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1 Introduction

Scattering amplitudes and correlation functions are the basic ingredients from which many

important observables in quantum field theory are constructed. From a theoretical stand-

point, they are intimately related and exhibit remarkable mathematical properties. This

connection is particularly transparent in a holographic setting, where CFT correlators can

be expressed as Witten diagrams which reduce to scattering amplitudes in a suitable flat

space limit [1]. Both scattering amplitudes and correlators can moreover be computed

from lower-point objects. For amplitudes, this takes the form of BCFW recursion [2] and

unitarity methods [3, 4], while for CFT correlators this program is known as the conformal

bootstrap [5–8].

In this paper, our goal is to make further contact between scattering amplitudes and

correlation functions in order to reveal new mathematical structures and develop more

efficient computational methods. One of the most remarkable properties of scattering am-

plitudes is a set of relations – known collectively as the double copy – enabling gravitational

amplitudes to be expressed as a product of gauge theory amplitudes. This was first ob-

served in the context of tree-level string theory via the KLT relations between open and
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closed string amplitudes [9]. In the field theory limit, these relations can then be extended

to loop level using color-kinematics duality [10, 11]. Moreover, the double copy can be

made manifest using worldsheet formulations [12, 13] which apply to a broad range of

quantum field theories [14].

In this paper, we will study CFT correlators in momentum space, where a direct

connection to scattering amplitudes has been established [15, 16].1 As we will see, CFT

correlators contain specific poles whose residues correspond to scattering amplitudes in a

bulk spacetime of one higher dimension. If the CFT is Euclidean, this bulk spacetime

is Lorentzian de Sitter enabling purely spatial boundary momenta to be lifted to null

momenta in the bulk. This formulation is particularly relevant for the study of inflationary

non-Gaussianities, where scattering amplitudes can be obtained from the flat space limit of

cosmological in-in correlators, which are in turn related holographically to boundary CFT

correlators [20–27]. Recent discussions at the level of the 4-point function include [28–33].

Moreover, KLT-like relations for the inflationary graviton 4-point function were identified

in [34]. Alternatively, the connection with scattering amplitudes can be used to compute

higher-point AdS Witten diagrams via an analogue of BCFW recursion [16, 35–38].

Here, our calculations will build on new results for CFT correlators of stress tensors,

currents and scalars in general dimensions obtained by solving the conformal Ward identi-

ties in momentum space [39–43]. Our main result will be that 3-point correlators in general

CFTs encode double copy relations familiar from scattering amplitudes. The origin of this

connection can be understood by dressing the correlators with polarization vectors and in-

terpreting them as cosmological correlators evaluated on the future boundary of de Sitter.

Scattering amplitudes then follow by taking the flat space limit, defined as the limit in which

energy is conserved. Since energy is not conserved for cosmological correlators, to take this

limit in practice requires analytic continuation of the momenta. In odd dimensions, 3-point

CFT correlators develop poles in this limit, and flat space scattering amplitudes can be

read off from the most singular terms. In even dimensions, the flat space limit is more

complicated to evaluate since the analytic structure of CFT correlators is more involved,

so here we will focus our attention on odd-dimensional cases. For a parity-invariant but

otherwise general CFT with d > 3, we then find that the flat space limit of current cor-

relators is spanned by scattering amplitudes in ordinary and higher-derivative Yang-Mills

theory, while the flat space limit of stress tensor correlators is spanned by amplitudes in

Einstein, φR2 and Weyl-cubed gravity, where φR2 is a curvature-squared theory coupled

to scalars which reduces to a certain non-minimal conformal gravity in four dimensions

[44]. Remarkably, these theories are related via a double copy [45, 46].

In d = 3, we show that the φR2 contribution to the stress tensor 3-point function

vanishes as a result of certain tensorial degeneracies. From the perspective of the dou-

ble copy, this can be understood by writing the ordinary and higher-derivative Yang-Mills

amplitudes in four dimensions in terms of spinor variables, whereupon the product cor-

responding to the 3-point graviton φR2 amplitude vanishes. Instead, one can construct

a non-vanishing product corresponding a graviton-graviton-scalar amplitude in the φR2

1The correspondence is also well understood in Mellin space, see, e.g., [1, 17–19].
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theory, which arises as the flat space limit of a CFT correlator for two stress tensors and a

marginal scalar. Furthermore, when this amplitude is written in terms of momenta and po-

larization vectors, it can be written as the square of a Yang-Mills-dilaton amplitude which

we show arises in the flat space limit of correlators with two currents and a marginal scalar

in general dimensions. Another special feature of d = 3 CFTs is that the corresponding

de Sitter correlators can be interpreted as flat-space tree-level Feynman diagrams, without

energy conservation, dressed by conformal time integrals. As we will see, this form of the

CFT correlators exhibits double copy structure beyond the flat space limit.

In d = 3, CFT correlators can conveniently be written in a spinor helicity formal-

ism [15]. This formalism has also recently been used to study 3-point correlators of

higher spin currents in [47, 48]. Along with this paper, we include the Mathematica

file dSDoubleCopy.nb which has a comprehensive set of multi-purpose functions for work-

ing with spinor helicity notation on dS4. It provides specific algorithms for working with

any 3-point expression analytically, as well as functions for the numerical evaluation of

n-point expressions. Also included are multi-purpose functions for working with 3-point

correlation functions in terms of polarization vectors and momenta.

The structure of this paper is as follows. In section 2, we review some basic properties

of scattering amplitudes. In sections 3 and 4, we analyze the flat space limit of correlators

in d > 3 and d = 3 respectively. Finally, in section 5 we summarize our results and discuss

open questions. In Appendix A, we compute de Sitter correlators corresponding to d = 3

CFTs and their reduction to flat space amplitudes. In Appendix B we describe the spinor

helicity formalism for 3d CFT correlators and present various useful formulae.

2 Amplitudes

We begin with a review of some basic facts about scattering amplitudes that will be relevant

later on. In (d+ 1)-dimensional Minkowski space,2 amplitudes can be written in terms of

momenta pµi and polarization vectors εµi of the external particles labelled by the index i,

where µ = 0, 1, ..., d. For massless external particles, the momenta and polarization vectors

satisfy

pi · pi = 0, εi · εi = 0, εi · pi = 0. (2.1)

If the particles have spin two, it is convenient to write their polarization tensors in terms

of polarization vectors as εµνi = εµi ε
ν
i . Moreover, the momenta associated with an n-point

amplitude are conserved,
n∑
i=1

pµi = 0. (2.2)

In (3 + 1)-dimensions specifically, null momenta and polarizations can be written (sup-

pressing the label i for clarity) in terms of 2-component spinors as

pαα̇ = λαλ̃α̇, εαα̇+ =
µαλ̃α̇

〈λµ〉
, εαα̇− =

λαµ̃α̇

[λ̃µ̃]
, (2.3)

2Our signature convention is mostly plus.
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where the indices α, α̇ label the fundamental representation of the Lorentz group which

is locally equivalent to SU(2) × SU(2),
{
µα, µ̃α̇

}
are arbitrary reference spinors encoding

gauge invariance, and the brackets are defined by

〈ij〉 = λαi λ
β
j εαβ, [ij] = λ̃α̇i λ̃

β̇
j εα̇β̇, (2.4)

where ε is the antisymmetric Levi-Civita symbol.

In this paper, we will be primarily interested in two gauge theories, ordinary Yang-

Mills (YM) and a higher-derivative Yang-Mills theory with an F 3 interaction (where F is

the Yang-Mills field strength) which was recently constructed in [46]. Using the double

copy, the amplitudes of these two gauge theories can be combined to obtain amplitudes in

Einstein (EG), φR2, and Weyl-cubed (W 3) gravity, where φR2 refers to a curvature squared

theory coupled to scalars [45]. Note that the F 3 theory constructed in [46] contains both

gluons and scalars. Moreover, after performing the double copy, the resulting theories will

contain fields other than gravitons. For example, the double copy of Yang-Mills corresponds

to Einstein gravity coupled to a dilaton and 2-form gauge field (which can be dualized to

an axion in four dimensions).

The double copy is most easily seen at the level of 3-point graviton and gluon ampli-

tudes in these theories, which are given by

AEG = (AYM )2, A222
φR2 = AF 3AYM , AW 3 = (AF 3)2, (2.5)

where

AYM = ε1 · ε2 ε3 · p1 + cyclic, AF 3 = ε1 · p2 ε2 · p3 ε3 · p1. (2.6)

We use the superscript 222 on the AφR2 to emphasize that it is a graviton amplitude.

We will also consider graviton-graviton-scalar amplitudes in this theory, which will have

the superscript 220. These formulae can be naturally extended to higher points using

worldsheet formulations. In particular, worldsheet formulae for Yang-Mills and Einstein

gravity were initially proposed in [12], and were later extended to F 3, φR2 and W 3 in

[13, 49, 50]. Although we will only need 3-point amplitudes for the purposes of this paper,

we expect that worldsheet formulae will be useful for extending our results to higher points.

The double copy structure described above can be also anticipated using bosonic string

theory. In particular, open string theory predicts the 3-point gluon amplitude

AYM + α′AF 3 (2.7)

and closed string theory predicts the 3-point graviton amplitude(
AYM + α′AF 3

)2
= AEG + 2α′A222

φR2 + α′2AW 3 , (2.8)

where α′ is related to the square of the string length. This result was recently generalized

to any number of points in [51], where it was shown that tree-level open bosonic string

amplitudes can be decomposed into YM + F 3 amplitudes times a basis of worldsheet

integrals encoding the α′ dependence, from which closed bosonic string amplitudes can be

obtained via a double copy.
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Before closing this section, let us mention that in four dimensions, the φR2 theory

reduces to a certain non-minimal conformal gravity whose Lagrangian was recently con-

structed in [44]. Moroever, the 3-point graviton amplitudes in this theory vanish. This

is most easily seen from the double copy using spinor helicity notation. In particular, we

have

AF 3(1−, 2−, 3−) = 〈12〉 〈23〉 〈31〉 , AYM (1−, 2−, 3+) =
〈12〉3

〈23〉 〈31〉
, (2.9)

where the superscripts denote the helicity of the external particles. Moreover, we have

AF 3(1−, 2−, 3+) = AYM (1−, 2−, 3−) = 0, (2.10)

with opposite helicity amplitudes obtained by complex conjugation. The 3-point graviton

amplitudes are then manifestly zero, e.g.,

A222
φR2(1−−, 2−−, 3−−) = AF 3(1−, 2−, 3−)AYM (1−, 2−, 3−) = 0. (2.11)

If instead we take the product of the two nonzero amplitudes, we obtain an amplitude for

two gravitons and a scalar which arises in non-minimal conformal gravity:

A220
φR2(1−−, 2−−, 3−+) = AF 3(1−, 2−, 3−)AYM (1−, 2−, 3+) = 〈12〉4 . (2.12)

In terms of polarization vectors, this corresponds to

A220
φR2 = (ε1 · p2 ε2 · p1)2 , (2.13)

which can be obtained from A222
φR2 in d > 3 by making the replacement εµ3 ε

ν
3 → ηµν , where

ηµν is the Minkowski metric. Note that the graviton-scalar-scalar amplitude obtained from

the product AF 3(1−, 2−, 3−)AYM (1+, 2+, 3−) vanishes by momentum conservation. Hence,

A220
φR2 is the only 3-point amplitude which can be obtained from combining Yang-Mills and

the F 3 gluon amplitudes in four dimensions. Generalizations to higher points in the form

of worldsheet formulas can be found in [52–55].

In general dimensions, the graviton-graviton-scalar amplitude in (2.13) can be written

as the square of a gluon-gluon-scalar amplitude arising from a φF 2 interaction,

A220
φR2 =

(
AφF 2

)2
, (2.14)

where

AφF 2 = ε1 · p2 ε2 · p1. (2.15)

To our knowledge, the double copy of Yang-Mills-dilaton amplitudes has not been previ-

ously considered, so it would be interesting to see if the relation in (2.14) extends to higher

points.

3 CFT correlators for d > 3

Let us now shift our attention to d-dimensional Euclidean CFT correlators. In this section

we consider all odd d > 3, and in the following section we will return to the case d = 3.
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Since we are interested in connecting to scattering amplitudes, we will focus on the

transverse-traceless parts of CFT correlators.3 As discussed in [39], 3-point functions can

be decomposed in a minimal basis of transverse-traceless tensors constructed from the

metric and the momenta pi, where i = 1, 2, 3 labels the insertion. Each basis tensor in this

decomposition appears with a corresponding form factor which is a scalar function of the

momentum magnitudes

pi = +
√
p2
i . (3.1)

For 3-point functions, any contraction of momenta can be expressed in terms of the mo-

mentum magnitudes via momentum conservation,

p1 + p2 + p3 = 0, (3.2)

for example p1 · p2 = (p2
3 − p2

1 − p2
2)/2. We emphasize that these momenta are those of a

d-dimensional Euclidean CFT and hence are not in general null. For physical kinematics,

all momentum magnitudes are instead such that pi ≥ 0 and the triangle inequalities are

satisfied (i.e., p1 + p2 ≥ p3). The null momenta relevant for (d+ 1)-dimensional scattering

amplitudes, as discussed in the previous section, are related to those of the d-dimensional

Euclidean CFT by

pµi = (pi, pi) , (3.3)

where the first component corresponds to the time direction. While these pµi are null, the

total ‘energy’ defined by

E = p1 + p2 + p3 (3.4)

is non-vanishing for pi derived from Euclidean 3-point functions with physical kinematics.

Nevertheless, we can reach configurations with E = 0, for which energy is conserved from

the perspective of (d+1)-dimensional flat space scattering amplitudes, by a suitable analytic

continuation. As we will see, CFT correlators develop poles in the flat space limit E → 0,

whose leading coefficients correspond to these scattering amplitudes.

To make the relation to scattering amplitudes more transparent, we will contract all

Lorentz indices on CFT correlators with polarization vectors satisfying

εi · εi = 0, εi · pi = 0. (3.5)

These d-dimensional polarization vectors are then related to those of the (d+1)-dimensional

scattering amplitudes by

εµi = (0, εi). (3.6)

With the tensorial structure of correlators thus dealt with, the remaining scalar form factors

can all be expressed as linear combinations of ‘triple-K’ integrals

Iα{β1,β2,β3}(p1, p2, p3) =

∫ ∞
0

dx xα
3∏
i=1

pβii Kβi(pix), (3.7)

3The remaining non-transverse traceless pieces are fixed in terms of lower-point functions by the trace

and transverse Ward identities, and can be completely reconstructed from these identities, see [39, 42, 43].
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where Kβi is a modified Bessel function of the second kind. The exact linear combinations

and arguments α, βi appearing can be found by solving the relevant conformal Ward

identities, as detailed in [39]. In order to write compact expressions valid for general d, it

is useful to further define the ‘reduced’ triple-K integral

JN{k1,k2,k3} = I d
2
−1+N{∆1− d2+k1,∆2− d2+k2,∆3− d2+k3}, (3.8)

where the N and ki are integer arguments and ∆i is the conformal dimension of the i-th

operator. For conserved currents ∆i = d− 1, while for stress tensors and marginal scalars

∆i = d. In addition, we will use the symmetric polynomials

aij = pi + pj , bij = pipj , b123 = p1p2 + p2p3 + p3p1, c123 = p1p2p3, (3.9)

and the quantity

J2 = E (p1 + p2 − p3) (p1 − p2 + p3) (−p1 + p2 + p3) , (3.10)

with E given by (3.4). By Heron’s formula,
√
J2/4 is the area of the triangle with side

lengths given by the pi. For physical kinematics, the triangle inequality ensures that

J2 ≥ 0, vanishing only for collinear momenta, though this no longer the case after analytic

continuation of the pi.

To extract scattering amplitudes from the CFT correlators, we need to evaluate the

leading behaviour of the triple-K integral (3.7) in the flat space limit E → 0. For α > 1/2,

as will always be the case, this leading behaviour is

lim
E→0

Iα{β1,β2,β3} → (π/2)3/2 Γ(α− 1/2) p
β1−1/2
1 p

β2−1/2
2 p

β3−1/2
3 E1/2−α. (3.11)

For half-integer βi, such as arise for the odd-dimensional correlators of interest here, this

formula can be proved by noting that

pβii Kβi(pix) = (π/2)1/2x−βif(pix)e−pix, (3.12)

where f(pix) is a polynomial whose highest term is (pix)βi−1/2. The triple-K integral (3.7)

can now be evaluated as a sum of Euler gamma functions, and the leading term as E → 0

is that associated with the highest power of x.

In fact, we believe (3.11) holds for fully general βi since the leading behavior as E → 0

derives from the asymptotic behavior Kβi(pix) →
√
π/(2pix)e−pix of the Bessel function

as x → ∞, which yields precisely (3.11). However, while odd-dimensional correlators

are rational functions, in even dimensions correlators have a more complicated analytic

structure. A careful specification of the analytic continuations needed to reach E → 0 is

then required.4 In d = 4, for example, the relevant triple-K integrals can all be derived from

a single master integral I1{000} which can be evaluated in terms of dilogarithms [40, 42].

4In even dimensions one also encounters divergences necessitating regularization and renormalization

[42, 43]. As these divergences arise from the lower limit x→ 0 of the triple-K integral, while the behavior

as E → 0 derives from the upper limit x→∞, we expect these effects can be cleanly disentangled.
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This integral is equivalent to a 1-loop triangle diagram in flat space whose analytic structure

has been studied in [56–59]. We hope to analyze this further in future work.

In the following, we now proceed to evaluate the flat space limit E → 0 for odd-

dimensional 3-point correlators of currents, stress tensors and marginal scalars. We find

the resulting scattering amplitudes are spanned by the gauge and gravitational theories

described in the previous section, implying that the correlators encode a double copy

structure.

3.1 〈JJJ〉

First, we consider the 3-point function of conserved currents for general odd dimensions

d > 3. Taking the general solution of the conformal Ward identities given in [39, 42] and

contracting with polarization vectors, we find

〈JJJ〉 = A1(p1, p2, p3) ε1 · p2 ε2 · p3 ε3 · p1 +
[
A2(p1, p2, p3) ε1 · ε2 ε3 · p1 + cyclic

]
(3.13)

where the form factors are given by

A1 = C1J3{000}, A2 = C1J2{001} + C2J1{000}, (3.14)

where C1 and C2 are constants and the reduced triple-K integrals are defined in (3.8).

For clarity, we suppress color factors and the overall delta function enforcing momentum

conservation. To connect with bulk scattering amplitudes, we have used (3.3) and (3.6) to

replace εi · pj = εi · pj .
The conformal Ward identities further relate C2 to the normalization CJJ of the current

2-point function via

C2 = #C1 + #CJJ , (3.15)

where the # are dimension-dependent coefficients whose form will not be important here.5

In the flat space limit, using (3.8) and (3.11), we find (3.13) reduces to

lim
E→0
〈JJJ〉 ∝ c(d−3)/2

123

[
C1

E(d+3)/2
(AF 3 +O(E)) +

CJJ

E(d−1)/2
(AYM +O(E))

]
, (3.16)

where the amplitudesAYM andAF 3 are defined in (2.6), and the symmetric polynomial c123

is given in (3.9). We used (3.15) to replace C2 with CJJ , noting that the term proportional

to C1 yields a contribution that is subleading in the flat space limit. We have also allowed

a rescaling of the arbitrary constant C1.

We thus find that the flat space limit of the current correlator in general CFTs is

spanned by ordinary and higher-derivative Yang-Mills amplitudes:

lim
E→0

E(d+3)/2

c
(d−3)/2
123

〈JJJ〉|CJJ=0 ∝ AF 3 , (3.17)

lim
E→0

E(d−1)/2

c
(d−3)/2
123

〈JJJ〉|C1=0 ∝ AYM . (3.18)

5See (3.33) of [42] for details.
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3.2 〈TTT 〉

Next we consider the stress tensor 3-point function for general odd dimensions d > 3. After

contracting with polarization vectors, the general solution to the conformal Ward identities

takes the form [39, 42]

〈TTT 〉 = A1(p1, p2, p3) (ε1 · p2 ε2 · p3 ε3 · p1)2

+
(
A2(p1, p2, p3) ε1 · ε2 ε1 · p2 ε2 · p3 (ε3 · p1)2 + cyclic

)
+
(
A3(p1, p2, p3) (ε1 · ε2)2 (p1 · ε3)2 + cyclic

)
+
(
A4(p1, p2, p3) ε1 · ε3 ε2 · ε3 ε1 · p2 ε2 · p3 + cyclic

)
+A5(p1, p2, p3) ε1 · ε2 ε2 · ε3 ε3 · ε1, (3.19)

where the form factors are

A1 = C1J6{000}, (3.20)

A2 = 4C1J5{001} + C2J4{000}, (3.21)

A3 = 2C1J4{002} + C2J3{001} + C3J2{000}, (3.22)

A4 = 8C1J4{110} − 2C2J3{001} + C4J2{000}, (3.23)

A5 = 8C1J3{111} + 2C2

(
J2{110} + J2{101} + J2{011}

)
+ C5J0{000}. (3.24)

The reduced triple-K integrals are given in (3.8), and the cyclic permutations in (3.19)

act on all polarization vectors and momenta, as well as the arguments of each form factor.

To avoid confusion, we emphasize that the constants Cn associated with the different

correlators are unrelated: our Cn here is simply a shorthand for C
(TTT )
n , and so forth.

The conformal Ward identities further impose that only three of the five constants in

(3.20) are linearly independent.6 Schematically,

C4 = 2C3 + #C2, C5 = #C1 + #C2 + #C3, (3.25)

where the coefficients denoted by # are dimension-dependent and will not be needed for

our analysis as the corresponding terms are subleading in the flat space limit. One can

similarly replace C3 with the 2-point normalization CTT since

C3 = #C1 + #C2 + #CTT , (3.26)

and the terms proportional to C1 and C2 yield subleading contributions.

Applying (3.11), we then find that

lim
E→0
〈TTT 〉 ∝ c(d−1)/2

123

[
C1

E(d+9)/2
(AW 3 +O(E))

+
C2

E(d+5)/2

(
A222
φR2 +O(E)

)
+

CTT
E(d+1)/2

(AEG +O(E))

]
, (3.27)

where the gravitational amplitudes AEG, A222
φR2 , AW 3 are defined in (2.5) and we have

permitted independent rescalings of the constants C1 and C2. The flat space limit of the

6See section 3.4.2 of [42] for details.
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stress tensor 3-point function in a general CFT is thus spanned by the Weyl-cubed, φR2

and Einstein gravity amplitudes:

lim
E→0

E(d+9)/2

c
(d−1)/2
123

〈TTT 〉|C2=CTT=0 ∝ AW 3 , (3.28)

lim
E→0

E(d+5)/2

c
(d−1)/2
123

〈TTT 〉|C1=CTT=0 ∝ A
222
φR2 , (3.29)

lim
E→0

E(d+1)/2

c
(d−1)/2
123

〈TTT 〉|C1=C2=0 ∝ AEG. (3.30)

Remarkably, these gravity amplitudes are related to the gauge theory amplitudes arising

in the flat space limit of 〈JJJ〉 via the double copy relations (2.5).

3.3 〈JJO〉

Next, let us look at the correlator of two currents and a marginal scalar operator. In this

case, the general solution to the conformal Ward identities is [39, 43]

〈JJO〉 = −A1(p1, p2, p3) ε1 · p2 ε2 · p1 +A2(p1, p2, p3) ε1 · ε2, (3.31)

where the form factors are given by

A1 = C1J2{000}, A2 = C1J1{001} + C2J0{000}. (3.32)

The Ward identities further impose the relation

C2 = −1

2
∆3 (∆3 − d+ 2)C1 = −C1d (3.33)

where for a marginal scalar ∆3 = d. Using (3.11), we obtain

lim
E→0
〈JJO〉 ∝ c(d−3)/2

123 p3
C1

E(d+1)/2

(
AφF 2 +O(E)

)
. (3.34)

The flat space limit of 〈JJO〉 thus encodes the Yang-Mills-dilaton amplitude in (2.15),

lim
E→0

E(d+1)/2

c
(d−3)/2
123 p3

〈JJO〉 ∝ AφF 2 . (3.35)

3.4 〈TTO〉

Finally, we consider the correlator of two stress tensors and a marginal scalar, given by

[39, 43]

〈TTO〉 = A1(p1, p2, p3) (ε1 · p2 ε2 · p1)2

−A2(p1, p2, p3) ε1 · ε2 ε1 · p2 ε2 · p1 +A3(p1, p2, p3) (ε1 · ε2)2 , (3.36)
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where

A1 = C1J4{000}, (3.37)

A2 = 4C1J3{001} + C3J2{000}, (3.38)

A3 = 2C1J2{002} + C2J1{001} + C3J0{000}, (3.39)

and the constants are related by

C2 = (∆3 + 2) (d−∆3 − 2)C1 = −2(d+ 2)C1, (3.40)

C3 =
1

4
∆3 (∆3 + 2) (d−∆3)C1 = 0. (3.41)

Using (3.11), we then obtain

lim
E→0
〈TTO〉 ∝ c(d−1)/2

123

C1

E(d+5)/2

(
A220
φR2 +O (E)

)
. (3.42)

The flat space limit thus encodes the amplitude in (2.13),

lim
E→0

E(d+5)/2

c
(d−1)/2
123

〈TTO〉 ∝ A220
φR2 (3.43)

Furthermore, this is the square of the gauge theory amplitude arising in the flat space limit

of 〈JJO〉 via (2.14).

To summarize, in general odd dimensions d > 3 we have seen that CFT correlators of

currents, stress tensors, and marginal scalars exhibit a double copy structure via their flat

space limit. In the next section, we will extend this discussion to the case d = 3.

4 CFT correlators for d = 3

In three dimensions, the form factors for 〈TTT 〉 exhibit degeneracies which leave the corre-

lator invariant. These degeneracies arise since specific tensor structures in the form factor

basis are equivalent up to terms derived from a 4-form. In three dimensions, this 4-form

vanishes as an index is necessarily repeated. As a result, one obtains a set of equivalence

relations between the form factors parametrized by three arbitrary functions of the mo-

mentum magnitudes.7 These relations eliminate a tensor structure such that the 3-point

function depends on only two, rather than three, arbitrary constants.

Here, we show how to fix these degeneracies so as to make the connection to scat-

tering amplitudes manifest. The vanishing tensor structure in 〈TTT 〉 then corresponds

to the vanishing 3-point graviton scattering amplitude in the φR2 theory, which reduces

to conformal gravity in four dimensions. The double copy moreover predicts a nonzero

graviton-graviton-scalar amplitude in the φR2 theory, which we show arises from the flat

space limit of 〈TTO〉 where O is a marginal scalar operator. For this calculation, we also

need to take into account a degeneracy of the form factor basis.

7See appendix A.5 of [42]. Alternatively, one can view these degeneracies as arising from the existence

of the cross-product in three dimensions, see appendix A.2 of [39]. For a position space analysis, see [60].
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Another special feature of d = 3 is that CFT correlators can be derived from 3-point

functions in dS4 which are equivalent to flat space Feynman diagrams without energy

conservation, dressed by conformal time integrals. This connection allows us to re-write

correlators in a manner suggesting the persistence of a double copy structure beyond the

flat space limit. In the following we will point out these results where relevant, deferring

all calculations to appendix A.

4.1 〈JJJ〉

In d = 3, the form factors for the current 3-point function are [39, 42]

A1 =
2C1

E3
, A2 =

C1p3

E2
− 2CJJ

E
, (4.1)

where CJJ is the normalization of the 2-point function.8

Plugging this into (3.13) then gives

〈JJJ〉 =
C1

E3

(
2AF 3 + EÃYM

)
− 2CJJ

E
AYM (4.2)

where the new structure

ÃYM = (ε1 · ε2 ε3 · p1) p3 + cyclic (4.3)

resembles the YM amplitude but is not an actual scattering amplitude.

The term proportional to C1 can be derived from a 3-point function for an F 3 inter-

action in dS4. As we show in appendix A, this can be related to a flat space Feynman

diagram without energy conservation, from which we find

2AF 3 + EÃYM ∝MF 3 (4.4)

where

MF 3 ∝ F (1)
µν F

(2)
νρ F

(3)
ρµ , F (α)

µν = p
(α)
[µ ε

(α)
ν] . (4.5)

Here, indices should be contracted using the (3 + 1)-dimensional Minkowski metric, with

momenta and polarization vectors as given in (3.3) and (3.6) with (α) labelling the insertion.

4.2 〈TTT 〉

Let us now turn to the stress tensor 3-point function. In d = 3, the form factors are [39, 42]

A1 =
8C1

E6

[
E3 + 3Eb123 + 15c123

]
, (4.6)

A2 =
8C1

E5

[
4p4

3 + 20p3
3a12 + 4p2

3(7a2
12 + 6b12) + 15p3a12(a2

12 + b12) + 3a2
12(a2

12 + b12)
]

+
2C2

E4

[
E3 + Eb123 + 3c123

]
, (4.7)

A3 =
2C1p

2
3

E4

[
7p3

3 + 28p2
3a12 + 3p3(11a2

12 + 6b12) + 12a12(a2
12 + b12)

]
+

C2p
2
3

E3

[
p2

3 + 3p3a12 + 2(a2
12 + b12)

]
− 2CTT

E2

[
E3 − Eb123 − c123

]
, (4.8)

8We suppress a factor relating to the color and charge.
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A4 =
4C1

E4

[
−3p5

3 − 12p4
3a12 − 9p3

3(a2
12 + 2b12) + 9p2

3a12(a2
12 − 3b12)

+(4p3 + a12)(3a4
12 − 3a2

12b12 + 4b212)
]

+
C2

E3

[
−p4

3 − 3p3
3a12 − 6p2

3b12 + a12(a2
12 − b12)(3p3 + a12)

]
− 4CTT

E2

[
E3 − Eb123 − c123

]
, (4.9)

A5 =
2C1

E3

[
−3E6 + 9E4b123 + 12E2b2123 − 33E3c123 + 12Eb123c123 + 8c2

123

]
+

C2

2E2

[
−E5 + 3E3b123 + 4Eb2123 − 11E2c123 + 4b123c123

]
+ 2CTT (p3

1 + p3
2 + p3

3), (4.10)

where CTT is the normalization of the 2-point function and the symmetric polynomials

appearing are defined in (3.9). As discussed above, these form factors are defined up to

the following degeneracies, derived in appendix A.5 of [42]:

δA1 = f + f (p1 ↔ p3) + f (p2 ↔ p3) + g + g (p1 ↔ p3) + g (p2 ↔ p3)

δA2 =
(
p2

3 − p2
1 − p2

2

)
f

+ p2
3g +

1

2

(
p2

1 − p2
2 + p2

3

)
g (p1 ↔ p3) +

1

2

(
−p2

1 + p2
2 + p2

3

)
g (p2 ↔ p3) + h

δA3 = −1

4
J2f + p2

3h

δA4 =
1

4
J2g +

1

2

(
p2

1 + p2
2 − p2

3

)
(h (p1 ↔ p3) + h (p2 ↔ p3))

δA5 =
1

4
J2 (h+ h (p1 ↔ p3) + h (p2 ↔ p3)) , (4.11)

Here, f , g and h are symmetric under p1 ↔ p2, but are otherwise arbitrary functions of the

momentum magnitudes. Unless otherwise specified, the ordering of arguments is assumed

to be f = f(p1, p2, p3). Our aim is now to use these degeneracies to expose the underlying

amplitude structure in the correlators. For these purposes, it will in fact be sufficient to

use an h that is fully symmetric under permutations of the momenta.

First, as noted in [39, 42], we can use these degeneracies to set C2 = 0. The required f ,

g and h can be found by eliminating the terms proportional to C2 in A3, A4 and A5. With

this choice, the C2 dependence in A1 and A2 then cancels out. Next, we may choose a new

f , g and h to get rid of the terms proportional to C1 in A3, A4 and A5.9 The correlator

can now be re-expressed in the compact form

〈TTT 〉 = −960C1c
2
123

J2E5

(
AW 3 +

1

2
EAF 3ÃYM

)
+ 2CTT

[(
c123

E2
+
b123

E
− E

)
AEG +

(
p3

1 + p3
2 + p3

3

)
Ãcontact

]
, (4.12)

9The required f , g and h are listed in the accompanying Mathematica file.
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where10

Ãcontact = ε1 · ε2 ε2 · ε3 ε3 · ε1. (4.13)

While this expression is equal to (4.10) via the degeneracies, writing the correlator in this

way makes the connection to scattering amplitudes completely manifest. We see the φR2

amplitude has dropped out while the others are given by flat space limits consistent with

(3.28) and (3.30):

lim
E→0

E6

c123
〈TTT 〉|CTT=0 ∝ AW 3 , lim

E→0

E2

c123
〈TTT 〉|C1=0 ∝ AEG. (4.14)

The term in (4.12) proportional to C1 is analyzed further in appendix A, where we

show it can be derived from a W 3 interaction in dS4. Relating this to a flat space Feynman

diagram without energy conservation, we find that

AW 3 +
1

2
EAF 3ÃYM ∝

J2

c123E
MW 3 (4.15)

so the term proportional to C1 in (4.12) can be written in the form c123MW 3/E6 where

MW 3 ∝W (1)
µνρλW

(2)
ρλωσW

(3)
ωσµν , W

(α)
µνρλ = p

(α)
[µ ε

(α)
ν] p

(α)
[ρ ε

(α)
λ] . (4.16)

Here, repeated indices should again be contracted with the (3 + 1)-dimensional Minkowski

metric, and the momenta and polarization vectors are those given in (3.3) and (3.6) with (α)

labelling the insertion. Moreover, the two possible index contractions of W 3 are equivalent

as we show in appendix A, so we can further relate MW 3 to MF 3 defined in (4.5):

MF 3 ∝Mµµ, MW 3 ∝MµνMνµ, Mµν = F (1)
µρ F

(2)
ρσ F

(3)
σν . (4.17)

This relation suggests the existence of a double copy structure beyond the flat space limit.

4.3 〈JJO〉

In d = 3, the relevant form factors for two currents and a marginal scalar are [39, 43]

A1 =
C1

E2
(E + p3), A2 = −C1

2E
(E − 2p3)(E + p3). (4.18)

Plugging this into (3.31) then gives

〈JJO〉 = − C1

2E2
(E + p3)

(
2 ε1 · p2 ε2 · p1 + E(E − 2p3)ε1 · ε2

)
. (4.19)

As there are no degeneracies for this correlator in d = 3, the flat space limit is the same as

given earlier in (3.34) and (3.35). In appendix A, we show that

〈JJO〉 ∝ (E + p3)

E2
MφF 2 , MφF 2 = F (1)

µν F
(2)
µν , (4.20)

where F
(α)
µν as given in (4.5).

10 We can eliminate this contact term by using the perturbed metric gµν = [eγ ]µν as done in cosmology

[20]. The new 3-point function defined by taking functional derivatives with respect to γµν then satisfies

〈TTT 〉new = 〈TTT 〉 − 2CTT (p31 + p32 + p33)Ãcontact.
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4.4 〈TTO〉

As we discussed in section 2, multiplying a YM amplitude with an F 3 amplitude gives rise

to a nonzero graviton-graviton-scalar amplitude in the φR2 theory (see (2.12)). We will

now demonstrate that this amplitude arises in the flat space limit of a d = 3 correlator

with two stress tensors and a marginal scalar.

The relevant form factors are [39, 43]

A1 =
C1

E4
E1,

A2 =
C1

E3

(
− E1(E − 2p3) + 2E2b12

)
,

A3 =
C1

4E2
(E − 2p3)

(
E1(E − 2p3)− 4E2b12

)
, (4.21)

with

E1 = E3 + Eb123 + 3c123, E2 = E2 + p3(E − p3) (4.22)

and symmetric polynomials as defined in (3.9). As with 〈TTT 〉, these form factors are

defined up to the degeneracy

δA1 = F, δA2 = −(p2
1 + p2

2 − p2
3)F, A3 = −1

4
J2F, (4.23)

where F = F (p1, p2, p3) is symmetric under p1 ↔ p2 but otherwise an arbitrary function

of momentum magnitudes.11 Choosing

F = −C1

E3
E2, (4.24)

and inserting the results into (3.36), we obtain

〈TTO〉 = C1b12
(E + 3p3)

E4

(
2 ε1 · p2 ε2 · p1 + E(E − 2p3) ε1 · ε2

)2
. (4.25)

An equivalent spinor version is given in (B.10) of appendix B. From either expression, it is

clear that the flat space limit is given by

lim
E→0

E4

c123
〈TTO〉 ∝ A220

φR2 (4.26)

where A220
φR2 is the prediction of the double copy in (2.12) and (2.13).

The double copy structure of (4.25) is discussed further in appendix A, where we show

it can be derived from a φW 2 interaction in dS4. Relating this to a flat space Feynman

integral without energy conservation, we find

〈TTO〉 ∝ b12(E + 3p3)

E4
(MφF 2)2 ∝ b12(E + 3p3)

(E + p3)2
〈JJO〉2 , (4.27)

with MφF 2 as given in (4.20). Again, this result suggests the existence of a double copy

structure beyond the flat space limit.

11See (3.154) of [43].
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5 Conclusion

It is becoming clear that there are deep connections between scattering amplitudes and

correlation functions in quantum field theory. In this paper, we demonstrate that the

double copy structure relating gauge and gravitational scattering amplitudes is encoded in

the 3-point correlators of currents, stress tensors and marginal scalar operators in general

CFTs. Starting with the general solutions to the conformal Ward identities in momentum

space, we first dressed them with polarization vectors. For correlation functions in odd

dimensions, we then derived a simple formula for the leading behavior of triple-K integrals

in the flat space limit, and showed that in this limit the correlators are spanned by certain

scattering amplitudes in one higher dimension which are related via a double copy.

For d = 3, the analysis is more subtle since the stress tensor correlators exhibit de-

generacies. Using these degeneracies to expose the underlying amplitude structure of the

correlation functions leads to considerable simplifications. For example, we show that the

φR2 contribution to stress tensor correlators vanishes. Instead, the double copy predicts

that the graviton-graviton-scalar amplitude of this theory should arise from a correlator of

two stress tensors and a marginal scalar. Moreover, we show that d = 3 correlators can

be written in terms of (3 + 1)-dimensional flat space amplitudes without energy conserva-

tion, suggesting double copy structure beyond the flat space limit. We also obtain concise

formulae for the correlators in terms of spinor-helicity variables.

There are a number of interesting questions to explore:

In odd dimensions, the correlators we consider are rational functions in momentum

space, but in even dimensions their analytic structure is more complicated making

the flat space limit subtle to evaluate. In d = 4, they can be reduced to a single

master integral corresponding to a 1-loop triangle diagram in flat space [40]. The

analytic properties of this integral have been discussed in, e.g., [56–58], which should

be useful for evaluating the flat space limit. A double copy structure for the 3-point

contribution from the Euler trace anomaly has also been found in [42]. It would

be interesting to understand the analytic structure of 3-point correlators in general

even dimensions and to develop a method for extracting their flat space limit. In

d = 2 there are further subtleties because conformal symmetry becomes enhanced

to Virasoro symmetry. Futhermore, it may be possible to derive current correlators

from Witten diagrams for two kinds of gauge theories in the bulk, notably 3d Yang-

Mills and Chern-Simons-matter theories, both of which are known to square into

gravitational theories in the flat space limit [61, 62].

The simplicity of our results for d = 3 correlators suggests an underlying worldsheet

description for Witten diagrams in dS4, similar to those developed for scattering

amplitudes in flat space. Worldsheet formulae have recently been derived for gauge

and gravitational amplitudes in plane-wave backgrounds [63], where a double copy

was also implemented at the level of the classical background.12 In the context of

12Double copies for classical backgrounds were first considered in [64] and were explored for maximally

symmetric backgrounds in [65].
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CFT correlators, however, it would be desirable to have worldsheet descriptions for

both gauge and gravitational Witten diagrams in de Sitter space. If a worldsheet de-

scription of 3-point Witten diagrams can be defined, the main challenge would then

be to extend this description to higher points by incorporating a curved space ana-

logue of the scattering equations [66], which could provide a useful tool for studying

holography in the supergravity approximation.

It has recently been shown that for a class of conformally coupled scalar theories

in dS4, the wavefunction of the universe can be expressed in terms of volumes of

polytopes [31]. Ultimately, these can be derived from flat space Feynman diagrams

with external propagators ending on a fixed timeslice. Since we have found a similar

structure for CFT correlators in three dimensions, it would be interesting to explore

if they also have a polytope interpretation [67]. In the flat space limit, the worldsheet

and polytope descriptions of scattering amplitudes are intimately connected [68–74],

so it would be interesting to see if this connection extends to dS4 background.

Since 3-point amplitudes are the building blocks for all higher-point scattering am-

plitudes via BCFW recursion and unitarity, and 3-point correlators are the building

blocks for higher-point CFT correlators via the OPE, we expect that our results can

be extended to higher points (see e.g., [16, 35–37]). It would therefore be interesting

to find general solutions to the conformal Ward identities for 4-point correlators in

momentum space and see to what extent they have a double copy structure in the flat

space limit. In the case of 3-point correlators, this can be anticipated from scattering

amplitudes in bosonic string theory, so it would be interesting to see if this continues

to hold at higher points.

We hope to report on these directions in the future.

Acknowledgments

We thank Paul Heslop for discussion. JF is funded by EPSRC PhD scholarship EP/L504762/1,

AL is supported by the Royal Society as a Royal Society University Research Fellowship

holder, and PM is supported by the STFC through an Ernest Rutherford Fellowship.

A de Sitter correlators

In this appendix, we explore further the double copy structure of CFT correlators by relat-

ing them to 3-point functions in de Sitter spacetime. For three-dimensional CFTs, certain

of these correlators have the special property that they further reduce to Feynman diagrams

in (3+1)-dimensional flat space, without energy conservation, dressed by overall conformal

time integrals. This clarifies the origin of the double copy structure, and moreover implies

its persistence beyond leading order in the flat space limit.

We choose coordinates for the de Sitter background metric

ds2 = η−2
(
−dη2 + dx2

i

)
, (A.1)

– 17 –



Figure 1. Tree-level diagrams for 3-point correlators. The first diagram describes W 3 and F 3

interactions, while the second diagram describes φF 2 and φW 2 interactions.

where −∞ < η < 0 is the conformal time and i = 1, 2, 3 labels the spatial coordinates. Our

focus will then be to evaluate the F 3, W 3, φF 2 and φW 2 diagrams contributing to d = 3

〈JJJ〉, 〈TTT 〉, 〈JJO〉 and 〈TTO〉 correlators respectively, as illustrated in figure 1. For a

gauge field on dS4, the on-shell wavefunction is simply a plane wave Aµ ∝ eipηεµ as in flat

space, so the reduction to Feynman diagrams comes as no surprise. For a graviton on dS4,

however, the on-shell wavefunction is not a plane wave but instead has time-dependence

γµν ∝ (1 − ipη)eipηεµεν . Nevertheless, as discussed in [15], the linearized Weyl tensor is

conformal to that for a graviton in flat space:

W (dS)µ
νρσ

[
(1− ipη) eipη

]
= −ipηW (flat)µ

νρσ

[
eipη
]
. (A.2)

This allows us to perform all index contractions as if in (3 + 1)-dimensional Minkowski

space using the momenta and polarization vectors given in (3.3) and (3.6). The de Sitter

background can then be restored by multiplying with an overall conformal time integral

consisting of plane wave external states multiplied by additional factors of η as appropriate.

These factors derive from the de Sitter measure, the inverse metrics appearing in index

contractions, and any conformal factors arising from (A.2). Further details of this approach

may be found in [15],13 where an alternative calculation of the W 3 diagram is provided.

(The result is equivalent to that here after using the degeneracies in (4.11).)

We begin with the 3-point amplitude for the F 3 theory. Working in (3+1)-dimensional

Minkowski spacetime, with momenta and polarizations as given in (3.3) and (3.6), we have

MF 3 ∝ F (1)
µν F

(2)
νρ F

(3)
ρµ , F (α)

µν = p
(α)
[µ ε

(α)
ν] , (A.3)

where the superscript (α) labels the insertions, and in particular

F
(α)
0i =

1

2
p(α)ε

(α)
i , F

(α)
ij = p

(α)
[i ε

(α)
j] . (A.4)

Evaluating the contractions, we find

MF 3 ∝ 2AF 3 + EÃYM , (A.5)

13Note our wavefunctions are the Bunch-Davies ones multiplied by a factor of p3/2. In holographic cos-

mology where the standard Bunch-Davies vacuum is assumed, these factors arise instead through products

of the 2-point function in the holographic formulae for 3-point functions, see [20–22].
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with ÃYM as given in (4.3). To return to dS4, we dress this flat-space amplitude with the

conformal time integral

Im

(∫ 0

−∞
dη η2eiEη

)
∝ 1

E3
. (A.6)

As expected, we thus recover the term proportional to C1 in (4.2). Here, the factor of η2

derives from the measure
√
−g and three inverse metrics, and for convergence we infinites-

imally rotate the contour by sending η → (1 − iε)η. The need for taking the imaginary

part follows from the in-in formalism, see e.g., [20].

Next let us consider the W 3 amplitude, which in flat space is given by

MW 3 ∝W (1)
µνρσW

(2)
ρσλωW

(3)
λωµν , W (α)

µνρσ = p
(α)
[µ ε

(α)
ν] p

(α)
[ρ ε

(α)
σ] . (A.7)

Here, the linearized Weyl tensor reduces to the linearized Riemann tensor, which for the

transverse traceless graviton can be written as the tensor product of two Yang-Mills field

strengths. The contractions are thus equivalent to evaluating

(F (1)
ρσ F

(2)
ρσ )(F

(2)
λω F

(3)
λω )(F (3)

µν F
(1)
µν ). (A.8)

Since

F (1)
ρσ F

(2)
ρσ ∝ 2 ε1 · p2 ε2 · p1 + E(E − 2p3) ε1 · ε2, (A.9)

we can now write MW 3 in the form (3.19). Up to an overall constant of proportionality,

the corresponding form factors are

A1 = 8, A2 = 4E(2p3 − E), A3 = 0, A4 = 2E2(E − 2p1)(E − 2p1), A5 = −J2E2.

(A.10)

Applying the degeneracy (4.11) with

f =
16E2p2

3

3J2
, g =

8E2

3J2

(
p2

1 + p2
2 − 6p1p2 − p2

3

)
, h =

4E2

3
, (A.11)

we can further set A4 and A5 to zero whereupon

MW 3 ∝
c123E

J2

(
AW 3 +

1

2
EAF 3ÃYM

)
. (A.12)

To return to dS4, these form factors are dressed by the conformal time integral

c123 Im

(∫ 0

−∞
dη η5eiEη

)
∝ c123

E6
, (A.13)

yielding the expected term proportional to C1 in (4.12). Here, the factor of c123 η
5 in the

conformal time integral derives from the measure, three copies of the conformal factor in

(A.2) and three inverse metrics.

Since AW 3 = (AF 3)2, we can pull out a factor of AF 3 in (A.12) obtaining a product

structure even for E 6= 0. Moreover, noting that in (3 + 1)-dimensions

0 = W (1)µν
[µνW

(2)ρσ
ρσW

(3)λω
λω], (A.14)
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we can equivalently re-write the index contractions in (A.7) as

MW 3 ∝W (1)
µνρλW

(2)
ρσµωW

(3)
λωνσ. (A.15)

We then obtain the manifest square

MF 3 ∝Mµµ, MW 3 ∝MµνMνµ, Mµν = F (1)
µρ F

(2)
ρσ F

(3)
σν . (A.16)

Evaluating the index contractions from this starting point is more involved, but the result

is equivalent to (A.12) after using the degeneracies.

From the above calculations, we can easily compute the diagram corresponding to a

φF 2 interaction. In particular, in flat space this is just given by

MφF 2 ∝ F (1)
µν F

(2)
µν , (A.17)

which was computed in (A.9). Dressing this with the conformal time integral

Im

(∫ 0

−∞
dη (1− ip3η)eiEη

)
∝ E + p3

E2
, (A.18)

then gives (4.19). Here, the factors of η from the measure and two inverse metrics cancel

out, while the remainder is the on-shell wavefunction for a massless scalar in dS4.

Finally, let us consider the φW 2 interaction. Starting again in flat space, we have

M220
φR2 ∝W (1)

µνρσW
(2)
µνρσ (A.19)

The index contractions are then equivalent to

(F (1)
µν F

(2)
µν )2, (A.20)

which is the square of (A.9). To return to dS4, we dress this amplitude with the conformal

time integral

p1p2 Im

(∫ 0

−∞
dη η2(1− ip3η)eiEη

)
∝ b12

(E + 3p3)

E4
(A.21)

recovering (4.25). Here, we obtained a factor of p1p2η
2 from the measure along with two

copies of (A.2) and two inverse metrics, and the remaining factor is the on-shell wavefunc-

tion for a massless scalar in dS4.

B Spinor helicity formalism

In this appendix we describe the spinor helicity formalism of [15] for d = 3 CFT correla-

tors, or equivalently cosmological correlators in dS4. As an application of the formalism,

we verify the degeneracies of stress tensor correlators, and we write the 3d correlators con-

sidered in this paper in terms of spinor variables. We also present various useful identities

for manipulating these variables, which are also implemented in the Mathematica file

dSDoubleCopy.nb.
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The d = 3 spinor helicity formalism can be derived from (3 + 1) dimensions by intro-

ducing a vector τµ = (1, 0, 0, 0) [75]. In terms of spinor indices this is given by τ α̇β = εαβ̇.

This vector can then be used convert dotted indices into undotted indices. Applying this

to a 4d null momentum then gives

τβα̇λ
αλ̃α̇ = λαλ̄β = pαβ + εαβp, (B.1)

where λ̄α = ταα̇ λ̃
α̇, pαβ = λ(αλ̃β) is the 3d momentum and p = 1

2〈λλ̄〉 is its magnitude (where

spinor brackets were defined in section 2). The spinors can be explicitly parametrized in

terms of 3-momenta according to

λα(p) =


√
|p|+ p3

p1 − ip2√
|p|+ p3

 (B.2)

Note that our conventions differ from those of [15] by a factor
√

2 in the spinors. The λ̃α̇

spinor is then the complex conjugate of this expression, and the λ̄α spinor is calculated by

multiplying by ταα̇ .

A spatial 3-momentum can be lifted to a null 4-momentum given by λαλ̃α̇, and given

a set of n 3-momenta which satisfy momentum conservation, their associated 4-momenta

will not in general satisfy energy conservation:

n∑
i=1

λ̃α̇i λ
β
i = τ α̇β

n∑
i=1

pi = τ α̇βE (B.3)

These 4-momenta are naturally interpreted as null momenta in dS4, since energy is not

conserved in this background. This leads to various useful identities in terms of the spinor

variables at three points. We find that at three points, any product of two spinor brackets

which is little group invariant in one or two particle labels can be reduced to a function of

the momentum magnitudes only. The full set of identities producing this kind of reduction

is given by

〈īi〉 = 2pi

〈jī〉〈ik〉 = 〈jk〉(pk − pi − pj)
〈jī〉〈ik̄〉 = 〈jk̄〉(pk − pi + pj)

〈ji〉〈̄ik̄〉 = 〈̄ik̄〉(pk + pi + pj) = 〈̄ik̄〉E
〈jī〉〈ij̄〉 = (pk − pj + pi)(pk − pi + pj)

〈ji〉〈̄ij̄〉 = p2
k − (pi + pj)

2. (B.4)

Polarization vectors can also be expressed in terms of spinor variables. Fixing a gauge

such that the time component of the vectors is zero, we find the following formulae

εαβ− =
λαλβ

pi
, εαβ+ =

λ̄αλ̄β

pi
. (B.5)
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Dot products between momenta and spinors are then given by

2pi · pj = 〈ij〉〈j̄ ī〉, 2pi · ε−j =
〈̄ij〉〈ji〉
pj

, 2pi · ε+j =
〈̄ij̄〉〈j̄i〉
pj

,

2ε−i · ε
−
j = −〈ij〉

2

pipj
, 2ε+i · ε

−
j = −〈̄ij〉

2

pipj
, 2ε+i · ε

+
j = −〈̄ij̄〉

2

pipj
. (B.6)

As a first application, let us verify that the degeneracies used to simplify stress ten-

sor correlators in section 4. Since the 〈TTT 〉 degeneracies are constructed as sums over

permutations of the 〈TTO〉 degeneracy, it is sufficient to consider the 〈TTO〉 degeneracy

without loss of generality. The 〈TTO〉 degeneracy in (4.23) can be derived by adding the

following object (multiplied by an arbitrary function of the momentum magnitudes) to the

correlator

D = (ε1 · p2)2 (ε2 · p3)2 −
(
p2

1 + p2
2 − p2

3

)
ε1 · ε2 ε1 · p2 ε2 · p3 −

1

4
J2(ε1 · ε2)2, (B.7)

and decomposing it in terms of form factors according to (3.36). Our task is then to show

that this object vanishes, and we can do so by writing it in terms of spinors. Indeed, for

−− and −+ helicity assignments we find that

D−− =
〈12〉4

(
2
(
p2

1 + p2
2 − p2

3

)
〈12̄〉〈21̄〉+ 〈12̄〉2〈21̄〉2 − J2

)
16p2

1p
2
2

, (B.8)

D−+ = −
〈12̄〉4

(
2
(
p2

1 + p2
2 − p2

3

)
〈12〉〈1̄2̄〉 − 〈12〉2〈1̄2̄〉2 + J2

)
16p2

1p
2
2

, (B.9)

both of which are identically zero on support of the identities given above.

It is now algorithmic using the relations between dot products and spinor brack-

ets (B.6), and the identities (B.4) to take any 3-point correlator in terms of polarization

vectors and momenta and produce a function of spinor brackets. An explicit realization

of these algorithms is given in the accompanying Mathematica file, and calculations are

shown for 〈TTT 〉, 〈JJJ〉, 〈JJO〉 and 〈TTO〉.
The results for a full set of different helicity assignments are

〈T−T−T−〉 = 〈12〉2〈23〉2〈31〉2
(
C1

120c123

E6
− C3

E3 − Eb123 − c123 + 2
(
p3

1 + p3
2 + p3

3

)
8c2

123

)
,

〈T−T−T+〉 = 〈12〉2〈23̄〉2〈3̄1〉2C3
(p1 + p2 − p3) 2

(
E3 − Eb123 − c123

)
− 2E2

(
p3

1 + p3
2 + p3

3

)
8E2c2

123

=
〈12〉8

〈12〉2〈23〉2〈31〉2
C3J

4

8E4c2
123

(
E3 − Eb123 − c123 − 2E2

(
p3

1 + p3
2 + p3

3

)
(p1 − p2 + p3) 2 (−p1 + p2 + p3) 2

)
,

〈J−J−J−〉 = 〈12〉〈23〉〈31〉
(

C2

2c123
− 2C1

E3

)
,

〈J−J−J+〉 = 〈12〉〈23̄〉〈3̄1〉C2
(p1 + p2 − p3)

2Ec123
=

〈12〉4

〈12〉〈23〉〈31〉
C2J

2

2E2c123
,
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〈J−J−O〉 = 〈12〉2C1
(E + p3)

E2
,

〈J−J+O〉 = 0

〈T−T−O〉 = 〈12〉4C1
p1p2 (E + 3p3)

E4
,

〈T−T+O〉 = 0. (B.10)

Note that combining the identities (B.4) together we recover the following relation, which

is used to give different forms for −−+ correlators,

〈12〉4

〈12〉〈23〉〈31〉
(p1 − p2 − p3) (p1 − p2 + p3) = 〈12〉〈23̄〉〈3̄1〉. (B.11)

Up to this relation, the spinor bracket structure of all 3-point correlators is fixed by little

group covariance, and only the function of the momentum magnitudes pi needs to be

calculated from the solution to the conformal Ward identities.
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