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Abstract

We consider a model for flow in a porous medium which has a double

porosity structure. There is the usual porosity herein called macro poros-

ity, but in addition, we allow for a porosity due to cracks or fissures in the

solid skeleton. The cracks give rise to a micro porosity. The model con-

sidered also allows for temperature effects with a single temperature T .

This paper analyzes three aspects of structural stability. The first estab-

lishes continuous dependence of the solution on the interaction coefficient

between the velocities associated to the macro and micro porosity. The

second analyses continuous dependence on the viscosity coefficients while

the third establishes continuous dependence upon the radiation constant

when Newton’s law of cooling is involved on the boundary.

1 Introduction

A bidispersive (or double porosity) medium is a porous body which has the
usual macro pores, but there are also cracks or fissures in the solid skeleton
which give rise to micro pores. The macro porosity φ is the ratio of the volume
of the macro pores to the total volume of the saturated porous material. In
addition, the smaller micro pores, see e.g. the picture on page 3069 of Nield
and Kuznetsov [1], give rise to a micro porosity ǫ which is the ratio of the
volume occupied by the micro pores to the volume of the porous material which
remains once the macro pores have been removed. Theories for bidispersive
porous materials were introduced in the late 1990s, see e.g. Nield [2], [3], Nield
and Bejan [4], Nield and Kuznetsov [1], and see also chapter 13 of Straughan
[5].

Inclusion of temperature in bidispersive flows is very important since thermal
effects may induce cracking in the solid skeleton which in turn leads to micro
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pores, see Gelet et al. [6], Kim & Hosseini [7]. Applications of bidispersive flow
in porous media include oil reservoir recovery, see e.g. Olusola et al. [8], and
landslides with their catastrophic effect on human life, see e.g. Borja et al. [9],
Montrasio et al. [10], Pooley [11], Scotto di Santolo and Evangelista [12] Several
other important applications are described in the books by Straughan [5, 13].

Hirsch and Smale [14], p. 304, pose the problem of what effect does changing
the differential equation have upon the solution. They argue that this is the
problem of structural stability. They formally define structural stability for a set
of differential equations in R

n on page 312 of Hirsch and Smale [14]. Basically,
they argue that a set of equilibrium points or periodic attractors (orbits) should
be preserved under small perturbations of the equations themselves, although
the actual equilibrium positions or periods could change, and this gives rise to
the phenomenon of structural stability. However, for n = 3 and for certain
parameter values the Lorenz equations possess a chaotic attractor, see Hirsch et

al. [15], pp. 305–328. Hirsch & Smale [14], pp. 320–321, observe that even for
structurally stable systems there may be limit sets which are extremely com-
plicated. Structural stability for the geometric Lorenz attractor is established
by Guckenheimer & Williams [16]. Further exotic structures are discussed in
detail by Hirsch et al. [15] in chapters 15 and 16. Closely connected to struc-
tural stability is the phenomenon of continuous dependence on the model itself,
although one has to be precise about the type of continuity and the measure
in which the analysis is achieved. To describe continuous dependence on the
model we suppose we have a set of partial differential equations together with
boundary and initial conditions. The equations and boundary conditions con-
tain a term or parameter f and we denote the solution by u. Consider the
system with f replaced by f1 and f2 and corresponding solutions u1 and u2.
The solution depends continuously on the model if we may establish a relation
of form m(u1−u2) ≤ cρ(f1−f2) where c is a constant and m and ρ are suitable
positive measures. Thus, roughly, a small change in the equations or boundary
conditions, manifest by a change in f , results in a suitably small change in the
solution u. Some writers use the expression structural stability synonymously
with continuous dependence on modelling but since the present writers have
no information on the limit set for our partial differential equations, (2), and
our estimates are not valid in the limit t tends to infinity, we shall employ the
concept of continuous dependence on the model. One of the reasons to establish
continuous dependence on the model itself is that it may assist in determining
parameter ranges where complicated structures like chaotic attractors arise.

Structural stability and continuous dependence on the model itself, are very
important as highlighted in the books of Hirsch and Smale [14], Bellomo and
Preziosi [17] and Flavin and Rionero [18]. Within the field of elasticity continu-
ous dependence on modelling has been comprehensively analyzed by Knops and
Payne [19, 20].

We draw attention to the fact that structural stability is currently an impor-
tant topic in the mathematical literature and analyses of this nature in various
fields of continuum mechanics may be found in the recent works of Ames and
Hughes [21], Castro et al. [22], Celebi and Kalantarov [23], Celik and Hoang
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[24], Chirita et al. [25], Eltayeb [26], Harfash [27], Hill et al. [28], Liu [29],
Markowich et al. [30], Otani and Uchida [31], Straughan [13] and Varsakelis
and Papalexandris [32].

Our specific goal in this paper is to establish continuous dependence on
modelling results for a system of partial differential equations which describe
non-isothermal fluid flow in a bidispersive porous material. We firstly demon-
strate continuous dependence of the solution upon the interaction parameter for
flow between the macro and micro pores. Next, we study continuous dependence
on the viscosity coefficients and finally we analyze a thermal boundary condi-
tion and establish continuous dependence of the solution upon the coefficient of
Newton cooling.

2 Equations of motion

Equations for thermal convection in a bidispersive porous medium, with a single
temperature, T , were derived by Falsaperla et al. [33]. These authors deduced
the equations by appealing to the general theory of Nield [2, 3] and Nield and
Kuznetsov [1]. The equations of Falsaperla et al. [33] have form

µ

Kf

Uf
i + ζ(Uf

i − Up
i ) = −pf,i + ρF gαTki,

µ

Kp

Up
i − ζ(Uf

i − Up
i ) = −pp,i + ρF gαTki,

(ρc)mT,t + (ρc)f (U
f
i + Up

i )T,i = κm∆T.

(1)

In these equations f and p refer to the macro and micro porous quantities, µ
is the dynamic viscosity of the saturating fluid, Kf and Kp are permeabilities,

Uf
i and Up

i are fluid velocities, pf and pp are pressures, ζ is an interaction
coefficient, g is gravity, α is the coefficient of thermal expansion of the fluid,
ρF is a reference temperature, T is the temperature of the fluid, (ρc)m and
(ρc)f are the products of the density and specific heat at constant pressure with
the m indicating an averaged value over the bidispersive porous medium while
the f indicates the fluid itself, these quantities being defined precisely in Fal-
saperla et al. [33]. Furthermore, κm is the averaged thermal conductivity of the
bidispersive porous medium defined in Falsaperla et al. [33] and k = (0, 0, 1).
Throughout, standard indicial notation will be employed together with the Ein-
stein summation convention, and ∆ is the Laplace operator. Equations (1)
represent momentum balance in the macro and micro pores where a Bousinesq
approximation has been employed to yield the buoyancy terms linear in temper-
ature. The final equation in (1) is the balance of energy as derived in Falsaperla
et al. [33]. The Boussinesq approximation is derived under the assumptions
that |α(T − TR)| << 1 where TR is a reference temperature, and the veloc-
ity gradients are suitably small so the viscous dissipation may be neglected in
equation (1)3, cf. Straughan [5], pp. 16–21, or Roberts [34], pp. 196–197. This
approximation has been the subject of many recent articles and further details
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may be found in Barletta [35], Feireisl & Novotny [36], Gouin & Ruggeri [37],
Gouin et al. [38], Nield & Barletta [39], Rajagopal et al. [40], Rajagopal et al.
[41, 42]. The restriction on the temperature and on the velocity gradients limits
the physical domain of validity of equations (1) and subsequently equations (2).

Without loss of generality for the issue of continuous dependence upon mod-
elling under investigation in this work we simplify equations (1) as follows. We

replace Uf
i and Up

i by ui and vi, we substitute µ/Kf and µ/Kp by µ and γ, and
we denote ρF gαki by gi. We further divide (1)3 by κm and put α = (ρc)f/κm.
Next, rescale time so that the coefficient of T,t is replaced by the value one.
In this manner the equations of flow in a bidispersive porous medium may be
taken to be

µui + ζ(ui − vi) = −p,i+giT , ui,i= 0 ,

γvi − ζ(ui − vi) = −q,i +giT , vi,i = 0 ,

T, t +α(ui + vi)T, i = ∆T .

(2)

We suppose equations (2) are defined on a bounded domain Ω ⊂ R
3, with

boundary Γ which is sufficiently smooth to allow application of the divergence
theorem. The conditions on the velocities on the boundary are

uini = 0 , vini = 0 , x ∈ Γ , t > 0, (3)

where ni represents the unit outward normal to Γ. The initial condition is

T = T0(x) , x ∈ Ω. (4)

Without loss of generality for the class of problems under consideration we
suppose the gravity vector is bounded as

|g| ≤ 1 .

(We could replace the value of 1 by a general boundM <∞, or divide equations
(2)1,2 by ρF gα and redefine the remaining coefficients.) We let ‖ · ‖ and (·, ·) be
the norm and the inner product on L2(Ω).

While one may examine many aspects of continuous dependence on mod-
elling for equations (2) we believe this is the first such study and so we restrict
attention to analysing continuous dependence upon the interaction coefficient
ζ and on the coefficients µ and γ. Since the latter coefficients may in general
depend on temperature a continuous dependence study should prove beneficial.
However, continuous dependence on modelling encompasses all aspects of the
model and not just the coefficients of the equations. For example, it is impor-
tant to know information on continuous dependence on the boundary conditions,
continuous dependence on the geometry of the domain, and continuous depen-
dence upon the initial-time geometry to assess whether one can be sure one has
measured initial data at the same time or whether one should allow variation
of specification of initial data over a continuous series of times known as the
initial-time geometry, see e.g. Payne & Straughan [43, 44]. To incorporate con-
tinuous dependence on an aspect of modelling rather than a coefficient in the
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equations we here include an anlysis of continuous dependence on modelling
the boundary conditions. We specifically analyse continuous dependence on the
Newton cooling coefficient when a combination of temperature and heat flux is
given on the boundary.

3 Continuous dependence on the interaction co-

efficient

We now investigate continuous dependence on the interaction coefficient ζ. In
addition to (3) we suppose T is known on the boundary, i.e.

T = h(x, t) , on Γ× {t > 0} , (5)

where h is a prescribed function. We point out that existence of a strong solution
to the analogous problem to (2) - (4) and (5) for the single porosity case has been
established by Castro et al. [45]. We believe their methods may be extended to
the problem in hand to establish existence of a strong solution here. It is worth
pointing out that Castro et al. [45] establish existence for a class of fractional
diffusions for the temperature field but their work does include the Laplacian
of T as in (2)3.

To investigate continuous dependence on ζ we let (u1 i, v1 i, p1, q1, T1) and
(u2 i, v2 i, p2, q2, T2) be solutions to (2)-(4) for the same coefficients and bound-
ary data, excepting (u1 i, v1 i, p1, q1, T1) is the solution when ζ has the value ζ1
whereas (u2 i, v2 i, p2, q2, T2) is the solution for ζ having value ζ2.

Define the variables (wi, ri, π, ξ, θ) and β by

wi = u1 i − u2 i , ri = v1 i − v2 i , π = p1 − p2 ,

ξ = q1 − q2 , θ = T1 − T2 , β = ζ1 − ζ2 .
(6)

By subtraction we derive the difference equations from (2) as

µwi + ζ1(wi − ri) + β(u2 i − v2 i) = −π,i+giθ , ui,i = 0 ,

γri − ζ1(wi − ri)− β(u2 i − v2 i) = −ξ,i +giθ , vi,i = 0 ,

θ, t +α(wi + ri)T1, i + α(u2 i + v2 i)θ, i = ∆θ ,

(7)

in Ω× (0, T ), some T <∞.
The relevant difference boundary conditions are

wini = 0 , rini = 0 , θ = 0 , x ∈ Γ , t ∈ (0, T ]. (8)

To proceed, we multiply (7)1 by wi and integrate over Ω and then multiply (7)2
by ri before integrating over Ω. After addition of the results we find

µ‖w‖2 + γ‖r‖2 + ζ1‖w− r‖2 = −β(u2 i − v2 i, wi − ri) + (giθ, wi + ri) . (9)
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Let k = µ−1 + γ−1 and then upon employing the arithmetic-geometric mean
inequality on the terms on the right of (9) we may obtain

−β(u2i − v2i, wi − ri) + (giθ, wi + ri) ≤
1

4ζ1
β2‖u2 − v2‖

2 + ζ1‖w− r‖2

+
k

2
‖θ‖2 +

µ

2
‖w‖2 +

γ

2
‖r‖2,

(10)

and use of this in (9) leads to

µ‖w‖2 + γ‖r‖2 ≤ k‖θ‖2 +
‖u2 − v2‖

2

2ζ1
β2 . (11)

Next, multiply (7)3 by θ and integrate over Ω. After some integration by parts
one may see that

d

dt

1

2
‖θ‖2 = α(T1wi, θ, i ) + α(T1ri, θ, i )− ‖∇θ‖2 . (12)

We require an a priori estimate for T1. To this end define

Tm = max{‖T0‖∞, sup
[0,T ]

|h|} .

Then one may employ the function

ψ = [T1 − Tm]+ = sup(T1 − Tm, 0)

and generalize the proof in Payne et al. [46], pp. 432-433, to show that

sup
Ω×[0,T ]

T1(x, t) ≤ Tm . (13)

This allows us to deduce from (12)

d

dt

1

2
‖θ‖2 ≤ αTm‖w‖‖∇θ‖+ αTm‖r‖‖∇θ‖ − ‖∇θ‖2 . (14)

Now, employ the arithmetic-geometric mean inequality on the terms involving
‖w‖ and ‖r‖. In this way we find

d

dt
‖θ‖2 ≤ k1(‖w‖2 + ‖r‖2) , (15)

where k1 = (αTm)2.
To use inequality (11) we now need to bound ‖u2−v2‖. Multiply equations

(2)1,2 evaluated for u2 i and v2 i by u2 i and v2 i, respectively. After integration
by parts this leads to

µ‖u2‖
2 + γ‖v2‖

2 + ζ2‖u2 − v2‖
2 = (giT2, u2 i) + (giT2, v2 i) .
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Now use the arithmetic-geometric mean inequality to deduce

ζ2‖u2 − v2‖
2 ≤

k

4
‖T2‖

2 . (16)

We may apply the same argument to that above to deduce T2 ≤ Tm and then
(16) allows us to see that

‖u2 − v2‖
2 ≤

k

4ζ2
T 2
m|Ω| , (17)

where |Ω| is the measure of Ω. Hence, from (11) we obtain

µ‖w‖2 + γ‖r‖2 ≤ k‖θ‖2 +
k

8ζ1ζ2
T 2
m|Ω|β2 . (18)

By employing (18) in inequality (15) we now obtain

d

dt
‖θ‖2 ≤ k2‖θ‖

2 + k3β
2 , (19)

where

k2 = k1k
2, k3 =

k2T 2
m|Ω|

8ζ1ζ2
.

Inequality (19) integrates to yield

‖θ(t)‖2 ≤ Bβ2 , ∀t ∈ [0, T ] , (20)

where B = k3[exp(k2t)−1]/k2. Thus, (20) demonstrates continuous dependence
of θ upon the interaction coefficient β. We then obtain continuous dependence
upon β for wi and ri by using (20) in (18). Note the fact that B is a function
of t is typical in continuous dependence analysis, see e.g. Hirsch et al. [15], pp.
394–397.

4 Continuous dependence on the viscosity coef-

ficients

In this section we establish a continuous dependence estimate for the solution to
(2) upon the viscosity coefficients µ and γ. Thus, we letU1 = (u1i, v1i, p1, q1, T1)
and U2 = (u2i, v2i, p2, q2, T2) be solutions to (2) - (4) and (5) for the same
functions T0 and h but U1 and U2 satisfy (2) for different coefficients µ1, γ1
and µ2, γ2.

Define the difference variables (wi, ri, π, ξ, θ) as in (6) but now define δ and
λ by

δ = µ1 − µ2, λ = γ1 − γ2. (21)

By subtraction we now find that the difference variables satisfy the equations

µ1wi + δu2i + ζ(wi − ri) = −π,i + giθ,

γ1ri + λv2i − ζ(wi − ri) = −ω,i + giθ,

θ,t + α(wi + ri)T1,i + α(u2i + v2i)θ,i = ∆θ.

(22)
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The boundary conditions are

wini = 0, rini = 0, θ = 0, x ∈ Γ, t ∈ (0, T ], (23)

while the initial condition is

θ(x, 0) = 0, x ∈ Ω. (24)

Multiply (22)1 by wi and integrate over Ω, likewise multiply (22)2 by ri and
integrate over Ω, and employ the boundary conditions to obtain

µ1‖w‖2 + γ1‖r‖
2 + ζ‖w − r‖2 = (giθ, wi + ri)− δ(u2i, wi)− λ(v2i, ri). (25)

Multiply (22)3 by θ and integrate over Ω and after use of the boundary condi-
tions we may obtain

d

dt

1

2
‖θ‖2 + ‖∇θ‖2 =α(wi + ri, T1θ,i)

≤αTm(‖w‖ ‖∇θ‖+ ‖r‖ ‖∇θ‖), (26)

where in the last step we have employed (13). We now employ the arithmetic-
geometric mean inequality on the right hand side of (25) and discard the ζ term
to derive

µ1

2
‖w‖2 +

γ1
2
‖r‖2 ≤ c‖θ‖2 +

1

µ1
δ2‖u2‖

2 +
1

γ1
λ2‖v2‖

2, (27)

where c = 1/µ1 + 1/γ1. Next, use the arithmetic-geometric mean inequality on
the right of (26) and balance the resulting ‖∇θ‖2 terms by those on the left to
see that

d

dt
‖θ‖2 ≤ (αTm)2(‖w‖2 + ‖r‖2). (28)

Put now
µ̃ = min

{µ1

2
,
γ1
2

}

and then from (27) and (28) we may show

d

dt
‖θ‖2 ≤ c1c‖θ‖

2 +
c1
µ1

δ2‖u2‖
2 +

c1
γ1
λ2‖v2‖

2, (29)

where c1 = (αTm)2/µ̃. We must now derive a priori bounds for ‖u2‖ and ‖v2‖.
Multiply equations (2)1 and (2)2 defined for the two variables u2i and v2i,

respectively, and integrate over Ω to deduce

µ2‖u2‖
2 + γ2‖v2‖

2 + ζ‖u2 − v2‖
2 = gi(T2, u2i + v2i). (30)

Next, employ the arithmetic-geometric mean inequality on the right of (30) and
discard the ζ term to find

µ2‖u2‖
2 + γ2‖v2‖

2 ≤ c2‖T2‖
2, (31)
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where c2 = 1/µ2 + 1/γ2. The argument leading to (13) applies also to T2 and
so from (31) we may obtain

µ2‖u2‖
2 + γ2‖v2‖

2 ≤ c2|Ω|T
2
m . (32)

Put µ̂ = min{µ2, γ2} and return to inequality (29) and employ (32) to see that

d

dt
‖θ‖2 ≤ ℓ1‖θ‖

2 + ℓ2δ
2 + ℓ3λ

2, (33)

where
ℓ1 = c1c, ℓ2 =

c1c2
µ1µ̂

T 2
m|Ω|, ℓ3 =

c1c2
λ1µ̂

T 2
m|Ω|.

This inequality is integrated to obtain

‖θ(t)‖2 ≤ C(ℓ2δ
2 + ℓ3λ

2), ∀t ∈ [0, T ], (34)

where C = [exp(ℓ1t)− 1]/ℓ1.
Inequality (34) represents a continuous dependence on modelling estimate

for θ(x, t) on the viscosity coefficients. To obtain an analogous estimate for wi

and ri we use inequality (27) together with (32) to derive

‖w‖2 + ‖r‖2 ≤
2c

µ̃
‖θ‖2 + c3δ

2 + c4λ
2, (35)

where

c3 =
2c2
µ1µ̃µ̂

|Ω|T 2
m, c4 =

2c2
γ1µ̃µ̂

|Ω|T 2
m .

By combining (34) and (35) one shows

‖w(t)‖2 + ‖r(t)‖2 ≤ ℓ4δ
2 + ℓ5λ

2, (36)

where

ℓ4 =
2cCℓ2
µ̃

+ c3, ℓ5 =
2cCℓ3
µ̃

+ c4 .

Thus, continuous dependence on modelling for the viscosity coefficients is proved
in the sense of (34) and (36).

5 Continuous dependence on the Newton cool-

ing coefficient

Equation (5) is a Dirichlet condition on the temperature field on the boundary
Γ. We now wish to consider an aspect of continuous dependence upon modelling
involving the boundary conditions. In general, rather than prescribing the tem-
perature on the boundary one might give a combination of the temperature and
heat flux. This yields a general boundary condition of form

∂T

∂n
+ κT = F (x, t), on Γ× {t > 0}, (37)
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for F a given function and for κ > 0 a constant. We consider continuous
dependence of the solution upon the parameter κ in the case where κTa = F ,
with Ta being physically the ambient temperature outside of the porous body.
Equation (37) gives rise to a condition of Newton cooling. Thus, instead of the
boundary conditions (3) and (5) we consider in this section boundary conditions
of type

uini = 0 , vini = 0 on Γ× {t > 0} , (38)

and
∂T

∂n
= −κ[T − Ta(x, t)] , on Γ× {t > 0} , (39)

where κ (≥ 0) is the coefficient of Newton cooling. In (38) ni is the unit outward
normal to Γ, and in equation (39) ∂/∂n is the unit outward normal derivative.
The initial condition is again (4).

To study continuous dependence on κ we let (u1i , v1i , p1, q1, T1) and (u2i , v2i , p2, q2, T2)
be solutions to (2), (4), (38), (39) for the same coefficients µ, γ, ζ, α and Ta, but
for different cooling parameters κ1 and κ2, respectively.

Define the difference variables wi, ri, π, ξ and θ as in (6) and define the
variable ν by

ν = κ1 − κ2 . (40)

One in this case determines the difference equations as

µwi + ζ(wi − ri) = −π, i +giθ ,

γri − ζ(wi − ri) = −ξ, i+giθ ,

θ, t +α(u1 i + v1 i)θ, i +α(wi + ri)T2, i = ∆θ

(41)

in Ω× (0, T ), some T <∞.
The boundary and initial conditions are

wini = 0 , rini = 0 ,

∂θ

∂n
= −κ1θ − ν(T2 − Ta) ,

(42)

on Γ× (0, T ], and
θ(x, 0) = 0 , x ∈ Ω . (43)

The proof of continuous dependence begins by multiplying (41)1 by wi, (41)2
by ri, integrating over Ω and adding to find

µ‖w‖2 + γ‖r‖2 + ζ‖w− r‖2 = (giθ, wi + ri) . (44)

We employ the Cauchy-Schwarz and arithmetic-geometric mean inequalities on
the right hand side of (44) to obtain

µ‖w‖2 + γ‖r‖2 + 2ζ‖w− r‖2 ≤ k‖θ‖2 . (45)
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Next, multiply (41)3 by θ and integrate over Ω. After integration by parts and
use of the boundary conditions we find

1

2

d

dt
‖θ‖2 = α(T2wi, θ, i )+α(T2ri, θ, i )−‖∇θ‖2−κ1

∮

Γ

θ2dA−ν

∮

Γ

θ(T2−Ta) dA .

(46)
Upon using the arithmetic-geometric mean inequality on the last term in (46)
one obtains

1

2

d

dt
‖θ‖2 ≤ α(T2wi, θ, i ) + α(T2ri, θ, i )− ‖∇θ‖2 +

ν2

4κ1

∮

Γ

(T2 − Ta)
2dA . (47)

The proof of the bound for T2 in section 3 does not carry over here due to the
boundary conditions. Hence, we follow an argument in Payne and Straughan
[47].

For p > 1 (with T > 0, otherwise take p to be an even integer) we see that

d

dt

∫

Ω

T p
2 dx = p

∫

Ω

T p−1
2 T2, t dx

=p

∫

Ω

T p−1
2 [∆T2 − α(u2 i + v2 i)T2,i] dx

=− p(p− 1)

∫

Ω

T p−2
2 |∇T2|

2 dx− κ2p

∮

Γ

T p−1
2 (T2 − Ta) dA .

(48)

Young’s inequality is used on the last term on the right of (48) to find

d

dt

∫

Ω

T p
2 dx ≤ −p(p− 1)

∫

Ω

T p−2
2 |∇T2|

2 dx+ κ2

(

p− 1

p

)p−1 ∮

Γ

T p
a dA . (49)

Upon integration one may deduce from (49)

[
∫

Ω

T p
2 dx

]
1

p

≤

[

∫

Ω

T p
0 dx+ κ2

(

p− 1

p

)p−1 ∫ t

0

∮

Γ

T p
a dAds

]
1

p

.

Allow p→ ∞ to see that
sup
Ω

|T2| ≤ Tm (50)

where now
Tm = max{sup

Ω
|T0|, sup

Γ×[0.T ]

|Ta|} .

Next, from (45)
‖w‖ ≤ a1‖θ‖ , ‖r‖ ≤ a2‖θ‖ , (51)

where

a1 =

√

k

µ
, a2 =

√

k

γ
.
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Thus, employing (50) and (51) we find

α(T2wi, θ,i ) + α(T2ri, θ,i ) ≤ a3‖θ‖‖∇θ‖ , (52)

where
a3 = αTma1 + αTma2 .

Use (52) in (47) together with the arithmetic-geometric mean inequality to find

d

dt
‖θ‖2 ≤

a23
2
‖θ‖2 +Aν2 , (53)

where

A(t) =
1

2κ1

∮

Γ

(Tm − Ta)
2dA ,

in which we have extended estimate (50) to the boundary Γ by continuity.
Inequality (53) may now be integrated to yield the following continuous

dependence on κ inequality

‖θ(t)‖2 ≤ R(t)ν2 , (54)

where R is given by

R(t) =

∫ t

0

A(s) exp [
1

2
a23(t− s)]ds .

Estimate (45) then allows one to deduce

‖w‖2 ≤
k

µ
R(t)ν2 , ‖r‖2 ≤

k

γ
R(t)ν2 . (55)

To sum up, inequalities (54) and (55) furnish continuous dependence on κ esti-
mates, as required.

6 Conclusions

In this paper we have addressed a model for bidispersive flow in porous media.
We have demonstrated continuous dependence on the model by establishing
truly a priori estimates for continuous dependence on the interaction coefficient,
on the viscosity coefficients, and also on the Newton cooling coefficient. We
believe this represents the first mathematical analysis of continuous dependence
on modelling in this important field of flow in multi-porosity media, an area
which has a multitude of applications in real life, see Straughan [5, 13].

There will be many other aspects to study of continuous dependence on
modelling with various models of bidispersive or tridispersive flow, including
also different temperatures in the macro and micro pores, as modelled by Nield
and Kuznetsov [1] and Kuznetsov and Nield [48], respectively.

12
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