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Abstract: The reliability sensitivity can be used to rank distribution parameters of system components 

concerning their impacts on the system’s reliability. Such information is essential to purposes such as 

component prioritization, reliability improvement, and risk reduction of a system. In this paper, we present 

an efficient method for reliability sensitivity analysis of coherent systems using survival signature. The 

survival signature is applied to calculate the reliability of coherent systems. The reliability importance of 

components is derived analytically to evaluate the relative importance of the component with respect to the 

overall reliability of the system. The closed-form formula for the reliability sensitivity of the system with 

respect to component’s distribution parameters is derived from the derivative of lifetime distribution of a 

component to further investigate the impacts of the distribution parameters on the system’s reliability. The 

effectiveness and feasibility of the proposed approaches are demonstrated with two numerical examples. 

 

Keywords: Reliability sensitivity; Survival signature; System reliability; Component importance; Structure 

function 

Introduction 

In modern industry, the widespread of automatic and intelligent equipment contributes to more and more 

powerful and complex manufacturing systems which can greatly improve production efficiency. However, 

the risk of failure of manufacturing systems and potential losses from failure are also greatly increased 

simultaneously. Therefore, performing system reliability analysis and taking steps to eliminate weaknesses 

to ensure safe and reliable operation of the system is now even more important1-3. 

Many methods exist to improve system reliability, such as using high-quality components, increasing 

redundancy and implementing better maintenance. Generally, it is hard to determine whether among them 

an optimal method exists. What is certain, however, is that it would be the most cost-effective if we could 

find critical (important) components and propose improvement plans for them. Importance analysis, as one 

of such tools, can be used to prioritize components in a system by mathematically measuring the 

importance level of each component4-7. 

In 1960s Birnbaum8 first introduced an importance measure to characterize rate at which system’s 

reliability changes with respect to changes in the reliability of a given component. During the following 

decades, because of the easy implementation and understanding, reliability importance was widely used 

and rapidly developed9,10. Natvig et al.11 extended the Birnbaum importance to the time-dependent lifetime 

using component lifetime distributions. Dutuit et al.12 studied the potential extensions of Birnbaum 

importance to complex components whose failures are modeled by a gate rather than just a basic event. 
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Kamalja et al.13 and Shen et al.14 studied the reliability importance of consecutive systems, whereas 

Borgonovo et al.15, Vaurio et al.16 and Aliee et al.17 extended reliability importance to non-coherent systems 

through Boolean expression. Li et al.18, Lisnianski et al.19 and Kvassay et al.20 proposed methods for 

computation of reliability importance for multi-state systems. Moreover, Eryilmaz et al.21 and Zhu et al.22 

focused on the interaction effect between the components on system reliability to evaluated joint reliability 

importance of two components. Baraldi et al.23 and Li et al.24 developed methods for quantifying epistemic 

and aleatory uncertainties in Birnbaum importance. Wu et al.25 and Dui et al.26 proposed cost-based 

importance measures by considering the joint effect of component maintenance cost and time on system 

reliability. 

The above methods lay the foundation for reliability importance analysis, and the underlying principle 

is fairly well established. However, the existing importance measures pay little attention to probabilistic 

characteristics of system components while ranking them. In this paper, a general method for reliability 

sensitivity analysis of coherent systems with respect to the distribution parameters of components is studied 

using survival signature. The paper is organized as follows: Section 2 describes reliability, reliability 

importance, and reliability sensitivity analysis based on structure function. Section 3 gives a brief 

description of the survival signature, followed by reliability importance and sensitivity analysis with 

respect to the distribution parameters of system components. Numerical examples in Section 4 illustrate the 

application of the proposed method. Finally, Section 5 draws conclusions. 

Reliability sensitivity analysis using structure function 

System reliability analysis is concerned with estimating the lifetime of complex systems subject to several 

uncertainties, such as type, working time, and failure rate. Theory of system reliability has been established 

over many decades and led to an extensive literature27 whose heart is the ‘structure function’ defined as 

    1 2( ) ( ), ( ), ..., ( )nt X t X t X t X  (1) 

where n is number of components, Xi(t) is state of component i at time t being i=1, 2, …, n; Xi(t)=1 if the ith 

component functions at time t, and Xi(t)=0 if component i fails at time t. Structure function φ(X(t)) is state 

of the system; φ(X(t))=1 if the system functions at time t for state vector X(t), φ(X(t))=0 if not. 

The system at time t is 

    ( ) Pr ( ( )) 1 E ( ( ))sR t t t   X X  (2) 

If components are independent, the system reliability Rs(t) is 

    1 2( ) ( ), ( ), , ( ) ( )s nR t h R t R t R t h t  R  (3) 

where Ri(t)=1-Fi(t) is reliability function of component i at time t being i=1, 2, …, n; Fi(t) is lifetime 

distribution of component i. 

The sensitivity of the reliability Rs(t) with respect to the distribution parameters of lifetime distribution 

of component i, ( )l

i , being l=1,2, …,  (e.g. mean μi or standard deviation, σi) can be derived from Eq. (3) 

    
( ) ( ) ( )

( ) ( ) ( )( ( ))
1 , ( ) 0 , ( ) , 1,...,

( )

s i i

i il l l

i i i i

R t R t R th t
h t h t i n

R t  

  
   

   

R
R R  (4) 
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where ( ( )) ( )ih t R t R  is Birnbaum importance of component i, h(.i, X(t))= h(X1(t), …, Xi−1(t), . , Xi+1(t), …, 

Xn(t)), 
( )( ) l

i iR t    can be derived analytically from lifetime distribution of type i components. Examples 

for common distributions are given in the Appendix. 

From Eq.(3) and Eq.(4), the reliability and reliability sensitivity of a system can be directly obtained 

from its structure function. However, there are generalizations of the structure function to multi-state 

scenarios. Already in a simplest form, it requires a specification for 2n inputs for a system consisting of n 

components. Practical systems of interest may include hundreds or thousands of components; therefore, it 

is almost impossible to specify its structure function.  

Reliability sensitivity analysis using survival signature 

Samaniego27 separated the structure of the system from system reliability analysis to avoid the task of 

specifying the structure function and proposed the system signature to quantify the reliability of systems 

consisting of independent and identically distributed or exchangeable components. However, the use of the 

system signature is associated with the assumption that all components in the system are of the same type, 

which in the engineering practice is almost impossible. To overcome this limitation, Coolen et al.28,29 

proposed the use of survival signature for analyzing complex systems consisting of more than one single 

component type increasing the applicability of the signature approach to characterize complex systems. 

Consider a coherent system with K≥2 types of components, with nk components of type k∈{1, 2, …, K} 

and ∑ 𝑛𝑘
𝐾
𝑘=1 =n. Components of the same type can be grouped together leading to a state vector that can be 

written as x=(x1, x2, …, xk, …, xK) with 𝒙𝑘 = (𝑥1
𝑘 , 𝑥2  

𝑘 , … , 𝑥𝑛𝑘 
𝑘 ) the sub-vector representing the states of 

the components of type k. Assume that the random failure times of components of the different types are 

fully independent and the components are exchangeable within the same component types, the survival 

signature of the system can be rewritten as 28, 29: 

  
, ...,1

1

1 2

1

( , , ..., )
l lK

K
k

s K

k Sk

n
l l l

l
 



 

  
   
   
 

x

x  (5) 

where 𝑆𝑙1,…,𝑙𝐾
 is set of all state vectors for the whole system. φs(l1, l2, …, lK) with lk=0, 1, . . . , nk for 

k=1, . . . , K , is the probability that the system functions given that precisely lk of its nk components of type 

k function, for each k∈{1, 2, …, K}. Although the survival signature sets out a significantly reduced 

representation of the system structure, its derivation may still be complicated. Aslett30 provided a package to 

compute the survival signature. Recently, Reed31 proposed a more efficient method to calculate the survival 

signature based on binary decision diagrams and dynamic programming. 

Let ( ) {0,1, ..., }k kC t n  denote the number of k components working at time t. If the failure times of 

components of different types are independent, the probability that the system functions at time t is 
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  
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  

  (6) 
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where Rk(t)=1-Fk(t), is the reliability function of component k at time t being k=1, 2, …, n; Fk(t) is lifetime 

distribution of component k. 

Reliability importance and reliability sensitivity play an important role in security assessment and risk 

management of an industry system. For example, the results of reliability importance and sensitivity 

analysis may be very useful to the designer, who can know how, and to what extent, the reliability of the 

system changes with perturbations of the reliability of the components and their distribution parameters. In 

addition, the maintenance technician can allocate resources for inspection, maintenance, and repair 

activities in an optimal manner over the lifetime of a system. 

The sensitivity of the reliability Rs(t), with respect to the distribution parameters of each type of 

components ( )l

i , being l=1, 2, …, and i= 1, 2, …, K, can be derived from Eq. (6) 

 
( ) ( )

( ) ( ) ( )
, 1,...,

( )

s s i

l h

i i i

R t R t R t
i K

R t 

  
 

  
 (7) 

where 
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1
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0 0 1

( ) ( )
, ..., ( ) 1 ( ) , 0 ( ) 1

( ) ( ) 1 ( )

K
k k k

K

n n K
l n lks i i i

s K k k i

l l k ki i i

nR t l n R t
l l R t R t R t

lR t R t R t




  

    
      

     
    (8) 

is reliability importance of each type of component, and ( ) ( )( ) ( )l l

i i i iR t F t       can be derived 

analytically from lifetime distribution of type i components. 

In a given system, different components play distinct roles being some components more important than 

others. Therefore, we may want to know the reliability importance and the reliability sensitivity with 

respect to distribution parameters of each component. Note that if no components are of the same type, then 

the survival signature just equals the structure function. In this case, we can obtain the reliability 

importance and sensitivity of system reliability with the distribution parameters of each components from 

Eqs. (7) and (8). If there exist the same type of components, the relative sensitivity of the reliability Rs(t) 

can be expressed as follows: 

  
( ) ( )

( ) ( )
; ( ) , 1,...,s i

Bl l

i i

R t R t
I i t i n

 

 
 

 
R  (9) 

where  

    ( ; ( )) 1 , ( ) 0 , ( )B s i s iI i t R t R t R R R  (10) 

is reliability importance of component i, Rs(i, X(t))= Rs(X1(t), …, Xi−1(t), . , Xi+1(t), …, Xn(t)), Rs(1i, R(t)) and 

Rs(0i, R(t)) which can be derived from Eq.(6) are the reliability of the system given the ith component 

functions or fails. 

Numerical example 

Example 1 (A ‘bridge’ system) Consider the ‘bridge’ system most widely found in the literature, including 

Coolen et al.28 and Walter et al.32. As Fig.1 depicts, the ‘bridge’ system consist of two types of components, 

namely T1 and T2. The failure time of Type 1 components follows an exponential distribution, and their 

expected value is 1. The failure time of Type 2 components has a Weibull distribution with scale parameter 

a=1 and shape parameter b=2. 
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T2 T2

T1 T2

2 5

3 6

4

1

 

Fig.1 Reliability block diagram of a ‘bridge’ system 

Table 1 Survival signature of the ‘bridge’ system 

l1 l2 φs(l1,l2) 

0 [0, 1, 2, 3] 0 

[1, 2] [0, 1] 0 

1 2 1/9 

1 3 1/3 

2 2 4/9 

2 3 2/3 

3 [0, 1, 2, 3] 1 

First, calculate the survival signature of the system (see Table 1). Then the reliability and reliability 

importance of the ‘bridge’ system can be obtained using Eqs. (6) and (8). The results of the studies on 

reliability and reliability importance ( ( )( ) ( )T
S iR t R t   i=1, 2) using survival signature are reported in Fig. 2 

and Fig. 3, respectively. The results suggest that T1 components are important than T2, so the engineer 

should allocate more resources to the T1 components while designing or maintaining the system. However, 

reliability importance analysis did not consider the probabilistic characteristics of components while 

ranking them. Some different conclusions can be drawn from reliability sensitivity analysis. 

 

Fig2. Reliability of the ‘bridge’ system                Fig3. Reliability importance of the ‘bridge’ system 

Reliability sensitivity analysis of the ‘bridge’ system is conducted using Eqs. (7) and (8). The results of 
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the studies on reliability sensitivity ( ( )( ) )T
S iR t   and ( )( ) )T

S iR t   , i=1, 2) using survival signature are 

depicted in Fig. 4 and Fig. 5, respectively. The reliability sensitivity of the system with respect to mean life 

of each component is positive, that is to say, an increase in the mean life of each component increases the 

overall reliability. Since reliability sensitivity of the system with respect to the standard deviation of T2 is 

negative, the reliability of the system can be improved by decreasing the standard deviation of the 

component. Moreover, the reliability sensitivity with respect to the mean life of T2 is larger than that of T1 

while 0.38<t<1.12. Within this time, priority should be given to T2 to ensure safe and reliable operation of 

the system. 

 

Fig4. Reliability sensitivity with respect to means   Fig5. Reliability sensitivity with respect to standard deviations 

The reliability sensitivity with respect to distribution parameters of each component is calculated to 

measure the importance of each component. The results of the studies on reliability sensitivity 

( ( )( ) )C
S jR t   and ( )( ) )C

S jR t   , j=1, …, 6) using survival signature are depicted in Fig. 6 and Fig. 7, 

respectively. The three most significant components are components 1, 3, and 6.  

 

 Fig 6. Reliability sensitivity with respect to means   Fig 7. Reliability sensitivity with respect to standard deviations 
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Example 2 (A wind turbine). In this example, reliability and reliability sensitivity analysis of a wind turbine 

are studied based on survival signature. Typically, a wind turbine is composed of two bearings, a main shaft, 

a gear box, and a generator. As Wu et al.25 suggests, the reliability block diagram is a serial and parallel 

structure (see Fig.8); Table 2 summarizes the distribution information of each component. 

Bearing B

Bearing A

Main shaft Gearbox Generator

Component 5Component 4Component 3

Component 1

Component 2
 

Fig. 8. Reliability block diagram of a wind turbine 

Table 2  Distribution information of components 

No. Component name Distribution type Scale parameter Shape parameter 

1 Bearing A and B Weibull 3835 1.09 

2 Main shaft Weibull 6389 1.43 

3 Gear box Weibull 29051 1.05 

4 Generator Weibull 17541 1.11 

 

Fig9. Reliability of the system               Fig10. Reliability importance of the system 

The survival signature of the wind turbine is summarized in Table 3. For the sake of brevity, rows with 

φs(l1,l2,l3,l4)=0 are omitted. Based on survival signature, the reliability, reliability importance, and reliability 

sensitivity of the system for each point at time t can be obtained from Eqs. (6)-(8). The results are shown in 
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Figs. 9-12. 

Table 3 Survival signature of the wind turbine; rows with φs(l1,l2,l3,l4)=0 are omitted 

l1 L2 l3 l4 φs(l1,l2,l3,l4,) 

1 1 1 1 1 

2 1 1 1 1 

According to the results of reliability importance analysis, the most significant component is the main 

shaft while 0<t<2800, and the bearings are the most significant components while t>2800. Results of 

reliability sensitivity analysis indicate that the bearings and main shaft are the most significant components. 

A comparison of sensitivities with respect to means reveals that the influence of the small changes in the 

mean values on the reliability of the wind turbine is decline in the order, 
1( )sR t   >

2( )sR t   >

4( )sR t   >
3( )sR t    for most of time. Based on the sensitivities with respect to standard deviations, 

the uncertainties in the life course of the main shaft and bearings have more influence on the reliability of 

the system than those in others. Reliability sensitivities of the wind turbine change rapidly as the time 

passes by. With the help of the information of reliability sensitivity, engineers could design different 

maintenance strategies at distinct stages to reduce the risk to the lower extent. 

 

  Fig11. Reliability sensitivity with respect to mean  Fig12. Reliability sensitivity with respect to standard deviation 

Conclusion 

The reliability sensitivity quantifies the degree of the influence of the components and their distribution 

parameters on the reliability of the system. For example, the higher the value of reliability sensitivity the 

greater is the influence of the parameter on the system reliability at a given time t, and vice versa. At each 

point in time, the largest reliability sensitivity show the most “critical” factor, thus helping the allocation of 
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resources for inspection, maintenance and repair activities in an optimal manner over the lifetime of a 

system. 

In this paper, an efficient approach for reliability important analysis of coherent systems is proposed 

based on survival signature. Survival signature has been proven to be an efficient method for estimating the 

reliability of systems with multiple component types33-36. Reliability analysis of a system using survival 

signature could separate the system structure from the component probabilistic failure distribution. 

Therefore, calculation of all the cut-sets, which is a cumbersome and error prone task can be bypassed. 

Therefore, the proposed approach is easy to be implemented in practice and has high computational 

efficiency.  

Reliability importance measures have not considered the probabilistic characteristics of components 

while ranking them. Along with reliability importance measure, this paper studies the method for reliability 

sensitivity analysis of coherent systems with respect to distribution parameters of components. The 

information of reliability sensitivity can be used to rank distribution parameters of components with respect 

to their impacts on the system’s reliability. Therefore, reliability sensitivity analysis is often critical towards 

understanding the industrial systems underlying failure and provides more useful information for reliability 

improvement and risk reduction.  

It should be noted that the reliability sensitivity discussed in this paper is proposed based on derivatives. 

Sensitivity obtained in this study is local sensitivity which is valid when the parameter is changed by a 

small amount. If one has the opportunity to improve reliability of components by changing the parameters 

more than just a small amount, then of course the picture may be very different. Moreover, costs incurred 

by maintaining a system and its components is not consider in this paper. In practice there may perhaps be 

some indication that some improvement of a specific parameter may be possible at a specific cost. And 

cost-based global reliability sensitivity analysis of industry systems is the subject of current research by the 

authors. In general, however, this paper presents a practical method for reliability sensitivity analysis of 

coherent systems using survival signature. 
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1. The Exponential distribution 

The exponential distribution is defined by a constant failure rate. The CDF of an exponential random 

variable T is given by 

 ( | ) 1 exp , , 0
t

F t a t a
a

 
    

 
 (A.1) 

The partial derivative of the CDF with respect to a is 

 
2

( )
exp

F t t t

a a a

  
   

  
 (A.2) 

The mean and standard deviation of T are a. Therefore, The partial derivatives of the CDF with respect 

to the mean and standard deviation of T, ( )F t    and ( )F t   , are equal to ( )F t a  . 

2. The Weibull distribution 

The Weibull distribution is by far the most popular life distribution used in reliability engineering due to its 

variety of shapes and generalization or approximation of many other distributions. The CDF of a Weibull 

distribution random variable T is  

 ( | , ) 1 exp , , , 0

b
t

F t a b t a b
a

  
     

   
 (A.3) 

where a is the scale parameter and b is the shape parameter. 

The partial derivatives of the CDF with respect to a and b as 

 
( )

exp

b b
F t b t t

a a a a

     
      

      
 (A.4) 

 
( )

ln exp

b b
F t t t t

b a a a

       
               

 (A.5) 

The mean and standard deviation of T are 

 
2

1
1

2 1
1 1

a
b

a
b b

 

  

  
  

 


              

 (A.6) 

It is noted that ( ) · is the gamma function. 

The Jacobian matrix of the mapping from a and b to μ and σ is 

 

     

       

2

2 2

2

1 1 1 1 1 1

1 1 1 1 2 1 2 1

b a b b b
a b

b b a b b
a b

a b

  
 

   
 



    
      

               
 

J  (A.7) 

where ( ) ( ) ( )'  · · · is the psi function.  

( )F t    and ( )F t   , are calculated as 
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( ) ( ) ( )

( ) ( ) ( )

F t F t a F t b

a b

F t F t a F t b

a b

  

  

    
      


      

     

 (A.8) 

The partial derivatives of the CDF with respect to the mean and standard deviation, ( )F t    and 

( )F t   , can be calculated as 

 1

( )

( ) ( ) ( ) ( )

( )

a aF t

F t F t F t F t

b ba b a bF t

 

 



   
                            
       

J  (A.9) 
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