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Abstract: The traditional approach of a star tracker for reducing the dynamic error concentrates
on a single frame of star images. Through correlating adjacent star images together with their
angular relations sensed by a gyroscope unit (GU), the attitude-correlated frames (ACF) approach
expands the view from one single frame to frame sequences. However, the star centroid is
shifted from the star true position at the center time of the exposure period under complex
dynamic conditions, which is called the complex motion induced error (CMIE) in this paper.
The CMIE has a large effect on the performance of the ACF approach. This paper presents a
method to compensate the CMIE through reconstructing the star trajectory with the angular
velocity of the star tracker sensed by a GU, which achieves effective compensation of the CMIE
crossing the boresight direction. Since the observation sensitivity to the CMIE along the boresight
direction is low, the attitudes from two different fields of view (FOVs) are combined to improve
its compensation accuracy. Then the ACF approach is applied to the obtained results where
the CMIE has already been compensated completely. Simulations under shipboard dynamic
conditions and experiments under oscillating conditions indicate that the proposed method is
effective in improving the performance of the ACF approach and reducing the dynamic error of a
star tracker under complex dynamic conditions.
© 2017 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

As an absolute attitude determination device, a star tracker can provide highly accurate attitude
information for vehicles e.g. satellites, ballistic missiles and ships etc. It can be integrated with
other navigation devices e.g. an inertial navigation system (INS) to improve the performance of
integrated navigation systems. It is widely used in the fields of attitude determination, guidance
and navigation [1, 2]. However, the attitude measurement accuracy of a star tracker declines
under dynamic conditions such as the satellite attitude maneuvering or the ship motion. In such
a dynamic condition, stellar images will become motion-blurred. The star centroid accuracy
will also decrease, leading to the rapid degradation of the attitude measurement accuracy [3].
Therefore, current researches mainly focus on improving the star tracker attitude measurement
accuracy under dynamic conditions.
To improve the attitude accuracy of a star tracker under dynamic conditions, star restoration

algorithms [4–7] and centroid compensation algorithms [8–10] are widely researched. Zhang et
al. [4], Wang et al. [5] and Quan et al. [6] applied Wiener filtering to restore the motion-blurred
star image, which was always accompanied by serious ringing effect. Sun et al. [7] employed the
Lucy-Richardson (LR) reconstruction that effectively restrained the ringing phenomenon [11].
Using this method, the star centroid accuracy can be maintained in the range of 0.62 pixels
(3σ) under dynamic conditions of 4.989◦/s. Jiang et al. proposed an accelerated LR restoration
algorithm, offering speedup of 20 times over the original LR and 5 times over the existing
acceleration algorithms [11]. Different from the star restoration method, centroid compensation
algorithms can be applied to compensate the error of the star centroid obtained through direct
extraction. Xing et al. [8] adopted the Extended Kalman filter (EKF) for the star centroid
determination. The centroid error was about 1 pixel with an angular velocity of 8◦/s for a star
with a magnitude of 5 in the simulation. The attitude-correlated frames (ACF) approach was
proposed by Qin et al. [9], which expanded the view from one single frame to frame sequences.
With the angular relations sensed by a gyroscope unit (GU), which consists of three orthogonally
assembled gyroscopes, the adjacent frames were correlated together to restrain the random error
of the star tracker. With ACF approach, the star tracker accuracy can be improved by a factor
of
√

N where N refers to the number of correlated frames as introduced in [9, 10].
The centroid error requires a Gaussian distribution for the application of the ACF approach.
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The effectiveness of the ACF approach has been verified under conditions when angular velocity
is quasi-static during the exposure period [10]. However, under complex dynamic conditions when
the angular velocity of a vehicle continuously varies during the exposure period, the measured
centroid will be shifted from the star true position in the center of the exposure period [12,13].
Accordingly, the centroid error no longer follows a Gaussian distribution, but a distribution
related to the motion characteristics of the star tracker. In other words, the correlation matrices
between adjacent frames cannot be calculated accurately due to the uncertainty on the time tags
of these frames caused by complex motion. Taking a shipborne star tracker for an example, its
angular velocity changes quickly during an exposure period due to the wind wave and ocean
swell, which causes the complex motion induced error (CMIE) in centroid determination. In such
a condition, the performance of the ACF approach is limited because of complex motion. In this
paper, a method of compensating the CMIE of a star tracker under complex dynamic conditions
is proposed. The ACF approach is then applied to improve the attitude accuracy further. Both
simulation of shipboard dynamic conditions and night-sky experiment validate this method.
The simulation and experimental results demonstrate that the proposed method can improve the
dynamic accuracy of a star tracker in complex dynamic conditions.

This paper is organized as follows. In Section 2, the ACF approach is reintroduced briefly, and
the limitations of the ACF approach under complex dynamic conditions are analyzed. In Section
3, the centroid error compensation method under complex dynamic conditions is explained.
Simulation and experimental results are presented in Section 4 and Section 5 respectively. Finally,
conclusions are presented in Section 6.

2. ACF approach under complex dynamic conditions

2.1. Reference coordinate system definition

The coordinate systems used in this paper are defined as follows:
The Earth-centered inertial coordinate system (represented by i) is fixed in inertial space and

centered on the Earth. Its Xi axis is in the equatorial plane and points to the vernal equinox. The
Zi axis is aligned with the Earth’s rotation axis and vertical to the equatorial plane. The Yi axis
completes a right-handed frame as shown in Fig. 1.

The image plane coordinate system (represented by p) is a two-dimensional rectangular plane
coordinate system with its origin at the detector center, and its Xp and Yp axes are parallel to a
row and a column of the detector respectively.

The star tracker coordinate system (represented by s) has its origin at the detector center. The
Xs and Ys axes are parallel to a row and a column of the detector, respectively. The Zs , Xs and Ys
axes satisfy the right-hand rule [14] as shown in Fig. 1.
The computed star tracker coordinate system (represented by s′) deviates from the true star

tracker coordinate system due to attitude measurement error. It can be obtained by rotating a
certain Euler angle of the s frame.

The gyroscope unit coordinate system (represented by g) has its Xg, Yg and Zg axes consistent
with the three mutually orthogonal sensitive axes of the gyroscope unit as shown in Fig. 1.

2.2. Principles of ACF approach

Star images recorded at different time epochs and in different angular positions can be correlated
through attitude transformations, calculated by GU outputs [10]. The principle of ACF approach
is depicted in detail in [9, 10]. The main formulas of ACF approach are re-presented in this paper
briefly.
In each star image, the observed vectors in the s frame, Sj =

[
sj1, s

j
2, · · · , s

j
nst ar

]
, and the

reference vectors in the i frame, Pj =
[
pj

1, p
j
2, · · · , p

j
nst ar

]
can be obtained through star centroid
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Fig. 1. Definition of coordinate systems.

extraction and star identification [10] ( j is the star image index number satisfying j = 1, 2, · · · ,N ,
and nstar is the number of stars in the j-th star image). Here, Sj and Pj satisfy the Wahba
equation [15]: 

P1 = Ci
1S1 + E1

P2 = Ci
2S2 + E2

...
PN = Ci

NSN + EN

, (1)

where Ci
1, Ci

2 and Ci
N are the attitude matrices from s frame to i frame at time epochs t1, t2 and

tN respectively, and tj is the center of the exposure period in the j-th frame. E1, E2 and EN

are the measurement errors of the star tracker caused by the detector noise. Generally, attitude
matrices can be optimally estimated through subformulas in Eq. (1) independently. The cross
boresight noise equivalent angle (NEA) error Ess can be calculated by [16]:

Ess =
FOV
npixel

· Ecentroid√
nstar

, (2)

where FOV is field of view of the star tracker in degrees, npixel is the number of pixels across
the focus plane, Ecentroid is the average centroiding accuracy, and nstar is the average number
of detected stars in the camera image [16]. According to Eq. (2), the NEA error is inversely
proportional to

√
nstar .

The angular variation of adjacent frames are measured by a GU. The attitude transformations
from j-th frame to N-th frame, GN

j can be calculated through an attitude updating algorithm [17]
with angular increments sensed by the GU. Accordingly, subformulas in Eq. (1) can be correlated
into a single one [18]:{[

P1,P2, · · · ,PN
]
= Ci

N

[
GN

1 S1,GN
2 S2, · · · , SN

]
+

[
E1,E2, · · · ,EN

]
GN

j =
∏l=N−1

l=j Gl+1
l
, j = 1, 2, · · · , N − 1 . (3)

According to Eq. (3), the number of stars for the attitude matrix estimation are multiplied by
N . So the NEA error will be reduced by a factor of 1/

√
N [18].

A simplified solution algorithm named as the average optimal solution can be used to reduce
the computation load [9]. The average optimal solution ¯̂Ci

N of the N-th frame can be calculated
as follows [9]:

¯̂Ci
N =

1
N

[
Ĉi

N + Ĉi
N−1GN−1

N + · · · +
(
Ĉi

1G1
2G2

3 · · ·G
N−1
N

)]
, (4)
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where Ĉi
N, Ĉ

i
N−1, · · · , Ĉ

i
1 are the single-frame optimal attitudematrices calculated by subformulas

in Eq. (1).

2.3. Effect of CMIE on ACF approach

When applying the ACF algorithm, the observed vectors in the s frame at time epoch tj , Sj , will
be transformed to new vectors at time epoch tN through the attitude transformation GN

j . The
correlation equation is as follows:

ŜN
j = GN

j Sj + Ej . (5)

Here, ŜN
j represents the results after correlating the observed vectors from tj to tN . However,

the observed vectors will be shifted from the star true position at the center time of the exposure
period (i.e. tj) under complex dynamic conditions. Let δSj denote the observed vector error
caused by complex motion, and Eq. (5) should be rewritten as:

ŜN
j = GN

j Sj +GN
j δS

j + Ej . (6)

Accordingly, the attitude equation of the ACF approach (i.e. Eq. (3) ) should be rewritten as:
[
P1,P2, · · · ,PN

]
= Ci

N

[
GN

1 S1,GN
2 S2, · · · , SN

]
+[

GN
1 δS

1,GN
2 δS

2, · · · , δSN
]
+

[
E1,E2, · · · ,EN

]
GN

j =
∏l=N−1

l=j Gl+1
l
, j = 1, 2, · · · , N − 1

. (7)

The CMIE are therefore introduced into the attitude equation, and will affect the attitude
estimation accuracy of the ACF approach under complex dynamic conditions.

3. The centroid error compensation method under complex dynamic conditions

3.1. Compensation for the CMIE

Based on the analyses in Section 2, the CMIE affects the ACF performance under complex
dynamic conditions. Therefore, the CMIE must be pre-compensated in order to improve the ACF
accuracy in such conditions.

Since the centroid is indeed the integral of the star trajectory during the exposure period [13]
and the star trajectory can be re-constructed through the GU outputs, the predicted star centroid
contaminated by CMIE can be calculated. The measured star centroid represents the integral
of true star motion acquired by the focal plane array detector. Thus, the difference between the
predicted and measured star centroids reflects the CMIE [13].
Assuming that the time-dependent coordinate [x(t), y(t)] indicates the true star trajectory in

the p frame, and the measured star centroid can be expressed as [13]:{
Xm =

1
T

∫ t0+T

t0
x (t) dt + ∆Xm

Ym = 1
T

∫ t0+T

t0
y (t) dt + ∆Ym

, (8)

where, T is the exposure period, t0 is the beginning of exposure period. ∆Xm and ∆Ym represent
the centroid errors in X and Y directions respectively.
The predicted star centroid can be similarly expressed as:{

Xp =
1
T

∫ t0+T

t0
x̂ (t) dt + ∆Xp

Yp = 1
T

∫ t0+T

t0
ŷ (t) dt + ∆Yp

, (9)

where [x̂(t), ŷ(t)] indicates the predicted star trajectory.
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Instantaneously, the true star vector rs(t) and predicted star vector r̂s(t) in the s frame at time
epoch t are given as: {

rs (t) = [−x (t) ,−y (t) , f ]T
r̂s (t) = [−x̂ (t) ,−ŷ (t) , f ]T, (10)

where f is the focal length of lens.
Similarly, the measured centroid vector rs

centroid
and the predicted centroid vector r̂s

centroid
are given as: {

rs
centroid

= [−Xm,−Ym, f ]T

r̂s
centroid

=
[
−Xp,−Yp, f

]T . (11)

According to Eq. (11), the difference between the predicted centroid and the measured centroid
is calculated as:

∆r = r̂scentroid − rscentroid =

∆rx
∆ry

0

 =

Xm − Xp

Ym − Yp
0

 . (12)

Substituting Eq. (8) and Eq. (9) into the above equation, which is:

∆r =
1
T

∫ t0+T

t0

[r̂s (t) − rs (t)] dt. (13)

Considering star vectors at time epochs t and t0, which satisfy:{
r̂s(t) = Cs′(t)

s′(t0)r̂
s(t0)

rs(t) = Cs(t)
s(t0)r

s(t0)
, (14)

where Cs(t)
s(t0) and Cs′(t)

s′(t0) represent the attitude transformations from time epoch t0 to t in the star
tracker coordinate system s and the computed star tracker coordinate system s′ respectively. Thus,
Eq. (13) can be expressed as:

∆r =
1
T

∫ t0+T

t0

[r̂s (t) − rs (t)] dt

=
1
T

∫ t0+T

t0

[
Cs′(t)

s′(t0)r̂
s(t0) − Cs(t)

s(t0)r
s(t0)

]
dt

=
1
T

∫ t0+T

t0

[
Cs′(t)

s′(t0) − Cs(t)
s(t0)C

s(t0)
s′(t0)

]
r̂s(t0)dt.

(15)

When the angular velocity of the star tracker varies quickly, the attitude variation during the
exposure period approaches infinity compared to the attitude error between frames s′ and s (i.e.
Cs′(t)

s′(t0) ≈ Cs(t)
s(t0)). Eq. (15) can be approximately expressed as:

∆r ≈ 1
T

∫ t0+T

t0

Cs(t)
s(t0)

[
I3×3 − Cs(t0)

s′(t0)

]
r̂s(t0)dt, (16)

where I3×3 represents the identity matrix of size 3. Let φ = [φx, φy, φz]T denote the CMIE,
which represents the Euler angle from s′ frame to s frame at time epoch t0. It can be accurately
expressed in direction cosine matrix as:

Cs(t0)
s′(t0) =


cosφycosφz − sinφxsinφysinφz cosφysinφz + sinφxsinφycosφz −cosφxsinφy

−cosφxsinφz cosφxcosφz sinφx
sinφycosφz + sinφxcosφysinφz sinφysinφz − sinφxcosφycosφz cosφxcosφy

 .
(17)
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In actual dynamic conditions of a star tracker, the CMIE is usually several hundreds of arc-
seconds, which can be considered as a small-angle vector. According to small-angle approximation,
the CMIE can be approximatively expressed as Eq. (18), and the approximation accuracy is less
than 0.2” in typical dynamic conditions.

Cs(t0)
s′(t0) ≈ I3×3 −


0 −φz φy
φz 0 −φx
−φy φx 0

 = I3×3 − [φ×] . (18)

Substituting Eq. (18) into Eq. (16):

∆r =
1
T

∫ t0+T

t0

Cs(t)
s(t0)dt[φ×]r̂s(t0)

= −
(

1
T

∫ t0+T

t0

Cs(t)
s(t0)dt

)
[r̂s(t0)×]φ

= −
(

1
T

∫ t0+T

t0

Cs
gCg(t)

g(t0)C
g
s dt

)
[r̂s(t0)×]φ,

(19)

where Cs
g is the mount matrix from g frame to s frame, which can be calculated through previous

calibration. Cg(t)
g(t0) is the attitude transformation from time epoch t0 to t in g frame, which can be

calculated with the GU. [r̂s(t0)×] is the skew symmetric form of the predicted star vector at time
epoch t0 as:

[r̂s(t0)×] =


0 − f −ŷ(t0)
f 0 x̂(t0)

ŷ(t0) −x̂(t0) 0

 . (20)

Let
Z = −

(
1
T

∫ t0+T

t0

Cs
gCg(t)

g(t0)C
g
s dt

)
[r̂s(t0)×], (21)

and Eq. (19) can be simplified as:
∆r = Zφ. (22)

Eq. (22) is deduced for each star across the star tracker’s field of view (FOV). For a star frame
with nstar stars, Eq. (22) can be extended as:

R = Zφ, (23)

where R =
[
∆r1,∆r2, · · · ,∆rnst ar

]T and Z =
[
Z1,Z2, · · · ,Znst ar

]T. Here, ∆r is the difference
between the predicted star centroid and the measured star centroid expressed as Eq. (12). The
predicted star centroid is calculated by the integral of the predicted star trajectory during the
exposure period expressed by Eq. (9), and the measured star centroid is obtained by extracting
the star centroid [16,19] of the real star image. Z can be calculated through Eq. (20) and Eq. (21).
Accordingly, φ is the only unknown parameter in Eq. (23), and the least square solution of the
above equation is:

φ̂ = (ZTZ)−1ZTR. (24)
Hence, the CMIE can be estimated through Eq. (24), and it can be compensated by:

C̃i
s = (I − [φ×])Ĉi

s, (25)

where Ĉi
s is the attitude matrix contaminated by CMIE, and C̃i

s is the attitude matrix free of
CMIE. In particular, C̃i

s points to the attitude matrix at the beginning of the exposure period
as φ denotes the Euler angle error at start time epoch t0, and it will be used for the following
procedures of attitude fusion and ACF approach further.
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3.2. Observation sensitivity to CMIE and attitude fusion

In order to estimate φ more effectively, the sensitivity of observation ∆r to the sub-components
of φ(i.e. φx ,φy ,φz) is analyzed.

Let
C = − 1

T

∫ t0+T

t0

Cs
gCg(t)

g(t0)C
g
s dt, (26)

and Eq. (19) can be rewritten as:

∆r = C[r̂s(t0)×]φ

=


C11 C12 C13
C21 C22 C23
C31 C32 C33




0 − f −ŷ(t0)
f 0 x̂(t0)

ŷ(t0) −x̂(t0) 0

 φ
=


C12 f + C13 ŷ(t0) −C11 f − C13 x̂(t0) −C11 ŷ(t0) + C12 x̂(t0)
C22 f + C23 ŷ(t0) −C21 f − C23 x̂(t0) −C21 ŷ(t0) + C22 x̂(t0)
C32 f + C33 ŷ(t0) −C31 f − C33 x̂(t0) −C31 ŷ(t0) + C32 x̂(t0)

 φ,
(27)

where Ci j(i, j = 1, 2, 3) represent the elements of matrix C. In Eq. (27), ∆r can be observed and
φ is unknown,which should be solved. The sensitivity of the observation is determined by the
coefficient matrix in Eq. (27), which is related to the matrix elements Ci j calculated by Eq. (26).
Since Ci j is calculated with GU angular velocity measurements during the exposure period, the
coefficient matrix of Eq. (27) varies under different dynamic conditions.
To achieve the observation sensitivity to CMIE of a shipborne star tracker, simulations are

performed under shipboard dynamic conditions. The angular velocity of the star tracker in
simulation is shown in Fig. 2. This emulates conditions observed under true shipboard dynamic
conditions. One thousand coefficient matrices are generated as a result with parameters listed in
Table 1.

Fig. 2. Model of angular velocity w, in 3 axes over 200s (left) and 10s (right) used within
simulations.

The simulation results are shown by the dotted curves in Fig. 3, which show the sensitivity of
observation ∆r to the CMIE φ. Each dot represents the root mean square of 1000 simulation
results. Subfigures (a) and (b) show the sensitivities of ∆r (including ∆rx and ∆ry) to φx ,
subfigures (c) and (d) show the sensitivity of ∆r to φy , and subfigures (e) and (f) show the
sensitivity of ∆r to φz . As shown in Fig. 3, the relationship between the variables in all subfigures
is approximately linear. The gradients of the fitted curves are shown in Fig. 4. The gradients
indicate the sensitivity of observation to the CMIE. In other words, the greater observation
value, which is caused by the same error, means higher sensitivity. Accordingly, ∆rx and ∆ry are
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Table 1. Simulation parameters
Parameter Value Parameter Value

Active pixels 1024 × 1024 Exposure period 180ms
Pixel pitch 6.45 × 6.45µm2 Star tracker update frequency 5Hz

Noise gray level 40 Gyroscope sampling frequency 100Hz
Saturated gray level 65535 Gyroscope bias 0.01◦/h

FOV 14◦ × 14◦ Gyroscope anglular random walk 0.003◦/
√

h
Focal length 25.6mm

sensitive to φy and φx respectively. However, neither ∆rx nor ∆ry is sensitive to φz . Specifically,
the sensitivity of observation to φx and φy are more than 20 times higher than φz . In other words,
the signal-noise ratio (SNR) of φz is much lower than φx or φy under the same noise level. This is
because the focus dimension is about one order of magnitude larger than the detector dimension.

Fig. 3. The sensitivity of observation ∆r to the CMIE φ. Subfigure axes have been scaled to
highlight detail. (a) and (b) show the sensitivity of ∆r(including ∆rx and ∆ry) to φx . (c) and
(d) show the sensitivity of ∆r(including ∆rx and ∆ry) to φy . (e) and (f) show the sensitivity
of ∆r(including ∆rx and ∆ry) to φz .

Fig. 4. Gradients of the fitted curves.

Accordingly, the subcomponents of the CMIE across boresight (i.e. φx , φy) can be estimated
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and compensated with much higher accuracy than the subcomponent along the boresight direction
(i.e. φz). Since the boresight error can be reduced effectively with a multi-FOV star tracker [20],
attitudes from two different FOVs can be combined to increase the compensation accuracy of the
CMIE along the boresight direction.

3.3. ACF approach for reducing the random error further

Since the CMIE can be well compensated through the above methods, the ACF performance will
be improved under complex dynamic conditions as a result.

The flow chart of the proposed method is illustrated in Fig. 5. With a GU measuring the angular
velocity of the star tracker, the CMIE is well compensated except φz . φz can be compensated
through the combination of two different FOVs. Finally, the ACF approach is implemented.

Fig. 5. Flowchart of the proposed method.

4. Simulation

In order to verify the effectiveness of the proposed method under complex dynamic conditions,
simulations of attitude variation due to shipboard dynamic conditions were made. The angular
velocity of the star tracker in simulation is shown in Fig. 2. This emulates conditions observed
under true shipbord dynamic conditions. One thousand dynamic star images were generated with
the same simulation parameters listed in Table 1. Fig. 6 shows an example of the generated star
under shipboard dynamic conditions using the dynamic imaging model in [21].
The performance of three methods are compared from two aspects: the effectiveness of the

compensation to CMIE and the improvement on the ACF approach. The three methods are listed
as follows:
Method one (M1): The centroiding method shown as black curves in subsequent figures.
Method two (M2): The centroiding method with the CMIE compensated for single FOV shown

as red curves.
Method three (M3): The centroiding method with the CMIE compensated, and attitudes from

two different FOVs are combined shown as green curves.
As shown in Fig. 2, the angular velocity changes with time during the exposure period. The

CMIE exists in the raw attitude results from the centroiding method, and the attitude error along
different axes (i.e. x, y and z) are given by the black curves in Fig. 7. Attitude errors of M2 and
M3 are given by red and green curves respectively. The statistical accuracy (RMS error) of the
three methods are shown in Table 2. Here, the number of frame N is 1 (i.e. The ACF approach is
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Fig. 6. Simulated star under shipboard dynamic conditions.

not applied yet). Compared to M1, the performance of M2 improves by 82.3% across boresight
direction but only 6.0% along boresight direction. The performance improvements of M3 are
83.1% across boresight direction and 84.5% along boresight direction respectively. Obviously,
M2 is effective in compensating the cross boresight component of the CMIE but deficient for the
component along the boresight direction, which coincides with the theoretical analyses above. M3
can overcome the shortage of M2, which means that the CMIE can be compensated completely
both across and along the boresight directions.

Fig. 7. Simulation results of compensation of CMIE, and only 300 of all the emulated
frames are plotted in order to display fine details. (a) The black curve is the attitude error of
the centroiding method, and the red curve is the attitude error where the CMIE has been
compensated for single FOV. (b) The black curve is the attitude error of the centroiding
method, and the green curve is the attitude error where the CMIE has been compensated and
the attitudes from different FOVs have been combined.

Then the ACF algorithm is applied to M1, M2 and M3 respectively, and the number of frames
N is sequentially set to 2, · · · ,10. An example of the attitude error curve with N = 9 is shown in
Fig. 8. Obviously, the attitude error curve becomes much smoother with the ACF approach. The
statistical accuracy of the ACF approach is shown in Fig. 9. M3 shows a better performance, which
means the ACF performance is improved under complex dynamic conditions. The comparison
between the proposed method and the theoretical curve 1/

√
N is shown in Fig. 9(b), and the
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Table 2. Statistical results of different compensation methods in the simulation (N=1,
which means ACF is not applied)

M1 M2 M3
φx(”) 8.75 1.37 1.37
φy(”) 6.52 1.36 1.24
φz(”) 13.91 13.07 2.16

maximum deviation from the theoretical curve is approximately 0.1".

Fig. 8. Simulation results of attitude error of the proposed method when N = 9. The green
curve is the same as that in Fig. 7(b), and the blue curve is the result of the ACF approach
when the number of frames N is 9.

Fig. 9. Statistical results of the ACF approach. (a) The curves with different colors are
the attitude errors with different methods. The dotted curves with the same color are the
attitude errors under different number of frames N . The black curve represents the accuracy
of the ACF approach on the raw data of centroiding method. The red curve represents the
accuracy of the ACF approach, where the CMIE has been compensated for a single FOV.
The green curve represents the accuracy of the ACF approach, where the CMIE has been
compensated and the attitudes from different FOVs have been combined. (b) The green
curve is the statistical results of the proposed method, which is the same as the curve with
the same color in Part (a). The brown curve is the theoretical curve 1/

√
N . The yellow curve

shows the relative deviation of the above two curves.
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5. Experiment

Some experiments were conducted to verify the proposed method at the summit of Daweishan
National Forest Park (Changsha, China). The equipments used in experiments are shown in Fig.
10. The star tracker and INS (with GU inside) are fixed together so that the angular velocity
sensed by the GU can be transformed to the s frame through the pre-calibrated mount matrix Cs

g.
The performance specifications of the star tracker used are consistent with previous simulation
parameters.

Fig. 10. Experimental setup.

Since the proposed method is particularly suitable for complex dynamic conditions, a simple
experimental setup (shown in Fig. 10) is adopted to keep the angular velocity of the system
varying continuously. By hanging the star tracker and GU integrated system off the ground,
the system will oscillate after initial excitation. The angular velocity of the star tracker in the
experiment is shown in Fig. 11. According to the enlarged detail, the angular velocity of the
system varies continuously during the exposure period.

Fig. 11. Three-axes angular velocity of the star tracker. Part (b) is partial enlarged detail of
(a) in order to display fine details.

Since the accuracy of the gyroscope is approximately 0.01◦/h in the experiment, it can be
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applied to evaluate the relative attitude accuracy of the star tracker. The relative attitude accuracies
of M1, M2 and M3 are shown by curves with different colors in Fig. 12, respectively. The
statistical accuracy (RMS error) of the three methods are shown in Table 3. Here, the number of
frames N is 1 (i.e. The ACF approach is not applied yet). Compared to M1, the performance
of M2 improves by 54.4% across the boresight direction but only 12.3% along the boresight
direction. The performance improvements of M3 are 53.9% across the boresight direction and
85.1% along the boresight direction respectively. Obviously, M2 is effective in compensating
the cross boresight component of the CMIE but deficient for the component along the boresight
direction, which coincides with the theoretical analyses and simulations above. M3 can overcome
the shortfall of M2, which means that the CMIE can be compensated completely both across and
along the boresight directions.

Fig. 12. Experimental results of compensation of CMIE. (a) The black curve is the attitude
error of the centroiding method, and the red curve is the attitude error where the CMIE has
been compensated for single FOV. (b) The black curve is the attitude error of the centroiding
method, and the green curve is the attitude error where the CMIE has been compensated and
the attitudes from different FOVs have been combined.

Table 3. Statistical results of different compensation methods in the experiment (N=1,
which means ACF is not applied)

M1 M2 M3
φx(”) 16.71 6.92 6.52
φy(”) 5.80 4.13 4.91
φz(”) 41.73 36.59 6.21

Then the ACF algorithm is applied to M1, M2 and M3 respectively, and the number of frames
N is sequentially set to 2, 3, 4, · · · , 10. An example of the relative attitude error curve with N = 9
is shown in Fig. 13. Obviously, the relative attitude error curve becomes much smoother with the
ACF approach. The statistical accuracy of the ACF approach is shown in Fig. 14(a). M3 shows a
better performance, which means the ACF performance is improved under complex dynamic
conditions. The comparison between the proposed method and the theoretical curve 1/N is
shown in Fig. 14(b) (The theoretical curve of the ACF approach for relative attitude accuracy of
adjacent frames is 1/N , which is different from the curve 1/

√
N for the absolute attitude accuracy

in the simulation), and the maximum deviation from the theoretical curve is approximately 0.9".
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Fig. 13. Experimental results of the relative attitude error of the proposed method when
N = 9. The green curve is the same as that in Fig. 12(b), and the blue curve is the result of
the ACF approach when the number of frames N is 9.

Fig. 14. Statistical results of the ACF approach. (a) The curves with different colors are
the attitude errors with different methods. The dotted curves with the same color are the
attitude errors under different number of frames N . The black curve represents the accuracy
of the ACF approach on the centroiding data. The red curve represents the accuracy of the
ACF approach, where the CMIE has been compensated for a single FOV. The green curve
represents the accuracy of the ACF approach, where the CMIE has been compensated and
the attitudes from different FOVs have been combined. (b) The green curve is the statistical
results of the proposed method, which is the same as the curve with the same color in Part (a).
The brown curve is the theoretical curve 1/N . The yellow curve shows the relative deviation
of the above two curves.

6. Conclusions

Considering the deficiency of the ACF approach under complex dynamic conditions, a method
for compensating the CMIE of the star tracker in such conditions is proposed, which is also
applied to the ACF approach to improve its performance. Simulations under shipboard dynamic
conditions were made. The absolute attitude errors across and along boresight directions improve
by 83.1% and 84.5% respectively through performing CMIE compensation. The maximum
deviation of the ACF statistical accuracy curve from the theoretical curve is approximately 0.1".
Experiments under oscillation dynamic conditions show that the relative attitude errors across and
along boresight directions improve by 53.9% and 85.1% respectively through performing CMIE
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compensation. The maximum deviation of the ACF statistical accuracy curve from the theoretical
curve is approximately 0.9". Therefore, the proposed method is effective in compensating the
CMIE under complex dynamic conditions, and the performance of the ACF approach in such
conditions is improved as well. The application fields of the ACF approach are expanded as a
result.
The method can be applied to the star tracker and INS integrated navigation system directly.

INS can provide accurate inertial information for this method. In turn, the accumulating error of
the inertial navigation system can be better estimated with more accurate attitudes of vehicles
under complex dynamic conditions.
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