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Abstract Volcanic ash is often deposited in a hot state. Volcanic ash containing glass, deposited above the
glass transition interval, has the potential to sinter viscously both to itself (particle-particle) and to exposed
surfaces. Here we constrain the kinetics of this process experimentally under nonisothermal conditions using
standard glasses. In the absence of external load, this process is dominantly driven by surface relaxation. In such
cases the sintering process is rate limited by the melt viscosity, the size of the particles and the melt-vapor
interfacial tension. We propose a polydisperse continuummodel that describes the transition from a packing of
particles to a dense pore-free melt and evaluate its efficacy in describing the kinetics of volcanic viscous
sintering. We apply our model to viscous sintering scenarios for cooling crystal-poor rhyolitic ash using the 2008
eruption of Chaitén volcano as a case example. We predict that moderate linear cooling rates of > 0.1°C min�1

can result in the common observation of incomplete sintering and the preservation of pore networks.

1. Introduction

Investigations into the central role of viscous sintering and welding in the deposition of volcanic
materials are widespread [e.g., Castro et al., 2012; Quane and Russell, 2005b; Sparks et al., 1999; Stasiuk
et al., 1996; Tuffen and Dingwell, 2005; Tuffen et al., 2003; Tuffen et al., 2008; Wright and Cashman, 2014;
Wilding et al., 1996]. Volcanic pyroclasts sinter and weld during hot subaerial aggradation in cinder cones
[Sumner et al., 2005], in high-grade ignimbrites [Branney and Kokelaar, 2002; Ragan and Sheridan, 1972;
Smith, 1960], within fractures filled with transiently granular magma [Kolzenburg et al., 2012; Tuffen et al.,
2003] and even in the hot zone of jet engines [Kueppers et al., 2014; Song et al., 2014]. This process is
common and occurs when the temperature of volcanic ash is above the glass transition interval such that
the melt phase can relax and sinter viscously [Vasseur et al., 2013].

Upon deposition, an initially granular pack of volcanic ash particles contains a high fraction of interconnected
pore volume. The transience of porosity during viscous sintering is evident in the large range of porosities
[Michol et al., 2008; Quane and Russell, 2005b; Wright and Cashman, 2014] and pore textures [Quane and
Russell, 2006; Tuffen and Dingwell, 2005] recorded in variably welded deposits. Such transience of highly
connected pore networks has implications for outgassing efficiency. This is expressed through the evolution
of permeability, which exerts a first-order control on the longevity of gas overpressure in volcanic conduits
[Klug and Cashman, 1996;Mueller et al., 2005] and thereby the propensity of the magma contained therein to
fragment [Mueller et al., 2008]. Moreover, there is a strong dependence of the dynamic tensile strength of
magma on porosity, and therefore, the sintering process must influence the threshold of failure in deforming
magmas [Vasseur et al., 2013]. Despite the potential impact of the above, the time dependence of porosity,
relative density, and permeability are poorly constrained over the wide spectrum of densification processes
active in volcanic environments.

Viscous sintering—commonly referred to as welding in volcanology—involves the transition from an initially
granular material with a melt component to a dense suspension of phases in melt. It can occur rapidly under
volcanic conditions [Quane and Russell, 2005a; 2006; Quane et al., 2009; Russell and Quane, 2005]. Experiments
in material science have yielded a range of physical models for the sintering process [Frenkel, 1945;
Mackenzie and Shuttleworth, 1949; Olevsky, 1998; Scherer, 1977; Uhlmann et al., 1975] including the effects of
cosintering crystallization [e.g., Prado et al., 2003], application of external loads [e.g., Rahaman et al., 1987;
Scherer, 1986], and the inclusion of purely elastic particles on the sintering dynamics [e.g.,Mueller et al., 2007;
Pascual et al., 2005]. These models provide a basis for the application of sintering theory to volcanic settings.
Key differences nevertheless remain, resulting from further complexities of volcanic materials. Fragmental
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volcanic liquids degas [e.g., Castro et al., 2005b; Stevenson et al., 1997], resulting in time-dependent melt
viscosities [Hess and Dingwell, 1996]; they may be compositionally variable (e.g., banded) on a wide range of
scales [e.g., Castro et al., 2005a], they may exhibit surface crystallinity [Ayris et al., 2013], and they are often
deposited in complex atmospheres of volcanic gases [Sigurdsson et al., 1999] that can variably resorb upon
cooling [Sparks et al., 1999]. Moreover, the temperature conditions during deposition (and sintering) do not
remain constant. Volcanic materials ultimately cool to ambient conditions [Gottsmann and Dingwell, 2002];
yet heat may be generated via a number of mechanisms along the way. Such heat can be readily produced
through viscous heating [Cordonnier et al., 2012], granular friction [Lavallée et al., 2014], magma injection, and
crystallization [Applegarth et al., 2013]. Therefore, the adaptation of sintering models to volcanic conditions is
not necessarily trivial, and further experimental constraints are warranted. Here a combined analytical and
experimental approach is used to explore the kinetics of sintering under nonisothermal conditions leading to a
versatile model applicable to a diverse range of volcanic environments.

2. Theoretical Framework
2.1. Isothermal Viscous Sintering

Viscous sintering of melt particles is traditionally envisaged as a multistage process whereby packed granular
particles form necks with neighbors, evolving to amelt-supported suspension with a variably connected pore
network and finally to a dense, pore-free melt [Frenkel, 1945; Mackenzie and Shuttleworth, 1949]. The stress
in these models is the surface stresses resulting from interfacial tension.

As described by Frenkel [1945], the initial stage of sintering of an isotropic packing, in which viscous necks
form between melt particles of initial radius ri, can be cast in terms of either a linear shrinkage (strain) S of a
bulk sample with initial length Li that undergoes a change in length ΔL

S ¼ ΔL
Li

¼ 3Γ
8μri

t (1)

or the temporal evolution of the relative density: ρr = ρ/ρm where ρ is the time-dependent packing density
and ρm is the melt density. The Frenkel [1945] model is

ρr ¼ ρr;i 1� 3Γ
8μri

t

� ��3

(2)

for which ρr,i is the initial relative density, μ is the Newtonian melt viscosity, Γ is the interfacial tension at the
melt-vapor surface, and t is the time. Equations (1) and (2) have been shown to describe well the initial
evolution of viscously sintering tight packs of materials in the absence of crystallization [e.g., Scherer and
Bachman, 1977]. Variations on the theory of Frenkel have been used to discriminate early stage sintering
mechanisms by viscous flow or volume diffusion but are inadequate for describing more complex surface
diffusion sintering processes often involved in neck formation [e.g., Kingery and Berg, 1955].

The neck formation stage of viscous sintering is empirically constrained to be complete at a relative density of
0.75–0.85 (depending on the initial packing type [Prado et al., 2001]) at which point, the granular packing
hosts a continuous melt phase suspending both isolated and interconnected pores. The physical argument
for the point at which the neck formation stage is complete is empirical and remains so poorly defined that
some authors argue for a continuum model neglecting this stage altogether [Olevsky, 1998; Vasseur et al.,
2013]. The remainder of the transition to a fully dense melt proceeds by the relaxation of the internal surface
area of the pore network [Mackenzie and Shuttleworth, 1949] which was shown to be well approximated by
[Chiang et al., 1997; Prado et al., 2001]

dρr
dt

¼ 3Γ
2aiμ

1� ρrð Þ (3)

where ai is the radius of the suspended pores which, depending on the initial particle packing type, is a function
of ri. This model approximates a connected network of gas volume as a packing of shrinking spherical bubbles
whose number remains constant andwho do not interact with one another. Integration of equation (3) results in

ρr ¼ 1� 1� ρr ;i
� �

exp � 3Γ
2aiμ

t

� �
(4)
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Prado et al. [2001] further proposed a continuum model in which the process is predicted to transition
smoothly from the neck formation regime to the pore network relaxation regime for a polydisperse packing
of initial particles such that

ρr ¼
X
r

ρ1 r; tð Þθ1 tα � tð Þ þ ρ2 r; tð Þθ2 t � tαð Þ½ �ϕrξ r (5)

where ρ1 and ρ2 are the densities of the packing in the neck formation and pore-shrinking regimes, respectively.
Here r is a particle radius bin in a measured distribution of radii. The step functions, θ1 and θ2 switch between
values of 0 and 1 to operate the transition from one regime to the next at critical time tα. This time (tα)
occurs when the critical relative density ρα at the end of the neck formation stage is reached such that at
t< tα≡ ρ(r,t)< ρα and the dynamics are governed by equation (2), otherwise at t> tα≡ ρ(r,t)> ρα and the
dynamics are governed by equation (4). Explicitly, θ1 = 1 and θ2 = 0 at t< tα and θ1 = 0 and θ2 = 1 at t> tα. ϕr is
the volume fraction of particles with radius r. It should be noted that equations (1) and (3) were developed
for monodisperse packs of spheres, and therefore, it is an approximation to use equation (5) for different
packing types of polydisperse particles. However, studies have verified the efficacy of a polydisperse
approximation to monodisperse theory within analytical error and over ranges of particle size distributions
similar to those used here [Lara et al., 2004; Soares et al., 2012].

The polydisperse result is parameterized in terms of the nondimensional function ξr which takes account
of the number of particles n of any radius that form a neck with a particle of radius r. ξr is therefore an
average of the number of necks that particles can form with any particle of a radius considered in the
distribution of radii

ξ r ¼
1=r cX

r

ϕr=r
c

(6)

where the exponent c is given by

In
X
k

n r; rkð Þϕrk ¼ β � c ln rð Þ (7)

for which β is an inconsequential constant and n(r, rk) is the number of particles of radius r that can be
accommodated around a particle of radius rk. Prado et al. [2001] showed that for spherical particles the
following is an approximate solution for n

n ≈
2πffiffiffi
3

p 2
3
þ 2

rk
r
þ rk

r

� �2
� �

(8)

Ensuring continuity between the dynamics of equations (2) and (4) via equation (5) is not trivial and requires a
method for the calculation of ai from themeasurable initial particle radius ri.Mueller et al. [2007] relate the linear
shrinkage rate of Frenkel [1945] to the relative densification rate ofMackenzie and Shuttleworth [1949] as follows

dS
dt

¼ ρ1=3r;i

3ρr4=3
dρr
dt

(9)

which yields a method for estimating ai at the transition relative density ρα between the two sintering
regimes such that

ai ¼ 4ri
3

ρ1=3r;i 1� ραð Þ
ρ4=3α

(10)

2.2. Nonisothermal Viscous Sintering

Subject to a linear heating rate q, nonisothermal conditions permit the conversion of time t to temperature T by
dt =dT/q. With this consideration we can integrate the temperature T between the glass transition temperature
Tg (we use the onset of Tg measured at 10°C min�1 in both the model and experiments) and the experimental
temperature T and time t, which leads to a nonisothermal model of viscous sintering. Equation (1) becomes

ρr ¼ ρr;i 1� 3Γ
8riq ∫

T

Tg

1
μ
dT

� ��3

(11)
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and integrating between the temperature
reached by time tα, termed Tα, and the
experimental temperature T, equation (3)
becomes

ρr ¼ 1� 1� ρr;i
	 


exp � 3Γ
2aiq∫

T

Tα

1
μ
dT

� �
(12)

By applying the step-function principle in
equation (5) to the nonisothermal case, we can
solve for the continuum viscous sintering process
in a maximum packing of polydisperse spheres
during constant linear heating above the glass

transition temperature. As previously mentioned, the relative density at which the transition from neck formation
to pore shrinkage occurs is poorly constrained. It is empirically thought to occur at a relative density of 0.8.

3. Material Properties and Experimental Methods

Volcanic ash is typically produced by the brittle fragmentation of magma during which melt is subjected to
stresses at rates which engender its glassy response [Dingwell, 1996]. This ash can then be sintered in a
number of emplacement scenarios. In order to test the process of sintering in complex, nonisothermal
conditions we employ here a standard glass whose physical properties are analogous to volcanic glass.
We have chosen to use a viscosity standard (soda-lime glass; Table 1) from the Deutsche Glastechnische
Gesellschaft (DGG) as it has precisely determined thermal properties including glass transition and liquidus
temperatures, a well-constrained temperature dependence of viscosity, and its excellent glass-forming ability
(i.e., its kinetic reluctance to crystallize, degas, or exhibit liquid-liquid immiscibility) at our experimental
temperatures and timescales. Additionally, we use populations of solid spherical soda-lime silica (Table 1)
Spheriglass® glass beads. We predict the temperature dependence of viscosity of the melt derived from the
glass beads by using the multicomponent model of Fluegel [2007] developed for industrial glass-forming
silicate melts. This composition-dependent model is in excellent agreement with the viscosity measurements
of Okhotin and Tsoi [1952] using a glass of near-identical chemical composition (Figure 1).

The DGG glass was powdered in an acetone ball mill for ~1h. The particle size distributions of both the powdered
DGG glass and the glass beads were measured using a Coulter LS230 laser refraction particle size analyzer with a

measuring range 0.375–2000μm
(Figure 2). The particle size distribution of
both the glass beads and the DGG glass
powder used are monomodal and range
between 100 and 102μm. The DGG glass
powder consists of angular fragments
whereas the glass beads are near
spherical (Figure 2). The measured
particle size distributions yields a linear
relationship between ln(r) and the left
side of equation (7) and therefore gives
the c exponent used to predict the
neck-forming ability of the polydisperse
population. We find that for the glass
beads, which have a dominant peak that
is near-Gaussian, the value of c can be
taken as ~1. This is in agreement with
previous studies that have used this
parameter with tightly clustered particle
size distributions [Lara et al., 2004;
Prado et al., 2001; Soares et al., 2012].

Table 1. Composition of Materials

Oxide Glass Beads (wt %) DGG (wt %)

SiO2 72.50 71.72
TiO2 0.00 0.14
Al2O3 0.40 1.23
Fe2O3 0.20 0.19
MgO 3.30 4.18
CaO 9.80 6.73
Na2O 13.70 14.95
K2O 0.10 0.34
SO3 0.00 0.44
Total 100.00 99.91

Figure 1. The temperature dependence of melt viscosity of the glass beads
calculated after the composition-dependent model of Fluegel [2007] and of
the DGG viscosity standard glass using the equation fromHess [1996] (Table 2).
The glass transition temperature, Tg, is determined for a rate of 10 K min�1.
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The onset of the glass transition (Tg) interval and the temperature dependence of the sample mass of
the glass beads were measured simultaneously using a Netzsch simultaneous thermal analysis Jupiter
449 F1 (Figure 3). 56–83mg samples were placed in lidded platinum crucibles (with holes) and heated at
5–30°C min�1 to 650°C in the presence of a 20mL min�1 argon flow. We can thereby confirm that the
glass bead material is stable over the experimental timescales and temperatures. The mass loss is
negligible over multiple heating cycles (Figure 3c), and the onset of the glass transition Tg varies
insignificantly (1 K) in successive measurements indicating that there is no change in the melt structure
(Figure 3a inset). The heat flow data contain no evidence for exothermic crystallization peaks in the
experimental temperature range.

Viscous sintering and the resultant densification rate can be characterized in situ with hot-stage microscopy
[Lara et al., 2004; Soares et al., 2012; Song et al., 2014]. We have used an EM201 Hesse Instrument hot stage
at the Technical University of Munich [see Boccaccini and Hamann, 1999]. We formed ~3mm diameter
cylinders of packed particles for each experimental material, applied a linear heating rate of 1–36°C min�1 to
1500°C in argon at atmospheric pressure, and measured the temperature- and rate-dependent changes in
sample cylinder height L and diameter D. Up to ~800–850°C (Tend; Figure 4) cylindrical geometry was
maintained. As long as cylindrical geometry is maintained, L and D can be converted to a cylindrical volume
V, and thus a sample bulk density via ρ=M/(4/3π(D/2)2 L) using the sample mass M. Additionally, we use
the method of Soares et al. [2012] to convert the continuous measurements of height and diameter
(Figures 4a and 4b) into relative densities (Figures 4c and 4d). The measurements of sample geometry are
automated, and thus, the thermal expansion of the alumina substrate (~99.5wt % Al2O3) is considered when
deriving absolute changes in sample height.

The absolute volumes and densities at Tend were corroborated by conducting experiments in a furnace.
Samples were exposed to linear heating rates and removed at temperature intervals to assess their geometry
and density. The thermal expansion of the melt phase is negligible [Bagdassarov and Dingwell, 1992] within the
analytical error on the measurement of sample geometry and over the range of volume changes associated
with sintering (>40%) and is thus not considered further here. The absolute value of surface tension in silicate
melts is negligibly temperature dependent over the range of temperature used here [Gardner and Ketcham,
2011, Bagdassarov et al., 2000], and therefore, we use a constant value of 0.3N m�1 [Vasseur et al., 2013].

Figure 2. The experimental materials used in this study. (a) The glass beads and (b) powdered DGG viscosity standard glass.
(c) The particle size distribution of the experimental materials. Inset: the result of calculating the parameter c from equation (7).
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4. Results

During heating in the hot stage, sample cylinders thermally expand by an amount (which is trivial for the
present analysis) governed by their glassy thermal expansion coefficients until reaching the glass transition
interval. As the glass transitions to a supercooled liquid, viscous deformation associated with internal surface
relaxation begins and is manifested as isotropic shrinkage. No liquid-state expansion is observed after Tg,

Figure 3. Thermal properties of the glass beads using a differential scanning calorimeter and thermogravimetry. (a) Heat
flow over two identical heating cycles to 650°C at 10°C min�1. Inset: the variation of the onset of Tg with repeated heating
cycles showing that after the initial heating, the onset is stable. The initial heating cycle results in a low Tg due to the
relatively slower cooling rate during the industrial glass formation process. (b) Heat flow at heating rates of 5, 10, 15, 20,
and 30°C min�1 as used in the sintering experiments using fresh samples for each run. Inset: the relationship between
heating rate and the measured onset of Tg (Table 2). (c) The temperature-dependent mass of a sample over two identical
heating cycles to 650°C at 10°C min�1. Thermal properties of DGG viscosity standard glass are known to be stable over the
range of conditions used here and as such are not remeasured here.

Figure 4. Results of densification of cold-pressed cylinders of maximally packed experimental materials in a hot stage
showing the evolution of sample cylindrical height and diameter. (a, b) The results for the glass beads (black) and the
DGG glass (blue) showing the change in sample height and diameter and indicating the range of temperatures over which
cylindrical geometry is maintained. (c, d) The conversion of the data to bulk density.
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suggesting that shrinkage dominates even at high melt viscosities. Typically, this is macroscopically seen at
some point after the glass transition interval and has been termed “first shrinkage” [Pascual et al., 2001]. The first
shrinkage point occurs at higher temperatures when higher heating rates are applied. After the first shrinkage
point, the sample length and diameter decrease approximately equally until the pore phase disappears.
Once the density of the bulk sample is close to that of the melt phase (that is, once sintering is complete),
the sample changes geometry and deviates from cylindrical upon further heating (T> Tend; Figure 4).

We find that the density of the samples relative to that of themelt phase increases from the first shrinkage point
to a value of 1 regardless of heating rate (Figure 4). This indicates that negligibly small quantities of residual
gas volume are suspended in the melt phase at the completion of sintering. Here this is likely a function of the
small initial sample sizes and is not necessarily the case in larger sintering samples [e.g., Vasseur et al., 2013].

5. Interpretation
5.1. Modeling Viscous Sintering Kinetics

Application of the analytical solution provided in section 2 to the experimental data set shows that our model
accurately describes the continuous process from normalized relative densities of 0 to 1 at low heating rates.
At higher relative densities and for higher heating rates, we noteminor deviations as the observed densification
rate is slower than predicted. However, given the large temperature and melt viscosity range over which our
nonisothermal experiments are conducted, we find that the complete viscous sintering process is well resolved
(to within 98%) by this polydisperse model for both the spherical glass beads and for the more angular
DGG glass powder (Figure 5). We therefore conclude that minor angularity is a second-order effect compared
with those effects that change the sintering timescale, namely, melt-vapor interfacial tension, viscosity, and
particle size. To illustrate this, we show a single 5°C min�1 experiment for the DGG glass with the results of a
polydisperse neck formation model using equation (2) [Frenkel, 1945], a monodisperse pore-shrinkage model
using equation (4), for the mean, minimum, and maximum particle sizes [Mackenzie and Shuttleworth, 1949],
as well as the polydisperse pore-shrinkage model (Figure 5a). Additionally, we find that the pore-shrinkage
model ofMackenzie and Shuttleworth [1949] is sufficient to describe the entire sintering continuum. In this case,
the initial neck formation phase that is predicted by the theory of Frenkel [1945] is only used to find the pore
size between clustered particles (equation (10)). This is in keeping with isothermal continuum approximations
made for viscous sintering of pure melts [Olevsky, 1998; Soares et al., 2012; Vasseur et al., 2013]. The question
as to why the neck formation stage is of negligible importance in our system remains unanswered and is
possibly a function of the small particle sizes used here. If this is the case, then it is likely that the total shrinkage
associated with neck formation is small compared with the shrinkage accommodated by pore shrinkage
and as such can be neglected. However, because we use volcanically relevant melt viscosities and particle sizes,
the use of the pore-shrinkage model is satisfactory for use with volcanic ash.

The form of the modeled densification curves is identical to the continuous measured data for each heating
rate. However, in absolute temperature space, we find that a shift-factor ΔT is required to obtain a good fit

Figure 5. The normalized relative density curves over the range of temperature at which cylindrical geometry is maintained.
Absolute initial and final densities are given in Table 2. The curves for the continuum model evolving from equations (11)
to (12) are shown as dashed lines for each heating rate q considered. (a) The results for the 10 C min�1 experiment with
glass beads showing the relative efficacy of different sintering models. (b) Results for the glass beads and (c) for DGG glass
powder. Insets in Figures 5b and 5c show the values of ΔT used to correct the temperature data and model curves for the
steady state ΔT in cylindrical samples with gas volume fractions of 0.4 (solid line) and 0 (dashed line).
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athigh heating rates. At 5°C min�1, the data remain unshifted, but at heating rates >5°C min�1 the ΔT
required increases. We propose that the cause of this shift is the effect of thermal disequilibrium, and we
therefore have to consider the rate of heat transfer in our samples.

5.2. Thermal Disequilibrium During Sintering

Under nonisothermal conditions, thermal disequilibrium in granular suspensions and in individual particles
becomes a key consideration as differential sintering kinetics can result from melt viscosity gradients.
Therefore, we provide an illustrative consideration of 1-D thermal conduction in (1) individual melt spheres
and (2) cylindrical granular packs of spheres.

In spherical geometry with radius r, the heat equation is

∂T
∂t

¼ κ
r2

∂T
∂r

r2
∂T
∂r

� �
with

T r; t ¼ 0ð Þ ¼ Ti

T r ¼ R; tð Þ ¼ T0

� �
(13)

where κ is the thermal diffusivity and T0 and Ti are the imposed and initial temperatures, respectively. By way
of a Laplace transform, the general solution of this form of the heat equation for 1-D spherical geometry
results in

T r; sð Þ ¼ T0 � Ti
s

Rsinh γrð Þ
rsinh γRð Þ (14)

for which T is the Laplace transform of temperature T, and γ= √s/κ with s representing the Laplace parameter.
A numerical solution to equation (14) yields the time-dependent evolution of temperature in a homogeneous
sphere (Figure 6a). This shows that larger spherical volcanic ash particles take longer to reach thermal
equilibrium when exposed to a new temperature condition. Homogeneous ash particles in the typical range
of size fractions found in volcanic ash, 10�3–100mm, will reach thermal equilibrium in 10�6–100 s for
externally applied temperatures 600–800°C. Clearly, over this temperature range and at moderate heating
rates, single ash size particles can be approximated as instantaneously equilibrated. This is not the case in
packed granular mixtures in which, the thermal diffusion length scale is much smaller than the sample
cylinder radius. Therefore, we also have to consider thermal equilibrium in packs of ash particles.

Adapting the 1-D heat equation to our 1.5mm radius cylindrical samples being heated by a linearly
increasing imposed surface temperature, analogous to our experimental set up, the differential equation is

∂T
∂t

¼ κ
r
∂
∂r

r
∂T
∂r

� �
with

T r; t ¼ 0ð Þ ¼ Ti

T r ¼ R; tð Þ ¼ qt

� �
(15)

where r is the spatial position normal to the axis of symmetry of the cylinder from a cylinder surface at R and q
is the imposed heating rate. Connor et al. [1997] use a definition of the bulk thermal diffusivity in deposits that
incorporates the differential thermal properties arising from significant gas volume fraction ϕg

κ ¼ k

ρmCm
p 1� ϕg

	 
þ ρf Cf
pϕg

(16)

Figure 6. The results of a numerical solution of the 1-D heat equation for conductive heating of (a) an individual
sphere in isothermal external conditions and (b) a cylindrical granular packing of spheres with a known initial
porosity following the incorporation of porous insulating effects in nonisothermal conditions. (c) The modeled
evolution of the maximum thermal gradient in the sample, ΔT, used to explain the discrepancy between the sintering
model and the data at high heating rates (Figure 5).
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where k is the thermal conductivity of
the granular packing defined as
k = km[(1 � ϕg)/(1 + ϕg)] [Bagdassarov
and Dingwell, 1994] and where km is the
thermal conductivity of the melt. Cp

m is
the melt specific heat capacity, and ρm is
the melt density. A superscript f in place
of superscript m denotes the pore-fluid
thermal properties. For simplicity, we
consider equation (16) to be constant in
space and time.We use thermal properties
provided by the glass manufacturers of
our experimental materials (Table 2).

As for the spherical case, a numerical solution to equation (15) using the finite difference method (the step
size in space is 50μm and in time is 2ms) for a cylinder shows that in the case of a linearly increasing external
temperature, a steady state is reached where the absolute temperature difference between the sample
margin and the sample core is constant. The time to reach the constant temperature difference, ΔT, is
dependent on the heating rate (Figure 6c).

Because we find that the continuum sintering model well predicts low heating rate experiments but is
offset in absolute temperature from high heating rate experiments, we use this predicted temperature
difference to correct the absolute temperature of the experimental data. This results in a measured ΔT
which we compare with the calculated ΔT (Figure 6b inset). We find excellent agreement between
the calculated and measured ΔT for the glass bead experiments but an offset at the highest heating rates for
the angular DGG powder (Figure 6c inset).

5.3. Nondimensional Analysis

Nondimensionalization of temperature during linear heating can be achieved by T* = (T � Tg)/qλ where T* is
the specific nondimensional temperature and λ is the timescale of the Mackenzie and Shuttleworth [1949]
pore-shrinkage sintering process such that λ= 2aiμ/3Γ. In Figure 7 we show the efficacy of our model over the

range of heating rates considered by
presenting a master sintering curve
for all viscous sintering of metastable
single phase melts.

5.4. Sintering in
Volcanic Environments

We show that in nonisothermal
conditions the transience of porosity is
strongly nonlinear and can be well
described by accounting for the effect
of polydisperse grain size distributions
and the variable melt viscosity.

In nature, volcanic ash involved in
welding is deposited hot and/or
external heat sources raise the
temperature. Our model implies that
above the glass transition, melt in
volcanic ash will sinter viscously.
Deposits that record some sintering,
such as those found in welded
ignimbrites [e.g., Andrews and Branney,
2011] and tuffisites [e.g., Tuffen and

Table 2. Properties of Materials

Parameter Glass Beads DGG

AVFT �2.6387a �2.818b

BVFT 4303.36a 4551b

CVFT 530.754a 510.07b

ρm800°C (kg m�3) 2500 2500

Cp
m (J kg�1 K�1) 880 1600

km (W m�1 K�1) 1.5 0.95
ρi (kg m�3) 1415–1613 1264–1375

aFluegel [2007].
bHess [1996].

Figure 7. A master sintering curve showing the common behavior of
sintering packs of melt grains when the nonisothermal temperature
is normalized to the specific temperature (see text) over a range of
heating rates and using two materials with different temperature
dependencies of viscosity, glass transition temperatures, and grain
size distributions.
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Dingwell, 2005], are commonly ranked
according to one of several metrics
that is considered to be time
dependent in the sintering process,
such as porosity, density, or strength
[Grunder and Russell, 2005; Grunder
et al., 2005; Quane and Russell, 2005b;
Wright and Cashman, 2014]. Traditional
field descriptors of welding include
“nonwelded,” “incipiently welded,”
“moderately welded” or “densely
welded” [e.g., Ross, 1960; Smith, 1960;
Smith and Bailey, 1966]. However,
even if we think of a hot deposit of
volcanic ash as isothermal, then it is
clear from our results that a universal
ranking for all deposits does not
necessarily mean one can extrapolate
to the timescale of the sintering
process without considering the effect
of grain size and temperature.

Natural volcanic materials are rarely
deposited isothermally. Cooling
occurs during adiabatic ascent,
conductive and convective cooling,
fragmentation, particulate transport,

and postdeposition. Similarly, heating can occur by internal friction during viscous flow [Cordonnier et al., 2012],
including strain localization [Lavallée et al., 2014] and conductive heating during deposition of subsequent hot
material. Therefore, any scenario in which welding or sintering textures are used to infer timescales is
dependent on the cooling or heating rates involved.

In the 2008 eruption of Chaitén Volcano the granular volcanic material preserved in tuffisite veins is often
low crystallinity [Castro et al., 2012] as is the case in our experiments. Thus, if we apply our model to a
sintering tuffisite vein at Chaitén, and if we use the polydisperse grain size distribution measured for our
DGG glass powder (Figure 2), then we would predict that at a constant eruptive viscosity of 109.95 Pa s
(at 825°C and 0.1 wt % H2O; values from Castro and Dingwell [2009] using the viscosity model of [Hess and
Dingwell, 1996]), the isothermal sintering to zero porosity would be achieved after 105 s (~30 h). Given that
tuffisite veins are often interpreted to represent degassing pathways in rhyolite volcanoes [Schipper et al.,
2013], considerations such as these have implications for the longevity of porous channels at depth in
volcanic conduits.

Using the same example of a tuffisite emplaced in hot Chaitén magma, we can model the predicted time
evolution of bulk density when the system is allowed to cool to the glass transition. A minimummelt viscosity
of 106 Pa s can be predicted using the model of Hess and Dingwell, [1996] and is for a magma temperature of
825°C and water content of 4 wt % (storage conditions prior to the 2008 eruption of Chaitén [Castro and
Dingwell, 2009]). The maximum viscosity is for the temperature of the glass transition onset of 710°C with 0.1
wt % dissolved H2O at a cooling rate of 10°C min�1, giving 1012 Pa s [Hess and Dingwell, 1996]. The isothermal
sintering timescale for the viscosity range betweenmagmatic and glass transition temperatures (106–1012 Pa s)
varies 101–107 s and 102–108 s for 0.01 and 0.1mm particle sizes, respectively. If cooling occurs linearly
over that same range from the eruptive temperature to the glass transition, then, according to our model using
a grain size of 0.01 or 0.1mm, a maximum relative density is reached by the time the material cools through
the glass transition and viscous sintering stops (Figure 8). One can see that the effects of nonisothermal
sintering make it challenging indeed to extrapolate from observed textures to densification timescales. The
significant range of isothermal timescales involved demand good constraints on the dominant parameters
such as cooling rate, initial volatile content, devolatilization kinetics, and initial grain size.

Figure 8. Consideration of nonisothermal viscous sintering at Chaitén
Volcano using parameters from Castro and Dingwell [2009] to illustrate
the application of the model presented. The starting relative density is
0.6. Curves are shown for 0.01 and 0.1 mm closely packed melt grains
sintering under no external load under a linear cooling profile of 0.1°C
min�1 from 825°C to Tg at 735°C. A constant dissolved water content of
0.1 wt % is considered for simplicity. Note that maximum density is not
achieved before the temperature cools through the glass transition and
viscous sintering ceases. The relative density at Tg is 0.69 and 0.61 for an
ri of 0.01 and 0.1 mm, respectively.
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As stated, the volcanic system differs from homogeneous glass systems with time-independent physical
properties. One key difference is that melts in magmas degas volatiles which induces melt viscosity gradients
[Hess and Dingwell, 1996] and time dependency. Viscous sintering rates are likely retarded during the
degassing process because water loss and the subsequent increase in melt viscosity will be greatest at the
ash grain surfaces, which are where the driving stress for sintering is concentrated. Similarly, influx of water
into the melt will accelerate sintering. The interplay between diffusional processes and the internal evolution
of the occluding pore network surfaces is poorly constrained and is surely critical to volcanic environments.

We have presented here a first-order constraint on the effect of cooling rate and grain size; however, in nature,
local stress conditionsmay contribute to sintering. Viscous sintering under either an isotropic confining pressure
or a deviatoric stress will likely modify the densification timescale and dynamics. This additional complexity
has been explored using volcanic materials [Quane and Russell, 2005a; Quane et al., 2009] over a range of
uniaxial-applied loads relevant for shallow volcanic interiors. For a givenmaterial at a given temperature, the rate
of densification is accelerated by loading. This echoes the findings of those who have investigated the pressure
sensitivity of sintering in pure glasses [e.g., Rahaman et al., 1987; Scherer, 1986]. Under these conditions, the
densification mechanics are less likely to be dominated by the effects of surface tension and more likely to
be related to self-compaction under gravity [Bercovici et al., 2001; Michaut et al., 2009] or with densification
associated with high shear strain [e.g.,Okumura et al., 2010]. Under these varied conditions, effects such as shear
localization [Lavallée et al., 2013], volatile resorption [Sparks et al., 1999], and porosity redistribution [Laumonier
et al., 2011] will likely cause further complication of simple densification models.

Most silicic volcanic eruptions are thought to occur when pore overpressure exceeds a strength criterion for
magma [Gonnermann and Manga, 2003; 2007; Spieler et al., 2004]. The nonlinear kinetics of nonisothermal
sintering, even under the surface tension end-member, are critical to this process as the strength of magmas
is modified by sintering densification [Kolzenburg et al., 2012; Quane and Russell, 2003; Vasseur et al., 2013].
In future, a time-dependent strength model for magma and the kinetics of sintering should be incorporated
into conduit flow models for better analyses of the effects of pore overpressure developed during ascent or
following decompression events.

6. Concluding Remarks

Under isothermal conditions, viscous sintering is strongly particle size and melt viscosity dependent with a
weak dependence on the melt-vapor interfacial tension in silicate melts. In the more complex nonisothermal
sintering scenario, the heating or cooling rate has the combined effect of introducing thermal disequilibrium
in volcanic ash deposits, shifting the kinetic glass transition temperature interval, below which sintering
progresses more slowly and diffusively, and affecting the rate of viscosity change and thus the rate of change
of the sintering timescale. The range of particle angularities here investigated did not impact the sintering
dynamics such that one model describes both spherical and angular glass particles. These considerations
should be included in sintering and weldingmodels for volcanic deposits. The model we present can be used
as a tool for volcanologists to infer the longevity of statically sintering hot volcanic ash deposits.
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