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Abstract The “precipiton”method is a particle-based approach that consists of routing elementary water
volumes on top of topography with erosive and depositional actions. Here we present an original way to
calculate both river depth and velocity from a method that remains embedded in the precipiton framework.
The method solves the governing equations for water depth, where the water depth is increased by a
constant quantity at each precipiton passage and decreased by a value based on a flow resistance equation.
The precipitons are then routed downstream on top of the resulting water surface. The method is applicable
even if the precipitons are routed one by one (i.e., independent of each other), which makes it simple to
implement and computationally fast. Compared to grid-basedmethods, this particle method is not subject to
the classic drying-wetting issue, and allows for a straightforward implementation of sediment transfer
functions between the river bed and running water. We have applied the method to different cases (channel
flow, flow over topographic barriers, and flood prediction on high-resolution lidar topography). In all cases,
the method is capable of solving the shallow water equations, neglecting inertia. When coupled with erosion
and sediment transport equations, the model is able to reproduce both straight and braided patterns with
geometries independent of grid size. Application of the model in the context of multithread rivers gives new
insight into the development of braiding instability.

Plain Language Summary The “precipiton”method is a numerical method that consists in routing
elementary water volumes on top of topography with erosive and deposition actions. Here we present an
original way to calculate both river depth and velocity. The method consists in solving water depth from a
differential equation, where the water depth is increased by a constant quantity at each precipiton passage
and decreased by a value based on a flow resistance equation. The precipitons are then routed downstream
on top of the resulting water surface. The method is applicable even if the precipitons are routed one by one,
i.e., independently of each other, whichmakes it simple to implement and quite fast. Compared to grid-based
methods, this particle method is versatile, fast, and allows for a straightforward implementation of sediment
transfer functions between river bed and running water. We have applied the method to different cases
(channel flow, flow over topographic bumps, or real cases with high-resolution lidar topography). In all cases,
the method does very well in predicting the distribution of flood on landscapes. When coupled with erosion
and sediment transport equations, the model is able to reproduce both straight and braided river patterns.

1. Introduction and State of the Art

The precipiton method is a particle-based approach, which mimics the role of precipitation (precipiton =
elementary rainfall volume) on shaping topography [Chase, 1992; Crave and Davy, 2001; Davy and Crave,
2000; Davy and Lague, 2009; De Boer, 2001; Favis-Mortlock, 1998]. Together with cellular methods [Coulthard
and Van DeWiel, 2006; Fonstad, 2006;Murray and Paola, 1994; Nicholas, 2005; Thomas and Nicholas, 2002], they
have been popular for mimicking self-organized emerging properties of geomorphological systems, from
high-resolution braided patterns to drainage network organization. Such high-resolution, high-frequency, flu-
vial geomorphic patterns and dynamics are beyond the scope of simple landscape evolution models, whose
hydrodynamic description is much too rudimentary (see the state-of-the-art review by Tucker and Hancock
[2010, and references therein]). Similarly, such conditions are rarely modeled over large spatial and temporal
scales with sophisticated computational fluid dynamicmodels because of computational time, although recent
progress is worth noting [Jang and Shimizu, 2005;Nicholas et al., 2013; Schuurman et al., 2013;Wang et al., 2010].

Solving hydrodynamics constitutes a major difficulty for cellular automata and precipiton methods, and for
some models a clear weakness that casts doubt on the relevance of results. The dependency of channel
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geometry on grid size that was observed in the seminal model of Murray and Paola [1994], as well as in
subsequent work [e.g., Doeschl-Wilson and Ashmore, 2005; Nicholas and Quine, 2007; Ziliani et al., 2013],
emphasizes the limit of these reduced complexity models to obtain a realistic description of channel width
dynamics. This issue reflects that the classic kinematic wave assumption used in these models neglects the
water pressure depth gradient, although this force is critical to enable water to spread laterally over
submerged banks, and for the channel to maintain a nonvanishing width (i.e., larger than the grid pixel)
[e.g., Coulthard et al., 2013; Izumi and Parker, 1995; Tucker and Hancock, 2010]. Without this pressure gradient
term, landscape evolution models are unable to predict channel width from erosion dynamics; they must
specify it as an external relationship and basically consider channels to be 1-D “wires” surrounded by 3-D hill-
slopes. As this external relationship imposes a fixed relationship between channel width andmean discharge,
these models cannot capture, for instance, the tendency for alluvial channel width to vary with sediment
supply and/or incision rates [e.g., Duvall et al., 2004; Lague, 2010; Lague, 2014; Lave and Avouac, 2001;
Simon and Thorne, 1996; Whittaker et al., 2007].

The concept of precipitons was originally introduced by Chase [1992] as a discrete representation of water
volumes that are stochastically generated by rainfall, which then run over and erode topographic surfaces
[Chase, 1992; Crave and Davy, 2001; Davy and Crave, 2000]. It is a Lagrangian method (equations are written
in the fluid reference frame) that offers substantial advantages compared to the classic Eulerian methods:

1. Since particles are elementary flowelements, the largest density of particles is naturally encountered in large
flows. Wetting (where flow spreads over dry areas) or drying (where flow no longer takes place) of the land-
scape is thus inherently solved by the displacement of precipitons, while it may remain a difficulty for
Eulerian methods (see the discussion in Bradford and Sanders [2002] and in Jang and Shimizu [2005]).

2. The coupling between hydrodynamics and erosion/transport/deposition is straightforward since particles
are flow elements eroding topography and transporting sediments, whereas implementation of these
processes raises difficulties in classic numerical schemes for managing time scales of both flow depth
and bed deformation [Cao, 2007].

3. The boundary conditions are easily managed: particles are introduced to each grid cell at a rate corre-
sponding to the inflow, which can be either a rainfall rate or an upstream river discharge. The outlets
are predefined; they are stop conditions for the particle walks.

4. Implementing nonlocal transfer, which results from sediment transfers between bed topography and run-
ning water over a wide range of spatial scales [Foufoula-Georgiou et al., 2010; Stark et al., 2009], is straightfor-
ward since erosion and deposition are different processes that occur during the precipiton path (see Davy
and Lague [2009] and the concept of sediment transfer length, which is a way to model nonlocal transfers).

Up to now, the main drawback of the precipiton method is its very crude approximation of river hydrody-
namics since the original method assumes that precipitons move down the steepest topographic slope inde-
pendent of hydraulic gradients.

In this paper, we resolve this limitation by calculating both river depth and velocity from amethod embedded
in the precipiton framework, thusmaintaining its computing efficiency. To our knowledge, this approach is the
first attempt to solve the shallow water equations with precipiton methods in landscape evolution models.
There are other particle-based methods available for solving hydrodynamics, such as smooth particle hydro-
dynamics [Lee and Han, 2010; Solenthaler et al., 2011], or particle-in-cell approaches [Brackbill et al., 1988;
Tetzlaff and Harbaugh, 1989] that share most of the above-cited advantages. However, managing boundaries
in more complex in these approaches [Li and Liu, 2002; Liu and Liu, 2003] and, unlike the precipiton method,
they require calculating the interactions between particles, which is more computationally expensive.

The paper is organized as follows: first, the basic hydraulic equations and their implementation in the fra-
mework of precipitons are presented. Second we verify performance for several different cases using both
idealized and natural topography, examining (i) flood propagation in an inclined rectangular channel, (ii)
flow over a topographic barrier to evaluate the ability of the model to deal with lakes and dams, and (iii)
flood inundation in a natural river valley using high-resolution LiDAR topography. In this step, we also
compare our method to the storage cell inundation model Lisflood-FP [Bates et al., 2010] that has been
recently coupled with the cellular automata model CAESAR to fully solve the shallow water equations
in landscape evolution models [Coulthard et al., 2013]. Lastly, we apply the new model to a high-
resolution topography obtained with lidar. Lastly, we show how the model can be coupled with

Journal of Geophysical Research: Earth Surface 10.1002/2016JF004156

DAVY ET AL. A PRECIPITON METHOD FOR RIVER DYNAMICS 1492



erosion and deposition rules to model channel morphodynamics, and we discuss application of our
approach for modeling landscape evolution. We present two types of morphodynamic experiments: (i)
the incision of a straight channel that demonstrates the robustness of the numerical method and the role
of lateral erosion and (ii) the development of multithread braiding patterns that demonstrates the ability
of the model to simulate different hydromorphic regimes, providing new insights on braiding instability
(a generic term which indicates the occurrence of a dynamic braided morphology).

2. A Particle Method for Solving Hydrodynamics

The precipiton method routes elementary water volumes (precipitons) that interact with topography. The
precipitons move according to hydrodynamic equations, and modify topography by erosion and deposition
laws dependent on both hydraulic conditions (i.e., shear stress, discharge calculated at each grid cell from the
frequency of precipiton passages over the cell, or slope) and sediment volume carried by the precipiton. A
more complete description of the method, and of the €ros code, is available in Crave and Davy [2001], as well
as in Davy and Crave [2000] and Davy and Lague [2009]. An intrinsic geometric aspect of the precipiton
method is that particles move independently on a fixed rectangular grid, where the elementary displace-
ments are restricted to the eight nearby neighbors (D8 method [Tarboton, 1997]), as in cellular automaton
methods. The hydraulic flux is defined statistically as the average over a large number of particles, whose
direction is defined from a probabilistic distribution function that depends on local slope. It is thus not
restricted to one of the eight neighbor directions.

In the initial version, hydrodynamics merely consists of moving precipitons downward in the direction of
topographic slope. We show in the next paragraphs how the 2-D shallow water equations (without the inertia
terms) can be implemented in the precipiton framework.

2.1. Basic Equations of Hydrodynamics

The 2-D shallow water equations are a widely used approximation of the 3-D Navier-Stokes equation for
applications such as the evaluation of flooded areas, erosion and sediment transport predictions, and land-
scape evolution models (see review in Horritt and Bates [2002]). The basic equations are the conservation
of mass and the conservation of momentum equations integrated over the flow depth, where the basic
forces are gravity and friction drag. The water balance is written (with Einstein notation) as

∂h
∂t

þ ∂iqi ¼ 0 (1)

where h is the water depth, t is the time, and qi is the flow discharge vector, where qi= huiwith ui as the mean
flow velocity vector. The momentum equation is

ρh
∂ui
∂t

þ uj
∂ui
∂xj

� �
¼ ρgh

∂h
dxi

þ ∂Z
dxi

� �
� τi (2)

where Z is the bed elevation, τi is the shear stress acting on the river bed, ρ is the water density, xi and xj are
the horizontal coordinates, ui and uj are the horizontal velocity coordinates, and g is the gravitational con-
stant. The shear stress τi is assumed to be maximum along the flow path and zero perpendicular to flow.

The left-side terms represent inertia. The first term is the local acceleration (ρh ∂ui
∂t ), which vanishes at steady

state, but has been found to capture a large part of the nonstationary flooding characteristics [de Almeida and
Bates, 2013]. The second left-side term represents the convective acceleration; it is important with large spa-
tial variations of discharge intensity or direction, and often negligible where the flow varies gradually.

The right-side terms represent both driving (gravity) and resisting forces. The first, (ρgh ∂h
dxi
), is the fluid pres-

sure term. The second is the resistance of the channel bed and banks to flow, which is collinear with the flow
velocity such as

τi ¼ K hð Þ uj jui (3)

where |u| is the velocity modulus and K(h) is a function which is found to be slightly dependent on h in experi-
ments (Manning [1891] model) or modeled as a constant (Darcy-Weisbach). K is dependent on the rugosity of
the river bed. Equation (3) implicitly assumes that the basal friction on the river bed is much larger than any of
the other frictional terms, such as lateral bank friction and viscous drag in the water column.
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If we assume that the inertial terms are negligible, the momentum equation (2) provides two cri-
tical pieces of information: the flow velocity ui is parallel to the water surface slope si, and both
quantities are related by the following relationship (also called the “friction” equation in the
following):

ui ¼ Chα
siffiffi
s

p H sið Þ (4)

where α is an exponent equal to 1
2 for the Darcy-Weisbach model and 2

3 for the Manning equation; C is a con-

stant defined byC ¼ ρgh
1
2�α

K hð Þ2 ; si is the hydraulic slope in the direction i; H is the Heaviside function (1 if positive, 0

if negative), which indicates that no displacement is expected with negative (i.e., upward) slope; and s is the
steepest slope (largest positive slope value).

The minimum requirement to take into account the pressure gradients is to consider si in equation (4) as
the slope of the water surface rather than of topography. This implies that one must solve equations (1)
and (2) (or equation (4)) in 2-D to derive both water depth h and velocity ui as is classically done in flood
inundation models (see review in Horritt and Bates [2002]). The computational cost of doing so is prohibi-
tive for landscape evolution models, although significant improvements have been obtained in modeling
the long-term evolution of braided and meandering patterns [Jang and Shimizu, 2005; Nicholas et al., 2013;
Ruther and Olsen, 2007]. Recent advances with cellular automata techniques are also worth noting
[Coulthard et al., 2013], which couple the erosion/deposition code CAESAR with Lisflood-FP [Bates and De
Roo, 2000].

2.2. A Stochastic Particle-Based Method for Solving Hydrodynamics

We propose to improve hydrodynamics by solving equations (1) and (4) (i.e., by neglecting the inertia terms
in equation (2)). The basic requirement to take into account hydrodynamics is that the particle velocity (and
thus direction) is defined according to equation (4), which routes the precipiton based upon the water sur-
face slope rather than on topography. A stochastic algorithm is implemented where the particle direction
is chosen probabilistically as a function of velocity and of water surface slope:

Pi∼ui∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
H sið Þsi

p
(5)

where Pi is the probability for the particle to follow the direction i. The probability term ensures that all pos-
sible directions defined in equation (4) are actually sampled probabilistically, which minimized the occur-
rence of long-range preferential flow along the eight primary orientations, although each precipiton runs
along discrete directions (D8) of the grid. Equation (5) represents the stochastic equivalent of the directional
component of the friction equation (4).

The stochastic walk results in a series of precipitons that pass through each grid cell at a frequency propor-
tional to the local discharge [Crave and Davy, 2001]. The inflow of precipiton in a cell defines the total water
discharge Q:

Q ¼ ∑pV
p
inδ tpð Þ (6)

p numbers the list of precipitons that pass through the cell at time tp.Vp
in is the volume of water carried by the

precipiton p when entering the cell, and δ is the Dirac delta function. The integral of Q over time is the total
volume of water entering the cell. Because of the stochasticity introduced in the precipiton creation and rout-
ing (equation (5)), the passage of particles through a cell is a Poisson process, where the arrival time of a par-
ticle tp is independent of the others (Markov hypothesis). Thus, the time interval between successive
precipitons (Δtp= tp� tp� 1) is exponentially distributed with a characteristic time equal to the ratio V/Q,
where V is the average volume of a precipiton [Crave and Davy, 2001].

The basic idea of themethod is to calculate the water depth h resulting from a stochastic differential equation
that expresses a water mass balance equation for each grid cell:

A
dh
dt

¼ �ϕ h; sð Þ þ Q ¼ �ϕ h; sð Þ þ ∑p∑pV
p
inδ tpð Þ (7)

where A is the cell area. In equation (7), the cell is filled up by precipitons (last hand-right term), which run out
at a rate given by the flow rate function ϕ(h, s) (first right-hand term) whose direction is given by the
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precipiton displacement (equation (5)).
The choice of the function ϕ is the key
point of the method; we define it as
the flow rate given by the friction equa-
tion (4), which is either the Manning or
Darcy-Weisbach relationship:

ϕ h; sð Þ ¼ dw uh ¼ dw C
ffiffi
s

p
hαþ1 (8)

where dw is the flow width equal to the
cell area A divided by the channel length
dl and s is the slope at time t. Theway the
flux ϕ leaks out of the cell with precipi-
tons is explained in a next paragraph.

Since the inflow occurs at discrete times, equation (7) solves a first-order differential equation between two
successive precipitons:

dh
dt

¼ �ϕ h; sð Þ
A

(9)

where the flow length dl is the grid cell dimension parallel to the flow direction. Because of the D8 directions,
dl can be either the grid cell side size or the diagonal size, but the product length by width (dl . dw) is always
equal to the cell area A. The equation becomes

dh
dt

¼ � C
dl

ffiffi
s

p
hαþ1 (10)

This first-order differential equation indicates that the cell is emptying with an apparent time scale of dl
u h;sð Þ. It

can be solved analytically if the slope s is assumed constant. Combined with equation (7), this gives the
following expressions:

if t < tp : h tð Þ ¼ hp�1 1þ α
C
dl

ffiffi
s

p
hp�1� �α

t � tp�1
� �� ��1=α

(11)

for t ¼ tp : hp ¼ hp�1 1þ α
C
dl

ffiffi
s

p
hp�1� �α

t � tp�1
� �� ��1

α

þ Vp

A
(12)

where the series {hp} refers to the water depth at time tp, just after the volume increase (i.e., the relative max-
ima observed in Figure 1, which shows an example of such evolution).

The series {hp} constitutes the solution of the stochastic equation (7). An example of a typical evolution is

given in Figure 1. If the fluctuations are small enough, the average water depth h ¼ hph i is the value

predicted by the friction equation (4): q ¼ Q
dw

¼ C
ffiffi
s

p
h
αþ1

(see the demonstration given in Appendix A

for small fluctuations). The discrete arrivals of precipitons are implicit to the method and cause fluctuations
that are not necessarily physically relevant (although Figure 1 is typical of natural systems with a rapid
increase of discharge and water depth following rainfall, and then a slow decrease). The validity and accu-
racy of the method is then directly related to the fluctuation amplitude around the average, which
increases with volume size Vp

in and thus time step, as for any numerical method. Thus, equation (12)
constitutes the stochastic equivalent of the friction equation (4).

Equation (12) also defines the precipiton volume Vp
out when leaving out the cell. To maintain a global mass

balance for water, it must be equal to the total volume of water lost by the cell since the latest precipiton
p� 1, just before being filled up by the precipiton P:

Vp
out ¼ ∫t

p

tp�1ϕ h; sð Þ dt ¼ Vp
in þ A hp�1 � hp

� �
(13)

Vp
out becomes the inflow precipiton volume for the next cell visited by the precipiton. Note that Vp

out ¼ Vp
in if

hp= hp� 1, which happens when the solution is stationary. Equation (13) is the actual equivalent of the mass
balance equation (1).

Figure 1. Schematic graph showing the evolution of (top) water depth
and (bottom) precipiton arrival with time in a cell. The water depth
increases abruptly at each precipiton passage and then decreases gra-
dually according to equation (10). The solid symbol indicates the series of
water depth {hp} defined at each precipiton arrival.
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The numerical simulations consist of a five-stage process (in bracket, we give the continuous equivalent):

1. (“rainfall” inflow) Precipitons are stochastically created according to an inflowmap, which describes all the
processes that contribute to flow on topography (rainfall, channel discharge, or groundwater seepage).
The initial volume of precipiton is Vp

o ¼ Q:dt, where Q is the local inflow or discharge and dt is the time
increment between two successive precipitons “launched” on the grid, wherever they land on.

2. (friction equation) The friction equation results in several steps:

2.1 Water depths are first calculated at the time t= tp from equation (12) for the current cell or
equation (11) for neighbors, which are the approximate solutions of equation (7), valid for constant
slope. The parameters of both equations (slope, direction) are those prevailing the last time cells were
updated (t= tp� 1 for the current cell).

2.2 Water surface slopes are calculated from the updated water depths.
2.3 The parameters (slope, dl) of equations (11) and (12) are updated.

3. (advection) Precipitons are routed toward a neighboring cell according to equation (5). If the hydrody-
namic model is coupled with erosion and sediment transport processes, this is done at this stage during
the displacement of the precipiton.

4. (mass balance equation) The precipiton volume is updated by applying equation (13).
5. (boundary conditions) The precipiton path stops when it reaches grid points prescribed as “absorbing”

boundary elements. Since thedownward slope cannot be calculated for these points, thewater depthmust
be fixed by a relationship, or calculated in the same manner as others by using a surrogate value of water
slope: that of the upstream cell or the topographic slope. The latter is used in the presented simulations.

It is also possible to use a “stationary” variant of the preceding scheme, where the precipiton volume is not
updated in stage 4.

4b. The precipiton keeps its initial volume all along its path. The transient stages are not described correctly,
but the solution goes quickly to the stationary solution (h independent of t) since the precipiton “fills” all
downstream points with a constant volumeVp

o. Since the stationary stage is defined asVp
out ¼ Vp

in, the solution
is similar to the final stage of the full equation. With this variant, the water mass balance is not ensured for
each precipiton, but is achieved on average. The stationary solution is much faster than the transient one
(i.e., more than 10 times) because it reduces the water depth fluctuations inherent in this stochastic method,
and thus allows for larger time steps.

Hereafter, we discuss a few important points of the model.
2.2.1. Why This Is a Stochastic Equation
The basic equations (5) and (7) contain stochastic terms both in the direction probability Pi and in the tp series,
with a Poisson distribution of interevent time lapses tp� tp� 1 used in equations (11) and (12). The spatial
derivatives that are intrinsic to the basic equations (1) and (2) are ensured by the variations of the precipiton
paths. The speed of the method is largely due to the fact that precipitons are independent of each other, i.e.,
launched one by one. The relationships between adjacent cells are mainly provided by the time series tp and
hp that are recorded for each cell of the grid.
2.2.2. Stability Criteria
We propose here an attempt to formalize a stability criterion for the method. The results will be checked with
numerical examples in the following sections.

As shown in Figure 1, the method induces time fluctuations of the water surface, which in turn modifies the
slope distribution si. If the fluctuations are larger than the general “expected” slope s, the precipiton walk will
be considerably perturbed and the numerical solution will not converge to the expected one.

The water surface fluctuations have two sources: (1) the increase
Vp

ΔxΔy
at each precipiton passage (see

equations (11) and (12) and Figures 1 and 2) and (2) the fluctuations of the time series Δtp= tp� tp� 1.
Both affect the considered cell but also for its neighbors, and thus contribute to modifying slopes si. To quan-
tify these effects, we start from the linearized form of equation (12), valid for small values of Δtp= tp� tp� 1:

Δhp ¼ hp � hp�1≅� C
dl

ffiffi
s

p
hp�1� �αþ1

Δtp þ Vp

Δx:Δy
(14)
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For stationary solutions, Δhp is null on average (Δhp ¼ 0Þ, so the first and second right-hand terms of equa-
tion (14) are on average identical. Since Vp is constant, the fluctuations σΔhp of Δh

p are due both to the fluc-
tuation of Δtp, σΔtp , and to the fluctuations σhp of hp� 1. The series of precipiton arrival times in a cell is a
Poisson process, which has two consequences for this calculation: the time lapse between two successive

events is exponentially distributed, with σΔtp ¼ Δtp , and the fluctuations of Δtp are much larger than of hp

if Vp is small enough (indeed,
σhp

hp
≪
σΔtp

Δtp
¼ 1). The fluctuation of Δhp is thus mostly due to σΔtp such as

σΔhp ¼
C
Δx

ffiffi
s

p
hp

αþ1
σΔtp ¼ C

Δx

ffiffi
s

p
hp

αþ1
Δtp ¼ Vp

Δx:Δy
(15)

This demonstrates that the accuracy in predicting water depth is directly proportional to the precipiton
volume, which is confirmed by numerical simulations.

A stability condition for the numerical scheme is that the fluctuation of water surface does not affect signifi-
cantly the downward routing of precipitons, in other words, that the amplitude of fluctuations must remain
smaller than the variations due to water slope s:

Vp

Δx·Δy
≪sΔx (16)

This prediction will be tested in the following simulations:
2.2.3. Can We Avoid Calculating the Transfer Time tp?
To speed up simulations, we assume that, in any cell of the precipiton path, the difference in time
between two successive precipitons, Δtp= tp� tp� 1 (see equations (7) and (12)), is well predicted by
the average of the initial difference Δtpo ¼ tpo � tp�1

o , where tpo is the creation time of the precipiton P.
This assumption is valid if the transfer time is short compared to the time between two successive pre-
cipitons or if the transfer time to a given cell is equivalent for all the precipitons. This is thus a reasonable
assumption if a precipiton is an erosive rain event that occurs only a few times a year, as it was assumed
in Chase [1992] and Crave and Davy [2001]. For hydrodynamic issues, such as flood prediction, this
assumption is no longer valid, and a transfer time should be calculated for evaluating Δtp. However,
the method does not require to know precisely all Δtp values in all cells, but only the average Δtp over

a certain time scale tavg, which can be much longer than each Δtp. It is easy to demonstrate that Δtp~

Δtpo if the averaging time tavg is longer than the transfer time of precipitons. Indeed, the total number
of precipitons passing through the cell during tavg will not be very different if we take account of the
transfer time or not.
2.2.4. Lakes
“Lakes” are local minima of topography (and thus of the associated gravity field), where the definition
of flow directions from particle motions poses a challenge [Martz and Garbrecht, 1998; Turcotte et al.,
2001]. Since the water surface h(x, y) is expected to be flat on average in lakes, the precipiton displa-
cement is mainly controlled by the “rugosity” of h (see section 2.2.2). This induces a diffusion-like dis-
placement of precipitons, which achieve the lake filling. The tests that we present below demonstrate
the ability of the precipiton method to efficiently resolve this issue with no significant additional
computational time.

Figure 2. (a) Straight rectangular channel used to compute water depth. (b) Predicted water depth at different time steps
for the two models. Predictions of Floodos are in good agreement with Lisflood-FP.
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2.2.5. Numerical Implementation
The precipiton model has been implemented in C++ according to the
description given in the previous paragraph. The code is called Floodos
hereafter and is available under the GNU/GPL license.

3. Hydraulic Simulations and Comparison With
Other Methods

All the simulations described below have been performed by considering
a Manning relationship for flow resistance with a Manning coefficient of
0.04. The coefficients of equation (4) are thus α ¼ 2

3 and C ¼ 1
n ¼ 25.

3.1. Transient Experiments

The objective of the first test is to check the ability of Floodos to model the
transientbehavioroffloodpropagation.Weassess theaccuracyof thewater
depth prediction for a simple rectangular channel with constant upstream
flow conditions (Figure 2a). The model parameters are given in the Table 1.
Calculations have been performed in the nonstationary mode as described
above, similar to a dam-break flood event, with no bank friction.

Predicted water depths were compared with Lisflood-FP, one of the most
used numerical model in flood prediction [Bates et al., 2010; Coulthard
et al., 2013] whose predictions have been benchmarked [Bates et al.,
2010; Hunter et al., 2005]. We used the implementation of Lisflood-FP in
CAESAR:CAESAR–Lisflood 1.6a [Coulthard et al., 2013].

Figure 2b shows a comparison of water depth as a function of distance for
different time steps between Lisflood-FP and our model. LisFlood-FP uses
the same concept of storage area as Floodos (i.e., water is stored in the grid
and flows into and out of each cell) [Bates et al., 2010], but it solves
equations from a finite difference discretization of time and space, while
Floodos solves equations along the particle paths. LisFlood-FP also solves
inertia terms of the shallow water equations, while Floodos does not solve
them yet; these terms are negligible in the presented test.

Results show that Floodos perfectly matches the predictions of Lisflood-FP
for each time step of the simulation, demonstrating the ability of ourmodel
to reproduce the transientbehavioroffloodpropagation. Except for thefirst
four lines close to the boundary, for which Floodos shows boundary
effects, the difference between both models is about 0.5% on average.

3.2. Stationary Mode and Convergence Conditions

In this second test, we check the numerical conditions for which the sta-
tionary mode (point 4b in the code description; section 2.2) is stable. In
the stationary mode, the precipiton keeps its initial volume all along its
path (i.e., Vp= constant), entailing a faster filling of the water volume and
thus a much shorter time to reach the stationary regime. To test the accu-
racy and the increased efficiency of our approach, we use the same para-
meters as in the previous case. Given the rectangular shape of the channel
and the fact that only the basal friction is considered in this example (see
the discussion after equation (3)), this experiment can be easily compared
to a 1-D Manning analytical solution, although the calculation is actually
performed in 2-D. Figure 3a shows the calculated water depth as a func-
tion of time, for different calculation time steps dt (and thus precipiton
volume Vp=Q . dt, with Q as the inflow). The first stage of water depth
increase corresponds to the infilling of the rectangular channel, whoseTa
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time scale depends on the grid size but not on the elementary precipiton volume Vp (see the discussion
below). The number of precipitons required to reach stationary is thus inversely proportional to Vp.

Although each run converges at some point to a stationary solution, the obtained value is correct only for
small precipiton volume Vp (full lines in Figure 3a). The stability criterion corresponds to a critical precipiton
volume Vp

c about equals to 2 × 10�2 m3. We verify the conjecture formulated in the previous paragraph that
the precipiton volume should remain smaller than water height difference between adjacent cells along

stream (equation (16)). We found here that, given the water surface slope so, the ratioSt ¼ Vp

soΔx2Δy
must remain

smaller than 0.75.

The effect of the grid size, Δx, on the water depth calculation is shown in the Figure 3b. In order to compare
results from the different tests, the time step value dt (or precipiton volume Vp) was chosen as the largest that
respects the stability criteria St= 0.75. The time to stationary solution increases withΔx. This result is the direct
consequence of the method. Indeed, each precipiton fills the downstream grid cells by a volume Vp=Qdt.

Thus, the total amount of water brought by precipiton in the system is Vp Lx
Δx, and the number of precipiton

to reach a given water depth hc is the ratio between the total volume, and the volume brought by precipiton

np ¼ hcLy Δx
Vp . Replacing Vp by its value given by the stability criterion leads tonp ¼ hcLy

StsoΔxΔy
¼ hc

StsoLx
Nt, where Nt is

the number of grid cells. This result shows that the number of precipiton necessary to bring the required
amount of water basically increases as the number of grid cells for a given stability criterion St. As observed

in Figure 3b, the corresponding time t ¼ npVp

Qo
¼ hcLy Δx

Qo
increases linearly with Δx.

The dependency of the computational time with resolution will be discussed in section 1.

3.3. Dam

This test was designed to evaluate the effectiveness of the method to fill up lakes and dams. The initial topo-
graphy is a straight channel with a hump in the middle that acts as barrier for the precipiton walk toward the
downstream boundary (Figure 4a). Two discharges were tested (Figure 4b): Q= 0.2 (top), for which the water
depth h without hump is larger than the hump height, and Q= 0.02 (bottom), for which h without hump is
smaller. The test characteristics are given in the Table 1; it was performed in the stationary mode.

Precipitons successfully fill the volume upstream of the hump, forming a lake, with the average hydraulic
slope and depth dependent on both the hump height and inflow. The lake eventually overtops the dam
to flow downstream. With the stationary mode, one precipiton can fill up the volume upstream of the hump,
since it brings its water volume to each cell it goes through. The water thus continues to be routed as long as
it runs above the hump and can reach the downstream boundary. The water depth downstream of the hump
is consistent with the expected theoretical value, calculated by assuming that the water slope is similar to
topographic slope (Figure 4b). Upstream of the hump, the water depth is slightly larger than the top of the
humpwith a water slope slightly lower than the topographic slope. As expected, smaller discharges have less
steep slopes. We check that the friction equation (4)) is verified for each section of the canal.

Figure 3. (a) Water depth evolution through time for different time steps dt, precipiton volumes Vp, and for a stability cri-
terion St. Values are indicated in the framed box. (b) Water depth evolution through time for different grid cell resolutions
for St = 0.75.
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The hump problem addresses the
subcritical versus supercritical nature
of the flow, which was initially posed
for frictionless flow. Since the
momentum terms are neglected in
this version of the code (equation (3)
compared to equation (2)), the flow is
subcritical and affected by down-
stream controls. However, precipi-
tons are moving on top of the water
surface, which precludes the forma-
tion of local minima in the water sur-
face, as would occur in the theoretical
solution of the hump problem for
some subcritical conditions, and flat-
water surfaces form instead.

3.4. Real-Case Applications With
Lidar DEM

A potential application of the model
is the prediction of flood levels from
high-resolution digital elevation
models (DEMs) that are now regularly
acquired from airborne lidar. The test
was applied on the Cruz River near
Cruz Rock (CA, USA), whose lidar
DEM acquired in the project PG&E
Diablo Canyon Power Plant at an origi-
nal resolution of 1 m is available on
the web platform OpenTopography
(http://www.opentopography.org/).
The DEM has been degraded to 2.5 m
for our study (Figure 5a). The model-
ing challenge is to deal with a com-

plex floodplain containing geomorphological features such as multiple channels, terraces, bars, and a
partial dam at the outlet (an actual bridge treated as a dam after the rasterization of the lidar 3-D data).
The high-resolution DEM contains pits (i.e., local topographic minima), especially in the floodplain, which like
lakes are a challenge for traditional flow routing models [Zhu et al., 2013]. To evaluate the robustness of our
method to pits, we use the topography as is, i.e., without erasing pits with a depression filling algorithm.

We use the model under the stationary mode with simplified boundary conditions consisting of water input
localized on pixels at the upstream river boundary. With these conditions, the water depth is computed only
on pixels where the river actually flows. The river discharge has been fixed at ~500 m3 s�1 to ensure an over-
bank flow in the floodplain.

Since the friction equation (4) is not an a priori constraint, but rather emerges from the model rules, we check
if it is valid at every point by comparing the water depth derived from the simulation with the one expected
from equation (4) given q and s. Figure 5c shows that there the friction equation is verified with a very good
accuracy for all pixels (average standard deviation of 0.004 m between calculated and predicted values).

The model also manages to calculate flow around the artificial dam (Figures 5a and, 5b) with local holes in the
river bed (see for instance the downstreampart of the bridge/dam in Figure 5c). This demonstrates its ability to
deal with high-resolution DEMs, even with high-frequency variations in topography, whether it is real or not.

Note that, in the stationary regime, Floodos can calculate the flood extent for a particular discharge (Figure 6),
but the flood spreading from inlet must be calculated with the nonstationary version.

Figure 4. (a) Straight channel with a bump of maximum height 0.2 in the
middle. (b) Water depth for both discharges (top) 0.2 and (bottom) 0.02. h*
is the stationary river depth without bump calculated for the dischargeQ and
channel geometry according to equation (4).
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We compare results obtained from Floodos with Lisflood-FP. The calculations were performed on both high-
and low-resolution DEMs (2.5 m and 22.5 m, respectively) in order to appraise the grid resolution effects
(Figure 7). Although Lisflood-FP underpredicts the water depth in a few places compared to what the friction
equation would predict, both models give about consistent results for the 2.5 m grid (Figure 7a). For the
low-resolution grid, Lisflood-FP systematically overpredicts water depth compared to Floodos (Figure 7b).
With such a large resolution, a large part of the channels aremade of one or two pixels, so that there are a large
number of “wet” pixels that are surrounded by “dry” ones, as illustrated in Figure 7b (red areas). This is not a
favorable configuration for the four-neighbor Lisflood-FP algorithm. On the contrary, Floodos uses an eight-
neighbor algorithmand is insensitive to thewetting/drying issue. The results obtained from the low-resolution
DEMare thus consistent with those from the high-resolutionDEM (Figure 7c); themain discrepancies between
both predictions reflect mostly pixels that are wet for the 2.5 m grid and dry pixels for 22.5 m grid.

Figure 5. (a) Lidar DEM near Cruz Rock (USA) derived from airborne lidar data acquisition (Δx = 2.5 m) with a zoom of the
floodplain area close to outlet. The blue scale colors represent the water depth; flow direction vectors weighted by dis-
charge are shown in black. (b) Longitudinal profile through the downstream dam showing water surface on top of the
topography. (c) Density plot of thewater depthh calculatedby Floodos (horizontal axis) versushpredicted from theManning
friction equation given discharge and water slope. The red line indicates a perfect agreement between both values.

Figure 6. Picture of the predicted flood extent for different discharges in the Cruz DEM. (a) Qin = 40 m3 s�1.
(b) Qin = 150 m3 s�1. (c) Qin = 500 m3 s�1. q is the specific discharge.
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4. Morphodynamic Modeling

The precipiton method was originally developed as a particle-based geomorphic model capable of resolving
the stream power erosion equation, assuming that the hydraulic slope is similar to topographic slope and
that the river width is a known function of flow (mainly discharge) and topographic parameters. In that respect,
it is equivalent to most of the current landscape evolution models (see the review by Tucker and Hancock
[2010]). It is also a reduced complexity model capable of mimicking the emerging properties of geomorpholo-
gical systems such as braided patterns [Castelltort et al., 2004; Davy and Lague, 2009]. The capacity of the preci-
pitonmethod to resolve the shallowwater equations, thus calculating hydraulic slopes, and to be easily coupled
with erosion/deposition processes make it an efficient numerical method to explore complex river dynamics.

In the following, we will briefly describe themethod and demonstrate its capacity to model the emergence of
river width and braided patterns. These examples are presented as an illustration of themodel ability to effec-
tively couple hydrodynamic and erosion laws and to generate elementary fluvial instabilities.

4.1. Implementation of the Erosion Model

We use the implementation described in prior work [Crave and Davy, 2001; Davy and Crave, 2000; Davy and
Lague, 2009], where each precipiton is eroding, transporting, and releasing sediments with given erosion and
deposition laws. The erosion function _e is controlled by the hydraulic shear stress τ and critical shear stress τc,
where τ = ρghs: _e ¼ ke τ � τcð Þa. Other erosion functions could have been used such as the stream-power law,
which relates erosion to discharge q and hydraulic slope s [Howard, 1994; Lague, 2014; Whipple and Tucker,

1999]. Deposition rate _d is proportional to the sediment flux qs, _d ¼ qs
ξ
, where ξ is a characteristic length,

which controls the transport length of sediments and is assumed to be a function of discharge [Davy and
Lague, 2009]. If ξ is much larger than flow distances, the system is detachment-limited, and is only controlled
by local erosion rate _e; if ξ is small, the erosion/deposition equation is similar to a transport capacity equation
where the sediment flux qs is exactly equal to the product of the sediment transfer length ξ with local erosion
rate _e: qs ¼ ξ _e.

Sediment fluxes in transverse direction to the main flow are also very important components in the geomor-
phodynamic process [Schuurman et al., 2013]. Both lateral erosion (_el) and deposition (qsl) fluxes are given by

_el ¼ ke∇lH _e (17)

qsl ¼ kd∇lH qs (18)

where ∇lH is the topographic gradient orthogonal to the stream direction (referred to as the lateral topo-
graphic gradient) and ke and kd are the dimensionless coefficients for lateral erosion and lateral deposition,
respectively. The main difference between equations (17) and (18) is that the former is expressed as the ratio
of lateral versus basal erosion rates, while the latter is expressed as the ratio of lateral versus total, in stream,
sediment flux.

Figure 7. Density plot of the comparisons between Floodos and Lisflood-FPwater depth predictions for different grid resolutions (red line is hFloodos = hLisflood) along
with a raster map of the difference of water depth predictions ((a) Δx = 2.5 m and (b) Δx = 22.5 m). (c) Density plot comparing Floodos water depth predictions for
the same DEM with two resolutions of 2.5 m and 22.5 m, respectively.
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The lateral erosion rate _el models “bank-like” erosion processes. The lateral topographic gradient is also the
geometrical ratio between basal and lateral surfaces, and the coefficient ke reflects both changes in erodibility
or erosion processes between basal and lateral erosion. Lateral erosion/deposition fluxes induce a transfer of
matter between precipiton paths (i.e., flow streamlines) which is central to the emergence of channel forms.

The lateral deposition flux qsl models lateral mass transfer due to either flow processes (transverse compo-
nent of the bed shear stress induced by secondary flow) or gravity forces acting on the bed [Ikeda, 1982;
Ottevanger et al., 2013; Parker, 1984]. The coefficient kd reflects the efficiency of the lateral flow; it is likely
dependent on the shear stress τ such as

kd ¼ 1

α
ffiffiffi
θ

p (19)

where θ is the Shields parameter, i.e., the shear stress normalized by the buoyant particle weight per unit area
θ ¼ τ

ρs�ρð ÞgD, with ρs as the grain density, ρ as the water density, D as the average grain size, and α as a dimen-
sionless parameter that varies between 0.35 and 1.5 [Ikeda, 1982; Parker, 1984; Sekine and Parker, 1992;
Talmon et al., 1995]. The details of the equations, and of their implementation in the numerical code, are
given in the supporting information.

4.2. Emergence of Straight Channels

As a basic test of the method, we simulate the emergence of a stream on a sloping plane. The model dimen-
sions are 200 × 500m and the initial slope is 1%. Water depths are computed according to theManning equa-
tion with a friction coefficient of 0.025. Sediment fluxes are calculated by assuming that bed load transport
dominates (i.e., the sediment transport distance ξ is small compared to system dimensions), and the sedi-
ment flux is given by the Meyer-Peter and Muller [1948] (MPM) equation qs= E(τ� τc)

a, with a=1.5,
E=0.0002 kg�1.5 m�3.5 s�2, and τc= 4 Pa (corresponding to a grain diameter of 8 mm). These conditions

are obtained with ξ =2 m, and the vertical erosion term _e ¼ qs
ξ
¼ E

ξ
τ � τcð Þa . An inflow is applied at the

upstream boundary along a line of width 40 m, with a constant input discharge Q= 15 m3 s�1, and a fixed
sediment volumetric concentration of 10%. The downstream conditions are described in the supporting
information. The simulations have been computed in less than an hour on a standard PC.

The results of this experiment are given in Figure 8 with a grid size Δx=2 m. The incision propagates down-
stream and forms a channel, whose slope is decreasing down to a stationary state where sediment inflow
equal outflow. The channel width establishes rapidly in the upstream part of the model and slightly later
downstream (Figure 8a). At the stationary stage, it is about constant all along the profile, except near the
downstream boundary where the boundary conditions (no erosion and backwater effects) induce a widening
of the channel, and near the inlet where the equilibrium channel is narrower than the width over which water
is injected. The time evolution of the channel width is much faster than of channel slope and sediment
flux (Figures 8b–8d).

Simulations have been performed with three different grid resolutions for different values of the lateral
erosion parameter ke (Figure 9). Although there exists a stochastic variability inherent to each simulation
(precipitons are launched randomly at the upstream boundary), Figure 9 shows that the predicted chan-
nel geometries are largely independent of the grid size, which is a basic test to validate the numerical
method that most of the reduced complexity models fail [Doeschl-Wilson and Ashmore, 2005; Murray
and Paola, 1994; Nicholas and Quine, 2007; Ziliani et al., 2013]. We have also checked that the equilibrium
channel width is independent of the water inlet width. The channel width depends mostly on both lateral
erosion and deposition coefficient, ke and kd, respectively, defined in equations (17) and (18). With
kd= 0.5, simulations show that the channel width is independent of ke if ke< 0.03, and then increases pro-
portional to log k ́eð Þ if ke> 0.03. The lower bound of simulated channel width is about 20 m, consistent
with natural rivers with similar flow and sediment parameters (discharge of 15 m3 s�1, grain size of
~1 cm) [Parker et al., 2007].

4.3. Multithread Channels

We also reproduce the braided patterns that a previous version of €ros was already able to create with a
simplified description of water surface hydraulics and lateral erosion [Davy and Lague, 2009]. Model and
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boundary conditions are set to match roughly the Waimakariri River, New Zealand, which has been used
as a field test for computing braided patterns by Nicholas [2000]. The initial topography is a planform of
dimensions 800 × 5000 m with a grid resolution Δx = 10 m and an initial slope of 0.5%. The water depths
are calculated assuming a Manning-type friction with n= 0.035. The entrainment of sediment is computed
with a MPM equation and τc= 26.5 Pa (average grain size of ~3 cm). Other parameters are a lateral

deposition coefficient kd ¼ 3�
ffiffiffi
θ

p
, lateral erosion parameters ke=0.25, and an upstream inflow

Q= 500 m3s�1. The transport deposition length ξ was found to be a critical parameter for the develop-
ment of braiding patterns [Davy and Lague, 2009], and we test both a value of the order of the grid size
(experiment ξ20 with ξ =20 m), and another one significantly larger (experiment ξ500, with ξ = 500 m).
The simulations have been computed in about 50–70 h on a standard PC.

We let the system run with recirculating conditions; i.e., the total amount of outflowing sediment from the
downstream boundary is reinjected into the upstream inlet boundary. This entails no variation of the mean
topography, but a coupled evolution of sediment flux and channel geometry, which leads to the formation of
braided patterns. The straight channel geometry described in the preceding section forms for initial condi-
tions of net erosion (sediment influx much smaller than outflux during the initial transient stage), which
emphasizes the important role of boundary conditions on the final geometry, the effects of which (e.g., sedi-
ment feed versus recirculation) are beyond the scope of this study.

Both simulations (with ξ=20 and 500 m, respectively) are characterized by an initial development stage pre-
ceding a stationary regime (at least in terms of sediment), which may slowly evolve on the long term. For ξ20,

Figure 8. Simulation of the erosion of an initially flat sloping surface of 200 × 500 m with an initial slope of 1%, and a grid
resolution Δx = 2 m. The upstream inflow Q is equal to 15 m3 s�1. The erosion parameters are given in the text.
(a) Snapshots of the temporal evolution of the formation single thread channel for the time steps 0, 6000, 12,000, and
80,000. (b) Elevation and water depth profile along the main channel at different time steps at x = 100 m (between the red
lines). (c) Temporal evolution of channel width (black line, left vertical scale) and slope (dashed line, left vertical scale)
measured at the center of the model. (d) Outflux as a function of time; the red curve is the average evolution obtained by
filtering high-frequency variations.
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the early stage is made of small-
scale parallel microchannels spreading
through thewhole system (first plan view;
Figure 10), and progressively merging to
form larger channels. There is no limit to
this process, and the system eventually
organizes into a single channel; that is, no
braiding instability is sustained over the
long term. For ξ500, a rhomboidal
instability initially forms (3-D plan view;
Figure 10), whose spacing and angle
depend on the lateral flux parameter of
the deposition length ξ , and the lateral
transfer coefficient kd (this will be
further developed in a subsequent
paper). This is consistent with the
results of Devauchelle et al. [2010], who
proposed that the instability results
from a coupling between flow and
sediment transport rather than having
a purely hydrodynamic origin. In which
case, the braiding pattern develops by
the degeneration of the regular initial
instability into a single-thread alternate
bar channel as previously observed by
Schuurman et al. [2013] and, to a lesser
extent, in Nicholas et al. [2013]. The
braiding instability remains active
throughout the experiment and, unlike
the results for ξ20, the braids do not
eventually collect into a single channel.
Note that, although the “braiding
instability” is initially shaped by the
rhomboidal instability pattern, it is not
clear whether both instabilities are
physically linked.

Figure 9. (a) River width at stationary stage for three different grid resolutions (Δx = 2 , 4 , 8 m) as a function of the lateral
erosion parameter ke defined in equation (17). (b) Channel cross section at the model center for ke = 2.10�2. All the other
simulation parameters are described in the text.

Figure 10. Top views of the channel patterns for both simulations
described in the text with sediment recirculating conditions ((left)
inlet and (right) outlet with constant topography). Simulations are
performed with a deposition length of (a) 20 m and (b) 500 m.
(second column) The time is given in years for a constant discharge of
400 m3 s�1 (which would correspond to a much longer time in nat-
ural systems, considering the climate variability). The blue color scale
is related to water depth, and the brown color corresponds to the
locations with no flow. The yellow lines indicate the cross sections that
are described in Figure 11.
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The specific recirculating boundary conditions maintain the topographic slope fixed on average, but neither
the sediment flow nor the channel pattern is constrained, which allows the former to adapt to the latter and
vice versa. The history of macroscopic parameters (sediment flux, effective width, mean water depth) are
given in the Figure 11 (left column). Although very different in distribution, both models ξ20 and ξ500 con-
verge to the same total effective width, which is roughly the sum of individual channel widths. The mean
water depth is slightly higher in the ξ500 than in the ξ20 model, emphasizing a slightly larger dry surface
in the latter. The models mainly differ by the total sediment flux that they can carry, which is 5 times larger
in ξ20 than in ξ500 (Figure 11, top left), despite having identical asymptotic transport capacity laws.

This major difference between both models can be explained by a cross-section analysis of the channel char-
acteristics (Figure 11, right column). For ξ20 (red lines), the discharge is concentrated into one big channel, in
which the shear stress is about 2 times the threshold, and the sediment load is half the total sediment capa-
city q∞s ¼ ξ _e. In addition to the main channel, there is a small braid, which carries sediment but is unable to
erode. The rest of the model in this cross section is dry. The ξ500 model at stage t= 0.9 is made of three main
channels, all able to erode the channel bed with a shear stress about 2 times the threshold. The sediment load
carried by the channels is only 10% of the potential capacity. A significant part of the cross section between
channels is composed of flow that carries sediment without being able to erode (see the small channel at a
distance of about 400 m; Figure 12, top cross section). In terms of downstream dynamics, net deposition can
be observed in delta-like divergent structures with a downstream increase of the channel width that favors
deposition fluxes compared to erosional ones. The depositional length ξ is a characteristic length of the

Figure 11. (a) History of the sediment flux, effective width (i.e., the width by discharge, calculated for each cross section

perpendicular to flow [0, Ly] as W ¼ ∫Ly0 q yð Þdy
� �2

=∫Ly0 q yð Þ2dy, and averaged over all the cross sections except those

affected by inlet and outlet boundary conditions), and mean water depth (average over all the “wet” pixels) for both
multithread models. (b) Evolutions of the discharge per unit width q, stress τ, sediment load, and ratio of sediment load by
stream capacity ξ̇e, for the two cross sections indicated in the last model stages of Figure 12 corresponding to t = 0.7 for
ξ20 (blue lines) and t = 0.9 for ξ500 (red lines), respectively.
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channel pattern because it fixes the
average distance between eroding
and depositing zones and thus the
average channel length. The interplay
between eroding channels and
deposition zones is basic to the braid-
ing process.

5. Discussion
5.1. Potential and Limits of the
Precipiton Method

The precipiton method was shown to
be a versatile particle-based numeri-
cal method that differs from other
numerical methods in several ways:

1. The approach is a Lagrangian
method, and thus, it does not
require an a priori delineation of
the wetted area.

2. Particles are moving stochastically on a regular grid, which makes the approach easy to apply on DEMs.
3. The implementation of erosion/deposition rules in the Lagrangian framework is straightforward, as long

as we consider no flow of sediment between water volumes.
4. Although the processes that are solved by the method are highly nonlinear, the precipitons can be pro-

cessed one by one, independent of each other, in contrast with other particle-based methods such as
smooth particle hydrodynamics.

5. The precipiton method effectively handles local minima (e.g., lakes).
6. The method also allows for a rapid

calculation of the stationary solu-
tion. This is accomplished by the
fact that the volume of water car-
ried by the precipiton does not
change along the downstream
path. The water balance is not
ensured for each precipiton but
the stationary solution is theoreti-
cally correct. In these conditions,
CPU time is roughly linear with
the number of pixels N (Figure 13).
Note that the method has not yet
been parallelized, and we are
currently developing a new ver-
sion with precipitons managed in
parallel.

The current limitations of the method
are the following:

1. As is true for any explicit method,
there is a lower limit of time incre-
ment for which an accurate solu-
tion may be obtained. In the
precipiton method, the elemen-
tary water volume induces a
roughness of the water surface,

Figure 12. Three cross sections of both multithread simulations with topo-
graphy (black line) and water surface (blue or red lines). The cross sections
are indicated by the yellow lines in Figure 10.

Figure 13. Computation time as a function of the number of wet pixels
(Table 1) for the U-shaped channel (solid black circles) and Cruz case (solid
black squares). For the U-shaped channel (see section 3.2), the computation
time was recorded in the stationary regime. Calculations were performed
using the largest time step value that respected the stability criteria defined
in section 3.2. The computation time increased slightly nonlinearly with the
number of pixels following a relationship: CPU time ~N1.2. The computation
time followed a similar pattern for the real-case application (“Cruz,” black
square) described in section 3.4. For comparison, the results obtained with
Lisflood-FP are indicated (blue dots). Although all the simulations are per-
formed on the same computer, this test cannot be considered as a bench-
mark of both codes since Lisflood-FP calculates the transient regime, and it
can certainly be better optimized if run by its developers.
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which must remain smaller than the hydraulic gradients to ensure a correct prediction of the precipi-
ton path.

2. The method solves the shallow water equations with no inertia terms such as advection and acceleration,
meaning that the flow is assumed everywhere subcritical. This limitation is not intrinsic to the method. We
are now working on improving the method by taking into account the inertia terms of equation (2) in the
precipiton routing. We are also working on incorporating the vertical shear between water masses in the
momentum equation (2).

The method is new and would require considerable additional work to make a comprehensive comparison of
the advantages of the complete erosion/transport model with existing morphodynamic models such as H-
STAR, CAESAR, DELFT 2D or 3D [Coulthard et al., 2013; Lesser et al., 2004; Nicholas, 2013b; Schuurman et al.,
2013]. A key advantage of the model is the possibility to couple catchment-scale dynamics with river mor-
phodynamics in order to explore hillslope-channel coupling and the understudied role of dynamic channel
width on long-term landscape evolution. The high efficiency on a single CPU also enables the systematic
exploration of a wide range of model parameters suitable for model inversion or ensemble simulations.

5.2. New Insights Into the Understanding of Geomorphic Instabilities

The ability of the precipitonmodel to efficiently couple hydrodynamics and erosion opens new possibilities to
tackle problems as difficult as the emergence of geomorphic instabilities. After demonstrating that the
method is able to generate simple channels, with a width independent of the resolution of the grid size,
we simulated a braided pattern by applying recirculating conditions to a system of a given slope. Although
the experiments are not comparable in terms of parameters and boundary conditions, the morphodynamic
model is consistent with the results obtained by similar numerical codes that couple realistic hydrodynamics
and sediment erosion/transfer equations [e.g., Jang and Shimizu, 2005; Kleinhans, 2010; Nicholas, 2013b;
Nicholas et al., 2013; Schuurman et al., 2013; Wang et al., 2010], and our approach does not present the same
limitations as the reduced complexity models [Doeschl-Wilson and Ashmore, 2005; Murray and Paola, 1997;
Murray and Paola, 1994; Thomas et al., 2007]. The rhomboid instability in our braided simulations has been
observed as an initial stage of several models [Kleinhans, 2010; Nicholas et al., 2013; Schuurman et al., 2013],
as well as the widespread microchannel patterns observed in our experiment ξ20 [Jang and Shimizu, 2005].

A full analysis of the model and of the braiding instability is beyond the scope of this paper, but we empha-
size several points that deserve further analysis.

1. The MPM equation that we use in our morphodynamic simulations predicts a small dependency of the
flux with discharge (qs~ q0.9if τ ≫ τc with both MPM and the Manning equation), in contrast with the
Engelund and Hansen [1967] (EH) equation used in Schuurman et al. [2013], and in Nicholas et al. [2013]
for sand transport rates, which predicts qs~ q1.5. The only nonlinearity of our version of MPM is due both
to the threshold stress τc, which entails large variations of qs for shear stress close to τc, and to the deposi-
tion distance ξ , which yields highly nonlinear sediment flux (qs~ q1.9 in our case) if the deposition flux is
smaller than erosion rate (i.e., for distances smaller than ξ). Since the pioneering work of Smith and
Bretherton [1972], it is known that the concentration of flow into channels is enhanced by a more-than-
linear qs(q) relationship (i.e., qs~ qα with α > 1), which may enhance the braiding instability. The “less-
than-linear” (α< 1) ξ20 experiments show that the multithread pattern is a consequence of initial instabil-
ities that tend to reduce over time by channel merging; this was also observed in Jang and Shimizu [2005],
who used similar erosion laws (MPMwith sediment at capacity). In contrast, the ξ500 experiment seems to
illustrate a well-developed braiding pattern that differs significantly from the initial rhomboidal instability.
This is observed in Nicholas et al. [2013] and Schuurman et al. [2013], who use the EH transport equation.
Note that Nicholas et al. [2013] implicitly define a deposition length for the silt fraction, with a value on the
order of 10 km as derived from their equation (23). Schuurman et al. [2013] assumed that sediment flux is
at capacity for their standard model (they also run a model with the MPM equation, but gave no detail
about it except the sediment outflux), but the absence of lateral erosion freezes the system in a shape very
close to the initial rhomboidal instability. The issue of whether the instability is mainly driven by the non-
linearity of sediment flux versus discharge, by the deposition length as is the case for the development of
sand ripples and dunes [Andreotti et al., 2002; Charru et al., 2013], or by secondary circulation due to tur-
bulence (see the seminal works of Parker [1976], a feature that is not implemented in this model) is still an
open question.
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2. Both braiding experiments show that channels are not at capacity, with important consequences for
the ability of the braided system to export large sediment fluxes. The deposition length ξ appears
to be a primary control on braiding. Parameter ξ fixes the maximum distance for a system to be
undercapacity and, because of this, controls the distance between erosional and depositional areas
and thus the length of the braids. The necessary condition for ξ to control braid characteristics is that
ξ is sufficiently large in natural systems, i.e., several times the channel width. Few attempts have been
made to evaluate ξ for natural systems, but Davy and Lague [2009] show that, depending on grain
size, ξ can be large enough to be a potential control on the braid patterns.

3. As already noticed by Schuurman et al. [2013], the lateral deposition flux (kd coefficient) is critical for the
development and shape of the braiding instability. Experiments with low kd are not able to reproduce rea-
listic braided patterns.

4. A difficulty when comparing models is that the applied boundary conditions may be a first-order
control on the development of patterns. A net erosion system will lead to the development of a
few well-incised channels with low lateral mobility, while an aggrading system will tend to develop
deltas, which naturally tend to distribute sediments into different temporary channels due to a self-
filling channel process. Varying the discharge and the sediment flux at the inlet boundary, as in
other studies [Kleinhans, 2010; Nicholas, 2013a; Nicholas et al., 2013; Schuurman et al., 2013], may
potentially control the erosion/deposition dynamics, reducing the role of autocyclic (internal)
dynamics. The recirculating-sediment conditions that we use force the system to develop at a con-
stant bulk slope, and thus to self-adapt both the sediment flux transported out of the system and
the characteristics of the channel patterns. We believe that recirculating-sediment conditions are
suitable for a benchmark comparison between models.

6. Conclusion

To our knowledge, this is the first attempt to use the precipiton method to calculate river water depth under
the shallow water assumption. The method mimics the paths of water droplets from source to sink, and was
initially designed to erode and transport matter along the path by transferring water and matter from cell to
cell. The strength of the method developed by Crave and Davy [2001] is that the particles/precipitons are rou-
ted one by one on a regular grid, which makes the approach computationally fast. The flow is calculated from
the recording of the times when the precipitons reach each cell, and the water depth is resolved along the
flow path as a Lagrangian method.

Introducing the shallow water equations in the precipiton framework was carried out in two steps: (i)
particles/precipitons move on top of the water surface, as is expected from the shallow water equations with-
out the inertia terms, and (ii) the precipitons interact with the water surface to build up the water depth. For
the latter step, each cell is filled up by precipitons when they flow into the cell, with precipitons subsequently
leaking out at a rate which is given by the friction law. The water depth evolution is formally described by a
stochastic differential equation that is solved each time a precipiton enters a cell. It produces stochastic
values of the local water depth, whose average is the expected value. At each cell, the precipiton volume
is updated to maintain the water balance.

We examine the hydraulic performance of the model for a variety of scenarios, showing good agreement
with values predicted from Lisflood-FP for flood propagation in an idealized rectangular channel and for
flood inundation of a natural river valley using high-resolution LiDAR topography. In addition, the precipiton
method efficiently manages flow barriers and associated upstream lakes and reservoirs.

Coupling of the hydraulics with erosion/deposition equations as done in the €ros code is straightforward. In
addition to defining the water depth, particles erode the river bed and banks, transport, and deposit sedi-
ments. A variety of erosion/transport equations can be implemented in this scheme including lateral erosion
and lateral depositional fluxes. A few examples of channel formation have been presented to illustrate the
method. In tests conducted here, the code shows no dependence of the final solution on grid size. The
approach also successfully creates both straight and braided channels. The experiments shown in this paper
demonstrate some interesting features regarding braiding instability that deserve further investigation, such
as conditions for developing braiding patterns, the role of deposition length, the fact that channels are under
capacity, and the role of lateral deposition fluxes.
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Appendix A: Analysis of the Stochastic Equation
We demonstrate that the water depth solution of the stochastic equation (7) (or equation (12) in the case of
constant slope s) gives the expected average as defined by equation (4), although it fluctuates with time as in
Figure 1, if ϕ(h, s) depends only on h (ϕ(h, s) is denoted ϕ(h) hereafter). This encompasses the case where s is
constant. Equation (9) can be integrated between two successive precipitons p� 1 and p as

Φ hp
� � ¼ Φ hp�1

� �þ tp � tp�1 (A1)

with Φ hð Þ ¼ ∫ ΔxΔyϕ hð Þ dh. Equation (7) thus becomes

hp ¼ Φ�1 Φ hp�1
� �þ tp � tp�1

� �þ Vp

ΔxΔy
(A2)

If tp� tp� 1≪Φ(hp� 1), the equation can be approximated by

hp ¼ hp�1 þ Φ�1
0
Φ hp�1
� �� �

tp � tp�1
� �þ Vp

ΔxΔy
(A3)

where Φ�10 is the derivative of Φ�1. Eventually, we obtain

hp ¼ hp�1 �
ϕ hp�1
� �
ΔxΔy

tp � tp�1
� �þ Vp

ΔxΔy
(A4)

The time between two successive precipitons defines the flow discharge, as already mentioned by

Crave and Davy [2001]: tp � tp�1 ¼ Vp

Q
. By calculating the average over p of the previous expression (with

h ¼ h tp
� �	 
 ¼ h tp�1

� �	 

), we obtain

ϕ h
� � ¼ Q (A5)

which demonstrates that the average water depth is that of the friction equation.
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