SfM-MVS values, again, suggesting some smoothing in the SfM-MVS workflow. Encouragingly, only 
four roughness metrics show inconsistent ordering between survey methods: the ratio of the first two 
eigenvalues, the gradient of the power spectral density function and the anisotropy ratio of both the 
geostatistical sill and tortuosity.  
 
Over half of roughness metrics (14 out of 26) clearly discriminate between the plot types (scenario 
(i) or (ii)), suggesting that SfM-MVS surveys can recreate the relevant features of the peat surface 
for calculation of these roughness metrics. Three geostatistical metrics (sill, range and the anisotropy 
ratio of the range) all show a good degree of clustering for each plot. Summaries of vertical length 
scales across the entire plot (aside from skewness) also distinguish each plot, through there is only 
a small gap between the microterrace and pedestal surfaces. Metrics that focus on the localised 
elevation variability also distinguish the plot types, though when considered at the sub-5 mm scale, 
the HhI exhibits greater variability in elevation. This difference highlights the aforementioned greater 
prominence of peaks and pits in the HhI model. Considering the density of these peaks and pits, all 
HhI values were higher than all SfM-MVS values across the three plots. Examination of transects in 
Figure 6 indicates that this is a smoothing effect of SfM-MVS and thus, although the plot ordering is 
the same for both methods, point/pit density values from SfM-MVS data should be considered 
unreliable for further roughness analysis as they are sensitive to data quality.  
 
Hybrid parameters appear to distinguish between microtopographic types effectively. Individual 
normalized eigenvalue ratios could not distinguish the microtopographic types, though when the 
ratios are used in combination the plots are discriminated, with microterraces appearing the most 
like a uniaxial girdle (section 4.4). Only three of the roughness metrics summarising the anisotropy 
of surfaces (frontal area, z0 and geostatistical range) showed a consistent ordering between plots.  
 
[FIGURE 7] 
 
4.3. Roughness metrics between microtopographic types 
 
Roughness metrics that either are non-robust or exhibit strong correlations with other metrics that 
measure a similar surface characteristic were excluded from further analysis. Based on the results 
in Figure 7, the tortuosity anisotropy and gradient of the power spectral density function were 
excluded from further analysis as they do not robustly characterise the feature of interest. Both 
eigenvalue ratios are retained as they are best considered in combination (and did distinguish 
microtopographic types when considered together) and the anisotropy ratio of the geostatistical sill 
was retained since the overlap in ordering was only very small. Owing to the big difference between 
absolute values, peak and pit density were also excluded. Standard deviation of elevations was also 
removed from analysis since elevation data were non-normal (albeit with minor deviations) and it 
exhibited a strong correlation (r = 0.99) with inter-quartile range of elevations. Similarly, all metrics 
quantifying localised elevation differences were well correlated (all correlations >0.90); only the 
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median deviation from the plane (50 mm kernel) and within-cell (5 mm) elevation range were retained 
since these had the lowest correlations with the inter-quartile range and covered two different scales. 
Skewness was excluded as all values were close to zero. 
 
Thus, 17 roughness metrics were retained for exploratory data analysis. These are summarised in 
Figures 8-11. Figure 8 presents the distribution of those metrics based on elevation variability, noting 
that each covers a different scale of analysis (~500 mm, 50 mm and 5 mm). The larger scale metrics 
(IQR and 50 mm deviation from a plane) clearly distinguish the flat microtopographic type from the 
others. The microterrace plots display larger variability at the plot scale (Figure 8A) than within a 50 
mm window (B) or 5 mm cell (C) and can thus be easily distinguished within a bivariate plot space 
as seen in Figure 8D. Figure 8D summarises the data for (A) and (B) by providing a graphical 
description of the central part (approximately half) of each dataset and is created by transforming 
the coordinates of the data into polar coordinates, smoothing on a periodic scale and transforming 
back (Cleveland and McGill 1984; Cox 2005). Some differences between the pedestal and wind 
ridge microtopographic types can be seen in Figure 8D since the latter typically exhibit a higher IQR 
and lower deviation within a 50 mm window, but substantial overlaps are observed. 
 
[FIGURE 8] 
 
A similar picture is observed for the 7 hybrid roughness parameters retained for analysis (Figure 9). 
The peat flat microtopographic type is easily distinguished for all metrics, as is the microterrace type 
for some metrics (Figure 9A, C and D). While small differences between pedestals and wind ridges 
can be seen (with pedestals showing higher mean slope, tortuosity and frontal area), the overlaps 
remain substantial. Eigenvalue ratios (Figure 9F) can distinguish peat flats and microterrace (both 
of which exhibit high degrees of clustering), but cannot distinguish between pedestals and wind 
ridges 
 
[FIGURE 9] 
 
A summary of geostatistical parameters is presented in Figure 10A-B while fitted spherical 
semivariogram models for the maximum, mean and minimum parameter values in each plot type are 
shown in Figure 10C. Both microterrace and wind ridge plots show similar ranges (Figure 10A). 
Interestingly the sill value of the pedestals is typically smaller than for the wind ridges, while 
microterraces show the largest range of values.  
 
Anisotropy ratios typically display a wide variability within each microtopographic type (Figure 11). 
With the anisotropy ratio representing the minimum value of a parameter as a proportion of the 
maximum value recorded for a given direction (and thus higher values exhibit a higher degree of 
isotropy), wind ridges generally display more anisotropy than pedestals, possibly because they are 
wind-aligned. This greater anisotropy is most evident for the frontal area and aerodynamic roughness 
metrics (Figure 11C-D). The anisotropy of microterraces, that are stepped in one direction, can also 
be seen. 
[FIGURE 10] 
 
[FIGURE 11] 
 
4.4 An objective classification of peat roughness from high resolution topographic data 
 
The patterns in the roughness metrics described in the previous section clearly show distinct but 
variable relationships to the four peat microtopographies but the optimal combination of metrics 
required to robustly define these forms has not been objectively determined. Using the 17 roughness 
metrics described above, a decision tree analysis was performed. Metrics were standardised prior 
to analysis, though re-running the analysis on non-standardised data yielded no difference in the 
model performance. Therefore, values reported in Figure 12 are non-standardised for clarity. The 
J48 classifier identified 5 roughness metrics that were required to classify the peat surfaces: Inter-
quartile Range, Median Deviation from Plane (50 mm), Frontal Area Anisotropy Ratio, Profile 
Tortuosity and the Geostatistical Sill. One roughness metric from each of the 5 categories of 
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roughness metrics outlined in Table 1 is represented in the decision tree (noting that both spacing 
parameters were excluded above). 
 
The maximum accuracy using all the data as a training set was 98% (i.e. one plot was misclassified). 
This decision tree is shown in Figure 12 and described below. When this approach was established 
on 66% of the data and validated on 34%, the success rate was 85%. The ten-fold cross-validation 
correctly classified 76% of instances, with the majority of misclassified instances (i.e. all but three) 
arising from a confusion of wind ridges and pedestals.  
 
In the full model (Figure 12), flats were readily distinguished using IQR (100% correctly classified) 
while wind ridges were identified as having a higher IQR but lower Median Deviation from the Plane 
(50 mm), as also seen in Figure 8D. However, one microterrace can be seen as an outlier in Figure 
8D and was misclassified as being a wind ridge plot owing to the larger local elevation variability. Of 
the remaining 29 observations comprising mostly wind ridges and pedestals, these were mostly 
separated using an anisotropy metric (Fani) with wind ridges exhibiting higher anisotropy (i.e. lower 
values of Fani) than pedestals. However, this alone was insufficient to separate wind ridges and 
pedestals, with 4 instances being routed incorrectly (2 of each type). A further layer was sufficient to 
correctly route these instances as pedestals were observed to have a higher Tortuosity and lower 
Geostatistical Sill than wind ridges. 
 
[FIGURE 12] 
 
With plots grouped together at different locations across Moss Flats, the effect of location on values 
of each of the 5 roughness metrics was analysed statistically for each microtopographic type using 
a Kruskal Wallis test with the location as the independent variable (a Wilcoxon Mann-Whitney test 
was used for pedestals which were present at only 2 locations). In general, there were no statistically 
significant differences in roughness values for each microtopographic type other than for wind ridges, 
which displayed more location-dependant variability than the other microtopographies, with 
differences in the bulk amplitude parameter (IQR) being significant to p < 0.01 (though frontal area 
anisotropy and tortuosity were stable across locations). 
 

5. Discussion 
 
This research brings together decades of field observations into a coherent conceptual model of peat 
surface roughness that, in combination with high-resolution topographic survey methods, is shown 
to usefully discriminate dominant surface process regimes from topographic data alone. We 
demonstrate that close-range SfM-MVS surveys provide topographic data of sufficient precision and 
resolution to enable field application of the conceptual model we present. While more work is 
required to expand our approach to the other bare peat surfaces depicted in Figure 2, these results 
establish a clear methodology for integrating much-needed process understanding into 
morphometric sediment budgets of bare peat and enable testing of a series of hypotheses about 
peat erosion mechanisms. Moreover, the general approach is of broader interest to 
geomorphologists beyond peatlands. 
 
Single roughness metrics are often used to summarise sub-grid topographic variability in 
geomorphology. However, the analysis presented here indicates that different microtopographic 
surface types can only be identified when multiple roughness metrics are used in combination. 
Interrogation of morphological data to infer geomorphological processes has a long history; the study 
presented here is aligned closely with calls to make the best use of the recent developments in high 
resolution topographic survey (Passalacqua et al., 2015) and attempts to interrogate high-resolution 
topographic data for this purpose (e.g. the work of McKean and Roering (2004) using multiple 
roughness metrics to create an objective classification of landslide occurrence).  
 
The decision tree analysis demonstrated that each of the 5 categories of roughness metric included 
were represented as discriminatory variables. This result emphasises the importance of representing 
a range of surface properties by considering different types of roughness metric. These roughness 
metrics yielded consistent values for each microtopographic type across different areas of Moss 
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Flats, with the exception of wind ridges which displayed greater variability, perhaps indicating 
differential sheltering. However, the anisotropy metric that best discriminated wind ridges from other 
types was stable across the study area.  
 
Structure-from-Motion photogrammetry is well-placed to provide the high resolution topographic data 
needed to capture fine-scale roughness signatures in peat and is well-established in geomorphology 
(James and Robson, 2012; Westoby et al., 2012; Fonstad et al., 2013; Smith et al., 2015). While 
validation studies have taken place at a range of scales (see summary in Smith and Vericat, 2015), 
field validation at this small scale is complicated by the absence of clearly superior reference data. 
Here we describe the first geomorphological application of the F5-SR hand-held imager to provide 
such reference data. A survey of a planar target suggests that HhI errors are ~0.2 mm; however, 
data gaps observed in the HhI point clouds (see Figures 5 and 6) indicate that field data acquisition 
using the HhI is not problem-free. 
 
From comparison of SfM-MVS with HhI topographic data, it is clear that SfM-MVS can generally 
reproduce millimetre-scale topographic variability (with 3D differences between point clouds 
comparable with the georeferencing error at ~2 mm). This finding is in-keeping with laboratory-based 
SfM-MVS evaluations at similar survey ranges (Nouwakpo et al., 2014). However, SfM-MVS 
workflows do smooth the topography and do not completely represent the prominence of peaks or 
the depth of surface depressions and the very finest scale variability is not represented (e.g. 
elements ~ 1 mm tall). This smoothing is most likely introduced during the Multi-View Stereo stage 
of the SfM-MVS workflow, arising from patch-based MVS algorithms. Most importantly for the 
application presented herein, comparison with the HhI values indicates that SfM-MVS data are able 
to use a range of roughness metrics to reliably discriminate between peat microtopographic types 
(Figure 7). While spacing parameters (e.g. peat and pit density) and some anisotropy parameters 
(e.g. tortuosity anisotropy) are too sensitive to the sub-mm (or mm-scale) differences between the 
true surface (approximated by the HhI) and the SfM-derived data, most metrics tested here were 
sufficiently robust such that the different surface types could be distinguished using SfM at the plot 
scale. 
 
Peat flats were clearly identifiable through the low amplitude-based roughness values obtained. 
Microterraces were identifiable through higher overall amplitude of roughness, but a value that is 
lower when evaluated at smaller spatial scales (50 mm). Distinguishing between pedestals (formed 
through rain splash processes) and wind ridges (moulding of peat surfaces by high winds) was 
perhaps the most problematic. Anisotropy ratios were most effective in distinguishing between these 
two types (Figure 11), as wind ridges exhibited a greater degree of anisotropy, presumably through 
their alignment to the prevailing wind direction. Wind ridges showed a more uneven distribution of 
frontal area between each cardinal direction and, interestingly, a more uneven distribution of 
aerodynamic roughness height, a metric often calculated to relate morphological surface properties 
to wind velocity profiles. Pedestals also had a lower Geostatistical Sill than wind ridges, suggesting 
that they have a lower limit of topographic variability at longer lag distances. 
 
This study considered a simple four-fold classification of bare peat microtopography; however, other 
microtopographic forms exist but were not directly observed in this study, especially seasonal 
features such as surface desiccation cracking and frost-fluff (so-called nubbins) (Figure 2). Further 
work is required to expand this approach into other bare peat microtopographic forms within the new 
conceptual framework, and also to examine the effect of land management practices (e.g. burning, 
grazing) on surface microtopography. Furthermore, through fine-scale monitoring of these distinctive 
microtopographic patterns, the persistence of each surface type would be observed. This would yield 
valuable insight into the legacy of near-surface conditions and the identification of hybrid forms (e.g. 
frost fluff superimposed on an underlying microterrace) would allow reconstruction of successive 
near-surface processes regimes. 
 
Using the approach developed here the morphometric framework of bare peat roughness shown in 
Figure 2 has been quantified using the decision tree analysis for the first time (Figure 12). This is 
important because it paves the way for the automated classification of bare peat surfaces into 
dominant process regimes which will help improve peatland sediment budget studies and inform 
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restoration strategies for bare peat surfaces (determining, for example, whether a surface should be  
protected from wind or water erosion). 
 
The focus here is necessarily on bare peat; however, where sparse vegetation is present, high 
resolution topographic data can be classified automatically to identify and remove vegetation (e.g. 
the multi-dimensionality criterion of CANUPO; Brodu and Lague, 2012). Further analysis of the type 
demonstrated here, coupled with meteorological (i.e. temperature, rainfall, wind speed and direction) 
and geomorphological measurements (i.e. runoff, sediment transport) could identify associations of 
roughness metrics with the extent and magnitude of peat surface processes alongside expanding 
the objective classification to include other microtopographic types. Where such information is 
available, collection of high resolution morphometric data would then become an efficient way to 
monitor and better understand the spatial and temporal variability of geomorphological processes 
operating in upland peat. 
 

6. Summary 
 
Owing to the unique material properties of peat, detailed analysis of the form of bare peat surfaces 
provides valuable information about the dominant process that formed that surface. By carefully 
considering the range of processes that take place on peatlands, pioneering work by early peatland 
geomorphologists (e.g. Bower, 1959) has been extended to present the first systematic process-
form conceptual model of peat microtopographic types. Further work is needed to establish rates of 
change for the recognised roughness types and the sedimentary processes that sustain the 
microtopography. The methodology proposed here is ideally suited to this task as it is easily 
deployed and can be used to efficiently compile multiple time series of surface change. Utilising new 
developments in high-resolution survey methods, we use detailed surface roughness metrics to 
objectively discriminate between these peat microtopographic types. This research presents 
opportunities and the tools to embed a greater understanding of geomorphological processes into 
sediment budget studies and peat management; and can be extended to include bare peat surfaces  
impacted by anthropogenic processes such as peat mining (Tuukkanen et al., 2014), animal 
trampling (Pellerin et al., 2006) and burning (Maltby et al., 1990). 
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 Figures 
 

 
 
Figure 1. Characteristic surface topography related to dominant process regimes: (a) rainfall – 
‘toothed’ peat pedestals; (b) surface wash – smooth surface infilling of surface irregularities; (c) wind 
action – surface drying and crusting; (d) surface temperature driven drying and desiccation; (e) wind-
ridges – wind-driven rain; and (f) microterrace – wind-driven rain and surface wash. Scale in (a) is 
approximately 0.5 m long axis of photography. Scales in (b), (c), (d), (e) and (f) shown by notebook 
(0.15 m long axis), compass (long axis 0.12 m), survey pin (length 0.25 m) and wooden dowels 
(length 0.12 m). 
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Figure 2. Framework describing process-form relationships for bare peat surface roughness. Each 
panel shows a schematic of the typical two dimensional (cross-section) form and scale of the surface 
roughness (length scale 1 m, vertical scale of 0.1 m). Examples of surface roughness types 
associated with the four panels of the leading diagonal are also shown in Figure 1 (a-d) together with 
examples of (e) wind-ridges and (f) microterraces. 
 

 
Figure 3. Moss Flats study site, Moor House and Upper Teesdale National Nature Reserve (NNR), 
North Pennines, Cumbria, UK. Aerial Photograph reproduced under the Open Government Licence 
v3.0 (OS Open Data). 
 

 
Figure 4. (A) The Mantis Vision F5 Short Range Hand-held Imager (OR3D, 2015); (B) Use of the 
HhI on a bare peat plot. 
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Figure 5. Digital Elevation Models (1 mm resolution) of the three comparison plots. Red boxes on 
the orthophotographs (left) indicate the zoomed area of Figure 6. HhI DEMs are shown (middle) 
alongside SfM-MVS DEMs (right) for each plot. The minimum elevation of each survey has been set 
to zero, to indicate the variable height ranges. 
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Figure 6. Comparison of HhI and SfM DEMs for a smaller area of interest within the broader plots 
(Figure 5). Topographic profiles have been taken as indicated and are presented on the right. SfM-
derived profiles have been vertically offset to aid visual interpretation. Arrows indicate features 
evident in the orthophotograph. Dashed lines in the bottom panel indicate interpolation through data 
gaps. 
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Figure 7. Comparison of roughness values between survey methods and microtopography types. 
Roughness values have been scaled to represent the proportion of the range between the smallest 
and largest value (i.e. all smallest values plot at 0, all largest values plot at 1). Roughness metrics in 
italics show inconsistent plot ordering between survey methods (scenario (iv)) whereas metrics in 
bold are consistent between survey methods and show no overlap between values for different plot 
types (scenarios (i) and (ii)). 
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Figure 8. Summary of roughness parameters based on elevation variability (types 1 and 2 in Table 
1) evaluated to distinguish between microtopographic types. Variability of (A) IQR (mm); (B) Median 
deviation from a plane fitted over a 50 mm window (mm); (C) Mean elevation range within 5 mm 
cells (mm); and (D) polar smooths of IQR against Median deviation over a 50 mm window. Boxes in 
this and subsequent figures show upper quartiles, medians and lower quartiles; whiskers extend to 
cover all points within 1.5 times the interquartile range of the quartiles; other points are shown 
separately. 
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Figure 9. Summary of retained hybrid roughness parameters by microtopographic type: (A) Mean 
slope (degrees); (B) Slope Standard Deviation (degrees); (C) Mean tortuosity; (D) Mean frontal area; 
(E) Mean aerodynamic roughness; (F) polar smooths of normalised eigenvalue ratios. 
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Figure 10. Summary of geostistical parameters by microtopographic type: (A) Range (mm); (B) Sill 
(mm). (C) fitted spherical semivariogram models for the maximum (dash), mean (solid line) and 
minimum (dash) parameter values in each plot type. 
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Figure 11. Summary of anisotropy ratios by microtopographic type: (A) Range; (B) Sill; (C) Frontal 
Area per unit planar area; (D) aerodynamic roughness. 
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Figure 12. Decision tree for peat surfaces based on roughness metrics. Numbers in parentheses 
represent the number of instances routed along each path. For wind ridges, the number of correctly 
routed instances is shown followed by the total number routed along that path. 
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Tables 
 
Table 1. Overview of roughness metrics calculated for each plot. Plots were linearly detrended prior 
to roughness analysis. Metrics in bold were used in the decision tree analysis. 

Roughness Metric Notation Units Description Data 

[1] Bulk Amplitude Parameters (Elevation Probability Distribution-Based) 

Standard deviation of 
elevations 

σz m Standard deviation of elevations over the whole plot Cloud 

Inter-quartile range IQR m Inter-quartile range of elevations over the whole plot Cloud 

Skewness zsk - Skewness of above elevation distribution Cloud 

Kurtosis zk - Kurtosis of above elevation distribution Cloud 

[2] Localised Elevation Differences 

Median deviation 
from plane (50 mm 
window) 

z50-50 m Median point deviation from a fitted plane (50 mm kernel size) Cloud 

95th %ile deviation 
from plane (50 mm 
window) 

z50-95 m As above, but the 95th percentile to highlight the roughest areas Cloud 

Ruggedness RMS RugRMS m 
Root-Mean-Squared (RMS) of nearest neighbour elevation 
differences  

DEM 

Ruggedness max RugMAX m Maximum of nearest neighbour elevation differences DEM 
Within-cell 
elevation range 

zR-5 m Mean of height ranges within each 5 mm cell DEM 

[3] Spacing Parameters 

Peak density Pk m-2 Density of peaks DEM 
Pit density Pt m-2 Density of pits DEM 

[4] Hybrid Parameters 

Mean slope  sm ° Mean of cell slopes  DEM 
Standard deviation 
of slopes 

sσ ° Standard deviation of cell slopes  DEM 

Ratio of 1st and 2nd 
eigenvalues 

ln(S1/S2) - 
Normalised eigenvalue ratios of directional data calculated from 
the orientation tensor 

Cloud 

Ratio of 2nd and 3rd 
eigenvalues 

ln(S2/S3) - As above Cloud 

Profile tortuosity T - 
Ratio between surface profile and straight line length, averaged 
over each row and column of the DEM 

DEM 

Frontal area (per 
unit planar area) 

F - 
Roughness element frontal area per unit ground area, averaged 
for each cardinal direction 

DEM 

Aerodynamic 
roughness 

z0 mm 

Following Lettau (1969) and Smith et al. (2016). Calculated as 
the mean height of points above a detrended plane multiplied by 
a drag coefficient (0.5) and the ratio between the frontal area 
(above the detrended plane) and full plot planar area 

DEM 

[5] Geostatistics and Multi-Scale Parameters 

Geostatistical range a m Range of fitted semivariograms Cloud 
Sill c mm Sill of fitted semivariograms Cloud 
Slope of power 
spectral density 
function 

PSD - 
Slope of the power law relationship between radially-averaged 
spectral power and wavevectors 

DEM 

[6] Anisotropy Parameters 

Range anisotropy 
ratio  

aani - 
Anisotropy ratio (i.e. minimum:maximum) of the ranges of 
directional semivariograms calculated in 22.5 degree windows 

Cloud 

Sill anisotropy ratio cani  As above for the sill of fitted semivariograms Cloud 
z0 anisotropy ratio z0ani - Anisotropy ratio of z0 calculated for all cardinal directions DEM 
Frontal area 
anisotropy ratio 

Fani - 
Anisotropy ratio of frontal area calculated for all cardinal 
directions 

DEM 

Tortuosity anisotropy 
ratio 

Tani - 
Anisotropy ratio of tortuosity calculated on perpendicular 
transects 

DEM 
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Table 2. Differences between HhI and SfM surveys. Point density is calculated prior to octree 
subsampling. 
 

Plot Tie point 
RMSE 
(mm) 

Mean C2C 
Elevation 
Difference (mm) 

Point Density 
(HhI)  
(points mm-2) 

Point Density 
(SfM)  
(points mm-2) 

Flat 1.252 1.404 4.744 1.087 
Microterrace 1.486 2.954 7.520 2.353 
Pedestals 1.766 1.162 4.742 3.388 

 
 


