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Abstract

We obtain the linear instability and nonlinear stability thresholds for

a problem of thermal convection in a bidispersive porous medium with a

single temperature. It is important to note that we show that the linear

instability threshold is the same as the nonlinear stability one. This means

that the linear theory is capturing completely the physics of the onset of

thermal convection. This result contrasts with the general theory of ther-

mal convection in a bidispersive porous material where the temperatures

in the macropores and micropores are allowed be different. In that case

the coincidence of the stability boundaries has not been proved.

Keywords: Bidispersive porous media; natural convection; two-velocity; sta-
bility.

1 Introduction

A bidispersive porous medium is one where the solid skeleton contains two types
of pores. One type consists of the usual pores one finds regularly. However,
there are in addition micropores which may be cracks in the skeleton or may
be deliberately created in a man made bidispersive product. For example, very
small glass beads may be joined together to create an almost overall spherical
shape, and these larger spheres then assembled together to form the bidispersive
porous medium, see the picture given on page 3069 of Nield and Kuznetsov [1].

The porosity associated with the macropores is denoted by φ, i.e. φ is the
ratio of the volume of the macropores to the total volume of the saturated porous
material. In addition the micropores generate a porosity ε which is the ratio
of the volume occupied by the micropores to the volume of the porous body
which remains once the macropores are removed. This leads to the fraction
of volume occupied by the micropores being ε(1 − φ) while the fraction of the
volume occupied by the solid skeleton is (1− ε)(1 − φ).

Theoretical work on fluid flow in bidispersive porous media commenced with
work of Nield and Kuznetsov [2]. Further work followed see e.g. Nield [3], Nield
and Bejan [4], Nield and Kuznetsov [2, 5, 1, 6, 7, 8], Straughan [9, 10], chapter
13, with fundamental work on the thermal convection problem arising in Nield
and Kuznetsov [1]. These works all employ different velocities Uf

i and Up
i in

the macro and micropores, and likewise different temperatures T f and T p.
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One of the major reasons for analysing the behaviour of bidispersive (alter-
natively double porosity) porous media is the multitude of applications which
are arising. For example, landslides are being modelled with this theory, see e.g.
Montrasio et al [11], Sanavia and Schrefler [12], with other forms of land move-
ment also relevant, see e.g. Hammond and Barr [13]. Bidispersive porous media
are believed to be important to understanding hydraulic fracturing (‘fracking’)
where underground rocks or soil are deliberately disturbed to release trapped
gas for human consumption, see e.g. Huang et al [14], Kim and Moridis [15].
Finally, we mention an application to the vital production of clean drinking
water, see e.g. Ghasemizadeh et al [16], Zuber and Matyka [17], although many
further applications are discussed in Straughan [10], chapter 13.

In this paper we shall investigate thermal convection in a bidispersive porous
medium one when temperature is employed and the horizontal layer containing
the porous material is heated from below. To achieve our results we use the one
temperature model of Falsaperla et al [18] which is based on the full model of
Nield and Kuznetsov [1].

2 Equations for thermal convection

We suppose the porous medium is contained in the horizontal layer 0 < z < d
with the temperature at z = d is kept fixed at TL

◦C while the temperature
at z = d is kept fixed at TU

◦C with TL > TU . Denote by Uf
i and Up

i the
velocities of the fluid in the macropores and in the micropores, respectively.
The temperature in the porous medium is denoted by T (x, t). A Boussinesq
approximation is used whereby the density is constant except in the buoyancy
forces which are linear in temperature. The relevant equations may then be
derived, cf. Falsaperla et al [18],

−
µ

Kf

Uf
i − ζ(Uf

i − Up
i )− pf,i + ρFαTki = 0, Uf

i,i = 0,

−
µ

Kp

Up
i − ζ(Up

i − Uf
i )− pp,i + ρFαTki = 0, Up

i,i = 0,

(ρc)mT,t + (ρc)f (U
f
i + Up

i )T,i = κm∆T .

(1)

In these equations k = (0, 0, 1), µ, Kf , Kp and ζ are, respectively, dynamic vis-
cosity, permeability in the macropores, permeability in the micropores, and an
interaction coefficient. In addition ρF is a reference density, α is the coefficient
of thermal expansion of the fluid, pf , pp are the pressures in the macro and
micropores, ρ denotes density, c specific heat at constant pressure, κm is a ther-
mal conductivity and ∆ is the three dimensional Laplace operator. Standard
indicial notation is employed throughout.

In terms of the components in the solid, macro and micro phases, (ρc)m and
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κm are given by, see [18],

(ρc)m = (1− φ)(1 − ε)(ρc)s + φ(ρc)f + ε(1− φ)(ρc)p ,

κm = (1− φ)(1 − ε)κs + φκf + ε(1− φ)κp.
(2)

To investigate thermal convection we study stability of the steady solution

Ūf
i ≡ 0 , Ūp

i ≡ 0 , T̄ = TL − βz , (3)

where β is the temperature gradient

β =
TL − TU

d
. (4)

Now let uf
i , u

p
i , θ, π

f , πp be perturbations to the steady solutions and then
non-dimensionalize the resulting perturbation equations with the substitutions

xi = x∗

i d , t = t∗I ,
µ

ζKf

= γ1 ,
µ

ζKp

= γ2 , (5)

where

I =
d2(ρc)m

κm

(6)

and where the velocity scale U and Rayleigh number Ra are given by

U =
κm

d(ρc)f
(7)

Ra = R2 =
(ρc)fβd

2ρF gα

κmζ
. (8)

The resulting perturbation equations have form

γ1u
f
i + (uf

i − up
i ) = −πf

,i +Rθki, uf
i,i = 0 ,

γ2u
p
i − (uf

i − up
i ) = −πp

,i +Rθki, up
i,i = 0 ,

θ,t + (uf
i + up

i )θ,i = R(wf + wp) + ∆θ ,

(9)

where uf = (uf , vf , wf ) and up = (up, vp, wp). These equations hold in the
domain (x, y) ∈ R

2, {z ∈ (0, 1)}, t > 0. The boundary conditions are

uf
i ni = 0, up

ini = 0, θ = 0, on z = 0, 1 , (10)

where ni is the unit outward normal to z = 0 or z = 1, and uf
i , u

p
i , θ, π

f , πp

satisfy a plane tiling shape in the (x, y) plane. The periodic convection cell
which arises will be denoted by V.

3



3 Linear instability

To find the linear instability boundary we discard the nonlinear terms in (9)3
and seek a solution in which uf

i , u
p
i , θ, π

f , πf have time dependence like eσt.
This results in a system of equations of form

γ1u
f
i + (uf

i − up
i ) = −πf

,i +Rθki, uf
i,i = 0 ,

γ2u
p
i − (uf

i − up
i ) = −πp

,i +Rθki, up
i,i = 0 ,

σθ = R(wf + wp) + ∆θ.

(11)

We shall show that the strong form of the principle of exchange of stabilities
holds. Multiply equation (11)1 by uf∗

i , the complex conjugate of uf
i , and in-

tegrate over the period cell V. Multiply (11)2 by up∗
i and multiply (11)3 by θ∗

and integrate each over the period cell V. Denote by (·, ·) and ‖ · ‖ the inner
product and norm on the complex Hilbert space L2(V ) and then one may show
after some integration by parts and use of the boundary conditions,

γ1 ‖ uf ‖2 + ‖ uf ‖2 −(up
i , u

f∗
i ) = R(θ, wf∗),

γ2 ‖ up ‖2 + ‖ up ‖2 −(uf
i , u

p∗
i ) = R(θ, wp∗),

σ ‖ θ ‖2= − ‖ ∇θ ‖2 +R(wf , θ∗) +R(wp, θ∗).

(12)

Next, add the three equations in (12) to obtain

σ ‖ θ ‖2= − ‖ ∇θ ‖2

−(γ1 + 1) ‖ uf ‖2 −(γ2 + 1) ‖ up ‖2

+(up
i , u

f∗
i ) + (uf

i , u
p∗
i )

+R
[

(θ, wf∗) + (wf , θ∗)
]

+R [(θ, wp∗) + (wp, θ∗)] .

(13)

Write uf , up and θ in their real and imaginary parts and put σ = σr+ iσ1. Take
the imaginary part of equation (13) to find

σ1 ‖ θ ‖2= 0. (14)

We require ‖ θ ‖6= 0 and so σ1 = 0. Thus, σ ∈ R and oscillatory convection does
not hold. Therefore, to find the linear instability boundary we analyze system
(11) with σ = 0.

To proceed we remove uf , up, vf , vp from equation (11) by taking the double
curl of each of (11)1 and (11)2 and focus on the third components of the resulting
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equations. We thus have to solve

γ1∆wf +∆wf −∆wp = R∆∗θ ,

γ2∆wp − (∆wf −∆wp) = R∆∗θ ,

∆θ +R(wf + wp) = 0 ,

(15)

where ∆∗ = ∂2/∂x2 + ∂2/∂y2. By employing normal modes in (15) one may
reduce the calculation for the critical Rayleigh number to

R2 =
Λ2

n

a2

(

γ1γ2 + γ1 + γ2
4 + γ1 + γ2

)

, (16)

where Λn = n2π2 + a2. One finds the minimum in (16) is for n = 1 and for
a = π. Thus, the critical Rayleigh number is

R2 = 4π2

(

γ1γ2 + γ1 + γ2
4 + γ1 + γ2

)

. (17)

4 Nonlinear stability

Equation (17) yields the linear instability threshold. It gives no information on
stability. In order to achieve this we return to the full nonlinear equations (9).

Multiply (9)1 by uf
i and integrate over the period cell V. Then multiply (9)2 by

up
i and (9)3 by θ and integrate each over V. After some integration by parts we

obtain the energy identities

γ1 ‖ uf ‖2 +
(

uf
i , {u

f
i − up

i }
)

= R(θ, wf ),

γ2 ‖ up ‖2 −
(

up
i , {u

f
i − up

i }
)

= R(θ, wp),

d

dt

1

2
‖ θ ‖2= R(wf + wp, θ)− ‖ ∇θ ‖2,

(18)

where now (·, ·) and ‖ · ‖ denote the inner product and norm on the real Hilbert
space L2(V ). Add the three equations in (18) to find

d

dt

1

2
‖ θ ‖2= RI −D , (19)

where
I = 2(wf + wp, θ) (20)

and
D =‖ ∇θ2 ‖ +γ1 ‖ uf ‖2 +γ2 ‖ up ‖2 + ‖ uf − up ‖2 . (21)

Define
1

RE

= max
H

I

D
(22)
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where H consists of L2 functions for uf
i and up

i and H1 functions for θ. Then
from (19) we may obtain

d

dt

1

2
‖ θ ‖2≤ −D

(

1−
R

RE

)

. (23)

If R < RE , say 1− R/RE = a > 0, then by using Poincaré’s inequality in (23)
we find

d

dt

1

2
‖ θ ‖2≤ −aπ2 ‖ θ ‖2 . (24)

Thus integrate to see that

‖ θ(t) ‖2≤‖ θ(0) ‖2 exp(−2aπ2t). (25)

Thus, inequality (25) shows that ‖ θ(t) ‖ decays exponentially providedR < RE .
Next, add (18)1 and (18)2 to find

γ1 ‖ uf ‖2 +γ2 ‖ up ‖2 + ‖ uf − up ‖2= R(θ, wf + wp). (26)

Employ the arithmetic-geometric mean inequality on the right hand side of (26)
to see that

γ1 ‖ uf ‖2 +γ2 ‖ up ‖2≤ R2(γ−1

1
+ γ−1

2
) ‖ θ ‖2 . (27)

Now from (25) and (27) we deduce that R < RE also guarantees decay of uf

and up. Thus R < RE represents a global (for all initial data) nonlinear stability
threshold. To proceed we need to solve the maximum problem (22). The Euler-
Lagrange equations which arise from (22) are, for Lagrange multipliers λf and
λp,

REθki − γ1u
f
i − (uf

i − up
i ) = λf

,i ,

REθki − γ2u
f
i + (uf

i − up
i ) = λp

,i ,

(wf + wp)RE +∆θ = 0.

(28)

Equations (28) are the same as equations (11) with σ = 0. Thus the nonlinear
energy stability threshold is identical to the linear instability one given by (17).

5 Conclusions

We have found the linear instability threshold and the nonlinear one for the
problem of thermal convection in a bidispersive porous medium with a single
temperature. A strong result is proved which demonstrates that the linear insta-
bility threshold coincides with the nonlinear stability one. This result is optimal
and shows that in this case the linear theory captures the physics of the onset
of convection correctly. It is worth stressing that this not true in the equivalent
bidispersive convection problem when there are different temperatures T f and
T p for the macro and micropores phases, see Nield and Kuznetsov [1], Straughan
[9, 10], chapter 13.
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For the local thermal non-equilibrium convection problem with one poros-
ity but different solid and fluid temperature one also has strong exchange of
stabilities and coincidence of linear/nonlinear thresholds, see Banu and Rees
[19], Postelnicu and Rees [20], Straughan [21]. This then demonstrates that
the general bidispersive convection problem with T f and T p is somewhat dif-
ferent from the single temperature or single porosity cases and may be worthy
of investigation for new thermal effects.

The global stability/instability threshold is given by (17), but to bring it into
line with other analyses we might consider another Rayleigh number which in a
sense does not involve the interaction coefficient ζ. Define the Rayleigh number
Racl (classical) by

Racl =
βd2ρF gαKf

kmµ
, (29)

where km = κm/(ρc)m . Then the Rayleigh number in (17) is

Ra = γ1Racl (30)

This then allows us to rewrite (17) as

Racl = 4π2

(

1 + γ2 +K−1

r

4 + γ1 + γ2

)

, (31)

where Kr = γ1/γ2 = Kp/Kf . For calculation with specific values of µ, Kf and
Kp the Rayleigh number Racl may be more useful when dealing with experi-
ments.
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