
J
H
E
P
0
3
(
2
0
1
8
)
0
5
6

Published for SISSA by Springer

Received: October 26, 2017

Accepted: February 13, 2018

Published: March 9, 2018

Diffusion for holographic lattices

Aristomenis Donos,a Jerome P. Gauntlettb and Vaios Ziogasa

aCentre for Particle Theory and Department of Mathematical Sciences, Durham University,

Durham, DH1 3LE, U.K.
bBlackett Laboratory, Imperial College,

London, SW7 2AZ, U.K.

E-mail: aristomenis.donos@durham.ac.uk, j.gauntlett@imperial.ac.uk,

vaios.ziogas@durham.ac.uk

Abstract: We consider black hole spacetimes that are holographically dual to strongly

coupled field theories in which spatial translations are broken explicitly. We discuss how

the quasinormal modes associated with diffusion of heat and charge can be systematically

constructed in a long wavelength perturbative expansion. We show that the dispersion

relation for these modes is given in terms of the thermoelectric DC conductivity and static

susceptibilities of the dual field theory and thus we derive a generalised Einstein relation

from Einstein’s equations. A corollary of our results is that thermodynamic instabilities

imply specific types of dynamical instabilities of the associated black hole solutions.

Keywords: AdS-CFT Correspondence, Black Holes in String Theory, Holography and

condensed matter physics (AdS/CMT)

ArXiv ePrint: 1710.04221

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2018)056

mailto:aristomenis.donos@durham.ac.uk
mailto:j.gauntlett@imperial.ac.uk
mailto:vaios.ziogas@durham.ac.uk
https://arxiv.org/abs/1710.04221
https://doi.org/10.1007/JHEP03(2018)056


J
H
E
P
0
3
(
2
0
1
8
)
0
5
6

Contents

1 Introduction 1

2 Background black hole solutions 4

2.1 Susceptibilities from the horizon 5

3 Time dependent perturbation and the constraints 6

3.1 Constraints 7

4 Constructing the bulk diffusion perturbations 8

4.1 Dispersion relations for the diffusion modes 10

4.2 Comments 13

5 Final comments 16

A Residual gauge invariance 17

B Evaluating the constraints on the horizon 17

B.1 Constraints in the radial decomposition 17

B.2 Evaluating constraints for the perturbation 18

C Calculating the DC conductivity 21

D Counting functions of integration 22

E Fixing the zero modes of the ε expansion 24

1 Introduction

Holography provides a powerful theoretical framework for studying the properties of

strongly coupled quantum critical systems. A basic feature is that a given quantum sys-

tem in thermal equilibrium is described by a stationary black hole spacetime with a Killing

horizon and, furthermore, the entropy and conserved charges can be universally determined

by data on the black hole horizon (e.g. see [1] and references therein). Going beyond ther-

mal equilibrium and moving to the realm of linear response, it has been shown that the

thermoelectric DC conductivity, when finite, is also universally determined by data on the

horizon, by solving a specific Stokes flow for an auxiliary fluid on the horizon [2] (further

extensions are discussed in [3–6]).

It is natural to enquire if other properties of the dual field theory can also be obtained

from horizon data. In this paper we discuss the construction of quasi-normal modes that
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are dual to the long wave-length hydrodynamic modes associated with diffusion of heat

and electric charge. In particular, we will show how the dispersion relation for these modes

can also be obtained in terms of the properties of the black hole solutions at the horizon.

Recall that in the specific context of translationally invariant and charge neutral sys-

tems the diffusion of electric charge was first discussed some time ago in [7]. Furthermore,

again for this specific setup, an Einstein relation, relating the associated electric diffusion

constant to the finite DC conductivity and static charge susceptibilities, was derived in [8],

where it was also shown how the DC conductivity can be obtained explicitly from the

horizon.1 It should be noted that in this set up the thermal DC conductivity is infinite

and, correspondingly, there is no heat diffusion mode. In this paper we will discuss the dif-

fusion of both electric charge and heat within the general context of charged and spatially

inhomogeneous media. The spatial inhomogeneities that we consider arise from breaking

of spatial translations explicitly, and the black holes are known as ‘holographic lattices’ [9].

In a recent paper [10] we carried out an analysis of the diffusion of conserved charges

in the context of spatially inhomogeneous media for arbitrary quantum field theories (not

necessarily holographic). Subject to the retarded current-current correlators satisfying

some general analyticity conditions, as well as assuming that the thermoelectric DC con-

ductivity is finite, the long wavelength hydrodynamical modes associated with diffusion of

charge and heat were identified and a generalised Einstein relation was derived. In addi-

tion, the general formalism was illustrated for thermoelectric diffusion within the context

of relativistic hydrodynamics where momentum dissipation was achieved not by modifying

the conservation equations, as is usually done, but by explicitly breaking translations by

considering the system with spatially modulated sources for the stress tensor and electric

current as in [11, 12].

Given the general results presented in [10], one anticipates that it should be possible to

derive the generalised Einstein relations within the context of general classes of holographic

lattices. Specifically, we will consider cases in which the DC conductivity is finite2 and equal

to a horizon DC conductivity that is obtained by solving a Stokes flow on the horizon. One

can then ask about the relevant charge susceptibilities. Since the conserved charges can

be evaluated at the horizon provided one knows how this data depends on changing the

temperature and the chemical potential of the black holes in thermal equilibrium, one

can also obtain horizon expressions for the susceptibilities. As we will see, this simple

observation about the susceptibilities will be sufficient to extract the dispersion relations for

the diffusive modes and hence the Einstein relation. In slightly more detail, using a radial

decomposition of the equations of motion, we will explain how the quasi-normal diffusion

modes can be systematically constructed in a long wavelength, perturbative expansion. In

general, while both the radial equations and the constraint equations are required to carry

out this construction, we will see that an analysis of just the constraint equations on the

horizon are sufficient to extract the Einstein relation, which is the universal part of the

dispersion relation in the long wavelength expansion for the diffusive modes.

1From the universal perspective of [2], this is a special set up where the Stokes flow equations are solved

trivially.
2In particular, we will not be considering superfluids.
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Recently there has been a particular focus on studying diffusion of heat and charge in

the context of holography. This stems, in part, from the suggestion that diffusive processes

may be a key to understanding universal aspects of transport in incoherent metals [13].

Furthermore, it was also suggested in [13] that there might be lower bounds on diffusion

constants by analogy with bounds on shear viscosity associated with diffusion of momen-

tum [14]. A key idea is to write D ∼ v2τ , where D is suitable diffusion constant and v, τ

are characteristic velocities and time scales of the system, and it was suggested in [13] that

τ should be the ‘Planckian time scale’ τ = ~/(kBT ) [15, 16]. An interesting subsequent

development was the suggestion that v should be identified with the butterfly velocity, vB,

extracted from out of time order correlators [17, 18] and used as a measure of the onset of

quantum chaos.

While there has been a range of interesting holographic results in this direction, includ-

ing [19–32], with an appreciation that it is the thermal diffusion should be related to vB, it

is fair to say that within holography a sharp global picture has yet to emerge.3 Almost all

of the holographic study in this area has been in the setting of specific types of ‘homoge-

neous’ holographic lattices [41, 42], which maintain a translationally invariant metric. In

these cases it is straightforward to extract vB by studying a shock wave entering the black

hole horizon [43, 44] (see also [45]). A notable exception is [19] who studied holographic

lattices in one spatial dimension, but working in a hydrodynamic, high temperature limit

of the background holographic lattice. We hope that the present work, which illuminates

universal aspects of diffusion for arbitrary spatial modulation in holography, will be useful

in further developments.

In a different direction, our derivation of the dispersion relation leads to a general

connection between thermodynamic instabilities and dynamic instabilities. Some time ago,

building on [46, 47], it was shown in a specific holographic context with a translationally

invariant horizon, that thermodynamic instability implies an imaginary speed of sound,

leading to unstable quasi-normal modes and dynamical instability4 [52]. For general spatial

modulation within holography, any sound modes will only appear on scales much smaller

than the scale of the modulation and hence this will not be a universal channel to deduce

dynamical instability from thermodynamic instability. Instead, the diffusion modes do

provide such a channel. Specifically, in the presence of spatial modulation, we can deduce

the following result. If the heat and charge susceptibility matrix has a negative eigenvalue,

then the system is thermodynamically unstable and then the dispersion relation implies

that there is at least one mixed diffusion mode, involving heat and charge, living in the

upper half plane which will necessarily lead to a dynamical instability.

3It is striking that a relation of the form D ∼ v2Bτ has also appeared in a variety of other non-holographic

contexts, including [22, 33–40], with τ ∼ λ−1
L where λL is the Lyapunov exponent [35].

4Some recent discussion of both hydrodynamic and non-hydrodynamic modes and the connection with

instabilities in a translationally invariant setting, appeared in [48–51].
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2 Background black hole solutions

We will consider a general class of bulk theories which couple the metric to a gauge field

Aµ, with field strength Fµν , and a scalar field φ in D spacetime dimensions, governed by

an action of the form

S =

∫

dDx
√−g

(

R− V (φ)− Z(φ)

4
F 2 − 1

2
(∂φ)2

)

. (2.1)

The only constraints that we impose on the functions V (φ), Z(φ) is that the equations of

motion admit an AdSD vacuum solution with φ = Aµ = 0. We assume that in this vacuum

the scalar field φ is dual to an operator with conformal dimension ∆. We have also set

16πG = 1 for convenience.

We are interested in studying the family of static, background black hole solutions that

lie within the ansatz

ds2 = −UGdt2 +
F

U
dr2 + ds2(Σd) ,

A = atdt , (2.2)

with ds2(Σd) = gijdx
idxj and d = D − 2. The functions G,F, at, φ and the metric compo-

nents gij are all independent of the time coordinate t and depend on (r, xi). Note that the

function U = U(r), which is redundant, is included to conveniently deal with some aspects

of the asymptotic behaviour of the solution.

Although it is possible to be more general, to simplify the presentation we will assume

that we have single black hole Killing horizon, located at r = 0, and that the coordinates

(t, r, xi) are globally defined outside the black hole all the way out to the AdSD boundary

which will be located at r → ∞. In particular, this means that the radial foliation is

globally defined up to a ‘stretched horizon’ located at some small radial distance outside

the black hole and that the topology of the black hole horizon is Σd. Similarly, we will

also assume Σd has planar topology and all functions appearing in (2.2) are assumed to

be periodic in the spatial directions xi with period Li, corresponding to static, periodic

deformations of the dual CFT. It will be useful to define
∮

= (
∏

Li)
−1

∫

dx1 . . . dxd which

allows us to extract the zero mode of periodic functions.

Asymptotically, as r → ∞, the solutions are taken to approach AdSD with boundary

conditions that explicitly break translation invariance:

U → r2, F → 1, G → G(∞)(x), gij(r, x) → r2g
(∞)
ij (x),

at(r, x) → µ(x), φ(r, x) → r∆−d−1φ(∞)(x) . (2.3)

This corresponds to placing the dual CFT on a curved spacetime manifold with metric given

by ds2 = −G(∞)(x)dt2 + g
(∞)
ij (x)dxidxj , having a spatially dependent chemical potential

µ(x) and deforming by a spatially dependent source φ(∞)(x) for the operator dual to φ. It

will be convenient to separate out the zero mode of µ(x) by defining

µ(x) ≡ µ̄+ µ̃(x) (2.4)

with constant µ̄ and
∮

µ̃(x) = 0.
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The Killing horizon will, in general, be spatially modulated and we have the following

expansions5 near r = 0

U (r) = r
(

4π T + U (1) r + . . .
)

, G(r, x) = 1 +G(1) (x) r + . . . ,

F (r, x) = 1 + F (1) (x) r + . . . , gij = g
(0)
ij + g

(1)
ij r + . . . ,

at(r, x) = r
(

a
(0)
t + a

(1)
t (x) r + . . .

)

, φ = φ(0)(x) + rφ(1)(x) + . . . . (2.5)

After a Euclidean continuation, we find that the constant T is the Hawking temperature of

the black hole and can be identified with the constant temperature of the dual field theory.6

We also note that we can introduce an ingoing Eddington-Finkelstein-like coordinate

vEF ≡ t+
ln r

4πT
, (2.6)

and that the metric is regular in the (vEF , r, x
i) coordinates as r → 0.

2.1 Susceptibilities from the horizon

It will be important in the sequel to be able to express certain thermodynamic suscepti-

bilities in terms of data at the horizon. More precisely we can obtain the susceptibilities

provided that we know the horizon data as a function of the temperature T and the zero

mode of the chemical potential µ̄. We first recall that the total entropy density of the

system, s, can be expressed as

s = 4π

∮

H

√

g(0) , (2.7)

where the subscript H emphasises that this is an integral evaluated at the black hole

horizon. Similarly the total charge density, ρ ≡ J t, can be expressed either as a boundary

quantity or a horizon quantity via

ρ ≡
∮

∞

√−gZ(φ)F tr =

∮

H

√

g(0)Z
(0)a

(0)
t , (2.8)

where the equality can be deduced from the gauge equation of motion.

Hence under a constant variation of the temperature, T → T + δT , and zero mode of

the chemical potential, µ̄ → µ̄+ δµ̄ (see (2.4)), we have

δs ≡T−1cµ δT + ξ δµ̄ ,

δρ ≡ ξ δT + χ δµ̄ , (2.9)

5We have chosen our coordinates so that possible functions G(0)(x) = F (0)(x) are set to unity.
6Since the CFT is defined on the boundary metric (2.3) there is also a natural notion of a local tem-

perature of the dual field theory given by T (x) = [G(∞)(x)]−1/2T . Also note that for the case of CFTs we

can carry out a Weyl transformation to set G(∞)(x) = 1, suitably taking into account the possibility of a

conformal anomaly.
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where the thermodynamic susceptibilities are given by7

T−1cµ = 4π

∮

H
ddx

1

2

√

g(0) (g
(0))ij

∂g
(0)
ij

∂T
,

ξ = 4π

∮

H
ddx

1

2

√

g(0) (g
(0))ij

∂g
(0)
ij

∂µ̄
,

=

∮

H
ddx

√

g(0)

(

Z(0)∂a
(0)
t

∂T
+ ∂φZ

(0) a
(0)
t

∂φ(0)

∂T
+

1

2
Z(0) a

(0)
t (g(0))ij

∂g
(0)
ij

∂T

)

,

χ =

∮

H
ddx

√

g(0)

(

Z(0)∂a
(0)
t

∂µ̄
+ ∂φZ

(0) a
(0)
t

∂φ(0)

∂µ̄
+

1

2
Z(0) a

(0)
t (g(0))ij

∂g
(0)
ij

∂µ̄

)

. (2.10)

The equality of the two expressions for ξ at the horizon is not obvious. However, from a

boundary perspective it is just a Maxwell relation that arises from the first law. To see this

we recall that we can calculate the renormalised, total free energy density, wFE , from the

total on-shell action after adding suitable boundary terms. For the ensemble of interest we

have s = −δwFE/δT and ρ = −δwFE/δµ̄ and the result at the horizon follows. Note that

cµ ≡ T (∂s/∂T )µ̄. Later we will also need cρ ≡ T (∂s/∂T )ρ which can be written as

cρ ≡ cµ − Tξ2

χ
. (2.11)

To see this we use ξ/χ = −(∂µ̄/∂T )ρ = (∂s/∂ρ)T , where the second equality is a Maxwell

relation.

3 Time dependent perturbation and the constraints

Consider a general perturbation of the background black hole solution (2.2) given by δP ≡
{δgµν , δaµ, δφ}, with all quantities functions of all of the bulk coordinates (t, r, xi). We

want to consider time-dependence of the form e−iωt. It is convenient to write

δP (t, r, xi) = e−iω[t+S(r)]δP̂ (r, xi) , (3.1)

with S(r) → 0 as r → ∞ and, in order to ensure that the perturbation satisfies ingoing

boundary conditions at the black hole horizon, S(r) → ln r
4πT + S(1) r + · · · as r → 0.

With this in hand, and recalling the definition of vEF , the ingoing Eddington-

Finkelstein-like coordinate in (2.6), we demand that near r = 0 the perturbation behaves as

δgtt = e−iωvEF (4πTr)
(

δg
(0)
tt (x) +O(r)

)

, δgrr = e−iωvEF
1

4πTr

(

δg(0)rr (x) +O(r)
)

,

δgij = e−iωvEF δg
(0)
ij (x) +O(r), δgtr = e−iωvEF δg

(0)
tr (x) +O(r) ,

δgti = e−iωvEF (δg
(0)
ti (x) + r δg

(1)
ti (x) +O(r2)),

δgri = e−iωvEF
1

4πTr

(

δg
(0)
ri (x) + r δg

(1)
ri (x) +O(r2)

)

, (3.2)

7In section 3 of [10] these quantities were denoted by capital letters: Cµ, Ξ and X.
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as well as

δat = e−iωvEF (δa
(0)
t (x) + r δa

(1)
t (x) +O(r2)),

δar = e−iωvEF
1

4πTr

(

δa(0)r (x) + r δa(1)r (x) +O(r2)
)

,

δai = e−iωvEF (δa
(0)
i (x) +O(r)),

δφ = e−iωvEF (δφ(0) (x) +O(r)), (3.3)

with

−2πT (δg
(0)
tt + δg(0)rr ) = −4πT δg

(0)
rt ≡ p ,

δg
(0)
ti = δg

(0)
ri ≡ −vi,

δa(0)r = δa
(0)
t ≡ w . (3.4)

There is some residual gauge invariance for the perturbation at the horizon, maintaining

the ingoing boundary conditions, which we discuss in appendix A.

3.1 Constraints

Using a radial decomposition of the equations of motion one obtains a set of constraints

that must be satisfied on a surface of constant r. We want to evaluate these constraints for

the perturbed solution at the black hole horizon. More precisely we evaluate the constraints

on a stretched horizon located at a small radial distance r away from the horizon and then

take the limit as r → 0. The calculations are a generalisation of the calculations that were

carried out in [2, 3]. Here we will just state the final result but we have presented some

details in appendix B.

The combined set of constraints include two scalar equations and a vector equation.

If we define

Qi
(0) = 4πT

√

g(0)v
i ,

J i
(0) =

√

g(0)g
ij
(0)Z

(0)
(

∂jw + a
(0)
t vj + iωδa

(0)
j

)

. (3.5)

then the two scalar equations are

∂iQ
i
(0) = iωT

(

2π
√

g(0)g
ij
(0)δg

(0)
ij

)

, (3.6)

and

∂iJ
i
(0) = iω

√

g(0)

[

Z(0)

(

a
(0)
t

(

δg
(0)
tt +

p

4πT

)

+ δa
(1)
t − iω

4πT

(

δa
(1)
t − δa(1)r

)

)

+ Z(0)

(

1

2
a
(0)
t gij(0)δg

(0)
ij +

1

4πT
vi∂ia

(0)
t

)

+ ∂φZ
(0)a

(0)
t δφ(0)

]

. (3.7)
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Finally the vector equation can be written as

− 2∇j∇(jvi) + (1 +
iω

4πT
)∇ip− Z(0)a

(0)
t

(

∇iw + iωδa
(0)
i

)

+∇iφ
(0)

(

vj∇jφ
(0) − iωδφ(0)

)

= iω

(

δg
(1)
ti − i ω

4πT
(δg

(1)
ti − δg

(1)
ri ) + g

(1)
il vl − ∂iδg

(0)
tt −∇kδg

(0)
ki

)

. (3.8)

where the covariant derivative is with respect to the horizon metric g
(0)
ij , which is also used

to raise and lower indices. One can check that these equations are consistent with the

residual gauge transformations mentioned above and are given explicitly in appendix A.

Notice that if we set the frequency ω = 0 in (3.6)–(3.8) then we precisely recover

the Stokes equations derived in [2, 3], which can be used to obtain the DC conductivity,

when finite, after setting the sources in the Stokes equations to zero. In fact since these

DC Stokes equations with sources will be used later, we record them in appendix C for

reference.

Also notice that the system of equations does not form a closed set of equations for

the perturbation when ω 6= 0. In order to obtain a full solution, we also need to use the

radial equations of motion. Interestingly, however, we will show in the next section that

the constraint equations are sufficient to extract the dispersion relation for the quasinormal

diffusion modes. In appendix D we discuss how the data provided at the horizon and at

the AdS boundary allows one, in principle, to solve the full set of Einstein equations.

4 Constructing the bulk diffusion perturbations

In this section we explain how one can systematically construct quasi-normal modes that

are associated with diffusion of heat and charge. We construct these source-free modes

in a long wavelength ‘hydrodynamic expansion’ that is valid for an arbitrary background

black hole solution (2.2). While the explicit construction of these modes require that one

solves both the constraint equations at the horizon as well radial equations in the bulk, it

is possible to show that the leading order dispersion relation for the diffusion modes can

be expressed in terms of the static susceptibilities as well as the ‘horizon DC conductivity’

obtained from a Stokes flow on the horizon given in appendix C. Now for holographic

lattices, when translation invariance is broken explicitly, the horizon DC conductivity is

the same as the DC conductivity of the dual field theory. Thus, our result corresponds to

a derivation of an Einstein relation.

We begin by describing a zero mode perturbation that is constructed from thermody-

namic considerations. We start with the background ansatz (2.2) and then vary the temper-

ature T and the zero mode of the chemical potential µ̄ via T + δT and µ̄+ δµ̄, where δT ,δµ̄

are real constants. This gives rise to a ‘thermodynamic perturbation’ of the metric, gauge

field and scalar field of the form δgTH
µν =

∂gµν
∂T δT +

∂gµν
∂µ̄ δµ̄, δATH =

(

∂at
∂T δT + ∂at

∂µ̄ δµ̄
)

dt

and δφTH = ∂φ
∂T δT + ∂φ

∂µ̄ δµ̄, respectively. By considering the asymptotic behaviour of the

background black holes, given in (2.3), we see that this perturbation has no source terms

for the metric and the scalar, but there is a new source term for the gauge-field of the form

δµ̄. As we are interested in source free solutions, we will deal with this in a moment.

– 8 –
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We next observe that close to the horizon the above perturbation approaches

δds2 = −δT

T

(

4πTr dt2 +
dr2

4πTr

)

+

(

∂g
(0)
ij

∂T
δT +

∂g
(0)
ij

∂µ̄
δµ̄

)

dxidxj + · · · ,

δaTH
t = r

(

∂a
(0)
t

∂T
δT +

∂a
(0)
t

∂µ̄
δµ̄

)

+ · · · ,

δφTH =
∂φ(0)

∂T
δT +

∂φ(0)

∂µ̄
δµ̄ . (4.1)

Notice that this does not satisfy the regularity conditions (3.2)–(3.4) required of a real

time perturbation. To remedy this, and also to remove the extra source term in the gauge

field, we perform a time coordinate transformation t → t + δT
T g(r) with g(r) vanishing

sufficiently fast as r → ∞ and g(r) = ln r/(4πT ) + g(1)r + . . . as r → 0. We also perform

the gauge transformation δART = δATH + dΛ with Λ = −(t + g(r))δµ̄. After performing

these transformations we will denote the perturbation with a superscript RT for ‘real-time’.

At the horizon this RT perturbation approaches

δds2 = δgRT
µν dxµdxν = −δT

T

(

4πTr dt2 +
dr2

4πTr

)

− 2
δT

T
dt dr

+

(

∂g
(0)
ij

∂T
δT +

∂g
(0)
ij

∂µ̄
δµ̄

)

dxidxj + · · · ,

δaRT
t = −δµ̄+ r

(

∂a
(0)
t

∂T
δT +

∂a
(0)
t

∂µ̄
δµ̄

)

+ · · · ,

δaRT
r = −δµ̄ (4πT r)−1 +

δT

T
(4πT )−1a

(0)
t − g(1)δµ̄+ · · · ,

δφRT =
∂φ(0)

∂T
δT +

∂φ(0)

∂µ̄
δµ̄+ · · · . (4.2)

From this we can read off the near horizon quantities using the notation of equa-

tion (3.2)–(3.4)

δg
RT (0)
tt = δgRT (0)

rr = δg
RT (0)
tr = −δT

T
,

δg
RT (0)
ti = 0, δg

RT (0)
ri = 0 , δg

RT (0)
ij =

∂g
(0)
ij

∂T
δT +

∂g
(0)
ij

∂µ̄
δµ̄ ,

δa
RT (0)
t = −δµ̄, δa

RT (1)
t =

∂a
(0)
t

∂T
δT +

∂a
(0)
t

∂µ̄
δµ̄ ,

δaRT (0)
r = −δµ̄, δaRT (1)

r =
δT

T
a
(0)
t − 4πTg(1)δµ̄ ,

δa
RT (0)
i = 0 , δφRT (0) =

∂φ(0)

∂T
δT +

∂φ(0)

∂µ̄
δµ̄ . (4.3)

Notice that this perturbation has vi = 0, w = −δµ̄ and p = 4πδT which clearly

solves (3.6)–(3.8) for vanishing frequency, ω = 0.
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We now introduce a small parameter ε which will be used to perturbatively construct

a real time diffusive mode. Following [10], and recalling (3.1), the perturbation is taken to

be of the form

δgµν = e−iω[t+S(r)]+iεkix
i (

δgRT
µν + ε δg[1]µν + ε2 δg[2]µν + · · ·

)

,

δAµ = e−iω[t+S(r)]+iεkix
i (

δART
µ + ε δA[1]µ + ε2 δA[2]µ + · · ·

)

,

δφ = e−iω[t+S(r)]+iεkix
i (

δφRT + ε δφ[1] + ε2 δφ[2] + · · ·
)

, (4.4)

with the corrections δg[m]µν , δA[m]µ, δφ[m], m = 1, 2, . . . being time independent, complex

functions of (r, xi) that are periodic in the spatial coordinates xi. We demand that order

by order in the expansion in ε, the corrections have near horizon expansions analogous

to (3.2)–(3.4). Specifically,

δg[m]tt = (4πTr)
(

δg
(0)
[m]tt (x) +O(r)

)

, δg[m]rr =
1

(4πTr)

(

δg
(0)
[m]rr (x) +O(r)

)

,

δg[m]ij = δg
(0)
[m]ij (x) +O(r), δg[m]tr = δg

(0)
[m]tr (x) +O(r) ,

δg[m]tj = δg
(0)
[m]tj (x) + rδg

(1)
[m]tj (x)+. . . , δg[m]rj =

1

(4πTr)

(

δg
(0)
[m]rj (x)+ rδg

(1)
[m]rj (x)+ . . .

)

,

δA[m]t = δa
(0)
[m]t(x) + r δa

(1)
[m]t(x) + · · · , δA[m]r =

1

(4πTr)

(

δa
(0)
[m]r(x) + rδa

(1)
[m]r(x) + · · ·

)

,

δA[m]j = δa
(0)
[m]j(x) +O(r) , δφ[m] = δφ

(0)
[m](x) +O(r) , (4.5)

with the analogue of the conditions in (3.4) satisfied for each [m].

4.1 Dispersion relations for the diffusion modes

We now explain how we can obtain the dispersion relations for the perturbation, order by

order as an expansion in ε. We will first show how solving the constraint eqs. (3.6)–(3.8)

on the horizon, to a certain order in ε, is enough to obtain the leading order dispersion

relation for ω as a function of the wave vector ki in terms of the horizon DC conductivity,

obtained from a Stokes flow on the horizon, and the thermodynamic susceptibilities. As

already noted, the arguments in appendix D ensure that the full perturbation will solve all

the equations of motion. Some additional subtleties are discussed in appendix E.

From (4.4), (4.5) and the analogue of (3.4), the expansion at the horizon that we

consider takes the form

ω = ε ω[1] + ε2 ω[2] + · · · ,
p = eiεkix

i (

4πδT + ε p[1] + ε2 p[2] + · · ·
)

,

vi = eiεkix
i (

ε v[1]i + ε2 v[2]i · · ·
)

,

w = eiεkix
i (−δµ̄+ εw[1] + ε2w[2] + · · ·

)

,

δg
(0)
ij = eiεkix

i

(

∂g
(0)
ij

∂T
δT +

∂g
(0)
ij

∂µ̄
δµ̄+ ε δg

(0)
[1]ij + · · ·

)

,

δφ(0) = eiεkix
i

(

∂φ(0)

∂T
δT +

∂φ(0)

∂µ̄
δµ̄+ ε δφ

(0)
[1] + · · ·

)

, (4.6)
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where v[m]i ≡ −δg
(0)
[m]ti, w[m] ≡ δa

(0)
[m]t and p[m] ≡ −4πTδg

(0)
[m]rt (see (4.5)). At leading order

in ε, the scalar constraint equations (3.6) and (3.7) read

∇iv
i
[1] =

iω[1]

2

(

δT gij(0)
∂g

(0)
ij

∂T
+ δµ̄ gij(0)

∂g
(0)
ij

∂µ̄

)

,

∇j

(

Z(0)
(

−i kjδµ̄+∇jw[1] + vj[1]a
(0)
t

))

=

iω[1]

(

1

2
Z(0)a

(0)
t gij(0)

∂g
(0)
ij

∂T
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂T
+ Z(0)∂a

(0)
t

∂T

)

δT

+ iω[1]

(

1

2
Z(0)a

(0)
t gij(0)

∂g
(0)
ij

∂µ̄
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂µ̄
+ Z(0)∂a

(0)
t

∂µ̄

)

δµ̄ . (4.7)

while the vector constraint equation (3.8) has the form

− 2∇j∇(jv[1]i) +∇ip[1] − Z(0)a
(0)
t ∇iw[1] +∇iφ

(0)vj[1]∇jφ
(0) + iki4π δT + Z(0)a

(0)
t ikiδµ̄

− i ω[1]∇iφ
(0)

(

∂φ(0)

∂T
δT +

∂φ(0)

∂µ̄
δµ̄

)

+ i ω[1]∇k

(

∂g
(0)
ki

∂T
δT +

∂g
(0)
ki

∂µ̄
δµ̄

)

= 0 (4.8)

At this point we pause to comment on the structure of this system of equations, which

will have echoes at higher orders. Specifically, they are a sourced version of the horizon

Stokes flow equations which were identified in [2, 3] to calculate the DC conductivity

(see (C.1), (C.2)). In particular, the temperature gradient and electric field in (C.1), (C.2)

are given by ζ̄i = −ikiδT/T and Ēi = −ikiδµ̄ and the source terms are parametrised by

ω[1]. Following the arguments of [2, 3], as long as the horizon does not have any Killing

vectors, the unknown variables w[1], p[1] and vi[1] are fixed up to global shifts of the horizon

scalars w[1] and p[1] by constants which we call δµ̄[1] and 4π δT[1]. We therefore see that

it is not possible at this order in perturbation theory to fix these horizon zero modes for

the functions w[1] and p[1]. However, imposing periodic boundary conditions puts strong

constraints on the sources of these equations which appear on the right hand side. On one

hand, it will be one of the significant ingredients in fixing the frequency ω order by order.

On the other hand, as we will see in appendix E, the constants δµ̄[1] and 4π δT[1] will be

fixed by demanding existence of w[3] and p[3] i.e. at third order in perturbation theory. This

is the structure one encounters at each order in the ε expansion. For bookkeeping, we will

subtract the zero modes according to

w[i] = ŵ[i] + δµ̄[i], p[i] = p̂[i] + 4π δT[i] (4.9)

with the hatted variables having zero average over a period and are therefore uniquely fixed

after solving the system of constraints.

To proceed, we multiply by
√
g(0), and integrate the above equations over a spatial

period. Using the definitions of the thermodynamic susceptibilities given in (2.10) we

obtain two conditions which can be written in matrix form as

iω[1]

(

T−1cµ ξ

ξ χ

)(

δT

δµ̄

)

= 0 . (4.10)
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Assuming that the matrix of susceptibilities is an invertible matrix, which is generically

the case, we deduce that ω[1] = 0. For later reference, notice that we do not assume here

that the matrix is positive definite as required for thermodynamical stability. Thus, at this

order in ε the full set of constraints (3.6)–(3.8) reduce to

∇iv
i
[1] = 0 ,

∇j

(

Z(0)
(

−i kjδµ̄+∇jw[1] + vj[1]a
(0)
t

))

= 0 ,

−2∇j∇(jv[1]i) +∇ip[1] − Z(0)a
(0)
t ∇iw[1] + vj[1]∇jφ

(0)∇iφ
(0)

+iki4π δT + Z(0)a
(0)
t ikiδµ̄ = 0 , (4.11)

which are now precisely the Stokes equations that are used in determining the DC conduc-

tivity given in (C.1), (C.2) provided that, as above, we identify the sources ζ̄i = −ikiδT/T

and Ēi = −ikiδµ̄. These can be uniquely solved for ŵ[1], p̂[1] and v[1] (provided that the

horizon does not have Killing vectors). Thus, after integrating over the horizon we can

deduce, in particular, that

4πT i

∮

√

g(0)v
i
[1] = T ᾱij

Hkjδµ̄+ κ̄ijHkjδT ,

i

∮

√

g(0)Z
(0)

(

−i kjδµ̄+∇jw[1] + vj[1]a
(0)
t

)

= σij
Hkjδµ̄+ αij

HkjδT , (4.12)

where σij
H , αij

H , ᾱij
H , κ̄ijH are the sub-matrices of the full thermoelectric horizon DC con-

ductivity (see (C.4)). When the DC conductivities of the dual field theory are finite, as

in the case of explicit breaking of translations, then these are in fact the same as the DC

conductivity of the dual field theory, which we will denote by σij , αij , ᾱij , κ̄ij , respectively.

For the time-reversal invariant backgrounds we are considering it will be useful to recall

that σ and κ̄ are symmetric matrices, while α = ᾱT .

We now examine the constraint equations at second order in ε. The scalar con-

straints (3.6) and (3.7) give

∇iv
i
[2]=

iω[2]

2

(

δT gij(0)
∂g

(0)
ij

∂T
+ δµ̄ gij(0)

∂g
(0)
ij

∂µ̄

)

− ikiv
i
[1] ,

∇j

(

Z(0)
(

i kjδµ̄[1] +∇jŵ[2] + gji(0)v[2]ja
(0)
t

))

= −ikj

(

Z(0)
(

−i kjδµ̄+∇jŵ[1] + gji(0)v[1]ja
(0)
t

))

− i∇j

(

Z(0)kjŵ[1]

)

+ iω[2]

(

1

2
Z(0)a

(0)
t gij(0)

∂g
(0)
ij

∂T
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂T
+ Z(0)∂a

(0)
t

∂T

)

δT

+ iω[2]

(

1

2
Z(0)a

(0)
t gij(0)

∂g
(0)
ij

∂µ̄
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂µ̄
+ Z(0)∂a

(0)
t

∂µ̄

)

δµ̄ . (4.13)

and we will not explicitly write down the vector equation (3.8). We remind the reader

that the constants δµ̄[1] and δT[1] have not been fixed yet and will be fixed by demanding
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existence of the solution at third order in the perturbative expansion, as discussed further

in appendix E. Furthermore, the zero modes δµ̄[2] and 4π δT[2] of the functions w[2] and

p[2] that we extracted according to (4.9) will only be fixed by demanding existence of the

solution at fourth order in the ε expansion.

Even without knowing the value of the constants δµ̄[1] and δT[1], existence of the

solution at second order will constrain the frequency ω[2] and the constants δµ̄ and δT .

Indeed, integrating the two equations (4.13) over a period we find that

iω[2]

(

T−1cµδT + ξ δµ̄
)

− T−1κ̄ijkikj δT − αijkikj δµ̄ = 0 ,

iω[2] (ξ δT + χ δµ̄)− αijkikj δT − σijkikj δµ̄ = 0 , (4.14)

where we used the fact that αijkikj = ᾱijkikj , for the backgrounds we are considering.

The algebraic system (4.14) is exactly the same as that considered in [10] (see also [13])

and we can immediately obtain the two eigenfrequencies iω±
[2] associated with the diffusion

modes. Defining

κ̄(k) ≡ κ̄ijkikj , α(k) ≡ αijkikj , σ(k) ≡ σijkikj , (4.15)

we obtain the generalised Einstein relation

iω+
[2] iω

−
[2] =

κ(k)

cρ

σ(k)

χ
,

iω+
[2] + iω−

[2] =
κ(k)

cρ
+

σ(k)

χ
+

T [χα(k)− ξ σ(k)]2

cρχ2σ(k)
, (4.16)

where cρ = cµ − Tξ2

χ was given in (2.11) and we have defined

κ(k) ≡ κ̄(k)− α2(k)T

σ(k)
. (4.17)

This is the universal result concerning the dispersion relations for the diffusive modes

associated with the conserved heat and electric currents for holographic lattices.

4.2 Comments

Recall that κ̄ij is the thermal DC conductivity for zero applied electric field. On the

other hand the thermal DC conductivity for zero electric current, κij , is given by κij =

κ̄ij − T (ᾱσ−1α)ij . Despite the notation, note that, in general, κ(k) 6= κijkikj .

The simplest dispersion relations occur for charge neutral background black holes with

vanishing gauge fields. In this case we have αij = ξ = 0 and hence κ̄ij = κij leading to the

simple Einstein relations8

iω = ε2
κijkikj

cµ
+ . . . , iω = ε2

σijkikj
χ

+ . . . . (4.18)

8In a charge neutral holographic setting, with translations explicitly broken using scalar fields as in [42],

the first diffusive mode in (4.18) was numerically constructed in [53].
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In the special case of translationally invariant black holes with vanishing gauge fields,9 the

electric DC conductivity of the dual field theory is still finite and there is a corresponding

charge diffusive mode as in (4.18). On the other hand the thermal DC conductivity is

infinite and there is no thermal diffusive mode.

To make some additional comments, we first recall some results concerning the DC

conductivity for perturbative holographic lattices for which translations are broken weakly.

Such lattices have a black hole horizon that is a perturbation about a flat horizon,

parametrised by a small number λ. In [2, 3] it was shown that the DC conductivity

has the expansion

κ̄ij = (L−1)ij4πsT +O(λ−1) , αij = ᾱij = (L−1)ij4πρ+O(λ−1) ,

σij = (L−1)ij
4πρ2

s
+O(λ−1) . (4.19)

where the matrix Lij is proportional to λ2 and depends on the leading order deviations of

the horizon from the translationally invariant configuration. An explicit expression for L in

terms of the spatially modulated horizon was given in [2, 3]. It was also shown in [2, 3] that

both the thermal DC conductivity at zero current flow, κij , and the electric conductivity at

zero heat current flow, σij
Q=0, appear at a higher order in the expansion. Explicitly, when

ρ 6= 0 we have

σij
Q=0 =

1

4π
sZ(0)gij(0)

∣

∣

∣

∣

λ=0

+O(λ) , Tκij =
s3T 2Z(0)gij(0)

4πρ2

∣

∣

∣

∣

∣

λ=0

+O(λ) . (4.20)

Notice, in particular, Tκij = s2T 2

ρ2
σij
Q=0 + O(λ). When ρ = 0 the expression for σij

Q=0 is

still valid but we can no longer calculate Tκij perturbatively as the leading order piece is

infinite.

Using the results (4.19) in (4.16) we obtain the dispersion relations of the two diffu-

sive modes:

iω+ =
ρ2χ

cρρ2χ+ T (ξρ− sχ)2
κijkikj +O(λ) ,

=
(sT )2

(sT )2χ− 2(sTρ)Tξ + ρ2Tcµ
σij
Q=0kikj +O(λ) ,

iω− =
4π(cρρ

2χ+ T (ξρ− sχ)2)

cρsχ2
(L−1)ijkikj +O(λ−1) . (4.21)

In particular, the first diffusive mode is of order λ0, but the second is of order λ−2 and

hence appears parametrically further down the imaginary axis (while, of course, still going

to the origin when ki → 0). If we now consider the translationally invariant case by taking

λ → 0, we find that we have one diffusive mode with a dispersion relation that satisfies an

Einstein relation in terms of the finite DC conductivity κij , or σij
Q=0 (which is also valid

9This is the setting where the holographic Einstein relation for electric charge diffusion was first discussed

in [8].
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when ρ = 0), as given in the first two lines of (4.21). Such a diffusive mode was discussed

in the context of hydrodynamics in [54].

We can also consider spontaneous breaking of translations with the addition of a small

explicit breaking, with dimensionless strength λ, as recently discussed for specific helical

lattices in [55]. For temperatures just below Tc one can develop a double expansion in

both λ and (1 − T/Tc)
1/2, with the exponent in the latter the expected behaviour for

standard mean field phase transitions. The matrix Lij in (4.19) will then also have have

a double expansion. For the case that λ ≫ (1 − T/Tc)
1/2 we can expand, schematically,

L−1 ∼ λ−2[a1 + . . . ], where a1 is a horizon quantity that can be calculated as in [2, 3] and

the neglected terms are a double expansion in (1 − T/Tc)
1/2/λ and λ. In particular, in

this limit we see that the DC conductivity is dominated by the explicit breaking terms, as

expected. Similarly, for λ ≪ (1−T/Tc)
1/2 we have L−1 ∼ (1−T/Tc)

−1[a2+ . . . ], where the

neglected terms are an expansion in λ/(1−T/Tc)
1/2 and (1−T/Tc)

1/2. This result explains

a feature of the DC conductivity that was found numerically in figure 9 of [55]. It is also

worth noting that in the case that λ ≪ (1 − T/Tc)
1/2 this drop in the DC conductivity,

combined with sum rules, implies that in the AC conductivity the spectral weight will

move from the Drude peak to mid frequencies, as seen in the example of [55]. For the case

of spontaneous breaking with a small explicit breaking there will, of course, still be two

diffusive modes with dispersion relations as in (4.21), and both can be expanded in terms

of λ and (1 − T/Tc)
1/2. Note that in [55], for a specific setting of pinned helical phases,

only the first diffusive mode in (4.21) was discussed.

Our final comment concerns instabilities of the background black hole solutions. In

particular, the dispersion relations for the diffusive modes given in (4.16) allow us to make

sharp statements concerning the relation between thermodynamic instability and dynami-

cal instability of the holographic lattice black hole solutions. In the simplest case, when the

gauge field is zero we know that when cµ or χ is negative then we have a thermodynamic

instability. But from (4.18) we immediately deduce that there is a quasinormal mode with

a pole in the upper half of the complex frequency plane and this leads to a dynamical

instability of the black hole solution.

Turning now to general black hole backgrounds with non-vanishing gauge-field, we can

write the equation for the diffusive modes in (4.14) as



iω[2]

(

1 0

0 1

)

−
(

χ Tξ

Tξ Tcµ

)−1(
σ(k) Tα(k)

Tα(k) T κ̄(k)

)





(

δµ̄

δT/T

)

= 0 . (4.22)

Since the thermoelectric horizon DC conductivity is a positive definite matrix, we see that

a negative eigenvalue in the susceptibility matrix appearing in (4.22), associated with a

thermodynamic instability, will again give rise to a quasi-normal mode in the upper half

complex frequency plane and, correspondingly, a dynamical instability for the black hole.
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5 Final comments

In this paper we showed how the quasi-normal modes associated with heat and charge

diffusion can be constructed for holographic lattices in a long-wavelength, perturbative

expansion. In particular the construction allowed us to derive the dispersion relation of

the diffusive modes in terms of horizon DC conductivities, obtained from solutions to a

Stokes flow on the horizon, and static susceptibilities. This constitutes a derivation of a

generalised Einstein relation.

We considered a class of gravitational theories with a specific matter content, but it is

clear that the main results should apply to more general theories, including the possibility

of having more gauge fields in the bulk and hence additional conserved charges in the

dual field theory. We focussed on studying static geometries for simplicity, but it should

be possible to relax this condition utilising the holographic understanding of transport

currents presented in [4, 5]. Similarly, the extension to higher derivative theories of gravity

should also be possible using the results in [5].

The derivation of the dispersion relations started with the identification of the quasi-

normal mode at ω = ki = 0, namely (4.3). This was possible because this diffusion mode is

associated with conserved quantities. This was then used to perturbatively construct the

quasinormal modes in a neighbourhood of ω = ki = 0. In particular, the analysis of the

constraint equations on the stretched horizon was sufficient to obtain the dispersion rela-

tion for the quasinormal mode. It is clear that this procedure will work for the quasinormal

modes associated with any conserved quantity.10

There has been some interesting recent discussion of the Goldstone modes that arise

from spontaneously broken translation invariance, with an emphasis on the pinning phe-

nomenon that occurs after adding in a small explicit breaking of translations, both within

holography [55–57] and from a hydrodynamic point of view [58–60]. In the future, we

plan to report on how the methods developed in this paper can be extended to study these

modes as well as the Goldstone modes arising in spontaneously broken internal symmetries.
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A Residual gauge invariance

The time dependent perturbation that we introduced in section 3 satisfied ingoing boundary

conditions at the horizon summarised in (3.2)–(3.4). It is illuminating to note that there are

some residual gauge and coordinate transformations which near the horizon are given by

δΛ = e−iωvEF

(

δλ(0)(xi) + r δλ(1)(xi)+,O(r2)
)

,

t → t+ e−iωvEF

(

δT (0)(xj) +O(r)
)

,

r → r + e−iωvEF

(

rδR(0)(xj) +O(r2)
)

,

xi → xi + e−iωvEF

(

δξ(0)i(xj) + r δξ(1)i(xj) +O(r2)
)

. (A.1)

These are consistent with (3.2), (3.3) and induce the following transformations

δg
(0)
tt → δg

(0)
tt +2iωδT (0)− δR(0), δg(0)rr → δg(0)rr +

(

1− 2iω

4πT

)

δR(0), (A.2)

δg
(0)
ij → δg

(0)
ij + 2∇(iδξ

(0)
j) , δg

(0)
tr → δg

(0)
tr + iωδT (0) − iω

4πT
δR(0) ,

δg
(0)
ti → δg

(0)
ti − iωδξ

(0)
i , δg

(1)
ti → δg

(1)
ti − 4πT∂iδT

(0) − iω(g
(1)
ij δξ(0)j + δξ

(1)
i ) ,

δg
(0)
ri → δg

(0)
ri − iωδξ

(0)
i , δg

(1)
ri → δg

(1)
ri +∂iδR

(0)− iω(g
(1)
ij δξ(0)j+δξ

(1)
i )+ 4πTδξ

(1)
i ,

as well as

δa
(0)
t → δa

(0)
t − iωδλ(0), δa

(1)
t → δa

(1)
t − iωδλ(1)− iωa

(0)
t δT (0)+ a

(0)
t δR(0)+ (∂ia

(0)
t )δξ(0)i,

δa(0)r → δa(0)r − iωδλ(0), δa(1)r → δa(1)r + (4πT − iω)δλ(1) − iωa
(0)
t δT (0) ,

δa
(0)
i → δa

(0)
i + ∂iδλ

(0), δφ(0) → δφ(0) + (∂iφ
(0))δξ(0)i . (A.3)

One can check that the constraint equations given in (3.6)–(3.8) are covariant with respect

to these transformations.

Notice that the combination δa
(1)
t − iω

4πT (δa
(1)
t − δa

(1)
r ), appearing in the horizon con-

straint equation (3.7), is invariant under the gauge transformations parametrised by δλ(1).

Similarly, the combination δg
(1)
ti − i ω

4πT (δg
(1)
ti − δg

(1)
ri ), appearing in (3.8), is invariant under

the gauge transformations parametrised by δξ
(1)
i . If iω 6= 4πT we can choose δλ(1) to set

δa
(1)
r = 0 and δξ

(1)
i to set δg

(1)
ri = 0, but we have not found a need to do this, nor fix any

of the above gauge invariances.11

B Evaluating the constraints on the horizon

B.1 Constraints in the radial decomposition

We begin by briefly summarising the constraint equations that appear in a Hamiltonian

decomposition of the equations of motion using a radial foliation, following the presentation

11We comment that a brief discussion of performing AC and DC calculations in a radial gauge, for

Q-lattice constructions, appear in section 3 of [41] and in footnote 10 of [61].
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in appendix A of [3]. We introduce the normal vector nµ, satisfying nµnµ = 1. The D-

dimensional metric gµν induces a (D − 1)-dimensional Lorentzian metric on the slices of

constant r via hµν = gµν−nµnν . The lapse and shift vectors are given by nµ = N(dr)µ and

Nµ = hµνr
µ, respectively, where rµ = (∂r)

µ. The gauge-field components are decomposed

via bµ = hµ
νAν , Φ = −NnµAµ and we define fµν = ∂µbν − ∂νbµ.

The momenta conjugate to hµν , bµ and φ are given by

πµν = −
√
−h (Kµν −K hµν) ,

πµ =
√
−hZFµρnρ ,

πφ = −
√
−hnν∂νφ , (B.1)

respectively, whereKµν = 1
2Lnhµν is the extrinsic curvature. The Hamiltonian, momentum

and Gauss law constraints can then be written in the form H = Hν = C = 0 where

H =− (−h)−1/2

(

πµνπ
µν − 1

D − 2
π2

)

−
√
−h

(

(D−1)R− V
)

− 1

2
(−h)−1/2 Z−1hµν π

µ πν +
1

4

√
−hZfµν fρσ h

µρ hνσ

− 1

2
(−h)−1/2π2

φ +
1

2

√
−hhρσ∂ρφ∂σφ ,

Hν =− 2
√
−hDµ

(

(−h)−1/2πµν
)

+ hνσfσρπ
ρ

− hνσbσ
√
−hDρ

(

(−h)−1/2 πρ
)

+ hνσ∂σφπφ ,

C =
√
−hDµ

(

(−h)−1/2 πµ
)

, (B.2)

where π = πµ
µ and Dµ is the covariant derivative with respect to hµν .

The full equations of motion are the above constraint equations combined with the

radial equations of motion. The latter consist of expressions for Lrhµν , Lrbµ and Lrφ as

well as Lrπ
µν ,Lrπ

µ,Lrπφ and explicit expressions can be found in appendix A of [3]. This

leads to equations that have second order radial derivatives for hµν , bµ and φ.

B.2 Evaluating constraints for the perturbation

Consider a general perturbation of the background black hole solution (2.2) of the form

δgµν , δaµ, δφ with all quantities functions of (t, r, xi). On the surfaces of constant r this

gives rise to a perturbed normal vector with components given by

ni = −(U/F )1/2 gijd δgrj , nt = G−1F−1/2U−1/2δgtr,

nr = (U/F )1/2
(

1− U

2F
δgrr

)

. (B.3)

Furthermore, the corresponding shift and lapse functions are given by

N j = gijd δgri, N t = − 1

GU
δgrt ,

N = (F/U)1/2
(

1 +
1

2

U

F
δgrr

)

. (B.4)
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The components of the extrinsic curvature Kµν take the form

Kt
t =

1

2
G−1F−1/2U−1/2

(

∂r (GU)− 1

2

U

F
∂r (GU) δgrr

)

+
1

2
G−2F−1/2U−3/2 ∂r (GU) δgtt

− 1

2
G−1F−1/2U−1/2

(

∂rδgtt + ∂j(GU)N j
)

+G−1F−1/2U−1/2 ∂tδgtr ,

Ki
t =− 1

2
GF−1/2U3/2 gijd

(

−∂r

(

1

GU
δgtj

)

+ ∂j

(

1

GU
δgrt

)

+
1

GU
∂t δgrj

)

,

Kt
i =

1

2
(U/F )1/2

(

− 1

GU
∂rδgti +

δgtj
GU

gkjd ∂rgdik + ∂i

(

1

GU
δgrt

)

+
1

GU
∂tδgri

)

,

Ki
j =

1

2
(U/F )1/2

(

gikd ∂rgdkj −
U

2F
gikd ∂rgdkjδgrr + gikd ∂rδgkj − gild g

km
d ∂rgdkjδglm

)

− 1

2
(U/F )1/2

(

∇iNj +∇jN
i
)

. (B.5)

We now turn to the specific perturbation discussed in section 3. We want to evaluate

the constraints at the horizon by employing the expansions given in (3.2)–(3.4). Expanding

the extrinsic curvature near the horizon we obtain

Kt
t → e−iωvEF

1

2

(4πT )1/2

r1/2

(

eiωvEF − 1

2
δg(0)rr − iω

4πT
δg(0)rr

)

, (B.6)

Ki
t → e−iωvEF

1

2

(4πT )1/2

r1/2
vi ,

Kt
i → e−iωvEF

1

2

1

(4πT )1/2
1

r1/2

(

−δg
(1)
ti + ∂iδg

(0)
tr − g

(1)
il vl +

i ω

4πT
(δg

(1)
ti − δg

(1)
ri )

)

,

Ki
j → e−iωvEF

1

2

1

(4πT )1/2
1

r1/2

(

∇ivj +∇jv
i − iω gik(0)δg

(0)
kj

)

,

K → e−iωvEF
1

2

(4πT )1/2

r1/2

(

eiωvEF − 1

2
δg(0)rr +

2

4πT
∇iv

i − iω

4πT

(

δg(0)rr + gij(0)δg
(0)
ij

)

)

.

In the above we have only kept background terms at leading order O(r−1/2) since these are

the only ones that will contribute in our calculation. Furthermore, the covariant derivative

is with respect to the metric g
(0)
ij , which is also used to raise and lower indices.

We next consider the following quantity which appears in the momentum constraint

Wν =Dµ

(

(−h)−1/2πµ
ν

)

= −DµK
µ
ν +DνK ,

=− (−h)−1/2 ∂µ

(√
−hKµ

ν

)

+
1

2
∂νhκλK

κλ + ∂νK . (B.7)

Expanding at the horizon we find the following individual components

Wt → e−iωvEF
(4πT )1/2

r1/2

(

−1

2
∇iv

i +
iω

4
gij(0)δg

(0)
ij − iω

8πT

(

2∇iv
i − iωgij(0)δg

(0)
ij

)

)

,

Wi →
1

2
e−iωvEF

1

(4πT )1/2
1

r1/2

[

− 2∇j∇(jvi) +∇ip
′

+ iω

(

−δg
(1)
ti + ∂iδg

(0)
tr − g

(1)
il vl +

i ω

4πT
(δg

(1)
ti − δg

(1)
ri ) +∇kδg

(0)
ki

)]

, (B.8)
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with

p′ = −2πT (δg
(0)
tt + δg(0)rr ) + 2∇jv

j + iω
(

δg
(0)
tt − 2δg

(0)
tr − gij(0)δg

(0)
ij

)

. (B.9)

Another quantity that enters the constraints is the momentum of the scalar field. At

leading order in r we have

πφ → −√

g(0) e
−iωvEF

(

vi∂iφ
(0) − iωδφ(0)

)

. (B.10)

We next turn to the gauge field. We find

Ftr→ −a
(0)
t + e−iωvEF

(

−δa
(1)
t +

iω

4πT

(

δa
(1)
t − δa(1)r

)

)

,

Fir→ e−iωvEF
1

4πTr

(

∂iw + iωδa
(0)
i

)

+ e−iωvEF
1

4πT

(

∂iδa
(1)
r − 4πTδa

(1)
i + iωδa

(1)
i

)

,

Fti→ −e−iωvEF

(

∂iw + iωδa
(0)
i

)

− r
(

∂ia
(0)
t + e−iωvEF ∂iδa

(1)
t + iω e−iωvEF δa

(1)
i

)

,

Fij→ 2e−iωvEF ∂[iδa
(0)
j] ,

F tr→ a
(0)
t + e−iωvEF

(

δa
(1)
t − iω

4πT

(

δa
(1)
t − δa(1)r

)

+
(

δg
(0)
tt − δg(0)rr

)

a
(0)
t +

1

4πT
gij(0)vj∂ia

(0)
t

)

,

F ir→ e−iωvEF gij(0)

(

∂jw + iωδa
(0)
j + vja

(0)
t

)

. (B.11)

and thus the associated momentum has the expansion

πi → √

g(0)Z
(0)e−iωvEF gij(0)

(

∂jw + iωδa
(0)
j + vja

(0)
t

)

,

πt → √

g(0)Z
(0)e−iωvEF

(

δa
(1)
t − iω

4πT

(

δa
(1)
t − δa(1)r

)

+
1

4πT
gij(0)vj∂ia

(0)
t

)

+
√

g(0)Z
(0)e−iωvEF a

(0)
t

(

eiωvEF +
1

2

(

δg
(0)
tt − δg(0)rr + gij(0)δg

(0)
ij

)

)

+
√

g(0) ∂φZ
(0)e−iωvEF a

(0)
t δφ(0) . (B.12)

We can now evaluate the constraints at the horizon. Expanding the Gauss law con-

straint C = ∂µπ
µ = 0 gives

∇i

(

Z(0)
(

∇iw + iωgij(0)δa
(0)
j + via

(0)
t

))

= iωZ(0) 1

2
a
(0)
t

(

δg
(0)
tt − δg(0)rr + gij(0)δg

(0)
ij

)

+ iωZ(0)

(

δa
(1)
t − iω

4πT

(

δa
(1)
t − δa(1)r

)

+
1

4πT
vi∂ia

(0)
t

)

+ iω ∂φZ
(0)a

(0)
t δφ(0) . (B.13)

To expand the momentum constraints at the horizon, Hν = 0, we first note that

ftµπ
µ = Ftiπ

i → 0 ,

fiµπ
µ = Fitπ

t + Fijπ
j → √

g(0)Z
(0)e−iωvEF a

(0)
t

(

∂iw + iωδa
(0)
i

)

, (B.14)

For the t component, Ht = 0, we then find

(

2∇iv
i − iωgij(0)δg

(0)
ij

)

(

1 +
iω

2πT

)

= 0 . (B.15)
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Similarly for the i component Hi = 0 we get

− 2∇j∇(jvi) +∇ip
′ + iω

(

−δg
(1)
ti + ∂iδg

(0)
tr − g

(1)
il vl +

i ω

4πT
(δg

(1)
ti − δg

(1)
ri ) +∇kδg

(0)
ki

)

− Z(0)a
(0)
t

(

∇iw + iωδa
(0)
i

)

+∇iφ
(0)

(

vj∇jφ
(0) − iωδφ(0)

)

= 0 . (B.16)

Finally, we consider the Hamiltonian constraint (−h)−1/2H = 0. The third and fifth terms

in (B.2) vanish at linearised order. The second and the sixth term is of order O(r0). We

also compute

fri → − iωe−iωvEF

4πTr
δa

(0)
i +O(r0) ,

frt → − iωe−iωvEF

4πTr
w +O(r0) ,

fti → Fti ,

fij → Fij , (B.17)

and so the fourth term is of order O(r0) as well. Finally, the first term turns out to be of

order O(r−1), leading to the constraint

2∇iv
i − iωgij(0)δg

(0)
ij = 0 , (B.18)

which is consistent with (B.15). Finally, after using (3.4) and (B.18) in (B.16), we find

that the latter takes the form

iω

(

−δg
(1)
ti − g

(1)
il vl + ∂i(δg

(0)
tr − δg(0)rr ) +

i ω

4πT
(δg

(1)
ti − δg

(1)
ri ) +∇kδg

(0)
ki

)

(B.19)

−2∇j∇(jvi) +∇ip− Z(0)a
(0)
t

(

∇iw + iωδa
(0)
i

)

+∇iφ
(0)

(

vj∇jφ
(0) − iωδφ(0)

)

= 0 ,

with

p = −2πT (δg
(0)
tt + δg(0)rr ) . (B.20)

Thus, in summary, equations (B.13), (B.18) and (B.19) are the constraint equations

for the perturbations on the horizon.

C Calculating the DC conductivity

We briefly summarise the results of [2, 3] which allows us to obtain a horizon DC conduc-

tivity by solving a system of Stokes equations on the horizon. When the DC conductivity

of the dual field theory is finite, as in the case of explicit breaking of translations, it is

identical to the horizon DC conductivity.

By analysing a perturbation of the background black hole solutions (2.2) that, crucially,

incorporate DC sources, it was shown that one is led to the following system of Stokes

equations on the black hole horizon

∂iQ
i
(0) = 0 , ∂iJ

i
(0) = 0 ,

−2∇i∇(i v j) − Z(0)a
(0)
t ∇jw +∇jφ

(0)∇iφ
(0)vi +∇j p = 4πT ζ̄j + Z(0)a

(0)
t Ēj , (C.1)
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where

Qi
(0) = 4πT

√

g(0)v
j ,

J i
(0) =

√

g(0)g
ij
(0)Z

(0)
(

∂jw + a
(0)
t vj + Ēj

)

. (C.2)

Here, the vectors Ēi,ζ̄i, which are taken to be constant, parametrise the DC electric source

and thermal gradient of the dual field theory, respectively.

After solving these Stokes equations we obtain the local currents Qi
(0), J i

(0) on the

horizon as functions of the DC sources Ēi, ζ̄i. By defining the current flux densities at the

horizon via

J̄ i
(0) =

∫

J i
(0) , Q̄i

(0) =

∫

Qi
(0) , (C.3)

we can then define the horizon thermoelectric DC conductivity matrix via

(

J̄ i
(0)

Q̄i
(0)

)

=

(

σij
H Tαij

H

T ᾱij
H T κ̄ijH

)(

Ēj

ζ̄j

)

. (C.4)

For the time reversal invariant backgrounds we are considering in this paper we have σH ,

κ̄H are symmetric and αH = ᾱT
H .

Furthermore, as explained in [2, 3], the current flux densities at the horizon, defined by

J̄ i
(0) =

∫

J i
(0) , Q̄i

(0) =

∫

Qi
(0) , (C.5)

are identical to the current fluxes J̄ i, Q̄i of the dual field theory. Thus, for holographic

lattices we have the DC conductivities of the dual field theory, σ, α, ᾱ and κ̄, are identical

to the horizon conductivities σH , αH , ᾱH and κ̄H , respectively.

It is helpful for the analysis of this paper to recall from [2, 3] that as long as the horizon

does not have any Killing vectors, there is a unique solution to the Stokes equations (C.1),

up to undetermined constants in w and p, which do not inhibit one solving for the DC

conductivity since they do not enter the expressions for the currents.

Finally, we emphasise that the horizon DC conductivity given in (C.4) should not

be confused with another notion of horizon conductivity that arises from the constitutive

relations for the auxiliary fluid on the horizon. For example, in the expression for the

electric current on the horizon given in (C.2), one can call
√
g(0)g

ij
(0)Z

(0) a local electric

conductivity,12 but this is, in general quite distinct from σij
H as defined in (C.4).

D Counting functions of integration

The quasinormal diffusion modes are solutions to the bulk equations of motion satisfying

ingoing boundary conditions at the black hole horizon and have vanishing source terms at

the AdS boundary. In the text we focused on the constraint equations given in section 3.1

12To avoid confusion, we note that in [2] the expression
√
g(0)g

ij
(0)Z

(0) was denoted by σ
ij
H , a notation

which we do not use here.
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as this was sufficient to extract the diffusion relation for the modes. Here, and in the

next appendix, we outline how, with the time dependence given in (3.1), we have specified

enough data13 at the horizon and at the AdS boundary in order to obtain a solution to the

full equations of motion.

We begin with fluctuations of the scalar field which satisfies a second order equation

in the radial variable. At the AdS boundary, r → ∞, we have two functions of integration,

depending on the spatial coordinates xi, associated with the source terms and expectation

value of the scalar operator in the dual CFT. At the black hole horizon we demand that

the perturbation is regular and this leaves us with a single function of integration δφ(0)(x).

By setting the source terms at the AdS boundary to zero we can develop a solution in the

bulk using the remaining function at the AdS boundary and then match with the solution

developed from the horizon using δφ(0)(x) which leads, generically, to a unique solution

everywhere.

We next turn to fluctuations of the gauge field. The radial component δar serves

as a Lagrange multiplier and is data which, a priori, we are free to specify. This leaves

D − 1 functions δai, δat, each of which satisfies a second order differential equation in the

radial variable, and there is also the Gauss constraint, C = 0 (see (B.2)), that we impose

infinitesimally close to the horizon, given in (3.7). At the AdS boundary we set the D − 1

functions of integration that are associated with possible source terms to zero, implying

that we need to identify (D− 1) functions from the horizon expansion in order to solve the

second order equations of motion, via a matching argument. With the ingoing boundary

conditions (3.3), (3.4) at the horizon, we have the functions δa
(0)
t and, when ω 6= 0, δa

(0)
i ,

δa
(1)
t all appearing in the constraint equation. If we pick δa

(0)
t to be solved by the constraint

equation then we are left with precisely D − 1 functions δa
(0)
i and δa

(1)
t which are fixed

by the matching. It is worth noting that in our procedure, for the leading term of the

Lagrange multiplier we must set δa
(0)
r = w (see (3.4)), which we are free to do. In addition,

we note that δa
(1)
r , the sub-leading term of the Lagrange multiplier, also appears in (3.7)

and can be chosen freely; in particular δa
(1)
r does not affect the in-falling conditions we

have specified in (3.3), (3.4).

Finally, we discuss the metric fluctuations, which run along similar lines to the gauge

field. There are D(D + 1)/2 metric functions δgµν out of which the D functions δgrµ
serve as Lagrange multipliers. The remaining D(D − 1)/2 functions, δgtt, δgti and δgij ,

each satisfy differential equations which are second order in the radial direction. There are

also D constraint equations, the Hamiltonian and momentum constraints, H = Hν = 0

(see (B.2)), that we have chosen to impose on a surface infinitesimally close to the horizon.

Importantly, however, the Hamiltonian constraint is redundant close to the horizon leaving

D−1 independent constraint equations to satisfy near the horizon, given in (3.6) and (3.8).

There are now two equivalent ways to proceed, which we discuss in turn.

The first way is to solve the second order radial equations for δgtt, δgti and δgij .

Now with the ingoing boundary conditions (3.2), (3.4) these equations are associated with

13We note that the arguments will need to be modified for models in which the holographic lattices

have additional Goldstone modes due, for example, to the breaking of an internal abelian symmetry. The

presence of moduli in the bulk solution, arising from a global symmetry in the bulk, for example, will also

lead to additional modifications.
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D(D− 1)/2+ (D− 2) functions of integration on the horizon, δg
(0)
tt , δg

(0)
ij , δg

(1)
ti , and vi, all

of which appear in the constraint equations when ω 6= 0 and we are ignoring the functions

associated with the Lagrange multipliers appearing at the horizon for the moment. Close

to the AdS boundary, where we fix the source terms to zero, the second order equations

give a set of D(D−1)/2 of normalisable modes that will be fixed along with the D(D−1)/2

functions δg
(0)
tt , δg

(0)
ij , δg

(1)
ti upon matching in the bulk. The remaining D − 1 functions

on the horizon, vi and p, are then used to solve the momentum constraints Hν = 0. The

issue that remains open in this approach is the Hamiltonian constraint. One can show that

in an expansion close to the horizon this is satisfied order by order in an analytic radial

expansion provided that the remaining constraint equations and second order equations

are satisfied, along with imposing the boundary conditions (3.2), (3.3) and (3.4). Away

from the horizon, this is guaranteed by the fact that LrH = 0.

The second way is to solve the Hamiltonian constraint equation in the bulk instead of

the second order equation for δgtt. Indeed, one of the second order radial equations, for

example the one for δgtt, is implied by the Hamiltonian constraint. This is because the

Hamiltonian constraint contains no derivatives of the momentum and hence only ∂rδgtt
appears, along with second order spatial derivatives with respect to xi. Thus, instead

of the D(D − 1)/2 second order equations in the radial direction, we just need to solve

D(D − 1)/2 − 1 second order equations and one first order equation. Setting the source

terms to zero in these equations at the AdS boundary, we conclude that we need to specify

D(D − 1)/2 − 1 + 1 free functions at the horizon after imposing the ingoing boundary

conditions and solving the D − 1 constraint equations (3.6), (3.8). If we again use the

D− 1 constraint equations to solve for vi, p, this will leave precisely D(D− 1)/2 functions

δg
(0)
ij , δg

(0)
tt , δg

(1)
ti to be fixed by the matching.

Concerning the Lagrange multipliers, we first note that in the above procedure δg
(0)
rt ≡

−p/(4πT ) will be fixed. Furthermore, we must set δg
(0)
ri = −vi, δg

(0)
rr = −p/(2πT ) − δg

(0)
tt

(see (3.4)). In addition, we also note that the sub-leading term δg
(1)
ri appears in (3.8) and

can be chosen freely as part of fixing the Lagrange multipliers. Notice that, similarly to

the case of the radial component of the gauge field δa
(1)
r , this does not spoil the in-falling

conditions we have specified in (3.2), (3.4).

E Fixing the zero modes of the ε expansion

We now examine the perturbation at third order in ε. It is useful to split all the bulk fields

Φ[i] according to

Φ[i] = Φ̂[i] +
∂Φb

∂T
δT[i] +

∂Φb

∂µ̄
δµ̄[i] . (E.1)

Here the second and third terms are the derivatives of the background solution with respect

to the temperature and the averaged chemical potential, in the gauge described below (4.1);

in particular at the horizon the derivatives are explicitly given in eq. (4.3). The functions

Φ̂[i] solve the perturbative in ε radial equations of motion with boundary conditions on

the horizon set by ŵ[i], p̂[i] and vj[i] which are obtained from the perturbatively expanded
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horizon constraint equations and we recall that ŵ[i], p̂[i] do not have a zero mode (see (4.9)).

We stress that this doesn’t necessarily mean that the bulk functions Φ̂ do not have a zero

mode. However, when Φ is the field δat, for example, our boundary conditions impose that
ˆ(δat)[i] is equal to ŵ[i] on the horizon and that function does not have a zero mode.

In this notation, at third order, the scalar constraint equations (3.6), (3.7) read

∇iv
i
[3] =

iω[3]

2

(

gij(0)
∂g

(0)
ij

∂T
δT + gij(0)

∂g
(0)
ij

∂µ̄
δµ̄

)

+
iω[2]

2

(

gij(0)
∂g

(0)
ij

∂T
δT[1] + gij(0)

∂g
(0)
ij

∂µ̄
δµ̄[1]

)

+
iω[2]

2
gij(0)δĝ

(0)
[1]ij − ikiv

i
[2] ,

∇j

(

Z(0)
(

i kjδµ̄[2] +∇jw[3] + vj[3]a
(0)
t

))

=

−∇j

(

Z(0)
(

i kjŵ[2] + iω[2]g
jk
(0)δâ

(0)
[1]k

))

− ikj

(

Z(0)
(

ikj(δµ̄[1] + ŵ[1]) +∇jŵ[2] + vj[2]a
(0)
t

))

+ iω[3]

(

1

2
Z(0)a

(0)
t gij(0)

∂g
(0)
ij

∂T
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂T
+ Z(0)∂a

(0)
t

∂T

)

δT

+ iω[3]

(

1

2
Z(0)a

(0)
t gij(0)

∂g
(0)
ij

∂µ̄
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂µ̄
+ Z(0)∂a

(0)
t

∂µ̄

)

δµ̄

+ iω[2]

(

1

2
Z(0)a

(0)
t gij(0)

∂g
(0)
ij

∂T
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂T
+ Z(0)∂a

(0)
t

∂T

)

δT[1]

+ iω[2]

(

1

2
Z(0)a

(0)
t gij(0)

∂g
(0)
ij

∂µ̄
+ ∂φZ

(0)a
(0)
t

∂φ(0)

∂µ̄
+ Z(0)∂a

(0)
t

∂µ̄

)

δµ̄[1]

+ iω[2] Z
(0) 1

2
a
(0)
t

(

δĝ
(0)
[1]tt − δĝ

(0)
[1]rr + gij(0)δĝ

(0)
[1]ij

)

+ iω[2] Z
(0)

(

δâ
(1)
[1]t +

1

4πT
vi[1]∂ia

(0)
t

)

+ iω[2] ∂φZ
(0)a

(0)
t δφ̂

(0)
[1] , (E.2)

and we recall ω[1] = 0. We will not explicitly write out the vector constraint equation (3.8)

at this order, which is rather long, and in fact won’t play a role in the following discussion.

We now want to examine the global constraints implied by the requirement that the periodic

functions vi[3], ŵ[3] and p̂[3] exist. After integrating the two equations (E.2) over space we

obtain an inhomogeneous system of algebraic equations involving the constants δT[1], δµ̂[1],

which are, so far, undetermined, as well as ω[3]. As we will now discuss, the parts of

this system that are not homogeneous in these variables will involve integrals of functions

which are fixed at first order in perturbation theory, as well as ω[2] which was already

fixed in the main text, following (4.14). As we will see, it is important to identify the

implicit dependence of these two equations on δT[1] and δµ̄[1] as well as the manifest explicit

dependence.

After solving the leading order constraint equations as well as the radial equations, we

know that ŵ[1], p̂[1],v
i
[1] and indeed all the first order functions Φ̂[1] are proportional to the

constants δT and δµ. Furthermore, the constants δT and δµ are not independent of each

other: from (4.14)–(4.16), the existence of the perturbation at second order imposes that
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for each of the two diffusive modes we must have

(

δT±

δµ̄±

)

= δhV± , (E.3)

where δh is a constant, the vector V± belongs to the kernel of the matrix

M± =

(

T−1
(

i ω±
[2] cµ − κ̄(k)

)

i ω±
[2] ξ − α(k)

i ω±
[2] ξ − α(k) i ω±

[2] χ− σ(k)

)

, (E.4)

and ω±
[2] is given in (4.16). It is also convenient to introduce the vector V

⊥
± which is

orthogonal to V±. Then there is some constants δh
||
[1] and δh⊥[1] such that we can write

(

δT[1]

δµ̄[1]

)

= δh
||
[1]V± + δh⊥[1]V

⊥
± . (E.5)

We stress here that the component δh
||
[1] is redundant and we do not expect it to be fixed

by the equations of motion. This follows from the fact we are examining a linearised

perturbation and we should be able to freely choose δh
||
[1] by scaling the whole solution by

a function of ε. Multiplying the whole perturbation by e.g. 1 + α ε would effectively shift

δh
||
[1] → δh

||
[1] + α δh. As we will see, the constant δh

||
[1] does indeed drop out from the two

algebraic equations that we obtain by integrating over (E.2).

Using this notation, for the first order functions Φ̂[1], which just depend on δT ,δµ we

can write

Φ̂[1] = Φ̂[1][0] δh . (E.6)

For the second order functions Φ̂[2] the situation is more involved and we have

Φ̂[2] = Φ̂[2][0] δh+ Φ̂[2]T δT[1] + Φ̂[2]µ δµ̄[1] ,

= Φ̂[2][0] δh+ Φ̂[2][1] δh
||
[1] + Φ̂⊥

[2][1] δh
⊥
[1] . (E.7)

In particular

ŵ[2] = ŵ[2][0]δh+ ŵ[2]T δT[1] + ŵ[2]µ δµ̄[1] ,

p̂[2] = p̂[2][0]δh+ p̂[2]T δT[1] + p̂[2]µ δµ̄[1] ,

vi[2] = vi[2][0]δh+ vi[2]T δT[1] + vi[2]µ δµ̄[1] . (E.8)

The parts of the solutions of these horizon quantities that are proportional to δh can

be found from the constraints (4.13) after setting δT[1] and δµ̄[1] equal to zero. The key

observation, now, is that in the constraint equations at second order (i.e. (4.13) as well

as the vector constraint equation), the pieces in (E.8) proportional to δT[1] and δµ̄[1] are

precisely the same equations that we have in the DC calculation outlined in appendix C
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with Ei = −i ki δµ̄[1] and ζi = −i ki δT[1]/T . We can therefore write

4πT i

∮

√

g(0)v
i
[2]T = κ̄ijHkj , 4πT i

∮

√

g(0)v
i
[2]µ = T ᾱij

Hkj ,

i

∮

√

g(0)Z
(0)

(

−i ki +∇iŵ[2]µ + vi[2]µa
(0)
t

)

= σij
Hkj ,

i

∮

√

g(0)Z
(0)

(

∇iŵ[2]T + vi[2]Ta
(0)
t

)

= αij
Hkj . (E.9)

With the ingredients assembled above, we now integrate equations (E.2) and find that

we can write them in the form

i ω[3] SV±δh+M±

(

V± δh
||
[1] + V

⊥
± δh⊥[1]

)

+W δh = 0 ,

⇒ i ω[3] SV±δh+M±V
⊥
± δh⊥[1] +W δh = 0 , (E.10)

where we have defined the matrix of susceptibilities

S =

(

T−1cµ ξ

ξ χ

)

. (E.11)

The vector Wδh is defined through the integrals of the functions that appear in (E.2) with

index [1] and also through the vi[2][0] part of the horizon fluid velocity, both of which are

proportional to δh. Equation (E.10) now fixes both ω[3] as a function of ki and δh⊥[1] as a

function of δh. In particular, this shows how the zero modes of δT[1], δµ̄[1] are fixed at this

order of perturbation theory.

It is also clear from the above analysis, that a similar structure will repeat itself at

higher orders in the perturbative expansion, fixing the zero modes of δT[i], δµ̄[i] for i > 1.

In particular, in the expression (E.1) we will have Φ̂[i] depending on δT[i−1] and δµ̄[i−1] in

an analogous way.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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