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ABSTRACT 

There is a need for the development of effective baselines against which the water quality 

impacts of industry in general, and shale gas extraction specifically, can be assessed. The 

salinity, and hence the specific conductance, of fluids associated with shale gas extraction is 

typically many times higher that of river water. The contrast between these two water types 

means that testing for salinity (specific conductance) could provide an ideal sentinel for 

detecting environmental impact of shale gas extraction. Here, Bayesian generalised linear 

modelling was used to predict specific conductance across English surface waters. The 

modelling used existing, spot-sampled data from 2005 to 2015 from 123 sites to assess 
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whether this approach could predict variation for subsequent years or for a new site (data 

from 2002 to 2015). We show that the results were readily projected in to subsequent years 

for sites included in the initial analysis. The use of covariates (land-use, hydroclimatic and 

soil descriptors) did not prove useful in predicting specific conductance at further sites not 

previously included in the analysis. The extension of the approach to 6833 English river 

monitoring sites with 10 or more observations from more than one year over the period 

2005 to 2015 showed that it was possible to reproduce the seasonal variation in river water 

specific conductance. The approach taken here shows that it is possible to use low-

frequency but widespread monitoring data to predict natural variation at monitoring sites to 

give a probabilistic assessment of whether or not a pollution incident has occurred and the 

seasonal variation, expressed as uncertainty bounds around the observations, at a specific 

site has been exceeded. 

 

Keywords: shale gas; Bayesian statistics; generalised linear modelling 

 

1. Introduction 

To assess and indeed demonstrate an impact of any activity, it is necessary to show, within a 

reasonable level of certainty, that the industry has changed an environmental state over 

and above either that which was true without the activity present or beyond some accepted 

minimum level of harm. The need for demonstrating impact or indeed the ability to confirm 

the absence of an impact means that a baseline, or pre-intervention control, needs to be 

established for comparison with subsequent observations. The United Kingdom has a 

nascent shale gas industry and, given experience from the United States shale gas industry, 
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one concern is the impact upon water quality of ground and surface water (eg. Kahrilas et 

al., 2014; Vengosh et al., 2014). To reassure the public and ensure protection of the UK 

water resource it is important that techniques exist for the detection, identification and 

attribution of pollution for possible impacts of unconventional hydrocarbon resource 

development. A number of technologies are used for water quality monitoring and several 

have been proposed for rapid, even continuous monitoring to detect any the water quality 

impacts of shale gas developments (eg. CH4 – Teasdale et al., 2014; Radium – Lagace et al., 

2018; Barium and Sulphate - Niu et al., 2018; Strontium isotopes – Kohl et al., 2014). 

However, here we propose a sentinel approach in which a single key parameter can be used 

as a rapid and early warning. However, to be an effective and robust sentinel of change the 

parameter monitored should have four properties. Firstly, any water quality parameter 

should be a lead, and not a lag, indicator of change, i.e. it should occur at the beginning of 

any impact to provide early warning and so that mitigation could be rapidly deployed. 

Second, the parameter must be sufficiently sensitive having a high contrast with the normal 

or background activity and so that any change cannot be mistaken for background or 

natural variation. Thirdly, the parameter should show a high specificity for the activity of 

concern and not normally be associated with or mistaken for, other activities; i.e. in this 

case it should be specific to a shale gas industry and not to other industries for example, 

conventional hydrocarbon extraction. Finally, the measurement technology should be cheap 

and readily deployable so that it can be used widely used and provide a large sample size. 

 By far the greatest difference between the waters arising from a shale gas well pad 

(those waters could be the fracking fluid, the flowback water or the produced water), and 

surface waters is salinity or its associated determinands, eg. total dissolved solids (TDS) or 

electrical conductivity (in this study, specific conductance which is the electrical conductivity 
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of water standardised to a fixed temperature). The salinity of flowback water and deep 

formation water, as determined by TDS is often greater than seawater let alone greater 

than the salinity of river waters. Rowan et al. (2011) reviewed the total dissolved solids 

(TDS) of shale gas flowback water from US shale gas formations and showed that the 

flowback fluids were between two thirds and 10 times the seawater TDS (log TDS of 

seawater < 4.6) and much larger still than freshwater TDS (log TDS of freshwater ~ 2.6). 

Equally, the salinity of fracking fluids is far higher than that of surface waters and so salinity 

can also be used as a parameter for detecting fracking fluids as well as flowback water in 

surface and groundwater. For example, the only shale gas well so far fracked in the UK was 

at Preese Hall in Lancashire (Environment Agency, 2011, as cited in Almond et al., 2014). In 

this case, the flowback fluid salinity was between 3 and 5 times higher that of seawater; in 

contract freshwater salinity is typically only 0.2% of seawater, i.e. only a 0.07% addition of 

such flowback water would cause a doubling of salinity in an English surface water. Yet 

rather than being expensive or requiring specialist equipment salinity, or specific 

conductance or TDS, are regularly and routinely measured in surface and ground waters and 

there are long term records of freshwater specific conductance measurements whereas 

there are no long term measurements across multiple sites of dissolved CH4 (eg. Teasdale et 

al., 2013). These properties mean that salinity, and its allied measures specific conductance 

and TDS, make an ideal sentinel of change for detecting water quality impacts of a 

developing shale gas industry as it readily measured; shows a high contrast against a 

background of freshwater environments; is highly specific for shale gas development; and its 

high specificity and contrast with background mean that it could be a lead indicator of any 

incident. Furthermore, high salinity water from hydrocarbon exploitation has been observed 

to be a major cause of toxicity in exposed organisms (He et al., 2017; Blewett et al., 2017) 



  

5 
 

and in the Canadian province of Alberta in 2015 there were 113 documented incidents of 

spills of flowback and produced water (Alessi et al., 2016). 

However, although there are considerable numbers of measurements of specific 

conductance available, these measurements have not been collected for the purpose of 

creating a baseline against which impacts of a new industry can be judged. The Environment 

Agency have identified a range of statistical tools for use with monitoring data for specific 

sites and are currently trialling these at two sites in the north of England. However, there is 

no coherent and consistent means of handling existing data to make the assessment of any 

impact; a coherent method is needed for objectivity and transparency and therefore, this 

study proposes a new method to use existing specific conductance data to assess the impact 

of fracking on surface and groundwater quality based upon generalised linear modelling. 

This approach is entirely data driven and uses all the existing data without the need for the 

parameterisation required in physical models; it is flexible with respect to the distribution 

chosen to represent the specific conductance data; and can include existing factorial (eg. 

location) and covariate information (eg. river flow or land use). The model was developed 

within a Bayesian framework. The Bayesian framework means that the approach creates a 

structure whereby all information has some value, i.e. information from monitoring sites 

not in a catchment of interest help inform the distribution of data within the catchment of 

interest. Furthermore, new information can be directly added to update estimates; and all 

model outputs come with a probability which means that risk and uncertainty are 

considered at all stages. The approach creates a dynamic baseline for assessment of water 

quality effects of a shale gas industry.  Such a baseline is dynamic in both time and space, 

i.e., generating a time series of expected results that would be different for different 

catchments. Estimated and predicted baseline results are both specific to a given location 
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and develop over time in response to natural changes meaning that it will improve with 

ongoing monitoring at shale gas or other infrastructure sites. Therefore, the approach of 

this study was to construct a dynamic baseline for surface water specific conductance using 

Bayesian generalised linear modelling such the outputs of the model give a probability of an 

unusual event, i.e. a pollution incident. The approach used the extensive, low frequency 

(generally monthly) monitoring of specific conductance across English surface waters as this 

gave access to many years of data (data between 2002 and 2015 were used in this study) 

from many sites and rivers while including catchments where shale gas development is 

planned. 

 

2. Methodology 

2.1. Study sites 

The study initially used specific conductance data from the 123 Harmonised Monitoring 

Scheme sites across England (HMS - Bellamy and Wilkinson, 2001 – Fig. 1). HMS monitoring 

sites were selected for inclusion into the original monitoring programme if they were at the 

tidal limit of rivers with an average annual discharge greater than 2 m3s-1, or any tributaries 

with a mean annual discharge above 2 m3s-1 (Bellamy and Wilkinson, 2001). The specific 

conductance of natural waters increases with temperature. This study used data for specific 

conductance – specific conductance is the electrical conductivity of the water sample at a 

set temperature, in the case of this study 25 oC. Records of specific conductance for HMS 

sites can be paired with records of either instantaneous or average daily flow for these sites. 

For the purpose of this study records from 2002 to 2015 were considered. Although the 

main study period for this study was the decade 2003 – 2014 as records from 2002 were 
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used to construct prior information for the statistical model and for 2015 there were 

incomplete flow records available meaning that data for 2015 were used for testing and 

validating the models developed.  

 On the basis of the result from the HMS sites the study was extended to include all 

river sites in the England sampled between 2003 and 2015 where there were 10 or more 

samples with the measurements made in more than one year. The sampling constraints 

were included to ensure that interaction terms could be estimated and to limit the quantity 

of data to be analysed. Only measurements from routine river monitoring and not pollution 

incidents were considered. 

 

2.2. Bayesian generalised linear modelling 

The statistical modelling was based the Bayesian approach to generalised linear modelling. 

Each data point (specific conductance measurement - ) is is assumed to be generated from a 

particular distribution in the exponential family of distributions, the mean, μ, of the distribution 

depends on the independent variables, X, through: 

 

             (i) 

 

where E() is the expected value of  – the specific conductance; Xis the linear predictor, a 

linear combination of unknown parameters; and g is the link function. The link function is 

often defined by the choice of distribution and in this case a gamma distribution was 

chosen. A priori, a gamma distribution has a number of advantages over other distributions, 

firstly, it readily approximates normal, log normal, exponential and Weibull distributions. 

https://en.wikipedia.org/wiki/Probability_distribution
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This flexibility means that no adjustment for values close to the limit of detection is 

required. Second, the gamma distribution is only defined for positive numbers and so there 

is no possibility that physically impossible negative values would be predicted as would be 

case with a normal distribution. Evidence from high frequency sampling has supported the 

use of a gamma distribution (Worrall et al., 2015). However, to test the appropriateness of 

the use of a gamma distribution the analysis of the HMS data was repeated using Weibull, 

normal, log normal and exponential distributions. 

The form of the gamma distribution is defined as ) where  is commonly 

known as the shape factor and  is the rate factor, and: 

 

     
 

 
  (ii) 

    
 

  
  (iii) 

 

 Linear predictors included factors and covariates. The factors considered in this 

study were Site, Month and Year. The Site factor is the difference between all the 

monitoring sites from the HMS for which specific conductance data were available – this 

factor had 123 levels one for each site. The Year factor had 12 levels for each year from 

2003 to 2014. The Month factor had 12 levels one for each calendar month. The two-way 

interactions between factors were included. 

 The Bayesian approach was achieved by Markov Chain Monte Carlo (MCMC) 

simulation to estimate the posterior distribution of the specific conductance using WinBUGS 

version 14 (Lunn et al., 2013). The length of the MCMC chain was 30000 cycles after a 10000 

burn in cycles with samples saved every 10 cycles and with 1 chain. Model fit was tested 
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using a number of approaches. First, that the 95% credible interval for any factor does not 

include zero, this is henceforward referred to as being significantly different from zero at a 

probability of 95%. Second, that inclusion of the factor, interaction, or covariate caused the 

total model deviance to decrease, and third, that the inclusion of an additional factor, 

interaction or covariate decreased the deviance information criterion (DIC). It is generally 

true that inclusion of factors, interactions or covariates will decrease the total deviance of a 

model as the inclusion means greater degrees of freedom for fitting and so the DIC accounts 

for the inclusion of more fitting parameters against the additional fit of the model. 

In the Bayesian analysis a weak uninformative Jeffrey prior distribution was used 

whereby the expected value was set as the mean of all specific conductance from the year 

2002 and the standard deviation was set as 100 times the coefficient of variation of the 

dataset, i.e. the prior was centred on the expected value of the data and was almost 

uniform in distribution. Given the size of the dataset and its spatial and temporal coverage it 

was deemed unnecessary or reasonable to develop a stronger prior distribution. 

 

2.3. Covariate information 

Covariate information was defined and developed as for Worrall et al. (2014). The CEH 

Wallingford digital terrain model (Morris and Flavin, 1994) was used to calculate the 

catchment area to each monitoring point. The CEH digital terrain model has a 50 m grid 

interval and a 0.1 m altitude interval. Secondly, the dominant soil-type of each 1 km2 grid 

square classified into one of three types (mineral, organo-mineral or organic soils) based 

upon the system of Hodgson (1997) using nationally-available data (Smith et al., 2007). In 

this classification system, peat soils are classed as organic soils. Thirdly, Land use for each 1 

km2 of England was classified into three land uses: arable, grass and urban from the June 
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Agricultural Census for 2004 (Defra, 2005). The June Agricultural Census also records the 

number of cattle and sheep in each 1 km2 and so as to provide a single measure for 

livestock, the equivalent sheep per hectare were calculated based on published nitrogen 

export values (Johnes et al., 1996) which gives a ratio of 3.1 sheep per cow. The soil and 

land-use characteristics for each 1 km2 were summed across the catchment to each of the 

monitoring points and the relative proportion of different soil and land-use properties was 

determined.  

For each of the HMS catchments for which specific conductance data were available, 

hydrological characteristics were available from the UK’s National River Flow Archive 

(www.ceh.ac.uk/data/nrfa/). The characteristics used were: the base flow index (BFI), the 

average actual evaporation (AET) and the average annual rainfall (SAAR). The average 

annual total river flow for each catchment was taken as the difference between average 

annual rainfall and the average actual evaporation for each catchment. 

The river flow at the time of sampling was available from the HMS records and was 

paired with the specific conductance data. Flow data, even instantaneous flow data, will be 

co-linear with catchment area, i.e. river flows are more likely to be larger for larger 

catchments and so as an alternative approach, flow records for each site were converted to 

the percentile flow for that site. 

All covariate information was tested for normality using the Anderson-Darling test 

(Anderson and Darling, 1952) and log-transformed if required. To understand the 

importance of covariates a simple sensitivity analysis was conducted whereby a 10% 

increase in the average value of each significant covariate was imposed and the change in 

the specific conductance noted. 

 

http://www.ceh.ac.uk/
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2.4. Model application 

The model was considered in two stages. Firstly, to predict the specific conductance at an 

HMS site, i.e. a monitoring site included in the analysis. In this case the model was 

developed including the Site factor but without those covariates that are specific to each 

site and therefore would be co-linear with the Site factor. Secondly, the model was applied 

to predict conductance at a non-HMS site whose monitoring records were available but 

because the monitoring site is not part of the HMS it was not included in the first stage 

analysis, ie. a site not included in the original Site factor. This second analysis, therefore 

could not include the Site factor and so this second analysis used Year and Month as factors 

but considered the entire range of covariates defined for the new site.  

 On the basis of the results of the above a subsequent analysis included all the English 

sites with 10 or more data over at least two years in the period 2003 to 2015. In this third 

analysis the Site, Year and Month factors were used and their two-way interactions also 

included. 

Given outputs and fit of the model were developed to consider the impact of shale 

gas developments and so for application and comparison sites were chosen within the one 

of the developing shale gas basins of the UK. Both chosen sites were selected to be the 

nearest available to the development sites in the Vale of Pickering (Fig. 1). The first site is an 

HMS monitoring site on the River Derwent at Loftsome Bridge and was included in the 123 

sites in the Site factor of the initial analysis. The predicted specific conductance at this site 

was compared to observed conductance and then predicted for the year 2015, i.e. the 

subsequent. The second site of application was to a site not in the HMS monitoring network 

and therefore not included in the first analysis with the Site factor. The site chosen was on 
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the Costa Beck (Fig. 1), chosen because it the monitoring site nearest to the proposed shale 

gas extraction site. 

 The purpose of this study was to create a dynamic baseline against which any influx 

of highly saline waters from fracking operations could be detected, therefore, the real 

question is what volume of fracking fluid could this approach detect at a given probability. 

There has only been one fracking operation conducted in the UK at Preese Hall in Lancashire 

(Fig. 1) and the conductivity of flowback fluid from the Preese Hall well varied from 133730 

and 150614 S/cm (Broderick et al., 2011). 

 No salinity or total dissolved solids (TDS) is reported within the available databases 

but standard relationships between salinity and specific conductance exist (Weyl, 1964)  

 

                              (iv) 

 

Where Salinity is in mg/l. Equation (iv) was used to convert specific conductance to values, 

but it should be remembered that Equation (iv) was only defined for salinity > 1000 mg/l 

which is equivalent to a conductance of 2200 S/cm. 

 

3. Results 

3.1. Model development 

Between 2003 and 2014 there were 14495 measurements of specific conductance at 123 

sites across England which could be paired with flow records and matched with catchment 

characteristics. Preliminary examination of the data showed one site should be removed 

(River Weaver at Frodsham) as it regularly had specific conductance over 10000 S/cm 
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which was not seen at any other site – the high values could simply be due to the site being 

too close to the tidal limit. The distribution of all results shows a bimodal distribution with 

peaks at 200 S/cm and at 550 S/cm. Fitting single gamma distribution to all the data gives 

(2.2, 282) which gives an expected value of specific conductance, E() = 633.5 S/cm, with 

the 95% interval being 95 to 1117 S/cm and given a freshwater limit of 1000 mg/l salinity 

then 0.2% of conductivity measurements exceeded this limit. The fit of this single 

distribution represents a base case for the prediction of specific conductance at any one site 

against which it is possible to judge the benefit of more complex models. 

 The model using only known factors (Site, Month and Year) shows that all three 

factors were significant (where significance is as defined above that the 95% credible 

interval does not contain zero) and so to were the interactions of the three factors (Table 1). 

It should be noted that at this stage of modelling that the deviance for models fitted using 

normal, log normal, exponential and Weibull distributions each lead to tot total deviance > 

200000, i.e. a gamma distribution provided the best-fit. The percentile flow, when included, 

was significant and showed that specific conductance decreased with increasing flow which 

is a dilution effect with new, more rainwater-like and lower conductivity water coming in 

with higher flows. The inclusion of the covariates decreased the credible interval and the 

deviance of the model, however, the DIC did not decrease suggesting that inclusion of this 

additional covariate may not be justified.  

Given the inclusion of all the factors and the percentile flow covariate it is now 

reasonable to calculate and plot the expected value of the specific conductance ( for each 

site (Fig. 2). The expected value so calculated allows for the differences in sampling times 

and conditions. The values do show regional differences with the lowest values in the north 
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and the west of England and the highest values in the east and centre of the country. These 

regional differences may reflect underlying geology or climate differences. 

 When catchment covariates were included the Site factor was removed. The best-fit 

model is detailed in Table 2 and shows that a range of catchment characteristics are not 

significant in the prediction of conductivity and these are: BFI, AET, and the area of organic 

soils. Amongst the significant terms by far the most important was the change in flow and as 

flow increases the specific conductance of river water decreases and the term in flow is very 

close to, but still significantly different from, -Q¼. However, it should be noted that flow is 

co-linear with catchment area and rainfall, i.e. flow increases with both increased average 

rainfall and catchment area. River water specific conductance decreases with increasing 

catchment size and increasing average rainfall. The effect of flow and rainfall can be 

ascribed to dilution from rainfall, however, the impact of increasing catchment area is less 

straight forward as it might be expected that increased catchment size in the UK means that 

increased influence of groundwater rather than rainwater but this term may be co-linear 

with the river flow. The most important of the soil terms was the area of organo-mineral 

soils and while increasing the area of the mineral soils leads to decreased conductivity the 

presence of organo-mineral soils increases river water conductivity. As for land-use, the 

area of grassland decreased the conductivity, while increasing urban area increased 

conductivity; urban areas are sources of salt from roads and wastewater inputs can also 

increase salinity. The map in Fig. 2 cannot show the catchment area contributing to each 

site but the significant covariates could help explain the pattern of expected values 

observed in Fig. 2. Relatively low expected values of  are observed in the north and west of 

England where rainfall is higher and river flows might also be expected to be higher. The 

pattern with respect to land use and soil type is more complex as mineral soils dominate to 
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the east and south and so to do arable and urban land use, i.e. competing effects of soil and 

land use effects on the specific conductance. 

 When no covariates were included, the Month factor did show a significant seasonal 

cycle although only three months are significantly different from zero – October, November 

and December - and all three led to lower specific conductance. When the covariates were 

included then four months were significantly different from zero; during April and July the 

specific conductance was significantly higher than the annual mean, while for November 

and December the specific conductance was significantly lower. The month factor appears 

to follow river flow rather than following road salt applications which would peak in the 

winter months. 

 The Year factor was significant but for most years there is no significant difference 

from zero and only 2007 and 2008 showing significantly lower values and 2014 showing 

significantly higher values. The difference between levels of the Year factor are clearly 

explained by including covariates which when included showed that 2004, 2005, 2007, 2008 

and 2012 all show significantly lower values and only 2013 showed significantly higher 

values. When Year was included as a covariate rather than a factor then there was a 

significant role for Year as a covariate with specific conductance increasing over the time 

period across all sites but only by 0.01 S/cm/yr, i.e. although significantly different from 

zero the trend is very small compared to other changes due to the other covariates, factors, 

or interactions. 

 

3.2. Model Application 

First, the approach was applied to the River Derwent at Loftsome Bridge, a site included in 

the dataset for analysis. There were 151 observations of specific conductance at Loftsome 
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Bridge between 2002 and 2014, and the best-fit gamma distribution across all years and 

months gives E() = 544 S/cm and 95% credible interval of 405 to 735 S/cm. In 

comparison to the observations for 2014 at Loftsome Bridge (Fig. 3) shows that all but one 

observation is within the credible interval suggesting that this one observation could be 

considered as an unusual observation. When prediction at the included site was performed, 

prediction for specific conductance () at Loftsome Bridge for 2015, i.e. for a site included in 

the analysis but for a year beyond that included in the data, then the observed data was 

within the predicted credible interval (Fig. 4) – note that there were only 9 measurements of 

 at Loftsome Bridge in 2015. Of course, as an alternative approach to assessing the 

performance of the modelling the predicted values of the expected value for Loftsome 

Bridge in 2014 between difference models with their varying inclusion of factors, 

interactions and to compare to prediction of the model for specific conductance (Table 3). 

The comparison of models shows that it is the inclusion of all three factors with their two-

way interactions that brings the results to include those observed, but the further inclusion 

of covariates does not improve the model prediction.  

Second, the model was applied to the site at Costa Beck, i.e. a site never included in 

the analysis. Over the period 2002 to 2015 there were 65 observations of specific 

conductance with an expected value of specific conductance, E(k) = 621 S/cm and 95% 

credible interval of 568 to 684 S/cm. The results show that the model overpredicts (Fig. 

5, of the 20 observations at Costa Beck measured 11 were within the range predicted but 

of the remaining 9 observations all were lower than predicted. So whereas the model 

approach works well for modelling and prediction at sites which are included in the original 

dataset any extension to other, not previously considered, sites was not as effective. 

Therefore, the study extended the application to all monitoring sites in England. 
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3.3. Model of all English monitoring sites 

In total there were 6833 river monitoring sites which met the criteria (Fig. 6) and plotting 

the calculated expected values (E()) shows a tendency of increasing E() from west to east 

across England and perhaps also from north to south, but the largest values of E()) are not 

in the south east corner of England but in more central areas of England and especially 

rivers entering the Wash. This tendency across England perhaps follows gradients in climate 

from the wetter western and more mountainous areas of the west and north towards drier, 

lowland areas of eastern England. Furthermore, the tendency for higher E()) to eastern 

England also seems to follow geology with more permeable and younger geology occurring 

in east compared to the west. The map in Fig. 6 also shows that other potential sources of 

high salinity water are not important. For example, it might expected that urban 

conurbations with their high density of major roads, which would be salted in winter, would 

represents “hot spots” of specific conductance, but the major English conurbations are not 

visually obvious in Fig. 6. Furthermore, areas of the UK with worked salt deposits (Cheshire, 

north-west England) do not show up as “hot spots” of specific conductance in Fig. 6.  

 Application of the model from all English monitoring sites to the specific 

conductance data for Costa Beck shows that rather than a systematic overprediction the 

results now show only three observations were overpredicted but none were 

underpredicted (Fig. 7).  

 

3.4. Model sensitivity 

With respective to sensitivity then it is true for a volume of incoming high salinity water 

could be detected if: 
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 (iv) 

 

Where: Qx = the discharge due to the river (r) or from fracking (f) – m3/day; x = specific 

conductance for the river (r) and for the fluid from the fracking operation (f) – S/cm; and 

  
   = the maximum specific conductance predicted for the river – S/cm. Given that f >>> 

  
    the denominator simplifies. For the Preese Hall well flowback fluid and the river 

discharge recorded at Loftsome Bridge in 2014 shows that in this case there was a 95% 

probability of being able to detect as little as 272 m3/day in February 2014 but this rose in 

wetter winter months to as high as 745 m3/day (Fig. 8). The volume of fracturing fluid used 

varies depending on the shale-play, the operator, well depth, the number of fracturing 

stages and the length of the wells (Nicot and Scanlon, 2012). The European Parliament 

summarised the US literature on the volume of water required per well and found the 

volume ranged from 1500 to 45000 m3 (Clancy et al., 2018), whilst Jiang et al. (2014) note 

that the average Marcellus well consumes 20000 m3 (with a range from 6700 to 33000 m3) 

of freshwater per well over its lifetime. The single well drilled in the UK at Preese Hall 

(Lancashire) required 8400 m3 of water. Taylor et al. (2013) when considering the scenarios 

for the development of a UK shale gas industry considered the development of a 10-well 

pad of 10 laterals which would require 136000 m3 of water per well. Initially it is likely that 

the water required will be trucked to the site rather than piped, thus requiring between 

2856 and 7890 trucks over a 20 year period with truck movements concentrated in to the 

first two years at between 3.9 – 10.8 truck movements per day during phases of site 

development and production. Given the volume that a single truck can transport (30 m3) 
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means that a site might need storage for approximately 600 m3 of water, i.e. two days 

worth of truck movements at maximum predicted number of trucks. Therefore, the 

alternative question to ask is how small a river would need to be monitored in order to give 

a defined chance of detecting a leak or spill? Applying Equation (iv) to calculate Qr given the 

values of r for Loftsome Bridge in 2014 and the range of values of f observed for Preese 

Hall flowback fluid and a Qf of between 30 and 600 m3/day means that for a 97.5% 

probability of detecting leaks with river flow of 0.6 and 1 m3/s (Fig. 9). Given the catchment 

characteristics used as covariates in this study an average flow of 1 m3/s would be true in 

the UK for catchments of less than 9 km2. 

 The approach above assumes the water quality problem arises from an acute 

incident of spill or leakage to surface water and not a chronic seepage of contaminated 

fluids from depth to surface. Osborn et al. (2011) reported that contamination of shallow 

groundwater overlying the Marcellus shale resulted from poor well integrity in the shale 

gasfields, while Warner et al. (2014) reported no such contamination for shallow 

groundwater overlying the Fayetteville shale in Arkansas and Wilson et al. (2017) showed 

that contamination from the shale layers was extremely unlikely for the UK’s Bowland shale. 

 

4. Discussion 

This study has developed a consistent and coherent approach to the use of conductivity 

monitoring data. The Bayesian approach uses all available data to predict distributions at 

sites of interest. For determinands with defined environmental quality standards (eg. water 

framework directive – EC Directive, 2000) individual results are viewed relative to these 

standards while for other determinands (eg. specific conductance) even such comparisons 



  

20 
 

may not occur as no legal standard exists. Furthermore, the review period for water quality 

monitoring is not always clear, under an operators permit the operator should review 

continuously, i.e. data reviewed each time new data is produced and the regulator informed 

if there is an issue. The regulator in the UK may be asked to report at anytime to the 

Secretary of State at the highest government level, but how often this occurs is not clear. In 

the approach used here each datum can be viewed against a prediction that is based upon 

all available information and this can be viewed in a probabilistic framework, i.e. what is the 

probability that a new observation is exceptional and not what should be expected. In the 

case of used here measured specific conductance was judged against a predicted 

distribution as a means of testing whether an exceptional has or has not occurred. But 

equally we can use the predicted distribution to assess the probability that an 

environmental standard has been breached, for example in the case of specific conductance 

what would be the probability that the stream has a salinity > 1000 mg/l ( >  2270 S/cm).  

 In effect this approach has built up a method to improve assessment at any one site. 

At the simplest level one could examine the distribution of observed data at any site and 

compare the latest observation with that distribution. But that would not be a fair 

comparison because a local interannual variation might mean that comparing one 

observation with data from all years would be inappropriate, i.e. there is a interannual trend 

at site which values in the current year would tend to be lower than those in a previous 

year; thus a distribution for the given year would be better than comparing with data from 

all years. Equally there could be expected to be an intra-annual cycle in values and so even 

grouping observation by year would be misleading as some months would naturally be 

expected to have higher values than others. So including a measure of intra-annual cycle 

(eg. month) would improve the distribution for comparison. But of course it is unlikely that 
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there will be sufficient observations to give such a reasonable distribution for any month for 

any year and any one site or indeed enough observations for any site and so it would be if 

information from other sites could be drawn open: this then is what this approach has 

achieved. By using all available information the approach here estimate a distribution of 

observations for every month, for every year at each site. An analogous, non-Bayesian 

approach might be that of weighted regression analysis (Hirsch et al., 2010, 2015),  

The approach could improve with the use of further covariates. The study has considered 

a range of covariates but in most cases covariates were surrogates for site information (eg. 

catchment area or land use). Within the HMS dataset it was possible to include river flow 

but this was not possible at all sites simply because in this dataset there are only 677 sites 

which are co-located with river flow gauging stations. However, as data has been chosen 

from water quality monitoring sites there would be other water quality parameters 

measured at these sites which may provide additional, covariate information. Specific 

conductance could be expected to co-vary with some cations and anions but equally the 

compositions of hydraulic fracking fluid may lead to use of other water quality parameters 

with a reasonably high degree of specificity for pollution incidents from unconventional 

hydrocarbon operations. Further, the analysis could become multi-dimensional, i.e. a 

further determinand could be to the analysis. Johnson et al. (2015) have suggested that 

sources of brine in areas of unconventional hydrocarbon extraction could be distinguished 

bu use of Cl/Br ratio; Sr isotopes or the ratio (Ba + Sr)/Mg. Indeed, Wilson and Van Briesen 

(2013) used Cl/Br ratios to detect shale gas fluids in surface waters of the Mononghela river 

in Pennsylvania. However, all three of these fail the criteria outlined in this study for a good 

being a good sentinel if for no other reason than they are not regularly measured. 
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The approach proposed here could be applied to the majority of data from water quality 

monitoring. Even in a focused network of monitoring sites such as may be used within the 

context of a developing shale gas industry there is no criteria for assessing whether 

pollution has or is occurring. For example, Krogulec and Sawicka (2015) discuss groundwater 

monitoring in Poland for the impacts of shale gas development but at no point suggest 

numbers of monitoring points or frequency of sampling. Niu et al. (2018) proposed a change 

point analysis upon water quality time series in streams from areas of unconventional 

hydrocarbon exploitation. Loomer et al. (2018) used a higher frequency sampling of 

groundwater in area of Canada to determine the appropriate sampling frequency for 

monitoring unconventional hydrocarbon exploitation. Austen et al. (2017) suggest that 

unconventional hydrocarbon operations in the Fayetteville Shale had no impact on surface 

water quality on the basis of trends solely recorded after the unconventional hydrocarbon 

well pads had been installed and did not formally compare to any control. Down et al. 

(2015) have published a baseline geochemical assessment of the Triassic  basin of North 

Carolina, a prospective shale gas basin at the time of the study, however the study provides 

no suggestion as to how these results might be used to assess any impact of a  shale gas 

industry. Alternatively, Werner et al. (2013), Darrah et al. (2014) and Hildenbrand et al. 

(2015) have provide extensive water quality surveys of Arkansas’ Fayetteville shale; 

Marcellus shale and the Barnett shale of Texas respectively, but in each case the surveys 

were after shale gas had been exploited in the area for many years. However, Hildenbrand 

et al. (2016) did consider the change in groundwater quality with the development of 

unconventional hydrocarbon resources in the Permian Basin of Texas and the sampling 

started before shale gas had been extracted in the majority of the area.  
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The approach developed and tested provides a number of clear advances over the 

current situation: 

i) This is a systematic transparent approach to analysing data and provides a probability, 

with uncertainty, as to the nature of any observed data. Thus in turn the probability that 

any pollution has, or has not, happened can be assessed. 

ii) The approach makes use of all available information and so the approach gains value 

from the whole monitoring network, i.e. maximum information is gained from the 

current, past and ongoing monitoring. This approach, therefore, gives good value for the 

money invested in environmental monitoring. 

iii) All risk assessment is actual a probability statement and the tools here use Bayesian 

approaches so all results will be a probability and with an uncertainty.  

iv) The Bayesian framework means that the tool automatically updates and so contributes to 

the development of a dynamic baseline in time and space. 

v) The approach proposed can be used to assess information content and informational 

efficiency of the current monitoring network monitoring. 

 

In regions of especial interest or concern with respect to shale gas extraction it would be 

easy for industry or regulators to place a water quality sonde in a local waterway to produce 

quasi continuous records of water quality and especially conductivity. Indeed, conductivity 

is the most commonly measured water quality parameter on such sondes (Halliday et al., 

2012). Unlike for spot sampling in-situ water quality sondes are subject to damage and 

vandalism and must be maintained and calibrated in-situ. Son et al. (2015, 2018) have 

proposed the use of in-situ water quality sondes down borehole in areas of active hydraulic 
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fracturing in northern Colorado to monitor for pollution events. The problem of 

interpretation would be equally true for high frequency as for low frequency data obtained 

from spot sampling, i.e. a coherent framework for assessing the probability that a pollution 

event had or was happening would still be required and an expectation of what baseline 

conditions represent natural would still need to be constructed. The United States 

Environmental Protection Agency have developed a system for working with real-time, 

quasi-continuous data for the detection of pollution events (CANARY - USEPA 2012b). Quasi-

continuous data could be readily incorporated into the approach presented here and 

analysis with the network of existing data providing informative prior information within the 

Bayesian framework proposed. Furthermore, such quasi-continuous records have been 

viewed by many authors as perfect information and so in comparison to results from less 

frequent spot sampling it would be possible to judge the value of perfect information 

relative to low frequency sampling (Worrall et al.,2013). 

   

5. Conclusions 

The study has developed a Bayesian generalised linear modelling approach to 

understanding specific conductance in English river waters. We could model specific 

conductance at river sites down to the natural variation at the monthly time step. The 

model could predict at sites included in the analysis but did not work well within the 

currently available covariates to predict at unknown sites. The model was extended to 6883 

sites across England and this enabled our approach to predict a monthly distribution at any 

of these sites. The approach can be used to assess whether an observation is unusual 

against a regulatory standard or by predicting a distribution at each point of time at a point 
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of interest the regulator could set their own criteria more appropriate for the local activity 

being monitored. The model shows that most rivers could readily absorb leaks of fracking 

fluids due to low volume of daily use on a single well pad. We propose that this approach 

could provide a coherent and consistent approach to analyzing water quality data while 

enhanced use of all available data. 
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Fig. 1. Location of the Harmonised monitoring scheme (HMS) sampling sites used in this 

study including the chosen sites within The Vale of Pickering (River Derwent at Loftsome 

Bridge;  and Costa Beck) as well as the site at Preese Hall. 

 

Fig. 2. Maps of: a) the expected mean (E()); b) the 97.5th percentile; and c) the 2.5th 

percentile of the specific conductance (). 

 

Fig. 3. The comparison of the predicted and observed specific conductance for Loftsome 

Bridge (River Derwent) in 2014. 

 

Fig. 4. The comparison of the predicted and observed specific conductance for Loftsome 

Bridge (River Derwent) in 2015. 

 

Fig. 5. The comparison of the predicted and observed specific conductance for Costa Beck 

based upon model from HMS data. 

 

Fig. 6. Maps of: a) All English stream and river water sites with sufficient data to be included 

in this study; and b) the expected mean (E()). 

 

Fig. 7. The comparison of the predicted and observed specific conductance for Costa Beck 

using the model based upon data from all English monitoring sites. 

 

Fig. 8. The detectable volume of fracking discharge (a leak of any of the possible high salinity 

fluid from the well pad) predicted at Loftsome Bridge. 
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Fig. 9. The flow required to detect a typical volume stored within a single well pad.  
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Table 1. The details of model fit with increasing introduction of factors, their interactions 

and inclusion of Year and percentile flow (%flow) as covariates. 

Factors Interactions Covariates Deviance DIC 
Site Month Year  Year Log(%flow)   

Observed        
x      17772 17773 
x x     17690 17770 
x x  x   17590 17773 
x x x    17650 17470 
x x x x   17373 17630 
x x x x  x 17270 17530 
x x  x x x 17200 15500 

 

Table 2. The coefficient of those covariates found to be significant and the sensitivity of the 

prediction of specific conductance to a 10% increase in the average value. 

Covariate Mean 2.5% 97.5% Average Sensitivity (S/cm) 

LogQ -0.23 -0.24 -0.22 4.46 m
3
/s -14.4 

Area -0.00016 -0.0002 -0.00011 146 km
2
 -0.95 

Aver. rainfall -0.0016 0.0018 -0.0014 1369 mm -8.7 
Mineral soil -0.00016 0.0022 0.00009 28.2 km

2
 -0.18 

Organo-mineral soils 0.0007 0.0046 0.00088 95.4 km
2
 2.95 

Arable 0.00029 0.00012 0.00047 10.4 km
2
 0.12 

Grass -0.0003 -0.00047 -0.00014 78.5 km
2
 -1.0 

Urban 0.026 0.0022 0.003 5.5 km
2
 0.6 

Constant 6.02 5.97 6.07   

 

 

Table 3. The application of the derived models to predict the distribution of specific 

conductance at Loftsome Bridge, River, Derwent, 2015. 

Factors Interactions Covariates Predicted 
Site Month Year  Year Log(%flow) Mean 2.5% 97.5% 

      633 95 1117 
x      543 526 568 
x x     546 523 571 
x x  x   545 474 629 
x x x    535 510 562 
x x x x   616 508 744 
x x x x  x 617 513 739 
x x x x x x 612 510 732 

Observed      606 571 643 

 

  



  

35 
 

Research Highlights 

1) There is a need for effective baselines against which impacts can be assessed 

2) For the impacts of shale gas, specific conductance is an ideal quality sentinel 

3) A Bayesian model was used to predict specific conductance for surface waters  

4) The model built upon spot-sampled data from 2005 to 2015 for 6833 across England 

5) The approach assesses how exceptional of any observation would be. 

 

 


