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S U M M A R Y
The elastic properties of homogeneous, isotropic materials are well constrained. However,
in heterogeneous and evolving materials, these essential properties are less well-explored.
During sintering of volcanic ash particles by viscous processes as well as during compaction
and cementation of sediments, microstructure and porosity undergo changes that affect bulk
dynamic elastic properties. Here using a model system of glass particles as an analogue for
initially granular rock-forming materials, we have determined porosity and P-wave velocity
during densification. Using these results, we test models for the kinetics of densification and the
resultant evolution of the elastic properties to derive a quantitative description of the coupling
between the kinetics of isotropic densification and the evolving dynamic elastic moduli. We
demonstrate the power of the resultant model on a wide range of data for non-coherent
sediments as well as sedimentary and volcanic rocks. We propose that such constraints be
viewed as an essential ingredient of time-dependent models for the deformation of evolving
materials in volcanoes and sedimentary basins.

Key words: Probability distributions; Microstructures; Permeability and porosity; Body
waves; Acoustic properties; Experimental volcanism.

1 I N T RO D U C T I O N

Granular, rock-forming materials are abundant in the Earth sys-
tem. They represent an essential material state during diagenesis in
sedimentary rocks and sintering in volcaniclastics. In such deposi-
tional settings, granular materials undergo densification either by
viscous ‘welding’ processes (Quane et al. 2009; Vasseur et al. 2013;
Wadsworth et al. 2014; Heap et al. 2015; Lavallée et al. 2015) or by
compaction and cementation (Bourbie & Zinszner 1985; Blair et al.
1993; Worden & Burley 2003). During densification, these mate-
rials are subjected to stresses, be they tectonic, volcanic or even
solely local in nature, yielding deformation and seismicity (Hacker
1997). As such, knowledge of elastic properties of these materials
during densification is critical for quantitatively addressing aspects
of both deformation and seismicity.

Despite significant advances in our understanding of statistically
randomly organized heterogeneous materials (Torquato 2013) and
the related scaling laws and bounds for effective elastic properties
(Voigt 1928; Reuss 1929; Wyllie et al. 1956; Hashin & Shtrikman
1963; Watt et al. 1976; Berryman 1980a,b; Quintanilla & Torquato
1995), such constraints remain sparsely tested against experimen-
tal data relevant to geological problems. Furthermore, sample mi-
crostructure is rarely considered explicitly and rigorously (Eshelby
1957; Wu 1966). Here we test a recent model developed for ideal,
randomly generated simulated spherical cavities in homogeneous
media (Torquato 2013) against our experimental data across the

granular to non-granular transition during densification to elucidate
the scaling of elastic properties in heterogeneous media. This study
presents the first integration of densification kinetics with a law for
evolving elastic moduli, which we anticipate will prove essential in
future models of rock formation in sediments and volcaniclastics.

2 M AT E R I A L S A N D M E T H O D S

In selecting good analogues for rock-forming materials, we follow
the rationale of Blair et al. (1993) and Wadsworth et al. (2014)
who suggested that sintered glass beads represent a uniquely well-
characterized analogue system for the constraint of many structural
processes in sandstones and volcanic tuffs, respectively. Indeed,
Wadsworth et al. (2014) showed that effective scaling of the liquid
viscosity μ0 above the glass transition interval Tg and the particle
size distribution is sufficient to justify the use of synthetic glass
as an analogue for volcanic pyroclasts. They represent a state and
material properties that are well known. The caveat to using good
glass formers is that they do not capture the complex effects of
crystallization and degassing, variable intraclast porosity or cement,
all of which may be additional factors to consider in natural systems.
Nevertheless, the results achieved below indicate that a powerful
first step has been made towards our goals.

The soda-lime silicate (SLS) used here is in the form of spherical
glass particles (Spheriglass R© A-glass microspheres 1922 and 2530,
Potters Industries Inc.) and the borosilicate (BS) is in the form of
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Figure 1. (A) Temperature dependence of the liquid viscosity μ0 for the two materials used in this study. The Maxwell equivalence between melt viscosity
and structural relaxation time λr , μ0 = λr G∞, is given as a computed parameter (second y-axis) using the shear modulus at infinite frequency G∞ ≈ 10 GPa
(Dingwell & Webb 1990). (B) Particle radius distributions of the granular material sintered herein. (C) Computed probability density functions P(x) related
to the calculated pore sizes using eqs (2)–(4) (Lu & Torquato 1992; Torquato 2013).

Table 1. Properties of materials.

Parameter SLS BS

AVFT −2.6387 −2.5602
BVFT 4303.36 4852.2
CVFT 530.754 465.762
ρg (kg m−3) 2500 2375

glass shard particles (Standard Reference Material 717a, National
Institute of Standards and Technology). For these materials, the tem-
perature dependence of the liquid viscosity and the rate-dependent
position of the glass transition interval are well constrained (Vasseur
et al. 2013; Wadsworth et al. 2014). We provide the parametrization
of the liquid viscosity μ0 in the form of a Vogel–Fulcher–Tammann
expression (Table 1) valid for the experimental range of tempera-
tures (Fig. 1A). The particle radii R are measured using a Coulter
laser particle size analyser with a measuring range 0.375–2000 µm
(Fig. 1B). The glass densities ρg are 2375 and 2500 kg m−3 for the
BS and SLS materials, respectively (Table 1).

The glass particles were poured in cylindrical ∼97 wt.% alumina
crucibles with ∼44 mm inner diameter and 60 mm inner height
with a simple loose packing. The sample mass, glass density and
crucible geometry constrain the initial pore volume fraction be-
tween the particles prior to experimentation (Fig. 1C). The samples
were heated in a box furnace 10 K min−1 to temperatures of ∼843,
888, 898 and 908 K and held for times between 0 and 32 hr before
cooling at a slower rate of ∼5 K min−1. The maximum gradient of
temperature recorded in the furnace was ∼40 K m−1, permitting
the computation of maximum errors on the liquid viscosity estima-
tion over the sample lengthscale (Fig. 2). The samples were then
cored from the crucibles to cylinders of 50 mm height and 25 mm
diameter. Their porosities were constrained using helium pycnom-
etry in a Micromeritics Accupyc 1330 device. The microstructures
were constrained using micrographs collected on polished sections
of subsamples in a scanning electron microscope (Fig. 3).

Following high temperature sintering, the ultrasonic P-wave ve-
locity vp was measured using a 900 V, 1.5 kHz pulse generated
by a JSR DPR300 35 MHz ultrasonic pulser/receiver connected to
piezoelectric transducers with a Rhode und Schwarz RTM-1054
500 MHz oscilloscope. The P-wave modulus was then calculated
as M = ρvp

2 where ρ is the bulk sample density.

3 E X P E R I M E N TA L R E S U LT S

In the following, where we refer to porosity we use bulk porosity to
mean total gas volume fraction, as classically defined. We find that
at temperatures in excess of the glass transition interval, particles
of liquid silicate (droplets) sinter rapidly and nonlinearly under the
conditions used here. This is manifest as a bulk reduction in the
porosity of a packing of glass particles (Fig. 2). This nonlinearity
is dependent on the experimental temperature (via the temperature
dependence of the liquid viscosity; Fig. 1(A); see also Vasseur et al.
2013) and the particle size distribution (Fig. 1B). The particle-size
dependence is clearly evident in the form of a difference in poros-
ity decay rates between SLS population 1 and SLS population 2
despite their identical composition and experimental temperature.
The microstructure evolves during this sintering process from gran-
ular to non-granular. The end-state is characterized by individual
pores that relax to spherical upon isolation (Fig. 3). The P-wave
modulus M increases upon densification (Fig. 4). The dependence
of M on porosity is seemingly linear below a particular value (see
Section 5).

4 V I S C O U S S I N T E R I N G K I N E T I C S

Viscous sintering involves the flow of liquid into the pore-space
between particles, resulting in the bulk density increase and conse-
quent bulk porosity decrease. When the principal stress driving fluid
flow is the surface tension of the liquid–vapour interfaces (i.e. when
surface tension forces exceed gravitational forces), the sintering pro-
cess is very well constrained (e.g. Vasseur et al. 2013; Wadsworth
et al. 2014). Explicitly, fluid flow is driven by the Laplace pressure,
which for spherical pores is PL = 2�/a, where � is the surface
tension value and a is the pore radius. The universal metric for
sintering is the bulk density relative to the liquid density, or equiv-
alently, the porosity φ. The sintering process in the absence of ex-
ternal stresses has been explicitly modelled in terms of a sintering
timescale λ = μ0a/� (Mackenzie & Shuttleworth 1949; Oldroyd
1953). However, an alternative useful approximation of this process
is exponentially dependent on the initial porosity φi such that

φ = φi exp

(
− 3�

2μ0a
t

)
= φi exp

(
− 3

2λ
t

)
. (1)

If we make the additional approximation that a is a constant value
equivalent to the initial value, then we negate the need to know how a
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Figure 2. Experimental and model results for viscous sintering experiments. (A,B) The liquid viscosities μ0 listed are equivalent to experimental temperatures
(see Fig. 1). The viscous sintering model (solid curves) is given by eq. (1) (Vasseur et al. 2013) and the normalization timescale λ uses the lengthscale predicted
for the pores interstitial to the particles by eqs (2)–(4) (see the text).

Figure 3. Microstructures of granular material densification by sintering for (A–D) the borosilicate glass shards and (E–H) the soda-lime silicate glass spheres.
All images are taken using an optical microscope with plane polarized light and then converted to binary images using the peaks of the grey-scale values as
threshold limits other than the first image in panels (A) and (E), which are as-taken. In panels (B–D) and (F–H), the black colour represents the pore phase
while the white colour represents the glass.

evolves with φ. Vasseur et al. (2013) used this approach when fitting
for a characteristic sintering lengthscale in place of a because the
pore radius is not easily measured. However, a better constraint on
a can be obtained from knowledge of R using statistical methods
developed for isotropic random heterogeneous particle populations
(Torquato 2013). This approach is based on statistical methods and
involves the constraint of a probability density function P(x) and
its associated cumulative function F(x) where x = a/R and R is
the particle radius

P (x) = hV (x)

φ

F (x) = eV (x)

φ
, (2)

where hV (x) and eV (x) are the polydisperse void nearest-neighbour
probability density function and the associated dimensionless ex-
clusion probability, respectively. If we introduce θ = (1 + x)/2, we

have (Lu & Torquato 1992)

hV (x) = S(1 − φ)

〈R〉
(
3y0θ

2 + 2y1θ + y2

)
eV (x)

eV (x) = φ exp
(
2S (φ − 1)

(
y0θ

3 + y1θ
2 + y2θ

))
(3)

for which S is related to the nth moment of the particle-size distri-
bution 〈Rn〉 by S = 〈R2〉〈R〉/〈R3〉 and

y0 = 4φ〈R〉2 (φ + 3S(1 − φ)) /〈R2〉 + 8 (S(1 − φ))2

φ3

y1 = 6φ〈R〉2/〈R2〉 + 9S(1 − φ)

φ2

y2 = 3

φ
. (4)
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Figure 4. Experimental and model results for the effective P-wave modulus Me . (A) The evolution of Me with bulk porosity for literature data using
unconsolidated sand (Hamilton et al. 1956), sandstones (Han et al. 1986), sintered glass beads (Berge et al. 1995) and sintered alumina ceramics (Asmani
et al. 2001) for comparison with the SLS and BS data using constraints on the bulk and shear modulus of the glass phase quoted in the text. (B) The data when
Me is normalized by M0 and φ is normalized using φ∗ predicted by the model of Torquato (2013); eq. (8). (C) The data are treated as in panel (B) but with the
use of an empirical φ∗ (eq. 9) for the BS polydisperse data. In panels (B) and (C), we additionally show the Reuss (1929) lower bound for the case when the
pore fluid is sea water, as in the data from Hamilton et al. (1956).

In order to go from P(x) to the nth moment of the distribution of x ,
we integrate using 〈xn〉 = ∫ ∞

0 xn P(x) dx and a mean value of the
pore radius (i.e. n = 1) is 〈a〉 = 〈x〉〈R〉 (Fig. 1C).

This constraint of a can be used in eq. (1) to predict the sintering
kinetics. Upon normalization of φ using φi and t using λ, we find
a non-dimensional agreement across all experiments when the a
in λ is taken to be 〈a〉 using eqs (2)–(4) (Fig. 2B). We note that
compositional and particle-size differences are accounted for by
this normalization method and no fitting parameters are used. While
this solution is an approximation of the process and not an explicit
description because 〈a〉 is not taken to be a function of time, it does
fit most sintering data to within 95 per cent confidence limits.

5 DY NA M I C E L A S T I C M O D U L I

5.1 Empirical and theoretical models

The P-wave modulus M is a dynamic elastic modulus. As such,
it can be related to other dynamic moduli, for example, the dy-
namic bulk modulus K and the dynamic shear modulus G by
M = K + 4G/3 (Guéguen & Palciauskas 1994). This equiva-
lence provides us with flexibility in applying existing models
for K and G adapted for comparison with measurement of M .
To do this, we use the well-known K = M(1 + ν)/3(1 − ν) and
G = M(1 − 2ν)/2(1 − ν) where ν is Poisson’s ratio and taken to
be 0.238 for all glass materials used here because of their similar
composition (Berge et al. 1995). Of interest in this work is the de-
pendence of these moduli on the bulk porosity φ such that M0, K0

and G0 are defined as the values of the dynamic moduli at φ = 0,
that is, those of the solid phase. We work on the widely held as-
sumption that interrelations between dynamic elastic moduli for
homogeneous isotropic linear elastic materials can be used to scale
those of the effective dynamic elastic moduli (Torquato 2013).

First, we note that the evolution of M with φ appears to be linear
over the range of φ achieved here (Fig. 4A; see also Vasseur et al.
2013) and simple linear regression through the data of the form
M = M0 − kφ yields fitted values of M0 of 77.7 and 75.14 GPa for
the BS and SLS compositions, respectively. No measureable differ-
ence is observed between the two SLS populations used. Employing
the equivalences proposed above, this would yield calculated values
of dynamic K0 and G0 of 42.08 and 26.72 GPa for the BS composi-

tion and 40.69 and 25.84 GPa for the SLS composition, respectively.
Additionally, this empirical linear approach would yield a φ inter-
cept at M = 0, termed φ∗, of 0.36 and 0.46, for the BS and SLS,
respectively. The φ∗ reduces to 0.34 for the BS population when the
nonlinear deviation at high φ > 0.3 is disregarded. Vasseur et al.
(2013) have proposed that this nonlinear deviation is due to the
onset of a granular system prior to significant sintering. However,
while this empirical linear regression provides excellent agreement
with the data, it is less satisfying than a theoretical approach.

Numerous empirical and theoretical lower and upper bounds, as
well as exact solutions for the elastic moduli of composite materials,
have been derived for idealized systems (Table 2). Here we introduce
these models for the case of two-phase suspensions of pores in turn
and test their power in describing both our data sets and data sets
from the literature for composite synthetic and natural systems.
Fig. 5 summarizes all the models listed hereafter.

First and most simply, the Voigt (1928) upper bound is the ba-
sic threshold, which states that Me ≤ M0(1 − φ) + M1φ where
Me and M1 are the effective modulus of the porous medium and
the modulus of the fluid phase occupying the pores, respectively
(Fig. 5). The second term vanishes when the pore fluid is of neg-
ligible modulus. Similarly, the Reuss (1929) lower bound states
that Me ≥ ((1 − φ)/M0 + φ/M1)−1, which vanishes when the pore
fluid is of negligible modulus (Fig. 5). Both the Voigt upper bound
and the Reuss lower bound imply that at φ = 0, M = M0 and at
φ = 1, M = M1. In the case of the Voigt bound it is inconsequen-
tial if M1 ≈ 0. Table 2 gives these bounds in their general form
for multiphase composite materials. These empirical bounds do not
explicitly match most data for porous systems (Berge et al. 1995).
Improvements can be made when the upper and lower bounds are
derived from a theoretical basis.

The first of these categories of theoretical bounds is given by
the seminal work of Hashin–Shtrikman (Hashin 1962; Hashin &
Shtrikman 1963). These upper bounds on the effective bulk and
shear modulus Ke and Ge are given by

Ke ≤ K0 + φ

(K1 − K0)−1 + αHS(1 − φ)

Ge ≤ G0 + φ

(G1 − G0)−1 + βHS(1 − φ)
, (5)
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Table 2. Empirical and theoretical bounds and models.

Reference Modulusa

Upper bound (Voigt 1928) Me ≤
N∑

i=0
fi Mi

Lower bound (Reuss 1929) Me ≥
(

N∑
i=0

fi
Mi

)−1

Upper bound (Hashin & Shtrikman 1963) Ke ≤ K0 + f1
(K1−K0)−1 + αHS f0

Ge ≤ G0 + f1
(G1−G0)−1 + βHS f0

Lower bound (Hashin & Shtrikman 1963) Ke ≥ K1 + f0
(K0−K1)−1 + αHS f1

Ge ≥ G1 + f0
(G0−G1)−1 + βHS f1

Self-consistent approximation (Berryman 1980a)
N∑

i=0
αSCi fi (Ki − Ke) = 0

N∑
i=0

βSCi fi (Gi − Ge) = 0

Cluster expansion method (Torquato 2013) Ke = K0

(
1 + f1 (K1 − K0)

(
1+αT

K1+αT K0

))
+ O( f 2

1 )

Ge = G0

(
1 + f1 (G1 − G0)

(
1+βT

G1+βT G0

))
+ O( f 2

1 )

a fi is the volume fraction of the ith phase, and αSCi and βSCi are the microstructure-dependent parameters of the ith phase defined
in Table 3.

Figure 5. Bounds and solutions of the effective dynamic modulus (here
cast as the P-wave modulus Me) as a function of the system porosity φ. For
illustrative purpose in this figure only, we consistently use M0 = 85.16 GPa
(Berge et al. 1995). See the text and Table 2 for details.

where αHS = (K0 + 4G0/3)−1 and βHS = 2(K0 + 2G0)/
5G0(K0 + 4G0/3) (Fig. 5). The lower bounds vanish (i.e.
Ke ≈ 0 and Ge ≈ 0) when the pore fluid is air because it is of
negligible moduli. The solution for when the pore fluid is not
air is discussed in the derivation by Hashin & Shtrikman (1963).
Similarly, it reduces to the Reuss (1929) lower bound when the
pore fluid is water because its shear modulus is negligible in the
relaxed state. Table 2 gives these bounds in their general form for
two-phase composite materials.

An effective medium approach, the self-consistent (SC) approx-
imation, yields a system of two coupled equations which must be
solved numerically by simultaneous iteration. These are (Berryman
1980a,b; Berryman 1995)

αSC0(1 − φ) (K0 − Ke) + αSC1φ (K1 − Ke) = 0

βSC0(1 − φ) (G0 − Ge) + βSC1φ (G1 − Ge) = 0 (6)

where αSC1, αSC0, βSC1 and βSC0 represent microstructure-dependent
parameters and the subscripts SC0 and SC1 refer to the solid and
fluid phases, respectively (Fig. 5). Constraints of the microstruc-
turally defined solutions for these shape-dependent parameters used
in eq. (6) exist for some simple geometries (Table 3). Table 2 gives
these coupled equations in their general form for multiphase com-
posite materials.

Finally, an explicit prediction for the effective dynamic bulk and
shear moduli can be found by a cluster expansion method for a
dilute dispersion of spherical cavities in an otherwise homogeneous
medium as (Torquato 2013)

Ke = K0

(
1 − φ

(
1 + α−1

T

)) + O (
φ2

)
Ge = G0

(
1 − φ

(
1 + β−1

T

)) + O (
φ2

)
, (7)

where αT = 4G0/3K0 and βT = (9K0 + 8G0)/(6K0 + 12G0)
(Fig. 5). Table 2 gives these equations in their general form for
two-phase composite materials. Combination of the interrelation
between M , K and G given earlier and eq. (7) yields

Me = M0 − φ

(
K0

(
1 + α−1

T

) + 4

3
G0

(
1 + β−1

T

))
. (8)

The intercept of this model at a value of Me = 0 occurs at
φ∗ = M0/(K0(1 + α−1

T ) + 4G0(1 + β−1
T )/3). φ∗ and M0 therefore

provide normalization parameters for φ and Me so that different
data sets may be compared. This is akin to generalizing eq. (8) such
that

Me = M0

(
1 − φ

φ∗

)
, (9)

where φ∗ is given as arranged from eq. (8) or could be empirically
defined after Mavko & Mukerji (1998).

5.2 Model reliability assessment

We start by assessing published data for Me as a function of φ also
constrained using unconsolidated sediments in sea water (Hamilton
et al. 1956), sandstones (Han et al. 1986), sintered soda-lime silica
glass beads (Berge et al. 1995) and sintered ceramics (Asmani et al.
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Table 3. Self-consistent microstructure-dependent parameters.

Shape αSCi
a βSCi

a

Sphere Ke+4Ge/3
Ki +4Ge/3

Ge+ξ
Gi +ξ

Needle Ke+Ge+Gi /3
Ki +Ge+Gi /3

1
5

(
4Ge

Ge+Gi
+ 2(Ge+χ )

Gi +χ
+ Ki +4Ge/3

Ki +Ge+Gi /3

)

Penny crack Ke+4Gi /3
Ki +4Gi /3+πr pψ

1
5

(
1 + 8Ge

4Gi +πr p (Ge+2ψ) + 2(Ki +2(Gi +Ge )/3)
Ki +4Gi /3+πr pψ

)

aξ = Ge (9Ke+8Ge)
6Ke+12Ge

, χ = Ge(3Ke+Ge )
3Ke+7Ge

, ψ = Ge (3Ke+Ge)
3Ke+4Ge

and rp is the aspect ratio of the cracks.

Figure 6. Experimental and model constraints for the effective P-wave modulus Me as a function of the sample porosity φ for (A) basalts (Al-Harthi et al.
1999) and (B) carbonates (Anselmetti & Eberli 1993). The predictions from eq. (8) (Torquato 2013) and eq. (6) (self-consistent approximation; Berryman
1980a) are included where eq. (6) is varied for different pore geometries (see Table 3). The Voigt (1928), Reuss (1929) and Hashin & Shtrikman (1963) bounds
are omitted for clarity as they do not provide a good description of these data.

2001). For the data from Han et al. (1986), we apply the published
correction (Gal et al. 1999) when the clay content influences the re-
sults prior to plotting here and to do this we use their suggested clay
porosity of 0.4. For the composition used by Berge et al. (1995),
K0 = 46.1 ± 0.7 GPa and G0 = 29.2 ± 0.4 GPa, which is in rea-
sonable agreement with the values of the compositionally similar
SLS populations described above. The M0 computed from vp and
ρ for the Berge et al. (1995) spheres is therefore 85.03 GPa. Use of
eq. (8) with both the data of Berge et al. (1995) and the data from
this study for the SLS spheres results in excellent agreement with
input only of M0 and results in the facility to compute any dynamic
elastic modulus from these data for φ ≤ φ∗ (Fig. 4). Additionally,
the extrapolation of eq. (8) to Me = 0 yields φ∗ values in good
agreement with the empirical values from linear regression analysis
such that upon normalization all data for initially spherical sintered
glass beads collapse onto a single linear description (Fig. 4B). We
note, however, that the BS population of non-equant fragments does
not agree well with the data for spherical particles.

It is explicit in the analysis of Torquato (2013) that eqs (7)–(8)
are most appropriate for a monodisperse suspension of cavities in
a homogeneous medium. It is interesting to note, therefore, that
the evolution of Me for densifying spherical particles (with initially
highly non-spherical interstitial pores; Fig. 3), provides excellent
agreement with eq. (8) (Fig. 4). We also note that if the value of φ∗
for the BS data is permitted to be the empirically defined value from
linear regression analysis, then we find that, upon normalization,
they also agree very well with the prediction of eq. (8) (Fig. 4C).
This is identical to using eq. (9) with a fitted φ∗, similar to the
method of Mavko & Mukerji (1998). We therefore conclude that

for these granular to non-granular systems, the threshold porosity at
which the system undergoes a transition from granular to cohesive
represents a porosity at which the conductance of a P-wave becomes
linearly dependent on the porosity (e.g. Nur et al. 1991; Nur et al.
1998). This critical porosity, here termed φ∗, would therefore be
proportional to a loose random packing in the granular state at
which the system gains the ability to bear a significant load (i.e.
rigidity) and, in turn, would be able to be related to the dispersivity
of the initial particle size. However, solutions for such a packing
porosity threshold remain elusive (Torquato 2013).

Mavko & Mukerji (1998) and Nur et al. (1998) employ an analysis
that relies on an empirically determined φ∗. In the data for sand-
stones, we find that φ∗ = 0.51 when we use eq. (8). Similarly, we
find φ∗ = 0.48 for all sintered glass beads and ceramics data when
we use eq. (8). These values are slightly higher than the φ∗ ≈ 0.4
found by Nur et al. (1998) for sandstones and sintered glass beads
using the same literature data (Han et al. 1986; Berge et al. 1995)
and a simpler linear regression analysis.

We find excellent agreement in these simple systems such that
eq. (8) (Torquato 2013) seemingly provides the best description of
the data when φ∗ is directly predicted by the model (e.g. for the
SLS, Han et al. (1986), Berge et al. (1995) and Asmani et al. (2001)
data) or permitted to be empirically defined (e.g. for the BS data).
Interestingly, both the most poorly sintered BS population and the
unconsolidated sand (Hamilton et al. 1956) are well described by
the Reuss (1929) lower bound above φ∗.

The dynamic elastic modulus of other natural rocks, such as that
for basalts (Al-Harthi et al. 1999) and carbonates (Anselmetti &
Eberli 1993), can also be scaled in the way described above (Fig. 6).
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However, simple scaling or description appears unsatisfactory in
describing these data and the definition of a value of φ∗ appears
unreasonable. Therefore, we suggest that in such a case it may be
reasonable (until further constraints are available) to use the self-
consistent approximation, eq. (6), with various definitions of the
shape-parameters (Table 3). It is clear that for the elastic moduli
of these heterogeneous natural systems, more rigorous microstruc-
tural details are required to assess the efficacy of these models
upon normalization. A final detail pertinent to natural rocks is the
propensity for cementation processes (in sedimentary systems) or
pore-infilling alteration (i.e. in volcanic systems) to modify the solid
medium. A particular case is when cement is allochthonous or, as
Gal et al. (1999) found, when intrapore clay influences the P-wave
velocities. This is a significant problem for extension of theoret-
ical constraint to natural systems and requires substantial further
work.

6 C O N C LU S I O N S

The viscous sintering kinetics of glass beads is scaled to a single
description over a wide range of initial particle size distributions,
compositions and temperatures. These isotropic materials, often
considered a good analogue for many rock-forming systems from
sandstones to volcanic tuffs, are increasingly microstructurally ho-
mogeneous as densification proceeds. We find that constraining the
density, the P-wave velocity and one further elastic parameter of a
solid phase is sufficient to model the evolution of the P-wave ve-
locity as a function of porosity in a suspension or dispersion up to a
threshold porosity at which the system is entirely granular. The use
of the cluster expansion model here represents a significant improve-
ment on existing empirical scaling. We find excellent agreement
between our measurements and theoretical considerations without
the necessity for fitting which allows all dynamic elastic moduli
to be derived. Finally, comparison with less well-constrained data
for other systems of rock-forming and ceramic media validates a
near-universal scaling for the elastic moduli of isotropic rocks of
which glass-hosted volcanic pyroclasts are a prominent example.
A further advance tackling the complexity of some natural sys-
tems for which the isotropic assumption may fail will require more
theoretical work.
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