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1 Introduction

The behaviour of conformal field theories in the limit of large central charge has been a

subject of great interest in recent years. One motivation for this interest is the AdS/CFT

correspondence which relates gravitational theories in AdS to a CFT on the boundary [1–3].

While much recent work has focussed on understanding general constraints on possible

holographic theories [4–12], it is also of interest to explore explicit examples to understand

the details of the spectrum and interactions as these can sometimes reveal unexpected fea-

tures. The archetypal holographic example is the correspondence between four-dimensional

N = 4 super Yang-Mills theory and type IIB superstring theory on AdS5 × S5.

The central quantities of interest under such a correspondence are the correlation

functions of gauge-invariant local operators. In the case of N = 4 super Yang-Mills theory,
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such correlation functions are dependent on the gauge coupling g and the choice of gauge

group, which we take to be SU(N). The limit of large central charge corresponds to the

large N limit and, when taken with the ’t Hooft coupling λ = g2N fixed and large, should

lead to a regime of the theory where the massive string excitations decouple and which can

be described by IIB supergravity on AdS5 × S5.

The massless string modes include the graviton and its superpartners. These fields

can propagate in the AdS5 directions, while the S5 factor leads to a tower of Kaluza-

Klein modes all carrying representations of SU(4). The graviton multiplet corresponds to

the energy-momentum multiplet of N = 4 super Yang-Mills theory and it is the simplest

example of a half-BPS multiplet. There is an infinite tower of related half-BPS operators,

corresponding to the associated Kaluza-Klein modes. In terms of Yang-Mills fields the

superconformal primary operators of these half-BPS multiplets take the form of a single

trace over scalar fields φI which transform in the vector representation of SO(6),

Op(x, y) = yI1 . . . yIp tr
(
φI1(x) . . . φIp(x)

)
. (1.1)

Here yI is an auxiliary null SO(6)-vector, y2 = 0. The label p denotes the fact that the

primary sits in the SU(4) representation [0, p, 0], with the case p = 2 corresponding to the

energy-momentum multiplet. The fact that the operators Op are half-BPS means that they

always possess their classical integer scaling dimensions. Their two-point and three-point

functions also receive no quantum corrections and take their free field theory forms.

Here we will draw on general CFT techniques, in particular the operator product ex-

pansion (OPE), as well as explicit results for the tree-level supergravity contribution to

correlation functions of half-BPS operators. A very compact solution for the most gen-

eral half-BPS four-point function 〈Op1Op2Op3Op4〉 at tree-level in the supergravity limit

was presented in [13]. The formula is given in Mellin space, and is deduced from general

analytic principles applied to the Mellin representation, rather than a direct supergravity

calculation. These properties are based on the existence of the OPE and in particular the

presence of exchanged double-trace operators as well as other properties such as crossing

symmetry. The resulting formula agrees with the cases available in the literature obtained

from representations in terms of Witten diagrams and other techniques [14–23]. Further

analysis examining the consistency of the result of [13] with supergravity have been per-

formed in [24].

Here we systematically analyse the OPE of a particular class of four-point functions

at large N , using methods developed in many papers on the OPE of conformal and super-

conformal theories [20, 25–29]. In the OPE of these correlators we expect both protected

operators and unprotected ones. The only unprotected operators which we expect to be

present in the spectrum in the supergravity limit are multi-trace operators made from

products of derivatives of the operators Op. This is because we expect all other long opera-

tors to correspond to string excitations which have acquired large mass in the supergravity

limit. Furthermore, of the long multi-trace operators, we expect only the double-trace

operators of the schematic form

Op�n∂lOq , (1.2)
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to appear in the OPE at leading order in 1/N2. Higher multi-trace operators should also

appear, but only at higher orders in 1/N2. Operators of the form (1.2) have classical

dimension p + q + 2n + l and spin l. More often we will refer to the twist which is the

difference of the dimension and the spin (hence equal to p + q + 2n in the above case)

instead of the dimension itself. In the strict large N limit the dimension will be fixed to its

classical value, regardless of the value of the Yang-Mills coupling. In a large N expansion

the operators (1.2) will only acquire anomalous dimensions at order 1/N2.

In the first instance we will consider the SU(4) singlet double-trace operators for which

we need p = q in (1.2). In that case the only quantum numbers which distinguish them

are the twist and the spin. It is therefore clear that the set of (t− 1) operators

{O2�
t−2∂lO2,O3�

t−3∂lO3, . . . ,Ot�0∂lOt} (1.3)

are degenerate in the strict large N limit since they all have twist 2t and spin l. Including

the anomalous dimensions at order 1/N2 will lift the degeneracy however.

We label the (t− 1) degenerate operators with fixed t and l by Kt,l,i for i = 1, . . . , t−
1. In order to resolve the degeneracy among the operators (1.3) we consider four-point

correlators of the form 〈OpOpOqOq〉 for 2 ≤ p ≤ q ≤ t. To perform our OPE analysis we

need two pieces of information about each correlator. Firstly we need the leading large N

result which comes from disconnected contributions and can be obtained from free field

theory. Secondly we need the first 1/N2 suppressed connected contribution, coming from

the formula of [13]. With these two pieces of information we find that we have enough

information to resolve the degeneracy of the sector of unprotected double trace operators.

This yields the leading order three-point functions 〈OpOpKt,l,i〉 for each of the operators

Kt,l,i as well as the O(1/N2) contribution to their anomalous dimensions.

Above we discussed the singlet channel but we are able to generalise the analysis to

consider long double-trace operators in the [n, 0, n] representation for any n. In this case

we have (t− n− 1) degenerate operators of twist 2t and spin l schematically given by

{On+2�
t−n−2∂lOn+2,On+3�

t−n−3∂lOn+3, . . . ,Ot�0∂lOt} (1.4)

Again the information required to resolve the degeneracy can be obtained just by consid-

ering correlators of the form 〈OpOpOqOq〉 for 2 + n ≤ p ≤ q ≤ t.
Even though the formula of [13] for the Mellin representation of the correlation func-

tions is very simple, there is no guarantee that solution of the mixing problem will be

simple. However, we find a surprisingly simple structure appearing in both the anomalous

dimensions and the OPE coefficients. To exhibit the simplicity here we quote the formula

for the anomalous dimensions of the (t − n − 1) double-trace operators in the [n, 0, n]

representation with classical twist 2t and spin l. We write the full dimension as

∆
[n,0,n]
t,l,i = 2t+ l +

2

N2
η

[n,0,n]
t,l,i + . . . (1.5)

where the ellipsis denotes terms of higher order in 1/N . The quantity η
[n,0,n]
t,l,i is given by

η
[n,0,n]
t,l,i = −2(t− 1− n)t(t+ 1)(t+ 2 + n)(t+ l − n)(t+ l + 1)(t+ l + 2)(t+ l + 3 + n)

(l + 2i+ n− 1)6
,

(1.6)
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and i = 1, . . . , t − n − 1 is the extra label needed to distinguish the different operators

which become degenerate at infinite N . In (1.6) we have used the Pochhammer symbol

(x)r = x(x+ 1) . . . (x+ r − 1) to compactify the expression.

The three-point functions 〈OpOpKt,l,i〉 also exhibit a very nice structure with respect

to their spin dependence. For fixed t these naturally form a mixing matrix with l-dependent

entries. We find that the l dependence has a universal structure which can be precisely fixed

by imposing orthogonality of the (normalised) matrix. Thus, having used the explicit data

to identify this pattern, the three-point functions can then actually be determined with no

more reference to the explicit correlation functions. We find this universal structure quite

remarkable and suggests a further underlying structure yet to be identified.

Very recently the two papers [33, 34] appeared using the idea of resolving the de-

generacy among the singlet double-trace operators to make statements about quantum

corrections to the classical supergravity results. In [33], the method of large spin pertur-

bation theory (see [35]) was applied to derive formulas for the O(1/N4) corrections to the

anomalous dimensions of the singlet twist-four operators. In our paper [34], we used the

resolved mixing for the singlet channel presented here in more detail to make a closed-form

resummed prediction for the double discontinuity of the correlator 〈O2O2O2O2〉 at order

1/N4. In particular in [34] we already presented and used the result for the anomalous

dimensions (1.6) in the singlet case n = 0. We were then able to use a polylogarithmic

ansatz to construct a crossing symmetric amplitude, which was fixed almost uniquely1 by

the double discontinuity. From this predicted amplitude we then extracted a closed-form

all-spin formula for the 1/N4 correction to the singlet twist-four anomalous dimensions.

The resulting formula agrees with the dimensions quoted in [33].

2 Four-point correlators of half-BPS operators in N = 4 SYM

Half-BPS scalar operators in N = 4 SYM transform in the irrep [0, p, 0] of the R-symmetry

group SO(6) ⊂ SU(2, 2|4) and have protected dimension ∆ = p. At weak coupling, these

operators can be described by the single-trace operators

OIp = C
i1,...ip
I Tr

(
φi1 . . . φip

)
, I = 1, . . . dim[0, p, 0] (2.1)

where φi=1,...,6 are elementary fields in the adjoint of SU(N), and the Ci1...ikI provide a real

basis of traceless symmetric tensors for the irrep [0, p, 0]. At strong ’t Hooft coupling, OIp
is dual to a scalar field ϕIp of type IIB supergravity compactified on AdS5×S5. According

to the AdS/CFT correspondence, the mass of ϕIp is related to the dimension of OIp through

the formula m2L2 = p(p − 4), where L is the AdS radius, and the corresponding irrep is

obtained from Kaluza-Klein reduction on the five-sphere [36].

Here we will be interested in four-point correlation functions. A generic four-point

correlator will transform as a singlet inside the product ⊗4
i=1[0, pi, 0]. Handling the SO(6)

structure can be conveniently done as follows,

Op = yi1 . . . yip Tr
(
φi1 . . . φip

)
, ~y · ~y = 0 , (2.2)

1For details see the discussion in section 6 of [34].
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where yi is a complex null vector parametrizing the coset space SU(4)/S(U(2) × U(2)).

In the context of AdS/CFT bulk fields ϕIp are parametrized by harmonic variables on a

different coset space, S5 ∼ SO(6)/SO(5), therefore the representation (2.2) is not directly

available. Four-point correlators obtained in this representation can be re-expressed in

terms of the other and reduced to the following general form

〈Op1(~x1)Op2(~x2)Op3(~x3)Op4(~x4)〉 =
∑
{dij}

 ∏
1≤i<j≤4

(gij)
dij

A{dij}(u, v) , (2.3)

where the propagator gij and the cross ratios (u, v) are defined as

gij =
~y 2
ij

rij
, u =

r12r34

r13r24
, v =

r14r23

r13r24
, rij = (~xi − ~xj) 2, ~y 2

ij = ~yi · ~yj . (2.4)

The sum runs over all possible partitions {dij} such that

dij = dji, dii = 0,
∑
j

dij = pi ∀ i = 1, . . . 4. (2.5)

We shall refer to the expression (2.3) as the diagrammatic representation of the correlator.

In the diagram a line connecting two black bullet points i and j will correspond to a

superpropagator gij . In free field theory the diagrammatic representation of the correlator

follows directly from Wick’s theorem. The functions A{dij} are constant in (u, v) and only

depend on the rank of the gauge group. A simple case study is 〈O2O2O2O2〉 which is fully

crossing symmetric:

〈O2O2O2O2〉 = Adisc

+ Aconn

+ +

+ +

An explicit computation gives Adisc = 4(N2 − 1)2 and Aconn = 16(N2 − 1). Non trivial

(u, v) dependence arises both at loop level in perturbation theory [37–44], and at strong ’t

Hooft coupling from holography [14–23].

It is sometimes conventional to introduce together with the cross ratios (u, v), the

SU(4) invariants σ and τ defined by:

g13g24

g12g34
= uσ,

g14g23

g12g34
=
u τ

v
. (2.6)

Each diagram can then be expressed as a monomial in σ and τ multiplied by a kinematic

prefactor. Without loss of generality, we can assume the operators at locations ~x1, ~x2, ~x3, ~x4

have dimensions p1 ≥ p2 ≥ p3 ≥ p4, respectively. Then we pull out an overall prefactor

from the correlator

– 5 –



J
H
E
P
0
2
(
2
0
1
8
)
1
3
3

1) Pp1p2p3p4 = gd12 g
p1−d
13 gp2−d

23 gp4
34 with d = p1+p2−p3+p4

2 > 0 if p2 + p3 ≥ p1 + p4,

2) Pp1p2p3p4 = gp2
12 g

p3−d
13 gp4−d

14 gd34 with d = −p1+p2+p3+p4

2 > 0 if p2 + p3 ≤ p1 + p4,

The prefactors can be displayed diagrammatically as:

case 1)

p2−d

d

p1−d
p4

p2 p3

p1 p4

d := p1+p2−p3+p4

2

case 2)

p2

p3−d

p4−d

d

p2 p3

p1 p4

d := −p1+p2+p3+p4

2

In both cases, the values of d is uniquely fixed by solving the conditions (2.5). These two

cases cover the entire range of non-vanishing possibilities for ordered p1, p2, p3, p4. With

the appropriate prefactor, we can rewrite

〈Op1(~x1)Op2(~x2)Op3(~x3)Op4(~x4)〉 = Pp1p2p3p4 Gp1p2p3p4(u, v, σ, τ ), (2.7)

where G is now polynomial in σ and τ .

The “partial non-renormalization” theorem [45] puts further constraints on the form

of Gp1p2p3p4 . In particular, Gp1p2p3p4 admits the splitting

Gp1p2p3p4 = Fp1p2p3p4 + I(u, v, σ, τ )Hp1p2p3p4(g) , (2.8)

where I(u, v, σ, τ ) is the following degree two polynomial,

I(u, v, σ, τ ) = v + σ2uv + τ2u+ σv(v − 1− u) + τ(1− u− v) + στu(u− 1− v) , (2.9)

and the key point is that Fp1p2p3p4 is independent of the coupling constant gYM whilst all

the non-trivial dependence on gYM appears in Hp1p2p3p4 .

2.1 Large-N correlation functions at strong ’t Hooft coupling

The AdS/CFT correspondence predicts, in the regime of strong ’t Hooft coupling corre-

sponding to classical supergravity, the leading large-N behaviour of the correlation func-

tions 〈OI1p1
OI2p2
OI3p3
OI4p4
〉. We briefly sketch how the computation goes, and we make some

important remarks.

The action for the collection of KK modes { f k}k≥1 on AdS5×S5 can be written as,

Ssugra =
N2

8π2L3

∫
dΩ
(
L(2) + L(3) + L(4) + . . .

)
(2.10)

where dΩ is the measure on AdS5, and L its radius. We shall denote by z the bulk

coordinate, and by ~x the boundary coordinates. The index n on L(n) indicates the number
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of fields, in particular L(3) and L(4) contain cubic and quartic interactions among KK

modes. These include graviton and gauge fields. Self interactions and interactions among

different SO(6) representations are mediated by the potential. The action is explicitly

known up to fourth order [16]. The radius of AdS5 can be set to one because we will not

consider curvature corrections.2

To start with, let us focus on a specific mode f (z,~x ), among the many in the KK

tower. In the saddle point approximation, valid at large N , the field f (z,~x ) propagates in

the bulk according to its equation of motion, (∇2−m2) f = J [{f k}], where the source term

J depends on the totality of the fields coupling to f . The general solution for f (z,~x ) can

be written in terms of the bulk Green function Gbb, and the bulk-to-boundary propagator

Gb∂ , as follows

f (z,~x ) = f 0(z,~x ) +

∫
dzd4~x ′ Gbb(z,~x ; z′,~x ′ ) J [{f k(z′,~x ′ )}] , (2.11)

f
0
(z,~x ) =

∫
d4~x ′ Gb∂(z,~x ;~x ′) S(~x ′) . (2.12)

where f 0 solves the homogeneous equation of motion with boundary conditions S(~x ′).

According to the AdS/CFT correspondence, S(~x ′) is identified with the boundary source

which couples to the operator dual to f (z,~x ). The perturbative expansion around the

homogeneous solutions {f 0
k (z′,~x ′)} defines the corresponding series expansion for J , i.e.

J = J(2) +J(3) + . . . where the label indicates again the number of boundary fields Sk(~x ′) at

each order. Finally, evaluating the action on-shell can be interpreted diagrammatically as

summing over tree-level Witten diagrams. The result is the following generating functional

for the boundary sources:

Ssugra =

∫
d4~x1d

4~x2 Sk1(~x1)Sk2(~x2) D(2)
k1k2

(~x1,~x2)

+

∫
d4~x1d

4~x2d
4~x3 Sk1(~x1)Sk2(~x2)Sk3(~x3)D(3)

k1k2k3
(~x1,~x2,~x3)

+

∫
d4~x1d

4~x2d
4~x3d

4~x4 Sk1(~x1)Sk2(~x2)Sk3(~x3)Sk4(~x4)D(4)
k1k2k3k4

(~x1,~x2,~x3,~x4) + . . .

(2.13)

Here the functions D(i=2,3,4)({~xi}) are proportional to N2 according to (2.10). Correlators

of n operators can then be computed by taking n functional derivatives w.r.t. to the dual

sources. In particular,

〈OI1p1
(~x1)OI2p2

(~x2)OI3p3
(~x3)OI4p4

(~x4)〉 =
4∏

n=1

δ

δSn(~xn)
e−Ssugra

∣∣∣
Sn=0

. (2.14)

Two-point and three-point functions obtained from AdS supergravity manifestly agree

with CFT expectations [30, 31]. In the supergravity conventions all two-point functions

are normalized to N2, however it is always possible to redefine the sources so as to match

the normalization given in (2.2).

2Curvature and loop corrections to the supergravity effective action have been discussed in [46].
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Four-point correlators are more interesting and require quite involved manipulations.

Explicit Witten diagram computations have been carried out in the cases of 〈OiOiOiOi〉
for i = 2, 3, 4 [17–19], 〈O2O2OqOq〉 [21, 22] and 〈Ok+2Ok+2Oq−kOq+k〉 [23] for arbitrary

q and k. Despite complications, the end result is neat and the generalization to arbitrary

dimensions has been conjectured in terms of a simple Mellin amplitude [13], which we

review in detail in the next section. Indications about the correctness of this conjecture

also come from explicit supergravity computations [24].

It is clear from the form of Ssugra in (2.13) that upon taking functional derivatives

w.r.t. the sources, a four-point correlator will get a leading contribution from disconnected

two-point functions D(2)
k1k2

D(2)
k3k4

(when it exists) plus the subleading contribution D(4)
k1k2k3k4

,

which is 1/N2 suppressed. The latter will contain a dynamical term with log(u) singular-

ity, but it will also contain a subset of the corresponding free field connected correlator.

Therefore, it will be useful to consider the splitting

Gsugra
p1p2p3p4

= G free
p1p2p3p4

+ Gdyna
p1p2p3p4

(2.15)

where G free
p1p2p3p4

can be computed and studied independently from supergravity. This free

theory contribution will play an important role for the consistency of the AdS/CFT corre-

spondence, and will be discussed in section 4, in the context of the superconformal OPE.

The form of Gdyna
p1p2p3p4 is uniquely given by

Gdyna
p1p2p3p4

= I(u, v, σ, τ )Hdyna
p1p2p3p4

, (2.16)

consistent with partial non-renormalisation (2.8).

2.2 Tree-level supergravity from Mellin space

In [13] the authors conjectured a formula for the function Hdyna at leading order in the

classical supergravity approximation. With the convention that p1 ≥ p2 ≥ p3 ≥ p4,

Hdyna
p1p2p3p4

= Np1p2p3p4 u
d12vd23

(r13r24)p2+2

rΣ−p1−p3
13 rΣ−p1−p4

14 rΣ−p3−p4
34

∮
dC M(s, t, σ, τ ) Γp1p2p3p4

(2.17)

where dC = dsdt
∏
i<j r

−cij
ij is the measure in Mellin space and the cij are given by

c12 =
p1 + p2 − s

2
c14 =

p1 + p4 − t
2

c24 =
s+ t+ 4− p1 − p3

2
, (2.18)

c34 =
p3 + p4 − s

2
c23 =

p2 + p3 − t
2

c13 =
s+ t+ 4− p2 − p4

2
. (2.19)

The other quantities are

Σ =
p1 + p2 + p3 + p4

2
, Γp1p2p3p4 =

∏
i<j

Γ[cij ] . (2.20)

Let us notice that
∑

j cij = pi + 2, thus Hdyna has weight zero under rescalings rij → λrij
and therefore is only function of the cross ratios. The Mellin amplitude is

M(s, t, σ, τ ) =
∑

i+j+k= d34−2

aijk σ
iτ j

(s− s̃+ 2k)(t− t̃+ 2j)(µ− µ̃+ 2i)
, (2.21)
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with µ ≡ 2Σ− 4− s− t ,

s̃ = p3 + p4 − 2, (2.22)

t̃ = min{p1 + p4, p2 + p3} − 2, (2.23)

µ̃ = min{p1 + p3, p2 + p4} − 2, (2.24)

and

aijk = 8
(L− 2)!

i!j!k!

[
(1 + |Σ− p2 − p4|)i (1 + |Σ− p2 − p3|)j (1 + |Σ− p3 − p4|)k

]−1
.

(2.25)

Finally, Np1p2p3p4 ∼ 1/N2 is an undetermined normalization.

The integration contour in Mellin space is taken to lie between the left- and right-

moving poles of the Mellin integrand. The right-moving poles are defined in the s and t

variables and can be found both in the Gamma functions and in the rationals of the Mellin

amplitude. The left-moving poles are given by expressions involving the combination s+ t.

Formula (2.17) is very remarkable, and gives access to four-point correlators of any

quadruplet of half-BPS operators. It has been obtained as the solution of a bootstrap

problem which does not rely on the AdS/CFT correspondence. Inputs from the knowledge

of tree-level Witten diagram in supergravity have been cleverly encoded in the ansatz for

M(s, t, σ, τ ). However, there are other consistency checks based on the presence/absence

of operators in the spectrum of N = 4 SYM at strong coupling that Hdyna
p1p2p3p4 must satisfy.

These were not directly used in the bootstrap problem, and have to do with G free
p1p2p3p4

. We

will see, in the context of the superconformal OPE, that all these consistency checks are

indeed passed and we will use them to determine the overall normalisation, Np1p2p3p4 for

the cases of interest.

In the remainder of this section we outline a simple algorithm which converts Hdyna
p1p2p3p4

into a sum of Dδ1δ2δ3δ4 functions, with δi depending on the charges pj . This rewriting will

be advantageous when we will look at the OPE decomposition of Hdyna
p1p2p3p4 . In fact, any

Dδ1δ2δ3δ4 with integer σ ≡ (δ1 + δ2 − δ3 − δ4)/2 ≥ 0 can be written very explicitly as

Dδ1δ2δ3δ4 = u−σD
sing
δ1δ2δ3δ4 +D

analytic
δ1δ2δ3δ4 + log(u)D

log
δ1δ2δ3δ4 , (2.26)

where

D
sing
δ1δ2δ3δ4 =

σ−1∑
n=0

(−u)n

n!
Γ[σ − n] Λδ3δ4δ1−σδ2−σ(n) F

δ2−σ+n|δ3+n
δ3+δ4+2n (1− v) , (2.27)

D
log
δ1δ2δ3δ4 = (−)σ+1

∞∑
n=0

un

n!(σ + n)!
Λδ1δ2δ3+σδ4+σ(n) F

δ2+n|δ3+σ+n
δ1+δ2+2n (1− v) , (2.28)

with3

F a|bc (x) ≡ 2F1[a, b; c](x), Λδ1δ2δ3δ4
(n) ≡ Γ[δ1 + n]Γ[δ2 + n]Γ[δ3 + n]Γ[δ4 + n]

Γ[δ1 + δ2 + 2n]
. (2.29)

3D
sing
δ1δ2δ3δ4 = 0 when σ = 0.
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The expression for D
analytic
δ1δ2δ3δ4 will not be relevant for our discussion, and can be found

in appendix A. In appendix A we also explain how to relate Dδ1δ2δ3δ4 to D1111 by the

action of certain differential operators. Since D1111 has a simple representation in terms of

polylogarithms [48],

D1111 = − log(u)
Li1(x1)− Li1(x2)

x1 − x2
+ 2

Li2(x1)− Li2(x2)

x1 − x2
, (2.30)

defining Dδ1δ2δ3δ4 from D1111 provides a resummation of the series expansions in (2.26).

The conversion algorithm is based on the following observation: for the Mellin integral

attached to a generic monomial σiτ j , i.e.

(r13r24)p2+2

rΣ−p1−p3
13 rΣ−p1−p4

14 rΣ−p3−p4
34

∮
dC Γp1p2p3p4

(s− s̃+ 2k)(t− t̃+ 2j)(µ− µ̃+ 2i)
, (2.31)

it is possible to identify s − s̃, t − t̃ and µ − µ̃ with three out of the six cij appearing in

Γp1p2p3p4 . Therefore, we can rewrite the integrand as a sum of products of six Γ functions

with arguments shifted compared to Γp1p2p3p4 . The precise form of this sum depends on

the specific values of i, j. For concreteness, let us give a simple example, and assume that

p1 + p4 ≤ p2 + p3 and p1 + p3 < p2 + p4. From (2.23) and (2.24) we find

s− s̃ = −2c34 + 2, t− t̃ = −2c14 + 2, µ− µ̃ = −2c13 + 2, (2.32)

therefore

Γp1p2p3p4

(s− s̃+ 2k)(t− t̃+ 2j)(µ− µ̃+ 2i)
(2.33)

=
1

8

Γ[c34]

c34 − (k + 1)

Γ[c14]

c14 − (j + 1)

Γ[c13]

c13 − (i+ 1)
Γ[c12]Γ[c23]Γ[c24] .

We now wish to write this as a sum of terms in which the cij dependence only appears in

the Γs. To this effect we make use of the identity

Γ[c]

c− k − 1
=

k+1∑
s=1

Γ[c− s] Γ[k + 1]

Γ[k − s+ 2]
(2.34)

to rewrite the first three factors on the right hand side of (2.33). The final expression has

the form,

Γp1p2p3p4

(s− s̃+ 2k)(t− t̃+ 2j)(û− ũ+ 2i)
=

∑
{s34,s14,s13}

k{s34,s14,s13}Γ
shift
p1p2p3p4

[s34, s14, s13] ,

(2.35)

where the shifts {s34, s14, s13} are integers, and we defined

k{s34,s14,s13} =
Γ[k + 1]

Γ[k − s34 + 2]

Γ[j + 1]

Γ[j − s14 + 2]

Γ[i+ 1]

Γ[i− s13 + 2]
(2.36)

and

Γshiftp1p2p3p4
[s34, s14, s13] = Γ[c34 − s34]Γ[c14 − s14]Γ[c13 − s13]Γ[c12]Γ[c23]Γ[c24] . (2.37)
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Recalling the definition of Dδ1δ2δ3δ4 in Mellin space,

Dδ1δ2δ3δ4 =
(r13r24)δ2

rΣ′−δ1−δ3
13 rΣ′−δ1−δ4

14 rΣ′−δ3−δ4
34

∮
dC′

∏
i<j

Γ[c′ij ] ,
∑
j

c′ij = δi , (2.38)

it is now evident that (2.31) can be written as a sum of Dδ1δ2δ3δ4 functions in which

δ1 = p1 + 2− s14 − s13,

δ2 = p2 + 2,

δ3 = p3 + 2− s13 − s34,

δ4 = p4 + 2− s14 − s34.

(2.39)

In this case, Σ′ − δi − δj = Σ − pi − pj + sij , for (i, j) = {(1, 3), (1, 4), (3, 4)}, and the

dependence on the shifts cancel against dC′/dC. In the most generic case, identities among D

functions (see appendix A) might be needed in order to obtain an expression in which σ ≥ 0.

Once implemented, the algorithm generates a Dδ1δ2δ3δ4 representation of Hdyna
p1p2p3p4 for

arbitrary values of p1 ≥ p2 ≥ p3 ≥ p4. A four-point correlator with a generic configuration

of charges can then be obtained upon acting with permutation symmetries of Gdyna
p1p2p3p4 and

the prefactor (2.7). We list some examples relative to Hdyna
ppqq with p ≤ q,

Hdyna
22qq = uq Dq,q+2,2,2 , (2.40)

Hdyna
33qq = uq

[
σDq−1,q+2,2,3 + τDq−1,q+2,3,2

+
1

q − 2
Dq,q+2,2,2 +

(
1

q − 2
+ σ + τ

)
Dq,q+2,3,3

]
, (2.41)

Hdyna
44qq = uq

[
2στ

(
Dq−2,q+2,3,3 +Dq−1,q+2,3,4 +Dq−1,q+2,4,3 +Dq,q+2,4,4

)
+ σ2

(
Dq−2,q+2,2,4 +Dq−1,q+2,3,4 +

1

2
Dq,q+2,4,4

)
+ τ2

(
Dq−2,q+2,4,2 +Dq−1,q+2,4,3 +

1

2
Dq,q+2,4,4

)
+

2

q − 3
σ
(
Dq−1,q+2,2,3 +Dq−1,q+2,3,4 +Dq,q+2,3,3 +Dq,q+2,4,4

)
+

2

q − 3
τ
(
Dq−1,q+2,3,2 +Dq−1,q+2,4,3 +Dq,q+2,3,3 +Dq,q+2,4,4

)
+

2

(q − 2)(q − 3)

(
Dq,q+2,2,2 +Dq,q+2,3,3 +

1

2
Dq,q+2,4,4

)]
. (2.42)

The overall uq has a simple interpretation, and in fact it will imply that only long multiplets

with twist ≥ 2q contribute to the leading log(u) singularity. The set of correlators of the

form 〈OpOpOqOq〉, with q ≥ p, is perhaps the simplest generalization of the conjecture [20]

for q = p. In particular, for fixed value of p, the combination of Dδ1δ2δ3δ4 functions attached

to each monomial σiτ j changes according to a simple pattern in q. This pattern is already
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visible at p = 5,

Hdyna
55qq = uq

[
σ3

3∑
k=0

1

k!
Dq−3+k,q+2,2+k,5 + τ3

3∑
k=0

1

k!
Dq−3+k,q+2,5,2+k

+ 3σ2τ
2∑

k=0

1

k!

(
Dq−3+k,q+2,3+k,4 +Dq−2+k,q+2,3+k,5

)
+ 3τ2σ

2∑
k=0

1

k!

(
Dq−3+k,q+2,4,3+k +Dq−2+k,q+2,5,3+k

)
+

3σ2

q − 4

2∑
k=0

1

k!

(
Dq−2+k,q+2,2+k,4 +Dq−2+k,q+2,3+k,5

)
+

3τ2

q − 4

2∑
k=0

1

k!

(
Dq−2+k,q+2,4,2+k +Dq−2+k,q+2,5,3+k

)
+

6στ

q − 4

(
Dq,q+2,4,4 +Dq,q+2,5,5 +Dq−1,q+2,4,5 +Dq−1,q+2,5,4

Dq−2,q+2,3,3 +Dq−2,q+2,4,4 +Dq−1,q+2,3,4 +Dq−1,q+2,4,3

)
+

6σ

(q − 4)(q − 3)

2∑
k=0

1

k!

(
Dq−1,q+2,2+k,3+k +Dq,q+2,3+k,3+k

)
+

6τ

(q − 4)(q − 3)

2∑
k=0

1

k!

(
Dq−1,q+2,3+k,2+k +Dq,q+2,3+k,3+k

)
+

6

(q − 4)(q − 3)(q − 2)

3∑
k=0

1

k!
Dq,q+2,2+k,2+k

]
(2.43)

Finally, let us notice again the simplicity of the Mellin amplitude (2.21) compared to the

Dδ1δ2δ3δ4 representation of the correlator.

3 N = 4 superconformal OPE

As will be explained further in section 5, we need to perform a superconformal block

decomposition of the leading and subleading in 1/N2 correlators 〈Op1Op2Op3Op4〉. There

has been a great deal of work on superconformal blocks in N = 4 SYM both from the

pioneering work of Dolan and Osborn [25, 26, 28, 29] and more recently [52] as well as

supergroup theoretic approaches [51, 53]. In this section we review the methods we use in

this paper.

The OPE of two half-BPS operators is

Op1(x1)Op2(x2) ∼
∑
O

g
p1+p2−∆

2
12 Cp1p2O L(l)(x12, ∂x2) ∗ O(l)(x2) . (3.1)

The sum runs over all primary operators O(l) of dimension ∆, spin l, which belong to the

SU(4) representations,

[0, p1, 0]⊗ [0, p2, 0] =

p1∑
k1=0

p1−k1∑
k2=0

[ k1, p2 − p1 + 2k2, k1 ] (p1 ≤ p2) (3.2)
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Descendants are obtained by the action of the derivative operator L(l)(x12, ∂x2) on the

primaries. A manifest N = 4 formulation of the OPE can be obtained by reorganizing the

sum over operators into supermultiplets. Therefore, inserting the OPE of Op1(x1)Op2(x2)

and Op3(x3)Op4(x4) into the four-point correlator we obtain the representation

〈Op1Op2Op3Op4〉 = P(OPE)
{pi}

∑
{τ, l,R}

A
{pi}
R (t|l) S{pi}R (t|l) (3.3)

where t = (∆ − l)/2 and S{pi}R (t|l) are superconformal blocks described below. Here the

sum over representations runs over those which belong to ([0, p1, 0]⊗ [0, p2, 0])∩ ([0, p3, 0]⊗
[0, p4, 0]). The coefficients A

{pi}
R (t|l) depend explicitly on the charges and are related to

the OPE coefficients by

A
{pi}
R (t|l) =

∑
O∈R

Cp1p2OCp3p4O , (3.4)

where the sum is over all operators with spin l, leading order dimension ∆ and SU(4)

representation R. The prefactor P(OPE) depends on the ordering of the charges. The block

decomposition is invariant under swapping points 1 and 2, points 3 and 4 and swapping

the pairs of points 1,2 and 3,4. Using this symmetry we can clearly always ensure that

p2 ≥ p1, p4 ≥ p3 and p2 − p1 ≤ p4 − p3. Assuming such an ordering, then the following

diagram exists in the free theory,

p2−d

d

p1−d

p3

p2 p3

p1 p4

d := p1+p2+p3−p4

2

We then take the prefactor as represented by this diagram

P(OPE)
{pi} = gd12g

p1−d
14 gp2−d

24 gp3
34 with p2 ≥ p1, p4 ≥ p3, p2−p1 ≤ p4−p3 . (3.5)

Comparing this with the prefactor (and corresponding diagram) taken out of the supergrav-

ity correlator (2.7), we see that up to the appropriate permutation of points, the prefactors

are the same.

Finally the superconformal blocks themselves, S{pi}R (t|l), can be derived using a variety

of approaches and were first derived in [20, 26]. Here we explain them in a compact fashion

in terms of representations of GL(2|2), following [51, 53] as we now review.

Instead of the cross ratios u, v, σ, τ , it will be useful to use the variables x1, x2 and y1, y2:

u = x1x2, v = (1− x1)(1− x2), σ =
1

y1y2
, τ =

(
1− 1

y1

)(
1− 1

y2

)
. (3.6)
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In terms of these, the degree two polynomial (2.8), singled out from the “partial non-

renormalization” theorem, becomes fully factorized:

I(u, v, σ, τ ) = v + σ2uv + τ2u+ σv(v − 1− u) + τ(1− u− v) + στu(u− 1− v)

=
(x1 − y1) (x1 − y2) (x2 − y1) (x2 − y2)

(y1y2)2
(3.7)

Note that xi=1,2 and yi=1,2 are not to be confused with the space-time variables and internal

harmonic variables that were introduced in previous sections. The above variables are

conformally invariant.

3.1 GL(2|2) superconformal partial wave

Conformal blocks and SU(4) harmonics are commonly introduced in the literature

as [25, 29]

B t|l = (−)l
xt+l+1

1 xt2 Ft+l(x1)Ft−1(x2)− xt+l+1
2 xt1 Ft−1(x1)Ft+l(x2)

x1 − x2
(3.8)

Ynm = −Pn+1(y1)Pm(y2)−Pm(y1)Pn+1(y2)

y1 − y2
(3.9)

where Ft is related to 2F1[a, b; c] hypergeometrics and Pn is related to Jacobi polynomials

JP
(a|b)
c through the definitions

Ft(x) = 2F1

[
t− p12

2
, t+

p34

2
; 2t

]
(x), Pn(y) = y JP(p1−d12|p2−d12)

n

(
2

y
− 1

)
. (3.10)

In particular, Ynm with m ≤ n is a polynomial of degree n in (σ, t), and Bt|l is analytic in

u and (1− v), i.e

B t|l =
∑
n≥0

∑
m≥max(0,l−2n)

rnm[t, l, p12, p34]ut+n(1− v)m . (3.11)

The series expansion of B t|l begins with leading term ut(1− v)l where t = (∆− l)/2 is half

the value of the twist.

N = 4 representations and the corresponding superconformal blocks have been studied

extensively in the literature [27–29, 49–53]. They can be written as specific linear combi-

nations of terms of the form B×Y corresponding to the component fields appearing in the

multiplet. This way of writing it depends strongly on the type of multiplet and in partic-

ular its shortening conditions. A more group theoretic approach was taken in [53] giving

a uniform description of all superconformal blocks via a determinantal formula associated

to a GL(2|2) Young tableau which we review now.

In this approach, an operator is defined on analytic superspace by specifying a GL(2|2)

representation via a Young tableau, λ, together with a charge γ, Oγ,λ. The allowed Young
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GL(2|2) rep λ (∆−l)/2 l R multiplet type

[0] γ/2 0 [0, γ, 0] half BPS

[1µ] γ/2 0 [µ, γ−2µ, µ] quarter BPS

[λ, 1µ] (λ ≥ 2) γ/2 λ−2 [µ, γ−2µ−2, µ] semi-short

[λ1, λ2, 2
µ2 , 1µ1 ] (λ2 ≥ 2) γ/2+λ2−2 λ1−λ2 [µ1, γ−2µ1−2µ2−4, µ1] long

Table 1. Translation between N = 4 superconformal reps and superfields Oγλ.

tableaux have the general shape4 λ = [λ1, λ2, 2
µ2 , 1µ1 ].

← λ1 →
← λ2 →

↑
µ2

↓

↑
µ1

↓
(3.12)

The translation to standard quantum numbers depends on the precise shape and is

summarised by table 1. Note that in the case of long multiplets the description of a

superconformal representation in terms of Oγλ is not unique. Indeed if µ2 > 2 then the

representation is unchanged if we map

λ1 → λ1 + 1, λ2 → λ2 + 1, µ2 → µ2 − 1, γ → γ − 2. (3.13)

The leading term in the long multiplet Oγλ can be written schematically in the form

∂λ1−λ2�λ2−2φγ |R. Then the above degeneracy in the description of long reps is a reflection

of the fact that this is the same representation as ∂λ1−λ2�λ2−1φγ−2|R.

A further point is that Young tableaux only make sense for integer values of the row

lengths. However one can analytically continue the long representations to non-integer

values. This is possible because all the long SL(2|2) representations have the same dimen-

sion. Specifically we formally allow the first two row lengths λ1, λ2 to be non-integer, with

the difference λ1 − λ2 remaining integer. This then allows for anomalous dimensions. We

even formally allow the case λ2 → 1 when µ2 = 0. This corresponds to a representation

approaching the unitary bound. In the limit when λ2 = 1 multiplet shortening occurs. So

as representations, a long rep in this limit splits into two short reps.5 Specifically

lim
λ2→1

Oγ[λ2+l,λ2,1µ1 ] = Oγ [l+1,1µ1+1] ⊕Oγ−2 [l+2,1µ1 ] . (3.14)

4Here we specify the row lengths with the notation 2µ denoting 2, 2, . . . , 2, with µ entries in the list, that

is µ rows of length 2.
5We here only consider those representations the four-point function detects.
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The superconfomal block in all cases is given by the following determinantal formula

S{pi}R =

(
x1x2

y1y2

) 1
2

(γ−p4+p3)

Fαβγλ γ = p4−p3, p4−p2+2, . . . ,min(p1+p2, p3+p4)

Fαβγλ = (−1)p+1D−1 det

(
FXλ R

Kλ F Y

)
, (3.15)

where the matrix has dimension (p+ 2)× (p+ 2) with

p = min{α, β}, α =
1

2
(γ − p1 + p2), β =

1

2
(γ + p3 − p4), (3.16)

and for given α, β, γ, and Young tableaux λ, the matrix elements are defined as follows

(FXλ )ij =
(

[x
λj−j
i 2F1(λj + 1− j + α, λj + 1− j + β; 2λj + 2− 2j + γ;xi)]

)
1≤i≤2
1≤j≤p

(F Y )ij =
(

(yj)
i−1

2F1(i− α, i− β; 2i− γ; yj)
)

1≤i≤p
1≤j≤2

(Kλ)ij =
(
− δi; j−λj

)
1≤i≤p
1≤j≤p

R =

(
1

x1−y1

1
x1−y2

1
x2−y1

1
x2−y2

)
D =

(x1 − x2)(y1 − y2)

(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)
(3.17)

The square bracket around the components of FX indicate that only the regular part should

be taken. So if λj < j one has to subtract off the first few terms in the Taylor expansion

of the hypergeometrics.

This formula as written deals with all cases. Note that the determinant yields a sum

of terms each of which contain at most two hypergeometrics in xi (from the first two rows)

and two in yi (from the last two columns). When the determinant is expanded out, the

formula yields different forms depending on whether the multiplet is 1/2 BPS, short or

long, due to the different nature of the matrix Kλ in each case. All cases can be written

in terms of a two-variable or four-variable function. In this paper however we will not

need the explicit forms in all cases. Instead we only need the superconformal blocks for

long operators, which we use to perform the block expansion of the interacting piece of the

correlator H. For the free correlator we use an alternative approach outlined in the next

section which turns out to be very efficient and much less complicated than the one outlined

here. It is particularly useful for performing the free theory analysis which contains all the

short multiplets. The study of short multiplets is technically the most challenging from a

superblock point of view.

3.1.1 Explicit form of the long N = 4 superconformal blocks.

The long multiplets all have Young tableaux containing a two by two block. They thus

have Young tableaux of the form

λ = [λ1, λ2, 2
λ′2−2, 1λ

′
1−λ′2 ]
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That is the first and second rows have length λ1, λ2 respectively and the first and second

columns have height λ′1, λ
′
2 respectively, with λ1, λ2, λ

′
1, λ
′
2 ≥ 2. In this case the determi-

nantal formula factorises yielding

F
αβγλ
long (x|y) = (−1)λ

′
1+λ′2(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

×
Fαβγλ1

(x1)Fαβγλ2−1 (x2)− x1 ↔ x2

x1 − x2

×
Gαβγ
λ′1

(y1)Gαβγ
λ′2−1

(y2)− y1 ↔ y2

y1 − y2
(3.18)

where

Fαβγλ (x) := xλ−1
2F1(λ+ α, λ+ β; 2λ+ γ;x)

Gαβγλ′ (y) := yλ
′−1

2F1(λ′ − α, λ′ − β; 2λ′ − γ; y) . (3.19)

From table 1, this gives the superblock corresponding to a long multiplet of half twist

t = γ/2 + λ2 − 2, spin l = λ1 − λ2 and SU(4) rep R = [λ′1 − λ′2, γ − 2λ′1, λ
′
1 − λ′2].

This can be straightforwardly converted into a B × Y notation. From the defintion of

B introduced in (3.8) we immediately recognize that

Fαβγλ1
(x1)Fαβγλ2−1 (x2)− x1 ↔ x2

x1 − x2
=

1

(x1x2)2+ γ
2

Bt+2|l . (3.20)

Similarly, from the definition of α, β given in (3.16), and an hypergeometric identity6,

we find

−
Gαβγ
λ′2−1

(y1)Gαβγ
λ′1

(y2)− y1 ↔ y2

y1 − y2
= (y1y2)

γ
2

+
p34
2
−2 (n+ 1)!m!

(n+2+p43)n+1(m+1+p43)m
Ynm

(3.22)

where we used the definition of Ynm in (3.9) and the identification,

m = p34/2 + γ/2− λ′1, n = p34/2 + γ/2− λ′2

The SU(4) representation is then [n−m, 2m+ p43, n−m]. It is also convenient to define

the normalized SU(4) harmonics as follows,

Υnm =
(n+ 1)!m!

(n+2+p43)n+1(m+1+p43)m
Ynm . (3.23)

Including the prefactors from the definition of S, and relabelling S → L to highlight

that this is a long operator, the long superblock then becomes

L{pi}nm (t|l) =
(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

(y1y2)2

B 2+t|l

u2+
p43
2

Υnm . (3.24)

6The following identity might be useful

2F1 [λ− α, λ− β, 2λ] (y) = y−λ+β n!

(n− 2β + 1)n
JP(−α−β|α−β)

n

(
2

y
− 1

)
, n ≡ β − λ . (3.21)
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3.2 Bosonised superblocks

Here we outline a novel approach to performing a SCPW analysis, particularly useful for

the free theory in N = 4. It is based on the approach of [53], outlined above and based on

analytic superspace: the key observation there is that superconformal blocks in generalised

analytic superspace with SU(m,m|2n) symmetry exhibit a universal structure, thus one

can map the correlation functions into a generalised analytic superspace with SU(m,m|2n)

symmetry for any m,n, perform the appropriate superblock expansion, and the block

coefficients thus obtained will be the same as the ones you would have obtained had you

performed the expansion in the original space. In particular it is convenient to map the

problem to the generalised conformal group SU(m,m) with n = 0.

As we have seen the free theory 4-point function of any four 1/2 BPS operators is

given as a sum of products of powers of the superpropagators gij (2.3). Now each term in

the free theory contains information about operators Oγ λ for a specific value of γ, namely

γ = d13 + d14 + d23 + d24. (3.25)

Note that graphically γ is simply the number of propagators going from the pair of points

1,2 to the pair 3,4. Explicitly, every term in the free theory can be written as

∏
i<j

g
dij
ij = P(OPE)

{pi} ×
(
g13g24

g12g34

) 1
2

(γ−p4+p3)

×
(
g14g23

g13g24

)d23

(3.26)

where P(OPE)
{pi} is the prefactor of (3.5) (with the ordering of the operators as chosen there).

Now the second factor in this equation is precisely the factor appearing in front of the

superconformal blocks in (3.15). Thus the superblock decomposition reduces to the problem

of decomposing the final factor in (3.26) in terms of superconformal blocks Fαβγλ. This

final factor is simply

(
g14g23

g13g24

)d23

=

(
(1− y1)(1− y2)

(1− x1)(1− x2)

)d23

= sdet−d23(1− Z) Z ∼


x1

x2

y1

y2

 ,

(3.27)

where we write the result in terms of a diagonal GL(2|2) matrix Z.

In the conventional approach one would then simply expand this in terms of SU(2, 2|4)

superconformal blocks, Fαβγλ as described in the previous section, to obtain information

about operators Oγλ. However, the universal structure of SU(m,m|2n) blocks alluded to

above suggests an alternative approach, namely, using blocks in a theory with SU(m,m|2n)

for different values of m,n compared to the N = 4 SYM case. Any value of m,n will give

accurate information on the block coefficients, but not necessarily complete information.

This happens because now the block decomposition will only yield information on operators

Oγλ where λ is a valid non-zero GL(m|n) Young tableau. For example, choosing m =

2, n = 0, means we consider GL(2) Young tableaux, which will only give information about
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operators with maximally two row tableaux. Whereas choosing m = 3, n = 0 will give

information on operators whose Young tableaux have up to three rows etc. On the other

hand one could consider m = 0. Then we are considering SU(0|n) tableau which are just

“transposed” SU(n) tableau, where columns and rows are swapped.7 Thus Young tableaux

in the m = 0 case have maximally n columns.

InN = 4 we have GL(2|2) Young tableau which have the hook structure given in (3.12),

namely at most two rows have length greater than two and at most two columns have length

greater than two. On the other hand expanding the structure in (3.27) in terms of super

Schur polynomials using the Cauchy identity (see [53] for details in this context), one can

see that the corresponding Young tableaux have maximal height given by the power d23.

Furthermore the corresponding blocks must also then have corresponding Young tableaux

of height d23 or less. This means that performing the expansion with m = d23, n = 0 will

give complete information on all the conformal blocks.

The advantage of using SU(m,m) blocks (with m = d23) instead of SU(2, 2|4) blocks,

is that they are much simpler (at least conceptually), and are given by the compact formula

Fαβγλ(x) =
det
(
x
λj+m−j
i 2F1(λj+1−j+α, λj+1−j+β; 2λj+2−2j+γ;xi)

)
1≤i,j≤m

det
(
xm−ji

)
1≤i,j≤m

.

(3.28)

Note that the denominator here is the famous Vandermonde determinant and can be rewrit-

ten
∏
i<j(xi − xj).

We have converted the superconformal blocks to the SU(m,m) theory, but we also

need to convert the free correlator itself. This is straightforward. We simply replace the

terms in (3.26) as

(
g14g23

g13g24

)d23

=

(
1

(1− x1) . . . (1− xm)

)d23

= sdet−d23(1− Z) Z ∼

 x1

. . .

xm

 .

(3.29)

Thus performing a superconformal decomposition of free theory four-point functions of half

BPS operators in N = 4 SYM becomes equivalent to simply decomposing objects of this

form into blocks of the form (3.28).

Notice that the new SU(m,m) functions and blocks in general depend on more variables

than the original SU(2, 2|4) ones. Thus one may suspect that, although the blocks are

conceptually much simpler, computationally this approach would be slower. However,

since we are only interested in Young tableau of specific shapes, and in particular below

the third row, they have at most 2 boxes, then we correspondingly only need to perform

a very limited expansion in the variables x3, . . . , xm. Also notice that it is convenient

7This is simply because generalised symmetrisation of odd indices for a supergroup corresponds to anti-

symmetrisation.
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to multiply both sides by the Vandermonde determinant. Then the blocks themselves

are holomorphic.

Finally, note that the procedure as outlined above gives information on free theory

operators Oγλ for fixed γ. This is fine for short muliplets as they are uniquely defined

by this description, but as discussed around (3.13), for long operators the description is

degenerate. Thus to obtain the OPE coefficient related to a specific long representation

one will have to sum over all the γ’s consistent with that representation.

Let us illustrate this procedure with a few simple examples.

Twist two contribution to 〈O2O2O2O2〉. Firstly consider the twist 2 sector in the

〈O2O2O2O2〉 free theory. In the free theory the twist two operators are semi-short (recall

they combine with other short operators to become long in the interacting theory). They

correspond to semi-short operators in table1 with γ = 2, µ = 0. Now the full free correlator

is given below (2.5). But only two of the six terms (the fourth and fifth) have (3.25)

γ = d13 + d14 + d23 + d24 = 2. Thus to extract all information about twist two operators

from the free theory we perform the following expansion

Aconn(g12g23g34g14 + g12g24g34g13) = P ×Aconn(1 + det−1(1− Z))

= P ×
∑
λ

A2λF
112λ(x) , (3.30)

where here

P := P(OPE)
{pi} ×

(
g13g24

g12g34

) 1
2

(γ−p4+p3)

= g12g34g13g24

since γ = 2, pi = 2. This formula can be understood in terms of an SU(m,m|2n) theory for

any values of m,n. The values of the CPW coefficients A2λ will not depend on the group.

Moreover the Cauchy identity implies that the left had side is a sum of Schur polynomials of

one row only, and so the case m = 1, n = 0 will capture all the relevant information in this

case. In this case there is only one variable x1 and the superconformal blocks involve just

a single Hypergeometric. In summary therefore the twist two operator CPW coefficients

can be deduced from the following decomposition

Aconn

(
1 +

1

1− x1

)
=
∑
λ1

A2[λ1]x
λ1
1 2F1(λ1 + 1, λ1 + 1; 2λ1 + 2;x1) (3.31)

which has the well known solution for twist two operators [26]

A2[λ1] = 2Aconn
(λ1)!2

(2λ1)!
. (3.32)

Higher twist singlet contribution to 〈O2O2O2O2〉. Let us now consider the con-

tribution of higher twist long singlet operators to 〈O2O2O2O2〉. The maximal value γ can

take for this correlator is 4 (see (3.15)). Comparing with table1 we see that the only way

we can achieve a long singlet multiplet is if γ = 4, µ1 = µ2 = 0. Three of the six terms in
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the free correlator (2.5) have γ = d13 +d14 +d23 +d24 = 4 (the first, third and sixth). Thus

to extract all information about twist four singlet operators we consider the expansion

Adisc(g
2
13g

2
24 + g2

14g
2
23) +Aconng13g23g24g14

= P ×
(
Adisc(1 + det−2(1− Z)) + Aconn det−1(1− Z)

)
= P ×

∑
λ

A4λF
224λ(x) , (3.33)

where this time

P := P(OPE)
{pi} ×

(
g13g24

g12g34

) 1
2

(γ−p4+p3)

= g2
13g

2
24

since γ = 4, pi = 2. Here, since the maximal inverse power of det(1 − Z) is 2, we can

recover complete information using the m = 2, n = 0 blocks.8 Completely explicitly,

using (3.28), (3.29), we expand (multiplying both sides by the Vandermonde determinant):

(x1 − x2)

(
Adisc

(
1 +

1

(1− x1)2(1− x2)2

)
+Aconn

1

(1− x1)(1− x2)

)
=
∑
λ

A4λ det
(
x
λj+2−j
i 2F1(λj−j+3, λj−j+3; 2λj−2j+6;xi)

)
1≤i,j≤2

. (3.34)

From table 1 we see that the long, twist 2t, spin l, singlet reps with γ = 4 have CPW

coefficients

A4,λ=[l+t,t]

in the above expansion.

Leading large N , higher twist singlet contribution to 〈O5O5O5O5〉. In this

paper we will be mostly concerned with the leading in 1/N piece of the free theory, and

we consider such a case for higher charge. Consider the leading large N free correlator

〈O5O5O5O5〉 = Adisc

(
g5

12g
5
34 + g5

13g
5
24 + g5

14g
5
23

)
. (3.35)

These terms correspond to γ = 0, 10, 10 respectively according to (3.25). For long singlet

reps we need γ = 10 (note that if we considered the full free theory, rather than the leading

large N part, we would have to consider different values of γ = 4, 6, 8, 10 and sum over the

results.) Taking out the relevant prefactor from the second two terms we need to perform

the following expansion

Adisc(1 + det−5(1− Z)) =
∑
λ

A10λF
55 10λ(x) . (3.36)

Here we convert to the m = 5, n = 0, SU(5, 5) theory and so explicitly, using (3.28), (3.29)

we expand (multiplying both sides by the Vandermonde determinant):

(x1 − x2)(x1 − x3) . . . (x4 − x5)Adisc

(
1 +

1

(1− x1)5 . . . (1− x5)5

)
=
∑
λ

A10λ det
(
x
λj+5−j
i 2F1(λj−j+6, λj−j+6; 2λj−2j+12;xi)

)
1≤i,j≤5

. (3.37)

8In fact for the connected piece one could even use the m = 1, n = 0 blocks as for twist 2 above.
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From the table 1, the long singlet operators of half twist t, spin l correspond to the

Young tableau λ = [l+t−3, t−3, 2, 2, 2]. Note that to obtain this data it is enough to expand

both sides in positive powers of x1, . . . x5 up to and including the term xl+t+1
1 xt2x

4
3x

3
4x

2
5,

thus only a fairly limited expansion in the variables x3, x4, x5 is needed.

Note that if we were to consider the full 〈O5O5O5O5〉 free correlator, this will have

sectors with different values of γ = 0, 2, 4, . . . , 10. Thus, since the description of long

multiplets in terms of Oγλ is not unique (see table 1 and the discussion below) then the

CPW coefficient of a long operator will be given by the sum of all coefficients Aγλ consistent

with that rep. For example the OPE coefficient of a long singlet operator of twist t, spin l

will be given by the sum of terms

A10[l+t−3,t−3,2,2,2] +A8[l+t−2,t−2,2,2] +A6[l+t−1,t−1,2] +A4[l+t,t] . (3.38)

Twist two operators from 〈OpOpOqOq〉. Let us now consider the twist two contribu-

tion to any correlator of the form 〈OpOpOqOq〉. The argument above for the 〈O2O2O2O2〉
correlator implies that we must have γ = 2 and then (3.25) then implies that there are

only two contributing diagrams

Agp−2
12 gn−2

34 (g13g24 + g14g23) = A× P × (1 + det−1(1− Z)) = P ×
∑
λ

A2λF
112(Z)

(3.39)

Notice that once the prefactor has been divided out the computation is exactly the same

as the 〈O2O2O2O2〉 case described above with the solution (3.32)

A2[λ1] = 2A
(λ1)!2

(2λ1)!
. (3.40)

Finally, at large N the value of A can be deduced by counting the number of inequivalent

planar graphs contributing times the number of colour loops in a double line notation as

A = Np+qp2q2 (3.41)

4 Free theory and long-multiplet spectrum

In this section we obtain an expression for the normalization Np1p2p3p4 relative to the

set of correlators 〈OpOpOqOq〉. Let us recall that Nppqq is automatically obtained from

first-principle computations in supergravity. For example, in the cases 〈OpOpOpOp〉 with

p = 2, 3, 4 and 〈O2O2OqOq〉 for any q. However, it does not follow from the solution of the

bootstrap problem [13], and we will need to determine Nppqq from an independent analysis.

The important observation will be the following: the OPE analysis of known supergravity

four-point correlators [29, 54] reveals that in the supergravity certain long operators are

absent from the spectrum. Therefore, in the decomposition

Gsugra
p1p2p3p4

= G free
p1p2p3p4

+ Gdyna
p1p2p3p4

(4.1)

a special cancellation takes place between the sector of H dyna given by D
sing

and free

theory. Building on this observation, we first derive N22qq and N33qq and we then obtain a

formula for Nppqq which generalizes the result Npppp obtained in [20].
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Twist-2 long cancellation in 〈O2O2OqOq〉. The propagator structure in

〈O2O2OqOq〉 is easily obtained from the case q = 2. In fact, the latter is maximally

symmetric and contains only two crossing symmetric classes [18]: (2, 0, 0) and (1, 1, 0),

which incidentally can be distinguished in terms of disconnected and connected diagrams.

When q > 2, these two classes breaks into four sub-classes. This is shown in the dia-

grammatic expansion below where the extra (red) thick line indicates the additional q − 2

propagators g34.

〈O2O2OqOq〉 = A1

+

A2+ + Aexc.
2

A3 + Aexc.
3 + A4

The residual symmetry exchanges g14 ↔ g13 and g23 ↔ g24. In particular,

A1(u, v) = A1 (u/v, 1/v) ,

A4(u, v) = A4 (u/v, 1/v) ,

Aexc.
2 (u, v) = A2 (u/v, 1/v) ,

Aexc.
3 (u, v) = A3 (u/v, 1/v) .

(4.2)

As a result, in free theory, where the Ai=1,2,3,4 are constants, we shall find Aexc.
2 = A2 and

Aexc.
3 = A3. The remaining coefficients to determine are

Afree
1 = 2qN2+q, (Afree

2 , Afree
3 , Afree

4 ) =
(

2q(q − 2), 2q, 2q(q − 1)
)Afree

1

N2
. (4.3)

Two exceptions to these formulas are, Afree
2 = 1 for q = 2, and Afree

2 = 0 for q = 3. The

OPE prefactor reduces to g2
12g

q
34, which corresponds to the diagram associated with A1.

The correlator can then be rewritten as,

〈O2O2OqOq〉free = g2
12g

q
34A

free
1

[
1 +

2q

N2

(
uσ +

uτ

v

)
+

2q

N2

(
(q − 2)

(
u2σ2 +

u2τ2

v2

)
+ (q − 1)

u2στ

v

)]
.

(4.4)

The dynamical part of the correlation function obtained from tree-level supergravity is [22],

〈O2O2OqOq〉dyna = g2
12g

q
34 N22qq I(u, v, σ, τ )uqDq,q+2,2,2 , (4.5)

which decomposes as follows,

Adyna
1 = v uqDq,q+2,2,2 , Adyna

3 = −
(

1− v
u

+ 1

)
Adyna

1 , (4.6)

Adyna
2 =

v

u
Adyna

1 , Adyna
4 = −

(
1 + v

u
− 1

)
Adyna

1 . (4.7)
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Symmetry properties of Dq,q+2,2,2, described in the appendix, imply the relations (4.2).

The number of propagator structures equals the number of SU(4) channel in the correlator.

These correspond to the intersection

([0, 2, 0]⊗ [0, 2, 0]) ∩ ([0, q, 0]⊗ [0, q, 0]) = [0, 2, 0]⊗ [0, 2, 0] , (4.8)

which splits into the six channels,

[0, 2, 0]⊗ [0, 2, 0] = [0, 0, 0]⊕ [0, 2, 0]⊕ [0, 4, 0]⊕ [2, 0, 2]⊕ [1, 0, 1]⊕ [1, 2, 1] , (4.9)

according to (3.2). In each SU(4) channel we shall find contributions from operators be-

longing to different N = 4 representation. For example, in the singlet channel we expect

a contribution from the stress energy tensor, which belongs to a short multiplet, and a

contribution from a twist-2 scalar, which belongs to a long multiplet. Moreover, long mul-

tiplets whose lowest dimension operator belong to [0, 0, 0] have precisely the same SU(4)

content of (4.9), thus will contribute to all six channels.

In free theory, all operators have canonical dimensions and are present in the spec-

trum. A proper study of the superconformal OPE is needed in order to recombine all such

contributions into supermultiplets [29, 53]. Once this decomposition is achieved [32], it can

be shown that twist-two long contributions cancel between G free
22qq and Gdyna

22qq precisely for

the supergravity value

N22qq = − 2q

(q − 2)!

Afree
1

N2
. (4.10)

We can prove (4.10) using a simpler argument: in the [0, 0, 0] channel of the correla-

tor, the conformal block corresponding to the twist-two scalar in the corresponding long

multiplet has a series expansion with leading power u1(1 − v)0. As remarked in (3.11),

conformal blocks corresponding to operators with twist 2t and spin l > 0 are distinguished

by the leading power ut(1− v)l. Therefore twist-2 is the very first non trivial contribution

at order 1/N2, and the absence of a twist-2 long multiplet implies that of the corresponding

leading power. In terms of propagator structure, the [0, 0, 0] channel is proportional to,

〈O2O2OqOq〉
∣∣∣
[0,0,0]

∼ A1 +
u

6

(
A3

v
+A exc.

3

)
+
u2

20

(
A2

v2
+A exc.

2 +
1

3

A4

v

)
. (4.11)

where Ai = Afree
i + Adyna

i . At order 1/N2, the twist-two long contribution comes from

the second term proportional to A free
3 , and from A dyna

1 ∼ Dq,q+2,2,2. The expression for

D
sing
q,q+2,2,2 can be obtained from (2.27). The limit v → 1 is unambiguous and by equating

the two contributions we obtain,

2q
Afree

1

N2
+ N22qq Γ[q − 1] = 0 , (4.12)

which then leads to the result (4.10). This simpler argument generalizes to 〈OpOpOqOq〉
for arbitrary p and q. In fact, it will always be the case that in the [0, 0, 0] channel of free

theory the first and only contribution at order 1/N2 comes from a twist-2 scalar belonging

to the corresponding long multiplet. As we now show, minor modifications are needed in

the derivation of Nppqq when p ≥ 3. However, taking these into account we will be able to

obtain Nppqq in general.
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Twist-2 long cancellation in 〈O3O3OqOq〉. Similarly to the previous discussion,

the propagator structure in 〈O3O3OqOq〉 follows from that at q = 3. In this case there

are three crossing symmetric classes [18]: (3, 0, 0) contains three disconnected diagrams;

(2, 1, 0) contains six connected diagrams; and (1, 1, 1) contains a single connected diagram.

The symmetry breaking pattern when q > 3 splits the three symmetric classes into six

sub-classes.

〈O3O3OqOq〉 = A1 A2+ + Aexc.
2

+ A3 + Aexc.
3

+ A4 + Aexc.
4

+ A5 + Aexc.
5 + A6

In free theory we find Aexc.
i=2,3,4,5 = Ai=2,3,4,5 and Afree

3 = Afree
4 , with all the other constants

given by

Afree
1 = 3qN3+q, (Afree

2 , Afree
3 , Afree

5 , Afree
6 ) = 3q (q − 3, 1, q − 2, 2)

Afree
1

N2
. (4.13)

The special cases are q = 3, Afree
2 = 1 and q = 4, Afree

2 = 0. The OPE prefactor is g2
12g

q
34

and we can rewrite the correlator as

〈O3O3OqOq〉free = g2
12g

q
34A

free
1

[
1 +

3q

N2

(
uσ +

uτ

v
+ u2σ2 +

u2τ2

v2
+ 2

u2στ

v

)
+

3q

N2

(
(q − 3)

(
u3σ3 +

u3τ3

v3

)
(4.14)

+ (q − 2)

(
u3σ2τ

v
+
u3στ2

v2

))]
.

From the Mellin integral (2.17) we find

〈O3O3OqOq〉dyna = g3
12g

q
34 N33qq I(u, v, σ, τ )Hdyna (4.15)

Hdyna
33qq = uq

[
σDq−1,q+2,2,3 + τDq−1,q+2,3,2

+
1

q − 2
Dq,q+2,2,2 +

(
1

q − 2
+ σ + τ

)
Dq,q+2,3,3

]
. (4.16)
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Results for q > 3 are novel compared to the supergravity literature. In 〈O3O3OqOq〉 there

are ten SU(4) channels corresponding to the intersection

([0, 3, 0]⊗ [0, 3, 0]) ∩ ([0, q, 0]⊗ [0, q, 0]) = [0, 3, 0]⊗ [0, 3, 0] . (4.17)

These include contributions from long multiplets whose lowest dimension operators be-

long to [0, 0, 0], [1, 0, 1] and [0, 2, 0], respectively. These three channels correspond to a

decomposition of Hdyna of the form

Hdyna
33qq =

uq

q − 2

[
Dq,q+2,2,2 +

q + 1

3
Dq,q+2,3,3 +

q − 2

6

(
Dq−1,q+2,3,2 +Dq−1,q+2,2,3

)]
Υ00

+uq
[ [

Dq−1,q+2,2,3 −Dq−1,q+2,3,2

2

]
Υ10

+
(
Dq−1,q+2,3,2 +Dq−1,q+2,2,3 + 2Dq,q+2,3,3

)
Υ11

]
(4.18)

A new feature compared to 〈O2O2OqOq〉 is the presence of several Dδ1δ2δ3δ4 for each

channel. This implies a more intricate recombination analysis of the superconformal

OPE [29, 53]. Nevertheless, since the very first contribution to the [0, 0, 0] channel in

free theory only comes from a twist-two scalar, the absence of a twist-two long multiplet

in the spectrum can be unambiguously detected from

〈O3O3OqOq〉
∣∣∣
[0,0,0]

∼ A1 +
u

6

(
A3

v
+A exc.

3

)
+
u2

20

(
A4

v2
+A exc.

4 +
1

3

A6

v

)
+
u3

50

(
A2

v3
+A exc.

2 +
1

6

A5

v2
+

1

6
A exc.

5

)
. (4.19)

where Ai = Afree
i +Adyna

i . Following a procedure similar to that outlined for 〈O2O2OnOn〉,
we find that the relevant terms are Afree

3 and

Adyna
1 =

N33qq

q − 2
uqv

(
Dq,q+2,2,2 +Dq,q+2,3,3

)
, (4.20)

where the precise form of D
sing
q,q+2,2,2 andD

sing
q,q+2,3,3 can be obtained from (2.27). Importantly,

only D
sing
q,q+2,2,2 will provide the leading power u1, and the other Dq,q+2,3,3 can be discarded.

The equation to be solved is then

3q
Afree

1

N2
+ N33qq

Γ[q − 1]

q − 2
= 0 (4.21)

and the solution

N33qq = − 3q

(q − 3)!

Afree
1

N2
. (4.22)
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Normalization Nppnn. The analysis of the singlet channel in 〈O3O3OqOq〉 captures

the generic features of the four point correlator 〈OpOpOqOq〉. Two comments are in order:

firstly, the leading contributions to the scalar channel of the correlator is

〈OpOpOqOq〉
∣∣∣
[0,0,0]

∼ A1 +
u

6

(
A3

v
+A exc.

3

)
+ O(u2) , (4.23)

where Afree
3 has been given in (3.41). Secondly, even though several D functions will

contribute to Adyna
1 only Dq,q+2,2,2 is relevant for the twist-two cancellation. From the

definition of I(u, v, σ, τ ) and the Mellin formula (2.17) we obtain

Adyna
1 = (p− 2)!(q − 1)2−p u

qv Dq,q+2,2,2 + . . . (4.24)

where the dots stands for those Dδ1δ2δ3δ4 which do not contribute to the argument. We have

assumed q ≥ p, and the non trivial coefficient (p− 2)!(q − 1)2−p can be checked explicitly

in the examples (2.42)–(2.43).

It then follows from the twist-two long cancellation that

pq
Afree

1

N2
+ Nppqq(p− 2)!Γ[q − 1](q − 1)2−p = 0 (4.25)

with solution

Nppqq = − p

(p− 2)!

q

(q − p)!
Afree

1

N2
. (4.26)

5 Determining strong coupling data from the correlator

Having described the structure of the free theory and tree-level supergravity results that

we need, we now proceed to analyse the OPE. The knowledge of the OPE leads to an

exact superconformal block representation of any four-point correlator, including both

short and long exchanged representations. If we restrict attention to the contribution of

long multiplets, which comes from the free theory as well as from Hdyna
p1p2p3p4 , we find

〈Op1Op2Op3Op4〉long = NΣ P(OPE)
∑
t, l,R

A
{pi}
R (t|l) L{pi}R (t|l), (5.1)

A
{pi}
R (t|l) =

∑
O∈R

Cp1p2OCp3p4O . (5.2)

Here the operators have been normalised as in (2.2) with Σ = (p1 + p2 + p3 + p4)/2. The

explicit expression for L{pi}R (t|l) can be read from (3.24). Expanding both the dimensions

and OPE coefficients up to leading order in 1/N2,

∆O = ∆
(0)
O +

2

N2
ηO, Cp1p2O = C

(0)
p1p2O

+
1

N2
C

(1)
p1p2O

, (5.3)

we obtain the following refinement

〈Op1Op2Op3Op4〉long = NΣ P(OPE)

(∑
t0

∑
l,R

A{pi}R (t0|l) L{pi}R (t0|l)

+
1

N2
log(u)

∑
t0

∑
l,R

M
{pi}
R (t0|l) L{pi}R (t0|l) + . . .

)
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where at order 1/N2 we omitted analytic terms in u, which will not be relevant for our

discussion. Here t0 = (∆
(0)
O − l)/2 and we defined

A{pi}R (t|l) =
∑
O∈R

C
(0)
p1p2O

C
(0)
p3p4O

, (5.4)

M
{pi}
R (t|l) =

∑
O∈R

ηOC
(0)
p1p2O

C
(0)
p3p4O

. (5.5)

The data on the l.h.s. of these equations will be obtained from the explicit form of the

correlators. In particular, disconnected free theory determines AR(t|l), whereas MR(t|l) is

obtained from the leading log(u) singularity of Hdyna.

A fundamental assumption we will make about the supergravity limit is that the only

operators surviving are in one-to-one correspondence with single-trace half-BPS operators

Op and multi-trace operators Ot,l built from products of the Op. In the large N expansion

three point functions of half-BPS operators are 1/N suppressed, as the computation (2.14)

shows, and in any case contribute to the protected sector in the OPE. We expect the

double-trace operators to be the only long operators Ot,l to have non-vanishing three-point

functions C
(0)
p1p2O

. Triple-trace and higher multi-trace operators are expected to have their

three-point functions suppressed by further powers of 1/N2, i.e. they will start contributing

to C
(1)
p1p2O

and higher.

In the first instance we will focus on unprotected operators in the singlet representation

of SU(4), since these are the operators whose data ultimately determine the loop correction

(O(1/N4)) to 〈O2O2O2O2〉 [34]. The exchanged singlet operators in question have the

following description in the free theory:

K free
t,l,i = Oi+1�

t−i−1∂lOi+1 + . . . (5.6)

where the SU(4) indices are understood to be contracted to produce a singlet, and the

ellipsis denotes similar terms with the space-time derivatives distributed differently between

the two constituent operators, Oi+1. The precise combination will not be important here,

but importantly there is a unique combination yielding a conformal primary operator. The

operators given in (5.6) have spin l and dimension 2t+ l (i.e. twist 2t) while i = 1 . . . t−1

labels the (t−1) different operators which have the same spin and dimension. As soon as the

coupling is turned on, these (t− 1) operators will mix and develop anomalous dimensions.

At strong coupling with large N , the operators again take their free theory dimen-

sions, with anomalous dimensions developing at order 1/N2. Since the operators (5.6) are

protected at infinite N they all remain present in the spectrum even though they reside

in long multiplets. It no longer makes sense to write the operators explicitly as (5.6), but

the number of operators is the same. Thus we denote by Kt,l,i, with i = 1, . . . , t−1, the

corresponding operators at strong coupling. They are operators which have well-defined

anomalous dimensions at O(1/N2). This automatically means their two-point functions

are orthogonal at O(N0) and we can also normalise them, so we have

〈Kt,l,iKt,l,i′〉 = δii′ . (5.7)
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Since we only consider them at leading order in 1/N2, we will also drop the superscript

from the three-point functions C
(0)
p1p2Kt,l,i

and just write Cp1p2Kt,l,i instead.

We wish to obtain the anomalous dimensions ηt,l,i of the operators Kt,l,i as well as

their large N three-point functions CppKt,l,i . First note that at leading order in the large

N limit the OPE of OpOp contains the operators Kt,l,i for all t ≥ p. Thus for fixed t,

the four-point correlators 〈OpOpOqOq〉 with p ≤ q contain information about operators

Kt,l,i for all q ≤ t. Noting the p ↔ q symmetry we deduce that there are t(t − 1)/2 such

independent correlators. We can then organize the information A{pi}R (t|l) coming from each

correlator in the free theory at leading order into the following symmetric matrix,

Â(t|l)
∣∣∣
[0,0,0]

=


A2222 A2233 . . . A22tt

A3333 . . . A33tt

. . . . . .

Atttt

 . (5.8)

In fact, from the form of the large N free theory correlators one can see immediately that the

above matrix Â is actually diagonal. Likewise we can organise the information M
{pi}
R (t|l)

coming from the log u term at order 1/N2 in each correlator into another symmetric matrix,

M̂(t|l)
∣∣∣
[0,0,0]

=


M2222 M2233 . . . M22tt

M3333 . . . M33tt

. . . . . .

Mtttt

 . (5.9)

Both in M̂(t|l) and Â(t|l) we have just given the independent entries in the upper triangular

part explicitly.

Consider now the (t−1) independent operators Kt,l,i. They are associated to (t − 1)2

three-point functions CppKt,l,i where i = 1, . . . t−1 and p = 2, . . . , t, and (t−1) anomalous

dimensions ηt,l,i. In total therefore we have t(t−1) unknowns that need to be determined.

Thus the matrices (5.8) and (5.9) contain the precise amount of data needed! The reason

for this precise matching of degrees of freedom is that the operators Kt,l,i are (in one-to-one

correspondence with) bilinears of half-BPS single-trace operators. The matching is thus a

remarkable feature of large ’t Hooft coupling and large N only, as in general there will be

many other types of operators contributing.

Let us now examine the equations (5.4)–(5.5) in detail, beginning with low twist cases.

To simplify notation a little, we redefine CppKt,l,i in favor of cpi taking out a universal factor

which we find is always present,

(CppKt,l,i)
2 =

(l + t+ 1)!2

(2l + 2t+ 2)!
c2
pi , p = 2, . . . , t, i = 1, . . . , t− 1 . (5.10)

At fixed twist we expect cpi to depend non trivially on l.

5.1 Twist 4

Here there is only one operator contributing and it only appears in the simplest correlator

〈O2O2O2O2〉. Extracting the relevant superblock coefficient we obtain at leading order
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(from the disconnected free correlator)

(C22Kt,l,1)2 = A2222 ⇒ c2
21 =

4

3
(l + 1)(l + 6) , (5.11)

η1(C22Kt,l,1)2 = M2222 ⇒ c2
21η1 = −64 . (5.12)

This clearly yields

η1 = − 48

(l + 1)(l + 6)
, c21 =

√
4(l + 1)(l + 6)

3
. (5.13)

This result has been known for a long time [26]. Note the symmetry l→ −7− l.

5.2 Twist 6

The situation becomes more interesting when we move to twist 6. Here there are two

operators contributing, K3,l,1 and K3,l,2. The free theory results give:

c2
21 + c2

22 =
2

5
(l + 1)(l + 8) ,

c2
31 + c2

32 =
9

40
(l + 1)(l + 2)(l + 7)(l + 8) ,

c21c31 + c22c32 = 0 . (5.14)

It is interesting at this point to compare briefly with the free gauge theory at large N .

The relevant correlator (disconnected free correlator) is exactly the same as the one we

are discussing here at strong coupling. However, despite this one should not be tempted

to assume the leading large N three-point functions are also the same at strong and weak

coupling. In the free theory at large N we recall that the two operators are explicitly given

as K3,l,1 = O2∂
l�O2 + . . . and K3,l,2 = O3∂

lO3 + . . . . Although in general other operators

contribute at weak coupling (single trace etc.), at large N only these two contribute (the

OPE can easily be performed explicitly via Wick contractions to verify this). Further the

three point functions cweak
22 and cweak

31 are supressed at this order and thus the solution of

the above equations reads simply:

cweak
22 = cweak

31 = 0, (cweak
21 )2 =

2

5
(l + 1)(l + 8), (cweak

32 )2 =
9

40
(l + 1)(l + 2)(l + 7)(l + 8) ,

(5.15)

and the three-point functions cweak
pi are diagonal.

The strong coupling interpretation of the equations turns out to be very different

however, even though it arises from the same free disconnected correlator. The dynamical

parts of the correlators give

c2
21η1 + c2

22η2 = −96 ,

c2
31η1 + c2

32η2 = −54(l2 + 9l + 44) ,

c21c31η1 + c22c32η2 = 432 , (5.16)
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and in particular the last equation means that here the three-point cpi functions cannot be

diagonal. Instead we straightforwardly solve the above equations and obtain the solution

η1 = − 240

(l + 1)(l + 2)
, η2 = − 240

(l + 7)(l + 8)
,

c21 = −

√
2(l + 1)(l + 2)(l + 8)

5(2l + 9)
, c22 = −

√
2(l + 1)(l + 7)(l + 8)

5(2l + 9)
, (5.17)

c31 =

√
9(l + 1)(l + 2)(l + 7)2(l + 8)

40(2l + 9)
, c32 = −

√
9(l + 1)(l + 2)2(l + 7)(l + 8)

40(2l + 9)
.

5.3 General twist

The first task in attempting to understand the general structure is to generalise the equa-

tions we obtain from the correlators via the superconformal block expansion. At leading

order the situation is simpler, since off-diagonal correlators 〈OpOpOqOq〉 with p 6= q are

suppressed and therefore the matrix Â(t|l) is diagonal. We have computed a number of

explicit examples and spot the pattern9 that leads to the following general formula,

Apppp
∣∣∣
[0,0,0]

=
24(l + 1)(t− 2)!(t!)2(l + 2t+ 2)(l + t− 1)!((l + t+ 1)!)2(p+ t)!(l + p+ t+ 1)!

(p+ 1)(p− 2)!((p− 1)!)3(2t)!(t+ 2)!(l + t+ 3)!(2l + 2t+ 2)!(t− p)!(l − p+ t+ 1)!
.

(5.18)

Let us notice that Apppp has completly factorized form. For fixed twist, we can define the

matrix of three-point function coefficients

C(t|l) =


C22Kt,l,1 C22Kt,l,2 . . . C22Kt,l,t−1

C33Kt,l,1 C33Kt,l,2 . . .

. . .

CttKt,l,1

 (5.19)

and rewrite the equations (5.4) in matrix form,

c̃ c̃T = Idt−1, C = Â
1
2 · c̃(t|l) (5.20)

where the orthonormality property of the matrix c̃ is manifest. Equations (5.5) become

c̃ · diag (η1, . . . , ηt−1) · c̃ T = Â−
1
2 · M̂(t|l) · Â−

1
2 (5.21)

The columns of c̃(t|l), are then eigenvectors of the matrix Â−
1
2 ·M̂(t|l)·Â−

1
2 and the anoma-

lous dimensions are the corresponding eigenvalues. Notice from the structure of eq. (5.21)

(recalling that Â is diagonal) the remarkable property that det(M̂) will factorise. From the

explicit expressions for Mppqq obtained upon decomposing Hdyna in superconformal blocks

9In more detail, we first computed the cases with p = t up to 6 and spotted a pattern for these which

we then confirmed at p = 7. Next we considered cases for fixed p general t, some of which were already

available [26, 53]. We spotted a pattern for these up to a numerical p dependent coefficient using results

up to p = 5. This final numerical factor we can then fix as a function of p uniquely by comparison with the

p = t case.
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this property is completely obscure. In particular, Mppqq is found to be proportional to

a polynomial in l of degree 2(p − 2), with p ≤ q, which does not admit real roots. Their

expressions are cumbersome and thus we will not display them explicitly.

Let us rewrite in this new notation the solution at twists four and six from eqs. (5.13)

and (5.17). The c̃ matrix in these two cases is

c̃(2|l) = 1 , c̃(3|l) =


√

l+2
2l+9

√
l+7
2l+9

−
√

l+7
2l+9

√
l+2
2l+9

 , (5.22)

where it can easily be verified that c̃(3|l) c̃(3|l)T = Id2. We also repeat the formulae

for the anomalous dimensions for later convenience,

η2,l,1 =
{
− 48

(l+1)(l+6)

}
η3,l,i =

{
− 240

(l+1)(l+2) ,−
240

(l+7)(l+8)

}
, (5.23)

We now proceed by performing the superblock expansion to find M̂(t|l) up to higher values

of t ≤ 12, and solve for anomalous dimensions and c̃(t|l). From the solution at twist eight

we obtain

c̃(4|l) =



√
7(l+2)(l+3)

6(2l+9)(2l+11)

√
5(l+3)(l+8)

3(2l+9)(2l+13)

√
7(l+8)(l+9)

6(2l+11)(2l+13)

−
√

2(l+2)(l+8)
(2l+9)(2l+11) −

√
35

(2l+9)(2l+13)

√
2(l+3)(l+9)

(2l+11)(2l+13)√
5(l+8)(l+9)

6(2l+9)(2l+11) −
√

7(l+2)(l+9)
3(2l+9)(2l+13)

√
5(l+2)(l+3)

6(2l+11)(2l+13)


, (5.24)

and

η4,l,i =
{
− 720(l+7)

(l+1)(l+2)(l+3) ,−
720

(l+3)(l+8) ,−
720(l+4)

(l+8)(l+9)(l+10)

}
. (5.25)

For higher twists the solution becomes quite lengthy so we find it helpful to introduce

a more compact notation for the square root factors. We define

(n) =
√
l + n , [n] =

√
2l + n . (5.26)

With this more compact notation the solution at twist ten takes the form,

c̃(5|l) =



√
3
2

(2)(3)(4)
[9][11][13]

√
5
2

(3)(4)(9)
[9][13][15]

√
5
2

(4)(9)(10)
[11][13][17]

√
3
2

(9)(10)(11)
[13][15][17]

−
√

27
8

(2)(3)(9)
[9][11][13] −

√
5
8

(l+18)(3)
[9][13][15]

√
5
8

(l−5)(10)
[11][13][17]

√
27
8

(4)(10)(11)
[13][15][17]√

5
2

(2)(9)(10)
[9][11][13] −

√
3
2

(l−3)(10)
[9][13][15] −

√
3
2

(l+16)(3)
[11][13][17]

√
5
2

(3)(4)(11)
[13][15][17]

−
√

5
8

(9)(10)(11)
[9][11][13]

√
27
8

(2)(10)(11)
[9][13][15] −

√
27
8

(2)(3)(11)
[11][13][17]

√
5
8

(2)(3)(4)
[13][15][17]


, (5.27)

and

η5,l,i =
{
− 1680(l+7)(l+8)

(l+1)(l+2)(l+3)(l+4) ,−
1680

(l+3)(l+4) ,−
1680

(l+9)(l+10) ,−
1680(l+5)(l+6)

(l+9)(l+10)(l+11)(l+12)

}
. (5.28)
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We begin to see intriguing structure in the entries of the matrix as well as in the

anomalous dimensions. Note the symmetry l → −2t − 3 − l which is an invariance of the

set of anomalous dimensions and an invariance up to signs of the c̃ matrix under a flip about

the vertical axis. Note also that at twist ten we see for the first time the appearance of

polynomials in l (without a square root) in the numerators of the central entries of (5.27).

At twist ten these polynomials are all linear, but their degrees increase as we increase the

twist further.

Indeed, proceeding to compute the next few examples one gets a better idea of the

structure. The anomalous dimensions reveal a fairly simple structure that is consistent

with the formula

η
[0,0,0]
t,l,i = −2(t− 1)4(t+ l)4

(l + 2i− 1)6
, (5.29)

where (x)n = x(x+ 1) . . . (x+n− 1) is the Pochhammer symbol. Note that the anomalous

dimensions are all negative for all physical values of l.

The c̃(t|l) matrix is trickier to understand. Already from the results up to twist ten

we note a pattern of square roots of linear factors of l. In addition we have seen that in

the entries towards the centre one finds fewer square root factors in the numerator, and

polynomials in l without a square root. Note that the entries of the matrix always have

a finite (but possibly vanishing) limit as l → ∞. In fact, we can deduce the structure of

c̃(t|l) for a given twist in terms of an ansatz with some undetermined numbers,

c̃
[0,0,0]
pi =

√
21−t(2l + 4i+ 3) ((l + i+ 1)t−i−p+1) σ1 ((t+ l + p+ 2)i−p+1) σ2(

l + i+ 5
2

)
t−1

×
min(i−1,p−2,t−i−1,t−p)∑

k=0

lka
[0,0,0]
(p,i,k). (5.30)

The powers of the Pochhammer factors inside the square root are signs given explicitly by

σ1 = sgn(t− p− i+ 1) , σ2 = sgn(i− p+ 1) . (5.31)

where p = 2, . . . , t and i = 1, . . . , t − 1. We notice that the square root structure in c̃pi
follows from complicated combinatorics, which nevertheless can be captured by the two

(non-analytic) sign functions σ1 and σ2. Around the outer frame of the matrix, the unfixed

polynomial has degree 0, i.e. it is simply a constant. Its degree increases as we move towards

the inside of the matrix. One can readily check (5.30) is consistent with the examples given

explicitly above and we have tested the structure up to t = 12.

Given the ansatz (5.30), we have reduced the problem to that of finding the constants

a(p, i, k). Quite surprisingly, enforcing orthonormality of c̃(t|l) uniquely fixes the solution.10

In more detail, we first insist that the first row has unit norm,
∑

i c̃
2
2i = 1. This is a linear

equation in a(2, i, 0)2 with a unique solution. In fact, the constraint is a rational function

of l and so this single equation can fix more than one constant. Then, orthogonality of the

10We have checked this up to twist 48 (t = 24).
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rows
∑
c̃pic̃qi = 0 for p 6= q gives a linear system in the remaining variables and uniquely

fixes them, up to an overall scale which is fixed by the unit norm condition.

We find it remarkable both that there exist such orthonormal matrices with the struc-

ture (5.30) and that the matrix is uniquely fixed by orthonormality as a linear system. The

fact that the problem is essentially linear means it can be solved quickly and we have com-

plete data up to t = 24. This enables us to spot patterns and write down general formulae.

We do not have a completely general formula for the full matrix c̃ but we do have various

cases in closed form. In particular the top row of the matrix is given by the formula

a
[0,0,0]
(2,i,0) =

2t−1(2i+ 2)!(t− 2)!(2t− 2i+ 2)!

3(i− 1)!(i+ 1)!(t+ 2)!(t− i− 1)!(t− i+ 1)!
, i = 1, . . . , t− 1 . (5.32)

This formula completely specifies all the three-point function of the form CO2O2Kt,l,i which

was an essential ingredient in the prediction of the one-loop supergravity correction to

〈O2O2O2O2〉 presented in [34].

5.4 Generalisation from [0, 0, 0] to [n, 0, n] representations

Having given the general structure of the solution to the mixing problem for singlet double-

trace operators, we may now proceed to analysing more general SU(4) representations.

Specifically we can investigate operators in the series of representations [n, 0, n] which also

arise in the OPE of correlation functions of the form 〈OpOpOqOq〉. For each channel of

the form [n, 0, n] the structure of this problem is analogous to that of singlet channel. In

particular, at twist 2t a basis of double trace operators in the [n, 0, n] representation will

have the schematic form

{O2+n�
t−n−2∂lO2+n,O3+n�

t−n−3∂lO3+n, . . . ,Ot�0∂lOt} . (5.33)

and we expect (t − 1 − n) superconformal primary operators. As for the singlet double

trace operators in (5.6), the precise form of these primary operators is a specific linear

combination of the element of the basis, with derivatives acting on the two constituent

operators. These operators again have integer classical dimensions for infinite N and

receive anomalous dimensions at order 1/N2.

The analysis of the [n, 0, n] channel for fixed n follows a very similar logic to that

presented in the singlet case. Once again we conclude that the series of correlators

〈OpOpOqOq〉 for n + 2 ≤ p ≤ q ≤ t provides the right amount of information needed

in order to solve for anomalous dimensions and three-point functions of the exchanged

double trace operators. From the general form of the long superconformal blocks (3.24)

it is straightforward to isolate the appropriate channel, and organize the data from the

superblock expansion into the symmetric matrices M̂(t|l)
∣∣∣
[n,0,n]

and Â(t|l)
∣∣∣
[n,0,n]

.

Before presenting our general results we go through some specific examples.
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5.4.1 [1,0,1]

In this channel the matrices M̂(t|l)
∣∣∣
[1,0,1]

and Â(t|l)
∣∣∣
[1,0,1]

have the form

M̂(t|l)
∣∣∣
[1,0,1]

=


M3333 M3344 . . . M33tt

M4444 . . . M44tt

. . . . . .

Mtttt

 , (5.34)

Â(t|l)
∣∣∣
[1,0,1]

=


A3333 A3344 . . . A33tt

A4444 . . . A44tt

. . . . . .

Atttt

 , (5.35)

where Â(t|l) is diagonal with entries

Apppp
∣∣∣
[1,0,1]

=
15(p− 2)(t− 1)(t+ 2)(l + t)(l + t+ 3)

(p+ 2)(t− 2)(t+ 3)(l + t− 1)(t+ l + 4)
Apppp

∣∣∣
[0,0,0]

(5.36)

We can then introduce the orthonormal matrix c̃(t|l) and start solving explicitly the mixing

problem. For illustration, let us look at the first three cases:

At twist six there is only one operator, therefore

c̃(3|l) = 1 η3,l,1 = − 144

(3 + l)(6 + l)
(5.37)

At twist eight there are two operators, and we find

c̃(4|l) =


√

l+2
2l+11

√
l+9

2l+11

−
√

l+9
2l+11

√
l+2

2l+11

 (5.38)

with anomalous dimensions

η4,l,i =
{
− 560(8+l)

(2+l)(4+l)(7+l) ,−
560(3+l)

(4+l)(7+l)(9+l)

}
(5.39)

At twist ten it is becoming evident that the structure of eigenvectors and anomalous

dimension found in the singlet case generalises to [1, 0, 1] with minor modification. In

particular

c̃(5|l) =



√
9(l+2)(l+3)

8(2l+11)(2l+13)

√
7(l+3)(l+10)

4(2l+11)(2l+15)

√
9(l+10)(l+11)

8(2l+13)(2l+15)

−
√

2(l+2)(l+10)
(2l+11)(2l+13) −

3
√

7√
(2l+11)(2l+15)

√
2(l+3)(l+11)

(2l+13)(2l+15)√
7(l+10)(l+11)

8(2l+11)(2l+13) −
√

9(l+2)(l+11)
4(2l+11)(2l+15)

√
7(l+2)(l+3)

8(2l+13)(2l+15)


(5.40)

with anomalous dimensions

η5,l,i =
{
− 1440(9+l)

(2+l)(3+l)(5+l) ,−
1440

(5+l)(8+l) ,−
1440(4+l)

(8+l)(10+l)(11+l)

}
(5.41)
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The solution of the mixing problem up to t = 12 can be found straightforwardly and leads

to the expression

η
[1,0,1]
t,l,i = −2(t− 2)t(t+ 1)(t+ 3)(t+ l − 1)(t+ l + 1)(t+ l + 2)(t+ l + 4)

(l + 2i)6
(5.42)

for the anomalous dimensions, and

c̃
[1,0,1]
pi =

√
21−t(2l + 4i+ 5) ((l + i+ 1)t−i−p+1) σ1 ((t+ l + p+ 2)i−p+2) σ2(

l + i+ 7
2

)
t−2

×
min(i−1,p−3,t−i−2,t−p)∑

k=0

lka
[1,0,1]
(p,i,k). (5.43)

for the entries of the c̃(t|l) matrix, with σ1 = sgn(t − p − i + 1), and σ2 = sgn(i − p + 2),

and p = 3, . . . , t and i = 1, . . . , t − 2. The orthogonality condition of the matrix again

determines completely the value of these a(p, i, k) at any twist.

5.4.2 From [2, 0, 2] to [n, 0, n]

In this section, we present general formulae for the matrices M̂(t|l) and Â(t|l) given in terms

of disconnected free theory data, anomalous dimensions and orthonormal c̃(t|l) matrices.

Let us begin from free theory, where we have obtained the following result,

Apppp(t|l)
∣∣∣
[n,0,n]

=
p2

n!p!(p− 1)!

(n+ 2)n+3

(p+ 1 + n)!(p− 2− n)!
(t!)2

(2t)!

(l + 1)((1 + l + t)!)2(l + 2t+ 2)

(2l + 2t+ 2)!

×(l+t−p+2)p−2−n(l+t+4+n)p−2−n(l+1+t−n)n(l + 1 + t+ 2)n

×(t−p+1)p−2−n(t+3+n)p−2−n(t−n)n(t+2)n (5.44)

Introducing the c̃(t|l)[n,0,n] matrices and computing M̂(t|l)[n,0,n] for a large number of twist

and several values of n we have been able to fit and test both the anomalous dimensions

and the entries of c̃(t|l) with the following formulae: for the anomalous dimensions we find,

η
[n,0,n]
t,l,i = −2(t− 1− n)t(t+ 1)(t+ 2 + n)(t+ l − n)(t+ l + 1)(t+ l + 2)(t+ l + 3 + n)

(l + 2i+ n− 1)6

(5.45)

and for the entries of the c̃(t|l) matrix,

c̃
[n,0,n]
pi =

√
21−t(2l + 4i+ 3 + 2n) ((l + i+ 1)t−i−p+1) σ1 ((t+ l + p+ 2)i−p+n+1) σ2(

l + i+ n+ 5
2

)
t−n−1

×
min(i−1,p−n−2,t−n−i−1,t−p)∑

k=0

lka
[n,0,n]
(p,i,k) . (5.46)

The signs are given explicitly by

σ1 = sgn(t− i− p+ 1) , σ2 = sgn(i− p+ n+ 1) . (5.47)

All unspecified coefficients a(p, i, k) are again determined by imposing orthogonality of c̃.
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6 Analysis of the spectrum of anomalous dimensions

Let us now analyse some general behaviour of the spectrum of anomalous dimensions that

we found. Here we follow some of the arguments discussed in [9]. Let us consider a very

large, but finite value of N . From eq. (5.29) we find that our expression for the full twist

of the operator Kt,l,i in the singlet channel is

∆
[0,0,0]
t,l,i − l = 2t− 2

N2
η

[0,0,0]
t,l,i + . . . = 2t− 4

N2

(t− 1)4(t+ l)4

(l + 2i− 1)6
+ . . . . (6.1)

We note that the numerator of the anomalous term behaves like t8 for large t and that the

coefficient is negative. Keeping the leading terms for large t we find

∆
[0,0,0]
t,l,i − l = 2t− 4

N2

(
t8

(l + 2i− 1)6
+O(t7)

)
+ . . . . (6.2)

As argued in [9] these two facts imply that for some large classical twist t the correction

term will dominate over the classical term. Indeed for t ∼ N
2
7 we find the two terms are

of the same order and so the anomalous dimension formula inevitably requires corrections

to avoid violating the unitarity bound.

In fact we can argue that one needs corrections even before t reaches values of order

N
2
7 . Since we have resolved the mixing of the (t−1) operators with the same classical twist

2t we may consider the differences in their dimensions. As already observed, the anomalous

dimensions are all negative and so as one increases 1/N2 away from zero the dimensions

decrease. One can see from the formula (5.29) that dimension of the operator with twist

i = 1 decreases fastest and the dimension of the operator with i = t− 1 decreases slowest.

We can then consider the slowest descending operator, Kt,l,t−1 at level t and the fastest

descending one Kt+1,l,1 at level (t+ 1). The difference in their dimensions is

∆
[0,0,0]
t+1,l,1 −∆

[0,0,0]
t,l,t−1 = 2− 4

N2

t8

(l + 1)6
+O(t7) (6.3)

Hence we find for t ∼ N
1
4 that the two operators will become degenerate and then cross

over in the values of their dimensions. Such level crossing should not occur at generic points

in moduli space, it should only be associated with points of increased symmetry, such as

the free theory limit. Thus we conclude that before we reach this point further corrections

to the anomalous dimensions become relevant. A plot of the value of the dimension at the

crossing point against 1/N2 for l = 0, 2, 4 is displayed in figure 1.

It also interesting to consider the properties of the anomalous dimensions as functions

of the spin l [7, 8, 12, 59]. In particular, the anomalous dimensions are conjectured to be

negative, monotonic and convex as a function of l, at least for large enough l.

Our results for all anomalous dimensions are negative for any values of t and l. By

examining their precise form (5.29) (which are simply rational functions involving linear

factors in l) one can straightforwardly see that for all values of i ≤ (t+ 1)/2 the anomalous

dimensions satisfy monotonicity and convexity for all values of l > 1 − 2i. This is simply
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Figure 1. Varying t we show on a log-log plot the value of the dimension ∆?
l at the crossing point

∆
[0,0,0]
t+1,l,1 −∆

[0,0,0]
t,l,t−1 = 0 as function of 1/N2 for l = 0 (red), l = 2 (blue) and l = 4 (green). The best

fit given by the solid black line is ∆? ≈ ul/N1/4 with ul=0,2,4 ≈ {4, 6.3, 8}.

because at large l, ηt,l,i ∼ −2(t−1)t(t+1)(t+2)
l2

is monotonic and convex, and for decreasing

values of l, the first zero or pole is the negative pole at l = 1− 2i.11

For i > (t+ 1)/2, as we reduce the value of l, the anomalous dimension hits a zero at

l = −t before it reaches the pole at l = 1−2i. Thus monotonicity and convexity break down

at some point with convexity breaking down first. By considering the equation ∂2
l ηt,l,i = 0

we can study for which value of l convexity breaks down as we reduce l. Assuming large

t (so we can approximate the resulting large polynomial equation with its highest powers)

the breakdown in convexity occurs at l ∼ 2
√

2i + 4i −
√

2t − 3t. This is negative for

i < 3+
√

2
2(2+

√
2)
t ∼ 0.646t and so the anomalous dimension is still convex, and monotonic for

physical l in this range. For operators with i > 0.646t on the other hand, the anomalous

dimension ceases to be convex for some finite positive value of l. The worst offender is

the operator with the maximal value of i = t − 1. This ceases to be convex for l below

approximately (1 +
√

2)t ∼ 2.41t.

7 Conclusions

We have presented a detailed analysis of the double trace spectrum of N = 4 super Yang-

Mills theory in the supergravity limit. We have shown that the known tree-level supergrav-

ity results contain all the necessary information to resolve the degeneracy of the double

trace operators in the large N limit. Here we have focussed on the correlation functions of

the form 〈OpOpOqOq〉 since these are sufficient to resolve the degeneracy of the double-trace

operators in the [n, 0, n] representations of SU(4). Similar methods can be applied to the

more general cases 〈Op1Op2Op3Op4〉 to resolve the mixing for more general representations.

11The case i = (t − 1)/2 for t odd is in fact a special case, but in fact has no zero’s and again the first

special point is a negative pole at l = −t− 4. It is thus negative, monotonic and convex for all l > −t− 4.
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Our results for the leading order OPE coefficients and anomalous dimensions are sur-

prisingly simple, even given the very compact Mellin space form of the tree-level supergrav-

ity correlators given in [13]. The fact that the anomalous dimensions admit such a simple

formula as (5.45) is remarkable. Even more remarkable perhaps is the universal structure

we find in the orthogonal c̃ matrices. The fact that orthogonal matrices c̃ of the form (5.43)

exist at all is surprising. We should point out that modifications of the structure of the

square root factors in (5.43) typically lead to no orthogonal solution at all. Indeed the

structure of the c̃-matrices in the [n, 0, n] case was first guessed based on this structure

before being explicitly identified by analysing the relevant channels of the OPE. It would

be very interesting to understand whether the structure (5.43) arises due to some as yet

unidentified simplicity which could suggest more about the higher order 1/N corrections

to the quantities we have derived in this work.

The results we have presented here for the singlet channel have already been used

in [34] to contruct a prediction for the one-loop correction to the 〈O2O2O2O2〉 correlator.

Certainly similar analyses could be carried out to make one-loop predictions for more gen-

eral correlators. This would rely on resolving the mixing for more general representations

than we have examined here.

Finally, while we have focussed on N = 4 super Yang-Mills theory here, the phe-

nomenon of large N degeneracy and the need for resolving mixing is presumably common

to many holographic theories. Essentially the phenomenon arises because of the presence

of a compact factor (here an S5) in the gravity background which leads to the presence of

a Kaluza-Klein tower of modes related to the massless gravity modes. For fixed twist and

spin one will then typically have many double-trace operators one can consider and these

will generically mix. It would be interesting to consider both other models and the generic

structure of large N CFTs further.
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A D-functions

The analytic part of a D-function is given by

D
analytic
δ1δ2δ3δ4 = (−)σ

∑
n,m≥0

un

n!(σ + n)!
Λδ1δ2δ3+σδ4+σ(n)

(δ2 + n)m(δ3 + σ + n)m
(δ1 + δ2 + 2n)m

fnm
(1− v)m

m!

(A.1)

where

fnm =
[

+ ψ(n+ 1) + ψ(σ + 1 + n) + 2ψ(δ1 + δ2 + 2n+m)

− ψ(δ4 + σ + n)− ψ(δ1 + n)− ψ(δ3 + σ + n+m)− ψ(δ2 + n+m)
]
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and we recall the definition

Λδ1δ2δ3δ4
(n) ≡ Γ[δ1 + n]Γ[δ2 + n]Γ[δ3 + n]Γ[δ4 + n]

Γ[δ1 + δ2 + 2n]
. (A.2)

In general, the full D-functions can be recursively generated by the action of differential

operators on the four-dimensional scalar one-loop box integral Φ(1)(u, v), for which there

is an explicit expression in terms of polylogarithms, see equation (2.30). Starting with

D1111(u, v) := Φ(1)(u, v), when δi, and Σ = (δ1 + δ2 + δ3 + δ4)/2 are integers one can

generate any Dδ1δ2δ3δ4 from the following recursion relations [18]:

Dδ1+1,δ2+1,δ3,δ4 = −∂uDδ1δ2δ3δ4 ,

Dδ1,δ2,δ3+1,δ4+1 = (δ3 + δ4 − Σ− u∂u)Dδ1δ2δ3δ4 ,

Dδ1,δ2+1,δ3+1,δ4 = −∂vDδ1δ2δ3δ4 ,

Dδ1+1,δ2,δ3,δ4+1 = (δ1 + δ4 − Σ− v∂v)Dδ1δ2δ3δ4 ,

Dδ1,δ2+1,δ3,δ4+1 = (δ2 + u∂u + v∂v)Dδ1δ2δ3δ4 ,

Dδ1+1,δ2,δ3+1,δ4 = (Σ− δ4 + u∂u + v∂v)Dδ1δ2δ3δ4 , (A.3)

The D-functions obey many transformation identities (stemming from the permutation

symmetries of the one-loop box integral), one of which is the permutation property

Dδ1δ2δ3δ4(u, v) = vδ1+δ4−ΣDδ2δ1δ4δ3(u, v) = uδ3+δ4−ΣDδ4δ3δ2δ1(u, v), (A.4)

which can be used to convert a D-function with negative σ into one with σ ≥ 0, as required

for the decomposition shown in equation (2.26).

In some cases it is useful to use the reflection identity

Dδ1δ2δ3δ4(u, v) = DΣ−δ3,Σ−δ4,Σ−δ1,Σ−δ2(u, v) (A.5)

to bring a D-function into a more convenient form.

Finally, under crossing transformations of the cross-ratios (u, v) the D-functions be-

have as

Dδ1δ2δ3δ4(u, v) = Dδ3δ2δ1δ4(v, u),

= u−δ2Dδ4δ2δ3δ1

(
1

u
,
v

u

)
,

= vδ4−ΣDδ2δ1δ3δ4

(
u

v
,

1

v

)
. (A.6)
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