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Abstract

In this article we propose a mathematical model that describes the dynamics of a population divided into
susceptible drinkers, moderate drinkers, and heavy drinkers subject to an external influence. The external
influence is modelled using a supplementary dynamical variable which is not a group of individuals but that
enters the equations affecting the choices of the population classes.

The system we define can be investigated using two simplified systems (one of which is a real subsys-
tem) which model the populations of susceptible and moderate drinkers or susceptible and heavy-drinkers
independently. The dynamics of these two subsystems can be described exhaustively. The full system is too
rich in possible scenarios, but its qualitative behaviour is connected to that of the two simplified systems.
We make a complete description only in one particular case by means of numerical simulations.

MOS: 34A34; 34D05; 34D20; 34D45; 92B05; 93D05
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1 Introduction

Alcohol is well known to cause a multitude of negative effects such as: change of mood, behaviour, and coordi-
nation, heart problems, liver problems, cancer [1]. In recent times, particularly in western society, peer pressure
drives youngsters towards an extreme behaviour denoted as binge drinking. The concept of binge drinking is
defined, for instance in [2], and it consists in drinking large amounts of alcohol to become heavily intoxicated.
Binge drinking is primarily a practice of youths in the 17-30 age group, and people that indulge in binge drinking
are likely to exhibit anti-social behaviour. To binge drinking can be attributed losses of the order of billions
of dollars in the U.S. alone, caused by diminished productivity and health issues associated to auto-related
accidents, traumas, and crimes (including physical and sexual assault) [3]. Binge drinking can affect well over
25 per cent of the population as may be seen from specific data for Durham City [4] and Stockton-on-Tees [5]
in North East England, with some areas being as high as 28.93 per cent, in e.g. Newcastle-upon-Tyne, [4, 5]. In
addition the death rate due to drinking alcohol has risen dramatically in the U.K. with, for example, Glasgow
recording a death rate of 83.7 per 100,000 for both males and females during 1988-2004, see [6].
Drinking has been investigated using the techniques of epidemical models, and such approach has proven to
accurately predict the percentages of binge and moderate drinkers [7, 8, 9, 10, 11, 12, 13, 14].
What we believe has never been modelled in such a field is the influence of external variables that favour
or discourage such habits. This external influence can be modelled introducing the concept of an information
variable. To our knowledge, the idea of expanding an epidemiological system introducing an information variable
can be found for the first time in [15, 16, 17, 18, 19, 20]. In such works the authors investigate a vaccinating
behaviour where the information variable measures the publicly available information on the state of the disease.
This influences the adhesion to vaccination programs which, in turn, influences the state of the disease. An
information function approach has been employed in modelling the dynamics of crystal meth (“tik”) abuse by
Nyabadza et al. [21]. This is a very interesting article where the information function is effectively the drug
supply. This, therefore, yields a way an authority can control access to a drug and assess the availability in the
context of treatment. In addition an information function approach has been adopted to study mosquito-borne
epidemics like yellow virus, see Avila-Vales et al. [22].
Mathematically, an information variable is a dynamical variable M(t) that represents some type information
which influences and is influenced by the system. Different from [19], in our model the information variable
models the availability of alcohol, and so is in some ways like the function of Nyabadza et al. [21], albeit the
functional form is different. We assume that abundance of alcohol in shops does make it simpler to young adults
to try and be involved in binge drinking when exposed to peers that propose that behaviour. To model this
fact we assume that the population is split in three classes: the susceptible S, the moderate drinkers A, and the
binge or heavy drinkers B. The supply of alcohol M influences in a monotonically increasing way the magnitude
of the contact rate parametes β and γ that are connected to the probability that, by peer pressure, a susceptible
becomes a moderate drinker or a heavy drinker. On the other hand the existence of moderate drinkers and of
heavy drinkers does effect differently the availability of alcohol, so that the number of moderate drinkers A and
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of heavy drinkers B enter in the evolution equation of the information M in qualitatively different way (linearly
for A and super-linearly for B).
Naturally, more than one information variable can be introduced. For example one could try to model the
effects of a stringent legislation on availability of alcohol at certain times of the day or in certain places. This
idea could allow the introduction of contact rate functions that are monotonically decreasing functions of the
information. We do not pursue this alternative venue. However, we do point out that availability can be linked
to cost and a minimum pricing legislation as proposed recently in Scotland may well be modelled by the concept
of an information function.
The goal of this work is to investigate the existence and the type of endemic equilibria. We will show that there
exist four bifurcation parameters R0, R1, T0, T1, two of which R0, T0 are the usual basic reproduction numbers
associated respectively to the stability of the disease-free equilibrium for a system with susceptible and moderate
drinkers only, or susceptible and heavy drinkers only.
The stability of the equilibria is analysed thoroughly in two particular cases: in the first case we consider
moderate drinkers alone, in the second we consider only heavy drinkers. The general case is investigated
analytically up to a certain degree but, due to the high variety of cases, is analysed completely only for special
choices of the parameters.
The plan of the article is the following. In Section 2 we introduce the model and the main dynamical system
and find an invariant region. Section 3 is devoted to model moderate drinkers, to study the equilibria and their
stability. In Section 4 we study a subsystem of the complete system that model heavy drinkers. In Section 5
we consider an intermediate model to study the transition from the moderate drinkers to the heavy drinkers.
Section 6 is devoted to the general model with moderate and heavy drinkers. The stability of the equilibria are
presented with some numerical simulations. At the end of the article we draw some conclusions and present
some possible further investigations.

2 Mathematical formulation

Let a local population be divided into three, time dependent classes, S, A and B. The class S represents those
individuals who are susceptible to drink, i.e. those who do not drink or drink only very moderately. The class A
denotes the moderate drinkers and B are the heavy drinkers. According to the Dietary Guidelines for Americans
2015-2020 [23] moderate drinking is up to 1 drink per day for women and up to 2 drinks per day for men, the
National Institute of Alcohol Abuse and Alcoholism defines binge drinking as a pattern of drinking that brings
blood alcohol concentration (BAC) levels to 0.08 g/dL. This typically occurs after 4 drinks for women and 5
drinks for men in about 2 hours [24].
The Substance Abuse and Mental Health Services Administration (SAMHSA), which conducts the annual
National Survey on Drug Use and Health (NSDUH), defines binge (or heavy) drinking as drinking 5 or
more alcoholic drinks on the same occasion on at least 1 day in the past 30 days (see for example https://
www.niaaa.nih.gov/ alcohol-health). Other possible definitions of moderate and heavy drinkers can be found in
[25]. Physicians operationally define as light drinking the assuption of 1.2 drinks/day, moderate drinking the
assumption of 2.2 drinks/day, and heavy drinking the assumption of 3.5 drinks/day [26, 27].
The total local population N = S+A+B is constant, and M is the information variable. The model we adopt
is governed by the differential equations

Ṡ = µN − µS − β(M)
N AS − γ(M)

N BS + ξA+ ηB

Ȧ = −µA+ β(M)
N AS − ξA− κA

Ḃ = −µB + γ(M)
N BS − ηB + κA

Ṁ = −αM + ϕA+ ψB2,

(1)

where β, γ are called the information functions and model the effect of peer pressure on classes. In this work
we assume that the information functions have the form

β(M) = β0 + β1M, γ(M) = γ0 + γ1M.

Other possible choices of information functions can be found in Section 7. The last equation of the vector
field (related to the evolution of M) models how the information depends on the state of the system. The
natural timescale for the model is the year. The information variable M models the availability of alcohol that
is measured in litres of pure alcohol. The parameters appearing in the equations are listed below:

• µ represents the rate (per unit time) of entry;

• ξ is that fraction of A (per unit time) who returns into the S compartment;

• η is that fraction of B (per unit time) who goes into the heavy drinkers compartment;

2



• k is that fraction of A (per unit time) who become heavy drinkers;

• β and γ are the contact rates which depend on M ;

• β0 and γ0 are the probability (per unit time) that an individual change compartment due to contact with
a moderate or a heavy drinker;

• β1 and γ1 are the variations of the contact rates due to the information variable;

• α is the decay rate (per unit time) of information;

• ϕ is the growth rate of information (per unit time per unit of population);

• ψ is the growth rate of information (per unit time per unit of squared population).

2.1 Invariant region

System (13) has the invariant function S + A + B, whose value is constant along motions, moreover the only
biologically significant set is the set

Ω = {(S,A,B,M) ∈ R4 |S +A+B ≡ N, S,A,B ≥ 0}.

Points in Ω will be called biologically admissible. For the problem to be well posed, the set Ω must be positively
invariant.

Lemma 1 The region Ω is positively invariant.

The proof of this fact is a very standard computation that we will not perform explicitly. As customary, the
presence of an invariant of motion allows to reduce the degrees of freedom. Posing s = S/N , a = A/N , b = B/N ,
and m = M , one has that s = 1− a− b and the system can be reduced to

ȧ = (β(m)− µ− ξ − κ)a− β(m)a2 − β(m)ab

ḃ = (γ(m)− µ− η)b− γ(m)b2 − γ(m)ab+ κa

ṁ = −αm+ ϕa+ ψb2 .

(2)

In these new variables, the reduced system admits a biologically significant, positive invariant region

Ω = {(a, b,m) ∈ R3 | a, b ≥ 0, a+ b ≤ 1}.

For simplicity we keep denoting with the letter Ω the biologically admissible region of the reduced system. For
the same reason such region will also be called with the same name in the various subsystems of this original
system.

3 The model for moderate drinkers

We consider a model with only two classes: that of non-drinkers S and that of moderate drinkers A. The
variable M is the information parameter that, as in the general case, models the supply of alcohol.
We observe that we are not dealing with a subsystem of the original system because the plane b = 0, is not
an invariant submanifold unless κ = 0. Taking into account that plausible values for κ are very small, in this
Section we assume κ = 0.
The reduced equations are {

ȧ = (β0 + β1m− µ− ξ)a− (β0 + β1m)a2

ṁ = −αm+ ϕa.
(3)

3.1 Dimensional form and equilibria

To write the equations in a nondimensional form we pose

m =
ϕ

α
n, s = (µ+ ξ)t, R0 =

β0
µ+ ξ

, R1 =
ϕ

α

β1
µ+ ξ

, ω =
ϕ

µ+ ξ
.

Denoting with a prime the derivative with respect to the new time s, one reduces the equations to the system,
that we call moderate drinkers system,a

′ = (R0 − 1 +R1n)a− (R0 +R1n)a2

n′ = ω(a− n).
(4)
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The equilibria of this system are E = (â, n̂) with n̂ = â and with â such that â(R0−1+(R1−R0)â−R1â
2) = 0.

It follows that the system admits the solution â = 0, that corresponds to the disease-free equilibrium E0 = (0, 0)
and all biologically admissible solutions associated to zeroes of the quadratic polynomial

p2 = R0 − 1 + (R1 −R0)a−R1a
2 .
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Figure 1: Across the thin-dashed line two negative equilibria collide and become complex. Being negative, such
equilibria can be treated as non-existing.

Theorem 2 The parameter space R0, R1 can be divided into the three regions shown in Fig. 1

• Region R0 = {(R0, R1) |R0 < 1, R1 < 2 − R0 + 2
√

1−R0} corresponds to systems with no positive
equilibria;

• Region R1 = {(R0, R1) |R0 > 1} corresponds to systems with one positive equilibrium E+.

• Region R2 = {(R0, R1) |R0 < 1, R1 > 2 − R0 + 2
√

1−R0} corresponds to systems with two positive
equilibria E±;

Proof Other than the equilibrium E0, polynomial p2 admits at most two solutions, which lead to two equilibria
E± = (â±, â±), where

â± =
R1 −R0 ±

√
(R1 −R0)2 + 4(R0 − 1)R1

2R1
.

The two equilibria E± are not always biologically admissible (i.e. they do not always belong to Ω). Their
existence as real solutions depends on the sign of the discriminant, their positivity depends, according to
Descarte’s rule, on the changes of sign of the coefficients of the polynomial p2. One easily obtains that the
polynomial p2 has

• no positive roots and two or zero negative roots if R0 < 1 and R1 < R0;

• two or zero positive roots and no negative roots if R0 < 1 and R1 > R0;

• one positive and one negative root if R0 > 1.

It is also easy to check that both â± are always less than 1. These facts together with the fact that the
discriminant of p2 is (R0 +R1)2 − 4R1 allow to make Figure 1 and to draw the conclusions. �

3.2 Stability analysis

In order to study the stability of the equilibria, let us first exclude the existence of limiting cycles for (4) using
Dulac’s theorem [28, pag. 246], [29, pp. 205–210].

Theorem 3 System (4) does not admit limiting cycles.
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Proof Define a Dulac function by F = 1/a. If X = (X1, X2) is the vector field associated to (4), a direct
calculation leads to

∂(FX1)

∂a
+
∂(FX2)

∂n
= −(R0 +R1n)− ω

a
< 0

for every a, n > 0. Dulac’s theorem allows to prove the theorem. �

It follows that the phase-portrait can be drawn as soon as the stability of the equilibria becomes clear.

Theorem 4 When the parameters belong to the region R0 the system admits a unique globally stable equilib-
rium, that is the disease-free equilibrium E0. When the parameters belong to the region R1 then the disease free
equilibrium is unstable, while the equilibrium E+ is biologically admissible and globally stable. When the param-
eters belong to the region R2 then there exist two stable equilibria E0, E+ and one saddle E−. The biologically
significant region is the disjoint union of two basins of attraction respectively of the two stable equilibria.

Proof The Jacobian matrix J(a, n) of the vector field X is

J(a, n) =

(
R0 − 1 +R1n− 2a(R0 +R1n) R1a(1− a)

ω −ω

)
.

It follows that

J(E0) =

(
R0 − 1 0
ω −ω

)
, J(E±) =

(
−â±(R0 +R1â±) R1â±(1− â±)

ω −ω

)
.

Computing the determinant and the trace of the Jacobians above, we have

det J(E0) = −ω(R0 − 1), tr J(E0) = −ω +R0 − 1

which implies that E0 is a stable node if R0 < 1, and it is a saddle otherwise. At the other two equilibria

det J(E±) = ±ωâ±
√

(R1 −R0)2 + 4(R0 − 1)R1,

tr J(E±) = −ω − â±(R0 +R1â±)

which allows to prove that, when they are biologically admissible, are respectively stable E+ and unstable E−.
�

It follows that qualitatively the phase portrait of this system can be summarized in the three panels shown in
Figure 2
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Figure 2: The three possible phase diagrams corresponding to choices of R0, T0 in the three regions of Fig 1.

4 The model for heavy drinkers

Let us consider a model still possessing two classes, namely non-drinkers and heavy drinkers. This system is a
subsystem of (2): {

ḃ = (γ0 − µ− η + γ1m)b− (γ0 + γ1m)b2

ṁ = −αm+ ψb2 .
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4.1 Nondimensionalization and equilibria

To write the equations in a nondimensional form, we pose

m =
ψ

α
n, s = (µ+ η)t, T0 =

γ0
µ+ η

, T1 =
ψ

α

γ1
µ+ η

, ω =
ψ

µ+ η
,

and recast the equations in the form, that we call heavy drinkers system,b
′ = (T0 − 1 + T1n)b− (T0 + T1n)b2

n′ = ω(b2 − n) .
(5)

Also in this case the equilibria are the disease-free solution E0 = (0, 0), the equilibria Ei = (b̂i, b̂
2
i ) with b̂i

solution of the cubic polynomial
p3 = −T1b3 + T1b

2 − T0b+ T0 − 1 . (6)

The biologically admissible equilibria can hence be from one to four depending on the existence and biological
admissible zeroes of p3. We summarise the possible situations in a theorem.
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Figure 3: The four regions of the parameter space. The regions Ti are labelled according to the number
i = 0, 1, 2, 3 that indicates the number of biologically admissible equilibria of the corresponding system, excluding
the disease-free equilibrium.

Theorem 5 Let
∆ = −T1

(
4T 3

0 + 8T1T
2
0 + 4 (T1 − 9)T1T0 + (27− 4T1)T1

)
be the discriminant of the polinominal p3. The parameter space T0, T1 can be divided into the four regions,
shown in Fig. 3

• Region T0 = {(T0, T1) |T0 < 1, ∆ < 0} corresponds to systems with no positive equilibria;

• Region T1 = {(T0, T1) |T0 > 1, ∆ < 0} corresponds to systems with one positive equilibrium E1, the only
real root of the polynomial p3;

• Region T2 = {(T0, T1) |T0 < 1, ∆ > 0} corresponds to systems with two positive equilibria E2, E3, the two
larger roots among the three real roots of the polynomial p3;

• Region T3 = {(T0, T1) |T0 > 1, ∆ > 0} corresponds to systems with three positive equilibria E1, E2, E3, the
three real roots of the polynomial p3.

Proof To investigate the positivity of the equilibria one can use Descarte’s rule on the sign of the coefficients
of the polynomial p3 and obtain that
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• when T0 < 1 there are 2 or 0 positive roots;

• when T0 > 1 there are 3 or 1 positive roots.

The value b̂i of the equilibrium Ei (i = 1, 2, 3) is always less than 1 because the cubic polynomial has value −1
in b = 1, in that point has negative derivative, and has maximum and minimum before 2/3. It follows that it
cannot have zeros bigger than 1.
The zeroes of the polynomial p3 can be either one real and two complex or three real depending on the positivity
of its discriminant

∆ = −T1
(
4T 3

0 + 8T1T
2
0 + 4 (T1 − 9)T1T0 + (27− 4T1)T1

)
.

This discriminant can be explicitly solved with respect to T1 and gives the two curves plotted in Figure 3

T1 =
4T0 (2T0 − 9) + 27−

√
(9− 8T0)

3

8(1− T0)
, T1 =

4T0 (2T0 − 9) + 27 +

√
(9− 8T0)

3

8(1− T0)
.

The graph of the second function is defined and positive for T0 ∈ [0, 9/8] (the apparent singularity at T0 = 1
is a first kind singularity). The first function is defined and positive for T0 ∈ (1, 9/8]. The result follows from
these observations, and can be summarized with Figure 3. �

4.2 Stability analysis

Let us again exclude the possibility of having limit cycles. As done before, we prove this by means of Dulac’s
theorem [28, pag. 246], [29, pp. 205–210]. We recall that the vector field whose associated differential equations
are (5) is given by

X =

(
(T0 − 1 + T1m)b− (T0 + T1m)b2

ζ(−m+ b2)

)
.

Theorem 6 System (5) does not admit limit cycles.

Proof Let us use the Dulac function F = 1/b. A direct calculation leads to

∂(FX1)

∂b
+
∂(FX2)

∂n
= −(T0 + T1n)− ω

b
< 0 ,

for every b, n > 0. �

Also in this case, we must discuss the stability of the equilibria.

Theorem 7 The parameter space T0, T1 can be divided into four regions, shown in Fig. 3

• Region T0 corresponds to systems with only one globally stable equilibrium E0;

• Region T1 corresponds to system with two equilibria, E0 is unstable and E1 globally stable;

• Region T2 corresponds to systems with three equilibria, E0 and E3 are stable, while E2 is unstable (in the
unphysical part of phase space there exists another equilibrium E1 that is unstable). The physical phase
space can divided into two regions that are the basin of attraction of the two stable equilibria, separated by
the stable manifold of the equilibrium E2;

• Region T3 corresponds to systems with four equilibria, E0 and E2 are unstable, E1 and E3 are stable. Also
in this case the phase space is divided into two regions that are the basin of attraction of the two stable
equilibria, separated by the stable manifold of the equilibrium E2.

Proof The Jacobian matrix of the vector field associated to the system (5) is

J(b, n) =

(
T0 − 1 + T1n− 2b(T0 + T1n) T1b(1− b)

2ωb −ω

)
.

Computing the Jacobian matrix in E0 one obtains the matrix

J(E0) =

(
T0 − 1 0

0 −ω

)
.

It follows that E0 is stable if and only if T0 < 1 and is a saddle otherwise. The other equilibria have the form
Ei = (b̂i, b̂

2
i ) where b̂i are the positive real zeroes of the polynomial p3 given in (6). The condition of being
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equilibria immediately implies that (T0−1+T1b̂
2
i ) = (T0+T1b̂

2
i )b̂i, hence the Jacobian in the points Ei = (b̂i, b̂

2
i )

is

J(E) =

(
−b̂i(T0 + T1b̂

2
i ) T1b̂i(1− b̂i)

2ωb̂i −ω

)
,

and has negative trace. The determinant of this matrix is ω(b̂i(T0 +T1b̂
2
i )−T1b̂i(1− b̂)2b̂i), that is proportional

to the derivative p′3(b̂i). Since in the interior of the regions Ti the polynomial p3 has simple zeroes, the real

numbers p′3(b̂) have alternating signs when ordering the zeroes of p3. This allows to conclude that, starting
from E0, the next equilibrium E1, if it is biologically admissible, has opposite stability behavior, and so on. �

A qualitative plot of the phase portrait for the four cases is given in Figure 4.
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Figure 4: The four possible phase diagrams corresponding to choices of R1, T1 in the four regions of Fig. 3.

5 An intermediate model

Let us consider now the transition from the moderate drinkers and the heavy drinkers. In this case the equations
are 

Ṡ = µN − µS − λ(M)
N CS + νC

Ċ = −µC + λ(M)
N CS − νC

Ṁ = −αM + (1− χ)ϕC + χψC2 .

where C plays the role of A when χ = 0, λ = β, and ν = ξ, it plays the role of B when χ = 1, λ = γ, and
ν = η, or it plays an intermediate role for all other choices of χ ∈ [0, 1]. The same arguments used in the two
previous sections allow to consider the normalised populations, to remove the first equation, to substitute λ(m)
with λ0 + λ1m, and to finally reduce to the ordinary differential equations{

ċ = (λ0 + λ1m− µ− ν)c− (λ0 + λ1m)c2

ṁ = −αm+ (1− χ)ϕc+ χψc2 .
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5.1 Nondimensionalization and equilibria
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Figure 5: The bifurcation diagrams as ρ goes from 0 (the moderate drinkers case, first panel) to 1 (the heavy
drinkers case, last panel). Not all curves correspond to a change in the number of biologically significant
equilibria. The middle pane represents a transition case, at ρ = 0.5, when the cusp precisely belongs to the
vertical line S0 = 1.
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Figure 6: The two intermediate cases with the regions labelled with the same conventions of the previous
sections.

The equations can be written in nondimensional form denoting by

m =
(1− χ)ϕ+ χψ

α
n, s = (µ+ ν)t, ω =

ϕ(1− χ) + χψ

µ+ ν
,

ρ =
χψ

(1− χ)ϕ+ χψ
, S0 =

λ0
µ+ ν

, S1 =
(1− χ)ϕ+ χψ

α(µ+ ν)
λ1 ,

and recasting the equations in the formc
′ = (S0 − 1 + S1n)c− (S0 + S1n)c2

n′ = ω
(
−n+ (1− ρ) c+ ρc2

)
.

The equilibria are points (ĉ, n̂) such that n̂ = ρĉ2 +(1−ρ)ĉ and (S0−1+S1n̂)ĉ− (S0 +S1n̂)ĉ2 = 0. Substituting
the expression of n̂ in the first component of the system one obtains that c must be zero of the polynomial

p = c
(
S0 − 1 + (S1(1− ρ)− S0)c+ S1(2ρ− 1)c2 − S1ρc

3
)
. (7)

The solutions to this equation are ĉ = 0 and the three solutions to the cubic polynomial factor of p under the
condition that they are real and the corresponding equilibria E = (ĉ, ρĉ2 + (1−ρ)ĉ) belong to Ω. It follows that
the equilibria are E0 = (0, 0) and the zeroes of the cubic polynomial that are one real and two complex solutions
or three real solutions depending on the positivity of its discriminant ∆. A plot of the discriminant-locus ∆ = 0
for various ρ can be seen in Figure 5 and Figure 6.
The stability can be treated as in the sections above.
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6 A more realistic model and simulations

Let us finally consider the general model (2). Rescaling time by s = (µ + ξ + κ)t, posing m = ψ/αn, and
denoting

ζ =
µ+ η

µ+ ξ + κ
, ω =

α

µ+ ξ + κ
, σ =

κ

µ+ ξ + κ
, ϑ =

ϕ

ψ
,

R0 =
β0

µ+ ξ + κ
, R1 =

β1ψ

α(µ+ ξ + κ)
, T0 =

γ0
µ+ η

, T1 =
γ1ψ

α(µ+ η)
,

the equations can be recast in the nondimensional form
ȧ = a

(
− 1 + (R0 +R1n)(1− a− b)

)
ḃ = ζb

(
− 1 + (T0 + T1n)(1− a− b)

)
+ σa

ṅ = ω(−n+ ϑa+ b2) .

(8)

The equilibria of this system are:

1. the disease free equilibrium E0 = (0, 0, 0);

2. the solutions discussed in Sections 4 relative to the heavy drinkers system, denoted as E1,2,3 = (0, b̂1,2,3, b̂
2
1,2,3);

3. the solutions with a 6= 0 for which necessarily

n̂ = ϑâ+ b̂2 (9)

and â, b̂ are solutions of the system of equations{
R0(1− a− b)− 1 +R1(aϑ+ b2)(1− a− b) = 0

bζ
(
T0(1− a− b)− 1 + T1(ϑa+ b2)(1− a− b)

)
= −σa .

(10)

By calling f = 1− a− b and g = (aϑ+ b2)(1− a− b), equations (10) have the form{
R0f − 1 +R1g = 0

bζ(T0f − 1 + T1g) = −σa.
(11)

From (11)1 it follows that R1g = 1 − R0f . Multiplying equation (11)2 by R1 and using the above identity we
have that

bζ
(

(R1T0 −R0T1)(1− a− b) + T1 −R1

)
= −σR1a .

Hence the remaining solutions are given by

â = b̂ζ
(R0T1 −R1T0)(1− b̂) +R1 − T1

b̂ζ(R0T1 −R1T0) + σR1

, (12)

and b̂ is zero of a polynomial p4(b) of degree 4.
The polynomial p4 can be investigated with the techniques of the previous sections, but its coefficients are
complicate expressions of the parameters σ, ϑ,R0, R1, T0, T1 that make the investigation difficult. For this
reason, we resort to a numerical investigation, that indicates a reasonably simple behaviour. In fact

1. for σ = 0, the polynomial p4(b) is b2 times a quadratic polynomial, that can give at most two endemic
equilibria interior to Ω (and the double root b = 0 indicates the existence of the two equilibria E± found
in Section 3);

2. Increasing σ the internal equilibria move, but also the equilibria posed in the boundary {a = 0} of Ω move
away from the boundary either in the interior of Ω or outside of the biologically significant region.

To describe what happens we consider a particular reasonable choice of the parameters. We consider the age
group to be all adults, it follows that µ = 1/60. From [10] we choose β0 = 0.31 and γ0 = 0.29. As concerns the
other parameters, we choose: ξ = η = 0.08, α = 0.5, ϕ = 10 and ψ = 1. The parameter κ is chosen to be 0 in
the first simulation and 10−3 in all other simulations. For the other parameters β1 = 0.9 ∗ 10−2, γ1 = 1.1 ∗ 10−2

in the first two simulations, and then they are decreased to 0.95∗10−2 and to 0.89∗10−2 in the third and fourth
simulations.
The polynomial p4, with this particular choice of parameters, gives a unique, biologically significant, endemic
equilibrium. This equilibrium persists under changes of κ from zero to positive values. The following four plots
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Figure 7: The time-evolution of the solutions. The solid line corresponds to the number of moderate-drinkers
a, the dashed line to the heavy-drinkers b, the dotted line to the non-drinkers s = 1 − a − b. The first panel
refers to the choice of parameters R0 = 3.20689, R1 = 0.186207, T0 = 3, T1 = 0.22759, ζ = 1, ω = 5.1724138,
ϑ = 10, σ = 0. The second refers to a slight increase of the parameter κ, that corresponds to an increase of
σ to the value 0.00103341 (and a slight modification of the parameters R0, R1). The third and fourth panels
correspond to the reduction of the m-derivative of the information function γ, i.e. a decrease of the number γ1,
that in turns corresponds to a decrease of the nondimensional parameter T1.

correspond to the time-evolution of the dynamical variables a, b, s = 1 − a − b for the four possible choices of
the parameters indicated above.
From the first panel of Figure 7, wee see that the compartments tend asymptotically to equilibria values that
are consistent with the data published in the National Survey on Drug Use and Health [30] (relative to statistics
made in the U.S. in the year 2014).
The other panels indicate that the number of heavy drinkers is highly sensitive to the parameter γ1 that models
how information influences the population of drinkers. This dependence seems to indicate that an effort to
make alcohol less available to the young could have a strong effect on the percentage of heavy drinkers.

7 Conclusions

A mathematical model of drinking with an information function has been proposed. The population has been
divided into three compartments: non-drinkers, moderate drinkers, and heavy drinkers. The dynamics of these
classes is influenced by an information variable that may indicates the availability of alcohol, and enters the
equations by modifying the contact rates β and γ as described in Section 2. Here, as a first hypothesis, the
contact rates have been chosen to be linear functions of the information variable. Of course other functional
dependences might be used such as functions with a saturation threshold, that is functions of the form

β(M) =
βuM

1 + βdM
, γ(M) =

γuM

1 + γdM
, δ(M) =

γuM

1 + γdM
.

The saturation makes the functional dependence of the dynamics on information much more realistic, still
algebraic, but with polynomials of much higher degree.
The system also admits other possible generalisations. For example, the equations can be extended adding the
possible migration by peer pressure from the class A to the class B. The associated equations in such case
would be 

Ṡ = µN − µS − β(M)
N AS − γ(M)

N BS + ξA+ ηB

Ȧ = −µA+ β(M)
N AS − δ(M)

N AB − ξA− κA
Ḃ = −µB + δ(M)

N AB + γ(M)
N BS − ηB + κA

Ṁ = −αM + ϕA+ ψB2.

(13)
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This addition creates two additional basic reproduction numbers proportional to δ0 and δ1.
Finally, the last component of the vector field, which depends on B2, should be revised to make the influence of
heavy drinkers superlinear but not so overwhelming. This of course would lead to a system that is not algebraic,
and it should be treated with completely different techniques.
Another use of the information could be related to model laws of the governments to reduce the alcohol con-
sumption.
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