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ABSTRACT:

We consider the momentum-space 3-point correlators of currents, stress tensors and
marginal scalar operators in general odd-dimensional conformal field theories. We show
that the flat space limit of these correlators is spanned by gauge and gravitational scattering
amplitudes in one higher dimension which are related by a double copy. Moreover, we recast
three-dimensional CFT correlators in terms of tree-level Feynman diagrams without energy
conservation, suggesting double copy structure beyond the flat space limit.
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1 Introduction

Scattering amplitudes and correlation functions are the basic ingredients from which many
important observables in quantum field theory are constructed. From a theoretical stand-
point, they are intimately related and exhibit remarkable mathematical properties. This
connection is particularly transparent in a holographic setting, where CFT correlators can
be expressed as Witten diagrams which reduce to scattering amplitudes in a suitable flat
space limit [1]. Both scattering amplitudes and correlators can moreover be computed
from lower-point objects. For amplitudes, this takes the form of BCFW recursion [2] and
unitarity methods [3, 4], while for CFT correlators this program is known as the conformal
bootstrap [5-8].

In this paper, our goal is to make further contact between scattering amplitudes and
correlation functions in order to reveal new mathematical structures and develop more
efficient computational methods. One of the most remarkable properties of scattering am-
plitudes is a set of relations — known collectively as the double copy — enabling gravitational
amplitudes to be expressed as a product of gauge theory amplitudes. This was first ob-
served in the context of tree-level string theory via the KLT relations between open and



closed string amplitudes [9]. In the field theory limit, these relations can then be extended
to loop level using color-kinematics duality [10, 11]. Moreover, the double copy can be
made manifest using worldsheet formulations [12, 13] which apply to a broad range of
quantum field theories [14].

In this paper, we will study CFT correlators in momentum space, where a direct
connection to scattering amplitudes has been established [15, 16].") As we will see, CFT
correlators contain specific poles whose residues correspond to scattering amplitudes in a
bulk spacetime of one higher dimension. If the CFT is Euclidean, this bulk spacetime
is Lorentzian de Sitter enabling purely spatial boundary momenta to be lifted to null
momenta in the bulk. This formulation is particularly relevant for the study of inflationary
non-Gaussianities, where scattering amplitudes can be obtained from the flat space limit of
cosmological in-in correlators, which are in turn related holographically to boundary CFT
correlators [20-27]. Recent discussions at the level of the 4-point function include [28-33].
Moreover, KLT-like relations for the inflationary graviton 4-point function were identified
in [34]. Alternatively, the connection with scattering amplitudes can be used to compute
higher-point AdS Witten diagrams via an analogue of BCFW recursion [16, 35-38].

Here, our calculations will build on new results for CFT correlators of stress tensors,
currents and scalars in general dimensions obtained by solving the conformal Ward identi-
ties in momentum space [39-43]. Our main result will be that 3-point correlators in general
CFTs encode double copy relations familiar from scattering amplitudes. The origin of this
connection can be understood by dressing the correlators with polarization vectors and in-
terpreting them as cosmological correlators evaluated on the future boundary of de Sitter.
Scattering amplitudes then follow by taking the flat space limit, defined as the limit in which
energy is conserved. Since energy is not conserved for cosmological correlators, to take this
limit in practice requires analytic continuation of the momenta. In odd dimensions, 3-point
CFT correlators develop poles in this limit, and flat space scattering amplitudes can be
read off from the most singular terms. In even dimensions, the flat space limit is more
complicated to evaluate since the analytic structure of CFT correlators is more involved,
so here we will focus our attention on odd-dimensional cases. For a parity-invariant but
otherwise general CFT with d > 3, we then find that the flat space limit of current cor-
relators is spanned by scattering amplitudes in ordinary and higher-derivative Yang-Mills
theory, while the flat space limit of stress tensor correlators is spanned by amplitudes in
Einstein, ¢R? and Weyl-cubed gravity, where ¢R? is a curvature-squared theory coupled
to scalars which reduces to a certain non-minimal conformal gravity in four dimensions
[44]. Remarkably, these theories are related via a double copy [45, 46].

In d = 3, we show that the $R? contribution to the stress tensor 3-point function
vanishes as a result of certain tensorial degeneracies. From the perspective of the dou-
ble copy, this can be understood by writing the ordinary and higher-derivative Yang-Mills
amplitudes in four dimensions in terms of spinor variables, whereupon the product cor-
responding to the 3-point graviton ¢R? amplitude vanishes. Instead, one can construct
a non-vanishing product corresponding a graviton-graviton-scalar amplitude in the ¢R?

!The correspondence is also well understood in Mellin space, see, e.g., [1, 17-19].



theory, which arises as the flat space limit of a CFT correlator for two stress tensors and a
marginal scalar. Furthermore, when this amplitude is written in terms of momenta and po-
larization vectors, it can be written as the square of a Yang-Mills-dilaton amplitude which
we show arises in the flat space limit of correlators with two currents and a marginal scalar
in general dimensions. Another special feature of d = 3 CFTs is that the corresponding
de Sitter correlators can be interpreted as flat-space tree-level Feynman diagrams, without
energy conservation, dressed by conformal time integrals. As we will see, this form of the
CF'T correlators exhibits double copy structure beyond the flat space limit.

In d = 3, CFT correlators can conveniently be written in a spinor helicity formal-
ism [15]. This formalism has also recently been used to study 3-point correlators of
higher spin currents in [47, 48]. Along with this paper, we include the MATHEMATICA
file dSDoubleCopy.nb which has a comprehensive set of multi-purpose functions for work-
ing with spinor helicity notation on dS4. It provides specific algorithms for working with
any 3-point expression analytically, as well as functions for the numerical evaluation of
n-point expressions. Also included are multi-purpose functions for working with 3-point
correlation functions in terms of polarization vectors and momenta.

The structure of this paper is as follows. In section 2, we review some basic properties
of scattering amplitudes. In sections 3 and 4, we analyze the flat space limit of correlators
in d > 3 and d = 3 respectively. Finally, in section 5 we summarize our results and discuss
open questions. In Appendix A, we compute de Sitter correlators corresponding to d = 3
CFTs and their reduction to flat space amplitudes. In Appendix B we describe the spinor
helicity formalism for 3d CFT correlators and present various useful formulae.

2 Amplitudes

We begin with a review of some basic facts about scattering amplitudes that will be relevant
later on. In (d + 1)-dimensional Minkowski space,? amplitudes can be written in terms of
momenta p and polarization vectors €.’ of the external particles labelled by the index i,
where 4 = 0,1, ...,d. For massless external particles, the momenta and polarization vectors
satisfy

pi-pi =0, €€ =0, € -pi=0. (2.1)

If the particles have spin two, it is convenient to write their polarization tensors in terms

iz

1 = el'e?. Moreover, the momenta associated with an n-point

of polarization vectors as € ;

amplitude are conserved,
n
> pt=o0. (2.2)
i=1
In (3 4 1)-dimensions specifically, null momenta and polarizations can be written (sup-
pressing the label ¢ for clarity) in terms of 2-component spinors as

) . ) )& e
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(2.3)

20ur signature convention is mostly plus.



where the indices «, & label the fundamental representation of the Lorentz group which
is locally equivalent to SU(2) x SU(2), { ue, /1‘5‘} are arbitrary reference spinors encoding
gauge invariance, and the brackets are defined by

(i) = MM eag,  [if) = MM ey,

(2.4)
where € is the antisymmetric Levi-Civita symbol.

In this paper, we will be primarily interested in two gauge theories, ordinary Yang-
Mills (YM) and a higher-derivative Yang-Mills theory with an F* interaction (where F is
the Yang-Mills field strength) which was recently constructed in [46]. Using the double
copy, the amplitudes of these two gauge theories can be combined to obtain amplitudes in
Einstein (EG), $R2, and Weyl-cubed (W?) gravity, where ¢ R? refers to a curvature squared
theory coupled to scalars [45]. Note that the F® theory constructed in [46] contains both
gluons and scalars. Moreover, after performing the double copy, the resulting theories will
contain fields other than gravitons. For example, the double copy of Yang-Mills corresponds
to Einstein gravity coupled to a dilaton and 2-form gauge field (which can be dualized to
an axion in four dimensions).

The double copy is most easily seen at the level of 3-point graviton and gluon ampli-
tudes in these theories, which are given by

Apc = (.AYM)Q, .AiQRQg = Aps Ay, Ay = (.AF3)2, (2.5)

where

Aym = €1 - €2 €3 - p1 + cyclic, Aps = €1 -p2 €2 p3 €3 1. (2.6)

We use the superscript 222 on the Ayg2 to emphasize that it is a graviton amplitude.
We will also consider graviton-graviton-scalar amplitudes in this theory, which will have
the superscript 220. These formulae can be naturally extended to higher points using
worldsheet formulations. In particular, worldsheet formulae for Yang-Mills and Einstein
gravity were initially proposed in [12], and were later extended to F 3 ¢R? and W?3 in
[13, 49, 50]. Although we will only need 3-point amplitudes for the purposes of this paper,
we expect that worldsheet formulae will be useful for extending our results to higher points.

The double copy structure described above can be also anticipated using bosonic string
theory. In particular, open string theory predicts the 3-point gluon amplitude

Ay y + o Aps (2.7)
and closed string theory predicts the 3-point graviton amplitude
/ 2 14222 2
(Avm + o/ Aps)” = Apa + 20/ AZ7 + o Ays, (2.8)

where o is related to the square of the string length. This result was recently generalized
to any number of points in [51], where it was shown that tree-level open bosonic string
amplitudes can be decomposed into Y M + F3 amplitudes times a basis of worldsheet
integrals encoding the o’ dependence, from which closed bosonic string amplitudes can be
obtained via a double copy.



Before closing this section, let us mention that in four dimensions, the ¢R? theory
reduces to a certain non-minimal conformal gravity whose Lagrangian was recently con-
structed in [44]. Moroever, the 3-point graviton amplitudes in this theory vanish. This
is most easily seen from the double copy using spinor helicity notation. In particular, we
have

(12)°
(23) (31)°

where the superscripts denote the helicity of the external particles. Moreover, we have

Aps(17,27,37) = (12) (23) (31), Ayp(17,27,3%) = (2.9)

Aps(17,27,37) = Ay (17,27,37) =0, (2.10)

with opposite helicity amplitudes obtained by complex conjugation. The 3-point graviton
amplitudes are then manifestly zero, e.g.,

A (177,277,377 ) = A (17,2737 ) Ay (17,27,37) = 0. (2.11)

If instead we take the product of the two nonzero amplitudes, we obtain an amplitude for
two gravitons and a scalar which arises in non-minimal conformal gravity:

ABL(17,27 7,37 ) = Aps(17,27,37 ) Ayar(17,27,37) = (12)*. (2.12)
In terms of polarization vectors, this corresponds to
./422}22 = (61 P2 €g p1)2 s (2.13)

which can be obtained from A?RQQ in d > 3 by making the replacement e5ef — n*”, where
N is the Minkowski metric. Note that the graviton-scalar-scalar amplitude obtained from
the product Aps(17,27,37)Aya (17,27, 37) vanishes by momentum conservation. Hence,
Aﬁ% is the only 3-point amplitude which can be obtained from combining Yang-Mills and
the F3 gluon amplitudes in four dimensions. Generalizations to higher points in the form
of worldsheet formulas can be found in [52-55].

In general dimensions, the graviton-graviton-scalar amplitude in (2.13) can be written
as the square of a gluon-gluon-scalar amplitude arising from a ¢F? interaction,

./49213‘92 — (A¢>F2)27 (214)
where
Ayr2 = €1-p2éz - p1. (2.15)

To our knowledge, the double copy of Yang-Mills-dilaton amplitudes has not been previ-
ously considered, so it would be interesting to see if the relation in (2.14) extends to higher
points.

3 CFT correlators for d > 3

Let us now shift our attention to d-dimensional Euclidean CFT correlators. In this section
we consider all odd d > 3, and in the following section we will return to the case d = 3.



Since we are interested in connecting to scattering amplitudes, we will focus on the
transverse-traceless parts of CFT correlators.® As discussed in [39], 3-point functions can
be decomposed in a minimal basis of transverse-traceless tensors constructed from the
metric and the momenta p;, where : = 1, 2, 3 labels the insertion. Each basis tensor in this
decomposition appears with a corresponding form factor which is a scalar function of the
momentum magnitudes

pi = +1/P?. (3.1)

For 3-point functions, any contraction of momenta can be expressed in terms of the mo-
mentum magnitudes via momentum conservation,

p1+p2+p3=0, (3.2)

for example py - py = (p?,, — p? — p3)/2. We emphasize that these momenta are those of a
d-dimensional Euclidean CFT and hence are not in general null. For physical kinematics,
all momentum magnitudes are instead such that p; > 0 and the triangle inequalities are
satisfied (i.e., p1 + p2 > p3). The null momenta relevant for (d 4 1)-dimensional scattering
amplitudes, as discussed in the previous section, are related to those of the d-dimensional
Euclidean CFT by

vi = (pi, pi), (3.3)

where the first component corresponds to the time direction. While these p!' are null, the
total ‘energy’ defined by
E=p1+p2+ps (3.4)

is non-vanishing for p; derived from Euclidean 3-point functions with physical kinematics.
Nevertheless, we can reach configurations with £ = 0, for which energy is conserved from
the perspective of (d+1)-dimensional flat space scattering amplitudes, by a suitable analytic
continuation. As we will see, CF'T correlators develop poles in the flat space limit £ — 0,
whose leading coefficients correspond to these scattering amplitudes.

To make the relation to scattering amplitudes more transparent, we will contract all
Lorentz indices on CF'T correlators with polarization vectors satisfying

€€ =0, € p;=0. (3.5)

These d-dimensional polarization vectors are then related to those of the (d+1)-dimensional
scattering amplitudes by
et = (0, €). (3.6)

1

With the tensorial structure of correlators thus dealt with, the remaining scalar form factors
can all be expressed as linear combinations of ‘triple-K’ integrals

- 3
I8, 82,851 (P1, 2, P3) = /0 dx 2 priK,Bi(piﬂJ), (3.7)

=1

3The remaining non-transverse traceless pieces are fixed in terms of lower-point functions by the trace
and transverse Ward identities, and can be completely reconstructed from these identities, see [39, 42, 43].



where Kp, is a modified Bessel function of the second kind. The exact linear combinations
and arguments «, f; appearing can be found by solving the relevant conformal Ward
identities, as detailed in [39]. In order to write compact expressions valid for general d, it
is useful to further define the ‘reduced’ triple-K integral

JN{k17k2»k3} = I%71+N{A17g+k1,AQ*%~FI€2,A3*%+I€3}7 (38)

where the N and k; are integer arguments and A; is the conformal dimension of the i-th
operator. For conserved currents A; = d — 1, while for stress tensors and marginal scalars
A; = d. In addition, we will use the symmetric polynomials

a;j = p; +pj, bij = pipj, b1z = p1p2 + pap3 +p3p1,  Ci23 = P1P2P3, (3.9)

and the quantity

J2=F (p1 +p2—p3) (p1 — p2 +p3) (—p1 + p2 +p3), (3.10)

with E given by (3.4). By Heron’s formula, V2 /4 is the area of the triangle with side
lengths given by the p;. For physical kinematics, the triangle inequality ensures that
J? > 0, vanishing only for collinear momenta, though this no longer the case after analytic
continuation of the p;.

To extract scattering amplitudes from the CFT correlators, we need to evaluate the
leading behaviour of the triple-K integral (3.7) in the flat space limit £ — 0. For o > 1/2,
as will always be the case, this leading behaviour is

B Togg, ) — (1/2)%D(a = 1/2) py =2 2pg 712 p1/2e (3.11)
For half-integer ;, such as arise for the odd-dimensional correlators of interest here, this
formula can be proved by noting that

P K (piw) = (m/2)" 2P f(pi)e P, (3.12)

where f(p;z) is a polynomial whose highest term is (p;z)%~1/2. The triple-K integral (3.7)
can now be evaluated as a sum of Euler gamma functions, and the leading term as £ — 0
is that associated with the highest power of x.

In fact, we believe (3.11) holds for fully general §; since the leading behavior as E — 0
derives from the asymptotic behavior Kg, (piz) — /m/(2p;z)e P of the Bessel function
as x — 00, which yields precisely (3.11). However, while odd-dimensional correlators
are rational functions, in even dimensions correlators have a more complicated analytic
structure. A careful specification of the analytic continuations needed to reach £ — 0 is
then required.* In d = 4, for example, the relevant triple-K integrals can all be derived from
a single master integral I;po9; Which can be evaluated in terms of dilogarithms [40, 42].

4In even dimensions one also encounters divergences necessitating regularization and renormalization
[42, 43]. As these divergences arise from the lower limit  — 0 of the triple-K integral, while the behavior
as F — 0 derives from the upper limit £ — 0o, we expect these effects can be cleanly disentangled.



This integral is equivalent to a 1-loop triangle diagram in flat space whose analytic structure
has been studied in [56-59]. We hope to analyze this further in future work.

In the following, we now proceed to evaluate the flat space limit £ — 0 for odd-
dimensional 3-point correlators of currents, stress tensors and marginal scalars. We find
the resulting scattering amplitudes are spanned by the gauge and gravitational theories
described in the previous section, implying that the correlators encode a double copy
structure.

3.1 (JJJ)

First, we consider the 3-point function of conserved currents for general odd dimensions
d > 3. Taking the general solution of the conformal Ward identities given in [39, 42] and
contracting with polarization vectors, we find

(JJJ) = A1(p1,p2,p3) €1 - p2€2 - p3 €3 - p1 + [Aa(p1,p2,ps) €1 - €2 €3 - p1 + cyclic]  (3.13)
where the form factors are given by
A1 = C1J3(000} Az = C1Ja4001) + C2J1{000} 5 (3.14)

where C) and Cy are constants and the reduced triple-K integrals are defined in (3.8).
For clarity, we suppress color factors and the overall delta function enforcing momentum
conservation. To connect with bulk scattering amplitudes, we have used (3.3) and (3.6) to
replace €; - p; = €; - pj.

The conformal Ward identities further relate Cy to the normalization C; of the current
2-point function via

Co=#C1+#Cyy, (3.15)

where the # are dimension-dependent coefficients whose form will not be important here.’
In the flat space limit, using (3.8) and (3.11), we find (3.13) reduces to

Cry
E@-1/2

m (JJJ) o Iz |G

(Ayym + O(E)) |, (3.16)
where the amplitudes Ay js and Ags are defined in (2.6), and the symmetric polynomial ¢193
is given in (3.9). We used (3.15) to replace Cy with Cy 7, noting that the term proportional
to C yields a contribution that is subleading in the flat space limit. We have also allowed
a rescaling of the arbitrary constant Cf.

We thus find that the flat space limit of the current correlator in general CFTs is
spanned by ordinary and higher-derivative Yang-Mills amplitudes:

E(d+3)/2

B, S ey A (3.17)

im 20 00 A \ 18
Elirb W < >|C’1=0 X AY M- ( ) )

®See (3.33) of [42] for details.



3.2 (TTT)

Next we consider the stress tensor 3-point function for general odd dimensions d > 3. After
contracting with polarization vectors, the general solution to the conformal Ward identities
takes the form [39, 42]

(TTT) = Ay(p1,p2.p3) (€1 paéx-pses - p1)°
(Ao(p1,pa,p3) €1 - exer-paex - p3 (€3 p1)? + cyclic)
+ (A3(p1,p2,p3) (€1 - €2)° (p1 - €3)* + cyclic)
(A4(P17p27p3) €1 - €3€2 - €3€] " Pa€2-P3 + cyclic)

+ As(p1,p2,p3) €1 - €2€2 - €3 €3 - €1, (3.19)
where the form factors are

A1 = CrJsq000) 5 (
Az = 4C1J550013 + C2Jag0003 (
Az = 20145002y + C2J35001y + C3J200001 5 (3.22
Ay = 8C1 44110y — 2C2 300013 + Cadagoooy (
As = 8C1J3q1113 + 202 (Jaqi10p + Joq1013 + J2q0113) + CsJog000}- (

The reduced triple-K integrals are given in (3.8), and the cyclic permutations in (3.19
act on all polarization vectors and momenta, as well as the arguments of each form factor.
To avoid confusion, we emphasize that the constants C), associated with the different

(ITT) , and so forth.

correlators are unrelated: our C), here is simply a shorthand for Cy,
The conformal Ward identities further impose that only three of the five constants in

(3.20) are linearly independent.® Schematically,
Cy =205+ #Cs, C5 = #C1 + #Co + #Cs, (3.25)

where the coefficients denoted by # are dimension-dependent and will not be needed for
our analysis as the corresponding terms are subleading in the flat space limit. One can
similarly replace Cs with the 2-point normalization C'rr since

Cs = #C1 + #Cy + #Cpr, (3.26)
and the terms proportional to C'y and Cs yield subleading contributions.
Applying (3.11), we then find that

. (d—1)/2 Ch
lim (TTT) o< cyp [(d+9)/g (Aws + O(E))

Co Crr

+W (Aim +O(E )) + W (Aga + O(E))|, (3.27)

where the gravitational amplitudes Agpg, A2 ¢R2, Ays are defined in (2.5) and we have
permitted independent rescalings of the constants Cy and C5. The flat space limit of the

6See section 3.4.2 of [42] for details.



stress tensor 3-point function in a general CFT is thus spanned by the Weyl-cubed, ¢R?
and Einstein gravity amplitudes:

] E(d+9)/2
lim ——s (TTT) | cymppmo X Aws, (3.28)
Cio3
) E(d+5)/2 -
lim =57 (TTT) ey —cpgmo % Agiz: (3.29)
Ci23
E(d+1)/2
lim ——— (TTT)| ¢, —cy—o < AEG- (3.30)

E—0 C(d*l)/2
123

Remarkably, these gravity amplitudes are related to the gauge theory amplitudes arising
in the flat space limit of (J.J.J) via the double copy relations (2.5).

3.3 (JJO)

Next, let us look at the correlator of two currents and a marginal scalar operator. In this
case, the general solution to the conformal Ward identities is [39, 43]

(JJO) = —A1(p1,p2,p3) €1 - P2 €2 - p1 + A2(p1,p2,p3) €1 - €2, (3.31)
where the form factors are given by
A1 = C1Jaq000} 5 Az = C1J1g001y + C2Jof000} - (3.32)
The Ward identities further impose the relation
Cy = f%Ag (As—d+2)Ci = —Crd (3.33)
where for a marginal scalar Az = d. Using (3.11), we obtain

. (d—3)/2 Ch

The flat space limit of (JJO) thus encodes the Yang-Mills-dilaton amplitude in (2.15),

) E(d+1)/2
C123 =~ P3

3.4 (TTO)

Finally, we consider the correlator of two stress tensors and a marginal scalar, given by
[39, 43]

(TTO) = Ay1(p1,p2,p3) (€1 -p2ea-p1)?
— Ag(p1,p2,p3) €1 - €2€1 - paea - p1 + Az(p1, p2,p3) (€1 - €2)2 (3.36)

~10 -



where

A1 = C1d 000y (3.37)
Az = 4C1 31001y + C3J2{000} 5 (3.38)
Az = 2C1J25002y + CoJ1g0013 + C3Jog000} 5 (3-39)

and the constants are related by
Cy=(A3+2)(d—A3—-2)C1 =—-2(d+2)Ch, (3.40)
1
C3 = ZAB (Ag + 2) (d - Ag) Cy =0. (341)

Using (3.11), we then obtain

. a-1/2  C1

The flat space limit thus encodes the amplitude in (2.13),

BN/ 220
123

Furthermore, this is the square of the gauge theory amplitude arising in the flat space limit
of (JJO) via (2.14).

To summarize, in general odd dimensions d > 3 we have seen that CFT correlators of
currents, stress tensors, and marginal scalars exhibit a double copy structure via their flat
space limit. In the next section, we will extend this discussion to the case d = 3.

4 CFT correlators for d = 3

In three dimensions, the form factors for (T'T'T) exhibit degeneracies which leave the corre-
lator invariant. These degeneracies arise since specific tensor structures in the form factor
basis are equivalent up to terms derived from a 4-form. In three dimensions, this 4-form
vanishes as an index is necessarily repeated. As a result, one obtains a set of equivalence
relations between the form factors parametrized by three arbitrary functions of the mo-
mentum magnitudes.” These relations eliminate a tensor structure such that the 3-point
function depends on only two, rather than three, arbitrary constants.

Here, we show how to fix these degeneracies so as to make the connection to scat-
tering amplitudes manifest. The vanishing tensor structure in (T'TT") then corresponds
to the vanishing 3-point graviton scattering amplitude in the ¢R? theory, which reduces
to conformal gravity in four dimensions. The double copy moreover predicts a nonzero
graviton-graviton-scalar amplitude in the ¢R? theory, which we show arises from the flat
space limit of (T'T'O) where O is a marginal scalar operator. For this calculation, we also
need to take into account a degeneracy of the form factor basis.

"See appendix A.5 of [42]. Alternatively, one can view these degeneracies as arising from the existence
of the cross-product in three dimensions, see appendix A.2 of [39]. For a position space analysis, see [60].

- 11 -



Another special feature of d = 3 is that CF'T correlators can be derived from 3-point
functions in dS4 which are equivalent to flat space Feynman diagrams without energy
conservation, dressed by conformal time integrals. This connection allows us to re-write
correlators in a manner suggesting the persistence of a double copy structure beyond the
flat space limit. In the following we will point out these results where relevant, deferring
all calculations to appendix A.

4.1 (JJJ)
In d = 3, the form factors for the current 3-point function are [39, 42]
2C1 Cips  2Cyy
Al = — Ay = —*= — 4.1
1 E37 2 E2 E ( )
where C; is the normalization of the 2-point function.®
Plugging this into (3.13) then gives
C1 ~ 2Cyy
(JIT) = (QAF3 + EAYM> — = Ay (4.2)
where the new structure
Ay = (€1 - ez ez - p1) ps + cyclic (4.3)

resembles the YM amplitude but is not an actual scattering amplitude.

The term proportional to C; can be derived from a 3-point function for an F? inter-
action in dS4. As we show in appendix A, this can be related to a flat space Feynman
diagram without energy conservation, from which we find

2Aps + EAyn M s (4.4)

where

1) 12(2) (3 a) _ (@) ()
Mps < FQFQED,  FQ) =pe. (4.5)

Here, indices should be contracted using the (3 4 1)-dimensional Minkowski metric, with
momenta and polarization vectors as given in (3.3) and (3.6) with («) labelling the insertion.

4.2 (TTT)
Let us now turn to the stress tensor 3-point function. In d = 3, the form factors are [39, 42]
8C
A= Eiﬁl [E3 + 3Ebiog + 150123] , (4.6)
8C
Ay = E751 [4p§ + 20p§a12 + 4p§(7a%2 + 6b12) + 15p3a12(a%2 + b12) + 3@%2(61%2 + blg)]
2C
+ E742 [E3 + Ebioz + 30123] , (4.7)
2C1p3 1, 5 2 2 2
Az = il [7p3 + 28p3a12 + 3ps(1laj, + 6b12) + 12a12(ajy + bi2)]
Cap3 2Crr
+ E33 [p3 + 3psara + 2(aiy + bi2)] — [ [E® — Ebyas — c123] (4.8)

8We suppress a factor relating to the color and charge.
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Ay = =i [—3p3 — 12p3a12 — 9p3(als + 2b12) + Ip3ai2(aiy — 3b12)
+(4ps + a12)(3aiy — 3aisbis + 4b%)]
+ % [—p5 — 3p3ai> — 6p3b12 + ar2(aly — b12)(3ps + ai2)]
- 4%€T [E® — Ebas — c123] , (4.9)
As = QE—C; [—3ES + 9E*b193 + 12E%bTy5 — 33E3c193 + 12Ebiaseias + 8ciys)
+ 2%22 [—E® + 3E°b123 + 4Ebly3 — 11E%cy93 + 4b123¢123)
+2Crr(p} + p3 + p3), (4.10)

where Cpr is the normalization of the 2-point function and the symmetric polynomials
appearing are defined in (3.9). As discussed above, these form factors are defined up to
the following degeneracies, derived in appendix A.5 of [42]:

dAv=f+f(pL<p3)+ f(p2 < p3)+9+ g1 < p3) +9(p2 < p3)
6As = (p3 —pi —p3) f

1 1
+p§g+§(pf—p§+p§)g(p1 <—>p3)+§(—p?+p§+p§)g(p2 & p3)+h

1
6A3 = _Zﬁf + p3h

1 1
SA, = ZJ29+§ (p%+p%—p§) (h(p1 <> p3) + h (p2 <> p3))

1
0As = ZJQ (h+h(p1 < p3) + h(p2 < p3)), (4.11)

Here, f, g and h are symmetric under p; <> p2, but are otherwise arbitrary functions of the
momentum magnitudes. Unless otherwise specified, the ordering of arguments is assumed
to be f = f(p1,p2,p3). Our aim is now to use these degeneracies to expose the underlying
amplitude structure in the correlators. For these purposes, it will in fact be sufficient to
use an h that is fully symmetric under permutations of the momenta.

First, as noted in [39, 42], we can use these degeneracies to set Co = 0. The required f,
g and h can be found by eliminating the terms proportional to C5 in Az, A4 and As. With
this choice, the C5 dependence in A; and Ao then cancels out. Next, we may choose a new
f, g and h to get rid of the terms proportional to C; in A3, A4 and A5.° The correlator
can now be re-expressed in the compact form

960 C ¢2 1 _
c b -
+ 2071 [(;3 + % - E) Apc + (P + P3 + p3) Acontact | (4.12)

9The required f, g and h are listed in the accompanying MATHEMATICA file.
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where!?

-ACOntact = €] +€2€2 - €3€3 " €]. (413)

While this expression is equal to (4.10) via the degeneracies, writing the correlator in this
way makes the connection to scattering amplitudes completely manifest. We see the ¢R?
amplitude has dropped out while the others are given by flat space limits consistent with
(3.28) and (3.30):

6 2

L E
lim — (T'TT lim — (TTT . 4.14
lim 103 ( >‘CTT:0 o Ayys, lim - ( Neoy—o X Aec ( )

The term in (4.12) proportional to C; is analyzed further in appendix A, where we
show it can be derived from a W3 interaction in dS;. Relating this to a flat space Feynman
diagram without energy conservation, we find that

J2
C 23E

1 By
Apys + iEAF&AYM o< Myys (4.15)

so the term proportional to C; in (4.12) can be written in the form cjo3Myys /ES where
™ @ 3 (@ _  (a) (0) () (a)
Myys o< Wy \Wol WD, Wy = pie’nl e - (4.16)
Here, repeated indices should again be contracted with the (3 + 1)-dimensional Minkowski
metric, and the momenta and polarization vectors are those given in (3.3) and (3.6) with («)

labelling the insertion. Moreover, the two possible index contractions of W3 are equivalent
as we show in appendix A, so we can further relate Myys to Mps defined in (4.5):

Mps oc My, Myys o MMy, My, = FDFPF). (4.17)

This relation suggests the existence of a double copy structure beyond the flat space limit.

4.3 (JJO)
In d = 3, the relevant form factors for two currents and a marginal scalar are [39, 43]
01 Cl
A= —=(F Ay = ——=(FE —2p3)(E . 4.1
1= 5 (E+p3), 2= 5l p3)(E + p3) (4.18)
Plugging this into (3.31) then gives
C
<JJO> = —TEIQ(E —I—pg) (2 €1-P2€2-pP1 + E(E — 2p3)61 . 62>. (4.19)

As there are no degeneracies for this correlator in d = 3, the flat space limit is the same as
given earlier in (3.34) and (3.35). In appendix A, we show that

E+ps3
(JJO) x (EQ)MW, Mgype = F)FD), (4.20)

(a)

where F;,’ as given in (4.5).

10 We can eliminate this contact term by using the perturbed metric g, = [¢?],. as done in cosmology
[20]. The new 3-point function defined by taking functional derivatives with respect to -, then satisfies
(TTT) pew = (TTT) — 2C77(p + p3 + ) Acontact-
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4.4 (TTO)

As we discussed in section 2, multiplying a YM amplitude with an F3 amplitude gives rise
to a nonzero graviton-graviton-scalar amplitude in the ¢R? theory (see (2.12)). We will
now demonstrate that this amplitude arises in the flat space limit of a d = 3 correlator
with two stress tensors and a marginal scalar.

The relevant form factors are [39, 43]

C

Al = Figlv

A= (—em £

9 = ﬁ( — &1(E — 2p3) + 2&3b12),

Cy

A3 == E(E - 2p3)(51(E - 2p3) - 452[)12), (421)

with
&= E3 + Ebia3 + 3cqo3, E = E? + pg(E — pg) (422)

and symmetric polynomials as defined in (3.9). As with (T'TT), these form factors are
defined up to the degeneracy

1
dAv=F,  dAr=—(pi+pi—p)F  Ay=-J°F, (4.23)

where F' = F(p1,p2,p3) is symmetric under p; <> pa but otherwise an arbitrary function
of momentum magnitudes.!! Choosing

Gy
F =156 (4.24)
and inserting the results into (3.36), we obtain
E+3
<TTO> = 01b12(7pg) (2 €1-P2€2-pP1+ E(E — 2p3) €1 - 62)2. (4.25)

4
An equivalent spinor version is given in (B.10) of appendix B. From either expression, it is
clear that the flat space limit is given by

4

E
lim — (T'TO 220 4.26
11rn0 c1os ( ) x A¢R2 ( )

where Agﬁ% is the prediction of the double copy in (2.12) and (2.13).
The double copy structure of (4.25) is discussed further in appendix A, where we show
it can be derived from a ¢W? interaction in dS;. Relating this to a flat space Feynman

integral without energy conservation, we find

b12(E + 3p3)
E4

blg(E + Spg)

& T po)? (JJO)?, (4.27)

(TTO) x (Myp2)? o
with Myp2 as given in (4.20). Again, this result suggests the existence of a double copy

structure beyond the flat space limit.

See (3.154) of [43].
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5 Conclusion

It is becoming clear that there are deep connections between scattering amplitudes and
correlation functions in quantum field theory. In this paper, we demonstrate that the
double copy structure relating gauge and gravitational scattering amplitudes is encoded in
the 3-point correlators of currents, stress tensors and marginal scalar operators in general
CFTs. Starting with the general solutions to the conformal Ward identities in momentum
space, we first dressed them with polarization vectors. For correlation functions in odd
dimensions, we then derived a simple formula for the leading behavior of triple- K integrals
in the flat space limit, and showed that in this limit the correlators are spanned by certain
scattering amplitudes in one higher dimension which are related via a double copy.

For d = 3, the analysis is more subtle since the stress tensor correlators exhibit de-
generacies. Using these degeneracies to expose the underlying amplitude structure of the
correlation functions leads to considerable simplifications. For example, we show that the
¢R? contribution to stress tensor correlators vanishes. Instead, the double copy predicts
that the graviton-graviton-scalar amplitude of this theory should arise from a correlator of
two stress tensors and a marginal scalar. Moreover, we show that d = 3 correlators can
be written in terms of (3 + 1)-dimensional flat space amplitudes without energy conserva-
tion, suggesting double copy structure beyond the flat space limit. We also obtain concise
formulae for the correlators in terms of spinor-helicity variables.

There are a number of interesting questions to explore:

® In odd dimensions, the correlators we consider are rational functions in momentum
space, but in even dimensions their analytic structure is more complicated making
the flat space limit subtle to evaluate. In d = 4, they can be reduced to a single
master integral corresponding to a 1-loop triangle diagram in flat space [40]. The
analytic properties of this integral have been discussed in, e.g., [56-58], which should
be useful for evaluating the flat space limit. A double copy structure for the 3-point
contribution from the Euler trace anomaly has also been found in [42]. It would
be interesting to understand the analytic structure of 3-point correlators in general
even dimensions and to develop a method for extracting their flat space limit. In
d = 2 there are further subtleties because conformal symmetry becomes enhanced
to Virasoro symmetry. Futhermore, it may be possible to derive current correlators
from Witten diagrams for two kinds of gauge theories in the bulk, notably 3d Yang-
Mills and Chern-Simons-matter theories, both of which are known to square into
gravitational theories in the flat space limit [61, 62].

® The simplicity of our results for d = 3 correlators suggests an underlying worldsheet
description for Witten diagrams in dS4, similar to those developed for scattering
amplitudes in flat space. Worldsheet formulae have recently been derived for gauge
and gravitational amplitudes in plane-wave backgrounds [63], where a double copy
was also implemented at the level of the classical background.'? In the context of

2Double copies for classical backgrounds were first considered in [64] and were explored for maximally
symmetric backgrounds in [65].
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CFT correlators, however, it would be desirable to have worldsheet descriptions for
both gauge and gravitational Witten diagrams in de Sitter space. If a worldsheet de-
scription of 3-point Witten diagrams can be defined, the main challenge would then
be to extend this description to higher points by incorporating a curved space ana-
logue of the scattering equations [66], which could provide a useful tool for studying
holography in the supergravity approximation.

B [t has recently been shown that for a class of conformally coupled scalar theories
in dS4, the wavefunction of the universe can be expressed in terms of volumes of
polytopes [31]. Ultimately, these can be derived from flat space Feynman diagrams
with external propagators ending on a fixed timeslice. Since we have found a similar
structure for CFT correlators in three dimensions, it would be interesting to explore
if they also have a polytope interpretation [67]. In the flat space limit, the worldsheet
and polytope descriptions of scattering amplitudes are intimately connected [68-74],
so it would be interesting to see if this connection extends to dS4 background.

B Since 3-point amplitudes are the building blocks for all higher-point scattering am-
plitudes via BCFW recursion and unitarity, and 3-point correlators are the building
blocks for higher-point CFT correlators via the OPE, we expect that our results can
be extended to higher points (see e.g., [16, 35-37]). It would therefore be interesting
to find general solutions to the conformal Ward identities for 4-point correlators in
momentum space and see to what extent they have a double copy structure in the flat
space limit. In the case of 3-point correlators, this can be anticipated from scattering
amplitudes in bosonic string theory, so it would be interesting to see if this continues
to hold at higher points.

We hope to report on these directions in the future.
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A de Sitter correlators

In this appendix, we explore further the double copy structure of CFT correlators by relat-
ing them to 3-point functions in de Sitter spacetime. For three-dimensional CFTs, certain
of these correlators have the special property that they further reduce to Feynman diagrams
in (34 1)-dimensional flat space, without energy conservation, dressed by overall conformal
time integrals. This clarifies the origin of the double copy structure, and moreover implies
its persistence beyond leading order in the flat space limit.

We choose coordinates for the de Sitter background metric

ds? =072 (=dn? + da?), (A1)
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Figure 1. Tree-level diagrams for 3-point correlators. The first diagram describes W3 and F3
interactions, while the second diagram describes ¢F? and ¢W? interactions.

where —oo < 1 < 0 is the conformal time and ¢ = 1, 2, 3 labels the spatial coordinates. Our
focus will then be to evaluate the F3, W3, ¢F? and ¢W? diagrams contributing to d = 3
(JJJ), (TTT), (JJO) and (TTO) correlators respectively, as illustrated in figure 1. For a
gauge field on dSy, the on-shell wavefunction is simply a plane wave A4, o e’"¢, as in flat
space, so the reduction to Feynman diagrams comes as no surprise. For a graviton on dSy,
however, the on-shell wavefunction is not a plane wave but instead has time-dependence
Y o< (1 — ipn)e™le, €,. Nevertheless, as discussed in [15], the linearized Weyl tensor is
conformal to that for a graviton in flat space:

WU, o [(1 — ipn) €#7] = —ipn WOk, [eP1]. (A-2)

This allows us to perform all index contractions as if in (3 4+ 1)-dimensional Minkowski
space using the momenta and polarization vectors given in (3.3) and (3.6). The de Sitter
background can then be restored by multiplying with an overall conformal time integral
consisting of plane wave external states multiplied by additional factors of 1 as appropriate.
These factors derive from the de Sitter measure, the inverse metrics appearing in index
contractions, and any conformal factors arising from (A.2). Further details of this approach
may be found in [15],'® where an alternative calculation of the W3 diagram is provided.
(The result is equivalent to that here after using the degeneracies in (4.11).)

We begin with the 3-point amplitude for the F? theory. Working in (3+1)-dimensional
Minkowski spacetime, with momenta and polarizations as given in (3.3) and (3.6), we have

1) (2) 77(3 o) _ (o) (a)
Mps < FQJEDE, B =piey, (A.3)

where the superscript («) labels the insertions, and in particular

o 1 a) (o @ @) \a
< L0, R0 wa

Evaluating the contractions, we find

Mps x 2Aps + EAYM, (A.5)

13Note our wavefunctions are the Bunch-Davies ones multiplied by a factor of p*>/2. In holographic cos-
mology where the standard Bunch-Davies vacuum is assumed, these factors arise instead through products
of the 2-point function in the holographic formulae for 3-point functions, see [20-22].
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with Ay s as given in (4.3). To return to dS4, we dress this flat-space amplitude with the

conformal time integral
1

0
Im (/ dnn2eiE”) X 73 (A.6)

—0oQ
As expected, we thus recover the term proportional to Cy in (4.2). Here, the factor of n?
derives from the measure \/—g and three inverse metrics, and for convergence we infinites-
imally rotate the contour by sending n — (1 — i€)n. The need for taking the imaginary
part follows from the in-in formalism, see e.g., [20].

Next let us consider the W3 amplitude, which in flat space is given by

H @ e 0) _ (@) (a) (a) (@)
Myys o< WD W W Withe =1 6 0 60y (A7)

Here, the linearized Weyl tensor reduces to the linearized Riemann tensor, which for the
transverse traceless graviton can be written as the tensor product of two Yang-Mills field
strengths. The contractions are thus equivalent to evaluating

(EE)FLFE)FDFY). (A8)
Since
FOF® o 2e1-paes-p1+ E(E —2p3)er - e, (A.9)

we can now write Myys in the form (3.19). Up to an overall constant of proportionality,
the corresponding form factors are

Ay =8, Ay=4FE(2ps—E), A3=0, Ay=2E*E —2p)(F—2p), As=—J*FE%

(A.10)
Applying the degeneracy (4.11) with
16 E2p3 8E? 5 9 4E?
f: 3J2 y g:ﬁ(pl +p2_6p1p2_p3)7 h:Ta (All)
we can further set A4 and As to zero whereupon
ci3l 1 ~
Mw3 0.8 T <Aw3 + 2E.AF3.AYM> . (A12)

To return to dSy, these form factors are dressed by the conformal time integral

0
i c
c123 Im </_OO dnn’e E”) x %, (A.13)

yielding the expected term proportional to C; in (4.12). Here, the factor of ci237%° in the
conformal time integral derives from the measure, three copies of the conformal factor in
(A.2) and three inverse metrics.

Since Ays = (Aps)?, we can pull out a factor of Aps in (A.12) obtaining a product
structure even for E # 0. Moreover, noting that in (3 + 1)-dimensions

0=wOmw W(Q)Papaw(ﬁ‘))\w)\w]’ (A.14)

(v
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we can equivalently re-write the index contractions in (A.7) as

1) 2 3)
MW3 X W,uup)\Wp(aLwW,Swyg- (A15)
We then obtain the manifest square
Mps oc My, Myps o MMy, My, = FDFPFE). (A.16)

Evaluating the index contractions from this starting point is more involved, but the result
is equivalent to (A.12) after using the degeneracies.

From the above calculations, we can easily compute the diagram corresponding to a
¢F? interaction. In particular, in flat space this is just given by

Mgz < FYFD), (A.17)

which was computed in (A.9). Dressing this with the conformal time integral

0 . i E+p
Im </OO dn (1 —ipsn)e ET’) X~ 3, (A.18)

then gives (4.19). Here, the factors of 1 from the measure and two inverse metrics cancel
out, while the remainder is the on-shell wavefunction for a massless scalar in dS,.
Finally, let us consider the ¢W? interaction. Starting again in flat space, we have

M <« Wi W2 (A.19)

The index contractions are then equivalent to
(FWED)?, (A.20)

which is the square of (A.9). To return to dSy, we dress this amplitude with the conformal

time integral
(E + 3ps)

= (A.21)

0
p1p2 Im (/ dn 772(1 - ipgn)elEn) x bio

—00
recovering (4.25). Here, we obtained a factor of p;pan? from the measure along with two

copies of (A.2) and two inverse metrics, and the remaining factor is the on-shell wavefunc-
tion for a massless scalar in dSy.

B Spinor helicity formalism

In this appendix we describe the spinor helicity formalism of [15] for d = 3 CFT correla-
tors, or equivalently cosmological correlators in dS4. As an application of the formalism,
we verify the degeneracies of stress tensor correlators, and we write the 3d correlators con-
sidered in this paper in terms of spinor variables. We also present various useful identities
for manipulating these variables, which are also implemented in the MATHEMATICA file
dSDoubleCopy.nb.
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The d = 3 spinor helicity formalism can be derived from (3 + 1) dimensions by intro-
ducing a vector 7* = (1,0,0,0) [75]. In terms of spinor indices this is given by 7% = b
This vector can then be used convert dotted indices into undotted indices. Applying this
to a 4d null momentum then gives

TINAE = NN = pof B, (B.1)

where A\ = 735\‘5‘, p* = \@)F) is the 3d momentum and p = %(AX) is its magnitude (where
spinor brackets were defined in section 2). The spinors can be explicitly parametrized in
terms of 3-momenta according to

VIpl+p?
AN (p)=| p'—ip (B.2)

VIpl+p?

Note that our conventions differ from those of [15] by a factor v/2 in the spinors. The A%
spinor is then the complex conjugate of this expression, and the \* spinor is calculated by
multiplying by 7.

A spatial 3-momentum can be lifted to a null 4-momentum given by A®A%, and given
a set of n 3-momenta which satisfy momentum conservation, their associated 4-momenta
will not in general satisfy energy conservation:

n n
Z S\f‘)\f = 748 Zpi =rYE (B.3)
i=1 i=1

These 4-momenta are naturally interpreted as null momenta in dSy4, since energy is not
conserved in this background. This leads to various useful identities in terms of the spinor
variables at three points. We find that at three points, any product of two spinor brackets
which is little group invariant in one or two particle labels can be reduced to a function of
the momentum magnitudes only. The full set of identities producing this kind of reduction

is given by
(ii) = 2p;
(ji)(ik) = (5k)(pk — pi — pj)
(73)(ik) = (ik)(pk — i + p;)
(ji)(ik) = (ik)(pk + pi + pj) = (ik)E
i) = (pr. — pj + pi) (Pk — Pi + Pj)
)

=i — (pi +pj)*. (B.4)

Polarization vectors can also be expressed in terms of spinor variables. Fixing a gauge
such that the time component of the vectors is zero, we find the following formulae

0p  AON ap AN
€ = R €y = .

Di Di

(B.5)
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Dot products between momenta and spinors are then given by

I ~ (ig) ) + (1) (9
2pi - pj = (ij){Ji), 2pi-€; = TR 2pi - € = P
.. 2 sy 2 iy 2
2¢; - € =— (i) , 2€;r €] =— (1) , 26;r . ej = — (7) . (B.6)
pipj Dibj pip;j

As a first application, let us verify that the degeneracies used to simplify stress ten-
sor correlators in section 4. Since the (T'TT) degeneracies are constructed as sums over
permutations of the (T'T'O) degeneracy, it is sufficient to consider the (TTO) degeneracy
without loss of generality. The (T'T'O) degeneracy in (4.23) can be derived by adding the
following object (multiplied by an arbitrary function of the momentum magnitudes) to the
correlator

1
D = (e1-p2)? (e2-p3)® — (T + 5 —p3) €1 - €aer - paer - p3 — ZJQ(El - €)%, (B.7)

and decomposing it in terms of form factors according to (3.36). Our task is then to show
that this object vanishes, and we can do so by writing it in terms of spinors. Indeed, for
—— and —+ helicity assignments we find that

(12)* (2 (pf +p3 — p3) (12)(21) + (12)*(21)% — J?)

b= 160373 | e
Ao 2L 2 o T9) _ (1902(T9\2 4 72
et _ 12127+ p3)1<61]92%>17<§2> (12)(12)° + %) (B.9)

both of which are identically zero on support of the identities given above.

It is now algorithmic using the relations between dot products and spinor brack-
ets (B.6), and the identities (B.4) to take any 3-point correlator in terms of polarization
vectors and momenta and produce a function of spinor brackets. An explicit realization
of these algorithms is given in the accompanying MATHEMATICA file, and calculations are
shown for (TTT), (JJJ), (JJO) and (TTO).

The results for a full set of different helicity assignments are

(T~TT7) = (12)%(23)(31)2 <01 g, s o F 2ot s p) )

2
8¢1a3

_ B _ 2 E3 — Eb _ _ 2E2 3 3 3
(T-T~T+) = (12)2(23)2(31)2C, (p1 + p2 — p3) ( 123 0123) (p1 + D5 +p3)

8E2cty
B <12>2g§ii<31>2 8235%423 (E3 ~ Bhizg = crzg = 287 (p1 —p2 szf?);zzg—;p-%)pz +ps3) 2 )’
T J) = (12)(23)(31) (22223 _ 2&) ,
o = aaenEne e oG8 C
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(J=J-0) = (12)2Cy

(E + p3)
E2

(J=JTO) =0

(T~T~0) = (12)*C4

pip2 (E + 3p3)

E* ’
(T-TTO) =0. (B.10)
Note that combining the identities (B.4) together we recover the following relation, which
is used to give different forms for — — + correlators,
o ) (01— pa-+p3) = (12231 (B.11)

Up to this relation, the spinor bracket structure of all 3-point correlators is fixed by little

group covariance, and only the function of the momentum magnitudes p; needs to be

calculated from the solution to the conformal Ward identities.
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