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1 Introduction

It is widely assumed that our understanding of gravity according to Einstein, together

with effective local quantum field theories give an accurate description of IR physics. On

the other-hand, many recent insights within the fields of holography and entropic gravity

continue to corroborate the notion that spacetime and the laws of gravity should emerge

from a UV-complete theory of quantum gravity [3–9]. It has become clear, particularly in

the context of AdS/CFT, that the emergence of the known laws of gravity is intimately

connected with an entanglement area-law [12–17]. Conversely, deviations from the area-law

entanglement could lead to violations of gravitational physics.

That there could be novel physical ramifications of high-energy physics upon the laws

that govern arbitrarily-large scales might seem very surprising, but just such a connection

was recently proposed by E. Verlinde in the recent work [1]. This recent work offers a novel

hypothesis for the relation between the de Sitter entropy associated with the cosmological

horizon, in terms of the dark energy, and its response due to the addition of matter. It is

argued that the entropy carried by the dark energy obeys a volume-law, and that adding

matter to a region of space generates competition between the volume-law and the area-law

entropy associated with the matter. It is shown that there is a length-scale, which is related

to the mass and the curvature scale, where the volume-law for the dark energy overwhelms

the area-law scaling of the matter entropy. This leads to a violation of the holographic

principle above this length-scale. It is this key role played by the violation of holography,

at sufficiently large length-scales that is highlighted in the present work.
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In [1], it was shown that the interplay between the de Sitter entropy, carried by the

dark energy, and its local reduction due to the addition of a mass M , pertains to the

following criteria,
M

A(R)
≶

a0

8πG
, (1.1)

where a0 = c2

L is the MOND acceleration scale, L is the Hubble length and A(R) is the area

of a sphere with radius R. This entropic condition coincides exactly with the empirical

criteria for the scale upon which the phenomena attributed to dark matter become manifest

in galactic rotation curves. This empirical observation is then given physical motivation

by Verlinde’s new hypothesis. Furthermore, it is shown that one can reproduce many

key empirical findings in cosmology, such as Milgrom’s fitting formula of MOND and the

baryonic Tully-Fisher relation within this formalism [18, 19]. There is also strong agreement

between this framework and weak-lensing observations [20].

The paper [1] has been criticised on the basis of apparent inconsistencies in terms of

associating an effective elastic description to the response governed by the removal (by

the addition of matter) of a certain volume of the dark energy medium [21, 22]. Several of

these features have since been addressed in the recent paper [22], where a covariant proposal

for the effective elastic response of the dark energy was considered, and the roles of the

identifications between gravitational and elastic variables were clarified. Since the elastic

description is intended to give an effective description, its negation would not necessarily

rule out the underlying postulates of the emergent gravity framework. In the present work

we make contact with the key results of [1], without using an effective elastic description.

The main proposal of the present paper is to use a straightforward modification of the

setup described in [2], where Newtonian and Einstein gravity were derived from arguments

involving so-called holographic screens. The modification entails a violation of holography

above a critical length-scale, which thereby emulates a key feature of Verlinde’s new theory.

In the present paper, it is demonstrated that this modification is sufficient to describe the

emergence of a dark gravity force, as well as a version of the baryonic Tully-Fisher relation.

This work does not claim to go further than Verlinde’s proposals, but instead the present

goal is to provide a framework for the underlying ideas that is mathematically simpler,

and which clarifies the key role played by the breakdown of holography in the emergence

of dark gravity.

The rest of this paper is organised as follows. Section 2 contains a review of the recent

proposal [1] which identifies the core components that will be utilised in the derivation of

emergent dark gravity, presented in section 3. In section 3, the main result is presented,

where a modified thermodynamic setup based on arguments involving a holographic screen

is constructed. It is demonstrated that the emergent entropic force associated to this

system receives an additional contribution from the information in the bulk which is no-

longer encoded holographically. This additional force has a r−1 scaling-law required to

describe flattening galactic rotation curves. In this setup it is also shown that the bulk and

boundary energies obey a relation which is analogous to the baryonic Tully-Fisher relation,

and that the bulk energy manifests as an apparent mass. By inputting the critical scale

rc(M,L) identified in Verlinde’s new theory to the setup, we find that the entropic force
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associated to the bulk then takes exactly the form of the force required to describe flat

galactic rotation curves. It is also found that this value for the critical scale reproduces the

baryonic Tully-Fisher relation up to a numerical factor. The key assumptions that are used

in the present work are then reviewed. Finally, in section 4 the present work is compared

to the work of several recent papers with related goals.

2 Emergent gravity in de Sitter space

In [1] a radical new explanation for the phenomena attributed to dark matter was offered

in terms of emergent gravity in de Sitter space. In this section, we briefly review the key

features of this work.

In [1], the static patch of de Sitter space was considered, with the metric,

ds2 = −f(r)dt2 +
1

f(r)
dr2 + dΩ2

d−2 , (2.1)

with f(r) = 1− r2

L2 , where the cosmological horizon is at r = L. The Bekenstein-Hawking

formula associates an entropy to de Sitter space which is determined by the area A(L) of

the cosmological horizon, as follows,

SDE =
A(L)c3

4~G
, (2.2)

where, for reasons that will shortly be explained, the subscript “DE” denotes the dark

energy. In [1], an interpretation for the entropy (2.2) is proposed wherein the total entropy

of de Sitter is associated to the dark energy which is distributed throughout the volume of

de Sitter, leading to constant entropy density that obeys a volume-law. Accordingly, if we

consider a spherical region of size r, the entropy associated to the dark energy within this

region is proportional to the volume V (r) of the sphere, so that we have

SDE(r) =
V (r)

V0
, (2.3)

where V0 is the volume per unit of entropy of the dark energy. The condition that the

entropy (2.3) coincides with the de Sitter entropy (2.2) when r = L then leads to the

following formula for V0,

V0 =
4G~L
d− 1

. (2.4)

It is then straightforward to show that formula (2.2) can be re-written in the following way,

SDE(r) =
r

L

A(r)c3

4G~
, (2.5)

which makes it clear to see that when r = L, the above formula reproduces the formula

for the total de Sitter entropy (2.2). In [1], the emergence of dark gravity is traced to

the interplay that results from the local removal of a portion of the dark energy degrees

of freedom due to the addition of matter. To ascertain this effect, one can turn on a
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matter source for a point mass M at the origin of the static patch (2.1) by introducing the

Newtonian potential with the following replacement,

f(r)→ 1− r2

L2
+ 2φ(r) , (2.6)

with,

φ(r) =
−GM
r

. (2.7)

It is shown that the negative sign of φ(r) leads to a reduction in the total de Sitter entropy

when we add the mass M to the origin of the static patch. This total reduction of the de

Sitter entropy in fact corresponds to a local reduction of the entropy associated with the

dark energy in the region surrounding the point mass. Accordingly one can consider the

change in the growth of the area of a spherical region as a function of geodesic distance in

the case with and without the matter to arrive at the following formula for reduction of

the de Sitter entropy due to the addition of the mass M ,

SM (r) =
2πMc

~
r . (2.8)

A key result of [1] is that, given a point mass M, there is a length-scale, depending on the

mass and the curvature scale, where the de Sitter entropy (2.5) exactly equals the amount

of entropy (2.8) which is removed by the addition of a mass M . Using the formulas (2.5)

and (2.8) it is easy to calculate this scale to be the following,

rc(M) =

√
2GML

c2
=

√
2GM

a0
, (2.9)

where the MOND acceleration scale a0 = c2/L [18] has been identified. Below this critical

length-scale, all of the de Sitter entropy is removed by the mass M ; in this case there are

only matter degrees of freedom in the bulk which are encoded in the degrees of freedom

at the boundary. This corresponds to what is called the Newtonian regime. Conversely,

for regions that are larger than this scale, the mass M does not remove all of the de Sitter

entropy. In this sub-Newtonian or “dark gravity” regime, there is therefore information

associated to the dark energy in the bulk which is entangled with the bulk mass. This

volume-law entanglement, which contains information about the bulk mass, then spoils

the holographic encoding of the bulk mass. This scenario is depicted in figure 1. As we

will see, this is a key feature of these proposals that this work seeks to emulate in the

thermodynamic setup presented in section 3.

In [1], a remarkable feature is observed when we consider the following criteria, as-

sociated to the length-scale above which the volume-law associated with the dark energy

overwhelms the matter entropy (2.8), that is where we have the following:

SM (r) < SDE(r) . (2.10)

Using equations (2.5) and (2.8), we observe that the above criteria are equivalent to the

criteria (1.1), as claimed in the introduction.
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to the bulk mass M in de Sitter space. For regions much smaller than rc, the bulk information

pertaining to M is redundantly encoded in the boundary bits N∂ which obey an area-law. Con-

versely, for regions that are large compared to rc, there are bulk degrees of freedom that scale

extensively with the bulk and which are not encoded in the bits N∂ . (Bottom) Cartoon of a portion

of a tensor network representation for the entanglement structure of de Sitter space. The bulk legs

correspond to the green indices. The entanglement structure that builds the emergent geometry

is encoded in the short-range correlations described by the grey, internal legs of the network. The

state is endowed with a constant density of long-range entanglement by the single, large red tensor.

The bulk indices participate in the long-range entanglement via their connection to the large-red

tensor via the dark red legs. (Bottom Right) adding matter locally removes some of the long-range

entanglement. We imagine that the long-range indices in the center (white) have been deleted. In

this case, the bulk state in the yellow legs can be approximately reconstructed from the state on

the portion of network bounded by the cut which passes through the blue legs of the network. For

larger portions of the network, such as for the cut which passes through the purple legs, the state in

the bulk legs within this cut cannot be reconstructed from the legs passing through the cut, leading

to a breakdown of holography for regions that are sufficiently large.
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Since the volume-law of the dark energy overwhelms the area-law scaling of the matter

entropy in the dark gravity regime, then accordingly what emerges are not the known laws

of gravity. Instead, in [1], this regime is understood by considering the effective, elastic

response of the dark energy medium to its removal, from local inclusion regions, by the

addition of matter. It is shown that this leads to the fitting formula of MOND and also the

baryonic Tully-Fisher relation [18, 19]. It is thereby argued that this framework provides

an alternative explanation for the phenomena that are currently attributed to dark matter,

which does not require dark matter to exist. This work will make contact with these two

key results, but the effective elastic description described in [1] will not be required.

3 Emergent dark gravity from a (non)holographic screen

This section describes how to obtain the emergence of a dark gravitational force, which

scales like 1
r above a critical length-scale rc, in a purely thermodynamic setting which is very

similar to the setup considered in [2]. The modification presented here is inspired by the

arguments in [1], described in section 2, where the interplay between the entropy associated

to the dark energy and the entropy which is removed by the addition of matter leads to a

violation of the holographic encoding of bulk beyond the critical length-scale rc as in (2.9).

Accordingly, the modification proposed here is the introduction of an arbitrary critical

length-scale that controls the scale at which the holographic encoding of the bulk fails.

3.1 A (non)holographic screen

At first we will assume precisely the setup described in section 3.2 of [2]. Namely one is

to imagine that there is a spherical region of space, known as a holographic screen, which

separates the interior “unemerged” part of space from the exterior “emerged” part of space.

A particular thermodynamic system is ascribed to this setup in which the “unemerged”

part of space emerges. The emergence of space is imagined to arise due to a series of

coarse-graining steps that push the holographic screen into the “unemerged” part of space,

which leads to an overall reduction in the microscopic degrees of freedom associated with

the holographic screen. In the emerged part of space, we imagine that there is a massive

test particle of mass m which is located at a small displacement δx from the holographic

screen. The setup is contrived so that a change in the test particle’s position contributes

a change to the entropy of the screen, which leads to an entropic force acting on the test

particle. The setup so-far described is depicted in figure 2a.

The role of the holographic screen, within the earlier work, is to encode the information

within the unemerged space. To make a clear connection between this setup and the

AdS/CFT literature, the unemerged part of space will be referred to, hereafter, as the

bulk. The holographic screen then corresponds to the boundary of the bulk, but since

this is an arbitrary boundary in space, and not a geometric boundary at spatial infinity

as in AdS/CFT, the boundary of the bulk (unemerged part of space) will be referred

to as a screen. In the present setup, holography will be explicitly violated, so the term

“holographic screen” will not be appropriate. The term non-holographic screen may then
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Figure 2. a) the test particle of mass m is located in the emerged part of space, and is displaced

from the spherical screen of radius r by δx� 1. b) for regions r � rc, the test particle contributes

to a change in the entropy associated to the bits on the screen. c) for regions r ∼ rc, the test

particle contributes to a significant change in the entropy associated to the bulk.

seem more appropriate, but for convenience this artificial boundary will simply be referred

to as a screen.

In [2] it is assumed that the information pertaining to an emergent mass M in the

bulk is encoded holographically in a quantity of bits N∂ which is proportional to the area

of the screen, in the following way,

N∂ =
A(r)c3

4G~
. (3.1)

The main modification of [2] presented in this paper is to assert that the holographic

principle is violated in a way that depends on a critical length-scale rc. We suppose that,

in addition to the bits N∂ , there are a set of bits NΣ that one also needs to have in order

to be able to completely reconstruct the emergent mass M in the bulk. We assert that the

bits NΣ pertaining to M are not encoded holographically at the screen. Motivated by [1]

we assert that NΣ should scale extensively with the volume of the bulk. We then associate

the critical scale rc with the ratio of the numbers of bulk and screen bits as follows,

NΣ

N∂
=

r

rc
, (3.2)

which leads to the following form for NΣ,

NΣ =
r

rc

A(r)c3

4G~
. (3.3)

Based on the above observations we conclude that the role of the critical scale rc is to

determine when the holographic, area-law scaling of the information associated to M in

the bulk is overwhelmed by the volume-law contribution of the bulk bits NΣ that are

not encoded holographically. Thus the critical scale rc that we have described plays a

very similar role to the critical scale rc as in (2.9) identified in [1]. In our setup, one

could suppose that the scale rc that we are considering, should depend on the amount of

– 7 –



J
H
E
P
0
2
(
2
0
1
9
)
1
5
1

information associated to the mass M and the curvature scale L. This is indeed the case

for the critical scale (2.9). For now, this dependence will not be explicitly assumed.

If one imagines inserting a mass into the bulk, we can call the number of bits that

characterise this matter ÑΣ. In general this is different from NΣ, because when the holo-

graphic principle holds, we anticipate that the former are encoded redundantly at a screen,

of size r, as a quantum secret-sharing scheme among the bits N∂(r) [23–25]. In contrast,

the bits NΣ pertain to information about the bulk mass that is not encoded holographi-

cally, which do not therefore form a subset of the bits N∂ . The latter can be compared to

the formula (2.5), so that the bits NΣ here play the same role as the dark energy in [1].

3.2 Thermodynamic setup

Now we describe how to associate a thermodynamic system with the setup described in 3.1.

As per [2], we begin with the assumption that displacing the test particle which is outside

the screen, but which is close to it, leads to a change to the entropy of the screen and the

bulk. The change in the entropy of the total system will take the following form,

δS = δS∂ + δSΣ , (3.4)

where δS∂ coincides with δS defined in section 3.2 of [2], which we identify as the change

in the entropy of the screen. The quantity δSΣ is similarly defined as the contribution to

the entropy of the bulk, which, as we have explained, is not encoded holographically.

A change to the entropy as per (3.4) will lead to a change to the energy of the system

δE = δE∂+δEΣ, where we have identified the contributions δE∂ and δEΣ which correspond

to changes to the energy associated with the screen and bulk degrees of freedom respectively.

Following [2], we assume that when the displacement δx of the test particle is small, the

corresponding changes to the energies of the bulk and screen systems should be evenly

divided over their respective degrees of freedom, so that the equipartition theorem holds

for each system.

δE∂ =
1

2
N∂kBT∂ δEΣ =

1

2
NΣkBTΣ , (3.5)

where T∂ and TΣ are the temperatures associated to the bulk and boundary systems.

To proceed we further make the assumption that the bulk and boundary systems are in

thermal equilibrium. In general this is something that we may expect to hold for situations

where the emergent bulk is static. For now we will assume that this holds, so that we can

identify T∂ = TΣ = T , where T is the equilibrium temperature associated to the combined

ensemble of the bulk and the screen.

If the first-law of thermodynamics holds for this system, then for near-equilibrium

configurations the following relation must hold for the bulk and boundary subsystems,

δE∂ = TδS∂ δEΣ = TδSΣ . (3.6)

Using equations (3.5) and (3.6), we find that the changes to the entropy of the bulk and

the screen obey the following relation,

δSΣ =
NΣ

N∂
δS∂ =

r

rc
δS∂ . (3.7)
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The above relation has the intuitive interpretation that for scales r � rc, we have δSΣ ∼ 0,

and the significant contribution to the entropy of the system comes from the contribution

to the screen, as depicted in figure 2b. Conversely, at r = rc, the test particle contributes

the same amount of information to the bulk and boundary subsystems at r = rc. Hence

rc naturally described a scale where the contribution of a test particle to the bulk first

becomes comparable to its corresponding contribution to the screen. For scales r > rc,

the corresponding contribution to the bulk overwhelms the contribution to the screen, as

depicted in figure 2c. Putting together equations (3.7) and (3.5) gives the following relation

between the changes to the energies of the bulk and boundary subsystems,

δEΣ =
NΣ

N∂
δE∂ =

r

rc
δE∂ . (3.8)

To obtain an emergent entropic force associated to this system, we express the change in

energy given by the first law (3.6) in terms of the work done by the force F that displaces

the test particle a distance δx towards the screen. In this way the entropic force must take

the following form in terms of the change to the entropy of the system.

F = T

(
∂SΣ

∂x
+
∂S∂
∂x

)
= T

∂S∂
∂x

(
1 +

r

rc

)
, (3.9)

where equation (3.7) was used in the last step. The term r
rc

includes a modification to the

setup described in [2] which is associated with the breakdown of holography that we have

described. In particular, when r � rc we can effectively set this term to zero, and in this

case we would obtain the same result as [2], where the holographic principle is assumed to

hold exactly.

3.3 Emergent dark gravity

In [2], the form for the change δS∂ to the entropy of the screen can be motivated as

follows. Following Bekenstein’s derivation of the black hole entropy, one can propose that

when the test particle is one Compton-wavelength from the screen, it should contribute

a single bit of information to it [26]. This contribution is assumed to be linear in δx, at

least approximately when δx is sufficiently small. This leads to the following form for the

change of the boundary entropy,

δS∂ =
πkB

2

mc

~
δx . (3.10)

To relate the quantities in this thermodynamic system to an emergent mass we suppose

that the following relations hold,

δE∂ = MBc
2 δEΣ = MDc

2 . (3.11)

For now MB and MD are just arbitrary constants with the units of mass. The relation (3.8)

implies that these quantities obey the relation,

MD

MB
=

r

rc
. (3.12)
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We can now use either of the equations (3.5) to determine the equilibrium temperature T

which is found to be the following,

T =
2MBG~
ckBπr2

. (3.13)

Now we have all of the pieces to obtain the form for the entropic force that emerges from

this thermodynamic system. In the case where r � rc, the bulk contribution to the

entropy change can be neglected. In this limit we can neglect our modification to the setup

described in [2] and we accordingly obtain the same result contained therein, which is the

emergence of Newton’s gravitational force-law,

F =
GmMB

r2
. (3.14)

Equation (3.14) justifies the interpretation of MB as describing an emergent mass in the

bulk. For r ∼ rc, the bulk contribution to the change in entropy of the screen becomes

non-trivial, and using the formula (3.13) for the equilibrium temperature, together with the

formulae (3.7) and (3.10) for the changes in the bulk and boundary entropy (respectively)

and plugging these results into (3.9) for the entropic force, the entropic force takes the form,

F =
GmMB

r2
+
GMBm

r · rc
. (3.15)

This force has the correct 1
r scaling required to describe flat galactic rotation curves, where

MB is the baryonic point mass located at the origin of the bulk. It is worth emphasising

that this result essentially derived from the violation of holography as per equation (3.2),

which eventually led to equation (3.7). In view of the derivation of Newtonian gravity in

section 3.2 of [2], the additional factor of r contained in (3.7), in this work, is what led to

a force that scales like r−1.

Presently we have not specified the value of the critical length-scale rc. Clearly the

present work is contrived to emulate the key features of [1], and we will ultimately assume

the value (2.9) for rc. For now we will simply assume that this is true, but in the following

subsection, we will argue that we can derive this result independently of [1].

Using equation (2.9), we see that the entropic force (3.15) now takes the form,

F =
GMBm

r2
+
√
MBGa0

m

r
, (3.16)

which has precisely the form of Newtonian gravity with an additional dark gravity force

which is observed at galactic scales above rc as per equation (2.9) [18]. By inserting the

relation (3.12) into (3.15) we see that the entropic force can be written in the following form,

F =
Gm

r2

(
MB +MD(r)

)
. (3.17)

This result serves to clarify the role of the quantity MD, which describes the change in

the bulk energy according to (3.11). In view of (3.17), we conclude that the failure of

holography for scales r ∼ rc leads to a contribution to the bulk energy (of the test particle
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to the screen) that manifests as an apparent, additional mass MD in the bulk. Notice that

the scale rc drops out of equation (3.17), but to ascertain the relation between the apparent

mass MD and the mass MB, we need to use the relation (3.8), which does implicate rc.

This setup can therefore mimic the dark matter hypothesis, independently of the choice of

rc. We see that the identification between the mass MB and the apparent mass MD given

by equation (3.8) has a similar role to the baryonic Tully-Fisher relation, which relates the

baryonic mass distribution to the apparent distribution of dark matter [19].

If we consider the emergence of a spherically-symmetric mass distribution in the bulk

which is entirely contained in a screen of size r. That is, suppose that there is an emergent

mass profile MB(r) in the bulk, contained inside a screen of size r and which corresponds

to the change in energy δE∂ of the screen. Then if we then take the formula (3.12), with

the critical scale rc identified by (2.9), we recover a relation between the emergent mass

profile M(r) and the apparent mass profile MD(r), which, up to a numerical factor, has

been shown to be equivalent to the baryonic Tully-Fisher relation [19],

MD(r)2 =
a0r

2

2πG
MB(r) , (3.18)

which was shown to determine the apparent dark matter profile MD(r), given a profile

MB(r) of (observed) baryonic matter in galaxies. Using this framework, we can therefore

make contact with the main results obtained in [1].

3.4 An argument to determine rc

Tensor network representations of holographic states as quantum error-correcting codes

describe an encoding of bulk degrees of freedom that is generically highly redundant. In

view of the fact that the bulk and boundary systems described in the present work, are

described by a tensor network of the form depicted in figure 1, we suppose that the encod-

ing of the bulk and boundary degrees of freedom, pertaing to an emergent mass M behind

the screen, among the bits NΣ and N∂ (respectively) furnishes a quantum secret-sharing

scheme [23–25]. In this picture, spacetime emerges from the entanglement structure of a

tensor network containing both a short-range (boundary indices) and a long-range entan-

glement component (bulk indices), as depicted in figure 1. The addition of matter locally

disentangles a portion of the network from a long-range entanglement component. The

state of the matter can then be reconstructed from its encoding among a subset of the

short-range or long-range indices, which is typically highly redundant.

Suppose that the bits N∂ redundantly encode Ñ∂ physical boundary bits, pertaining

to an emergent mass M . For simplicity, we will consider a fully spherically-symmetric

case where the matter distribution is spherically symmetric and the screen is a sphere.

The boundary bits saturate their storage limit at the holographic bound, when the screen

contains a black hole of mass M . In general, we expect that the redundancy of the encoding

will be controlled by the ratio of the screen size r to the Schwarzchild radius rs = 2MG/c2

associated with the mass M . We will assume that the physical and encoding bits obey

the relation,
Ñ∂

N∂
=
rs
r
. (3.19)
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This leads to the following counting of the physical subset of the boundary bits,

Ñ∂ =
2πMc

~
r =

r

λM
, (3.20)

where λM is the Compton-wavelength of the mass M . This formula reproduces exactly

the formula (2.8), and it is simply equivalent to the statement that the number of physical

boundary bits Ñ∂ is determined by the size of the screen in units of λM , so that when the

screen is equal in size to the Compton wavelength of the mass M , then the screen contains

one bit of information.

We can apply a similar argument to describe the redundancy of the encoding of the

mass M among the bulk bits NΣ. To begin with we observe that since NΣ ∼ V , we must

have that NΣ = V (r)/V0 for some volume per unit entropy V0. Using equations (3.1)

and (3.3), we find that,

V0 =
3c3

4G~
rc . (3.21)

A screen contains a finite number of bulk bits, and since the mass M disentangles the bulk

indices, there is a limit to the volume per unit entropy that can be removed by the addition

of M . We assume that this limit is determined by some length-scale L such that V0 cannot

exceed V max
0 given by,

V max
0 =

3c3

4G~
L , (3.22)

where we must have that rc ≤ L. If the relation (3.22) holds, then the spacetime contains a

constant entropy density. This mimics the way that the dark energy represents a constant

entropy density that fills de Sitter spacetime in [1]. We now assume that the redundancy

of the encoding of the physical bulk bits ÑΣ, pertaining to M , among the bits NΣ is

determined by the following relation,

ÑΣ

NΣ
=
rc
L
. (3.23)

This result reproduces the formula (2.5) for ÑΣ when L is the curvature scale of the de Sitter

spacetime, which controls the volume per unit entropy associated with the dark energy

in [1]. Supposing that the long-range entanglement component is given by a large random

tensor, for example, then the redundancy that we have in mind, in view of equation (3.23),

is that the state on any share of fewer than half of its indices is redundantly encoded

among the remaining incides. The role of L in this case is to determine the total number

of long-range indices, which we intepret as correponding to the volume per unit entropy of

the emergent spacetime.

We have thus furnished a map from the quantities (2.8) and (2.5) in [1] to the state

variables N∂ and NΣ that we have defined in the present work.

We require that the length-scale of equality rc between the bits NΣ and N∂ , as per

equation (3.2), is the same as the scale of equality between the physical bits ÑΣ and Ñ∂ .

Using equation (3.2), together with the definitions (3.19) and (3.23) we find that the critical

length scale must have the following form,

rc =
√
rsL , (3.24)
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which reproduces the result (2.9). Using the assumptions that we have made about the

redundancy of the encoding of the mass M among the bulk and boundary bits, we are

thus able to independently arrive at precisely the same form for the critical length scale as

in [1] but from an entirely different viewpoint based on interpreting the setup at hand as

a quantum error-correcting code.

It should be noted that the main results of this work don’t require us to use this

argument to determine critical length scale rc, as we could simply assert that it should

have the value (2.9) as in [1], however here we have given an heustic argument to motiviate

the use of this length scale, without recourse to that work.

3.5 Review of key assumptions

The key features of our main result, presented in 3.3, follow from the application of the

following assumptions, whose role should be clarified,

1. The bulk is not encoded holographically at the screen, and the non-holographic bulk

degrees of freedom obey a volume-law, such that the failure to encode the bulk

holographically is controlled by a length-scale rc.

2. Changing the displacement of the test particle changes the entropy associated with

the bulk and boundary subsystems.

3. The change in energy of the bulk and boundary subsystems obeys the equipartition

theorem.

4. The bulk and boundary systems are in thermal equilibrium.

5. The first law of thermodynamics holds.

Assumption 1 is our main assumption in this work, and it is the main modification to

the setup described in [2]. This is the modification that makes a connection to the new

theory [1], where a violation of the holographic principle occurs for length-scales which are

sufficiently large so that the inequality (2.10) holds. Assumption 2 is also made in [2], and

this is the key feature that is contrived to produce an entropic force acting on the test

particle. Assumption 3 is also made in [2] in relation to what we have called the boundary

system. That we should imagine this to hold for the bulk system seems like a natural

extension, since when the particle is sufficiently close to the screen, we can imagine that

the change in the energy of the bulk is evenly divided over the bulk bits. As in [2], we

may not expect this to hold for displacements that are large compared to the Compton

wavelength of the test particle, and we refer the reader to the former work for a justification

of this. Assumption 4 is new here and it seems like a natural assumption to make when

the emergent bulk and matter distribution is static, as was the case for the static patch of

de Sitter that was considered in [1]. In more general situations, where there are non-trivial

dynamics, we may not expect assumption 4 to hold exactly. Assumption 5 was assumed

in [2]; the first law should evidently hold for any equilibrium thermodynamic system, such

as the one that has been described here. The role of the first law is, as in the earlier

– 13 –
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work, that it allows one to relate the an entropic force, to the entropy gradient and the

equilibrium temperature as per (3.9).

In many cases, it may appear that the fundamental constants have been introduced in

an ad-hoc fashion. This objection could also be raised about the work [2]. Here, as in that

work, the role of these contants is essentially to give quantities with the correct dimensions.

Nevertheless, we see that ~ drops out in the calculations of the dark gravity force (3.16),

as it must in order to match with the idea that we are considering a Newtonian limit (that

does not albeit lead to Newtonian gravity). So, as with the previous work, the constant ~
remains arbitrary in this work.

4 Comparison with previous work

The setup described in section 3 is strongly based on the setup described in [2]. However,

a key modification is included which is based on a central observation of the recent pro-

posals [1], that the emergence of dark gravity is due to the breakdown of the holographic

principle above a certain length-scale (2.9), where the inequality (2.10) holds, as described

in section 2. Indeed, one of the aims of this work is to make a clear connection between

the relatively simpler framework described in [2] and the recent work [1], by extracting

this key feature and implementing it as we have described in section 3. The main re-

sults (3.16) and (3.18) that we have derived for the emergent dark gravity force and the

baryonic Tully-Fisher relation (respectively), rely on the identification for our critical scale

as per (2.9). We can motivate the use of this scale based on the heuristic arguments pre-

sented in section 3.4, where we appeal to the intuition of holographic states as quantum

error-correcting codes in order to convey how the present setup can precisely represent the

interplay between the volume-law and area-law degrees of freedom as described in [1]. We

can therefore argue to use this length-scale independently of the latter work. However, as

we have observed, even without assuming a particular value for the critical length-scale rc
is sufficient to derive a 1/r force-law required to describe flat galaxy rotation curves, and

also to derive a form of the baryonic Tully-Fisher relation. We also note that we can repro-

duce the main results of Verlinde’s proposal by simply identifying our critical length-scale

with the length-scale identified in that work. A key novelty of the present work is that the

effective elastic description that was used in [1] was not required in order to obtain the

main results therein.

There have been several recent papers with related goals, which have considered how

to derive the MOND fitting formula in terms of an entropic force which emerges from a

thermodynamic setup involving holographic screens. These works include [27], where an

argument analogous to [2] is considered, but with the introduction of a modified inertia

relation which accordingly produces a modified gravity force. In this work we do not assume

that such a modified inertial relation holds. Rather, as we have said, the present setup is

inspired by the observation of Verlinde in [1] that the emergence of a dark gravity force is

attributed to a breakdown of holography at a certain scale, which has been implemented

explicitly in setion 3 of the present paper. There are also a pair of more recent papers [28, 29]

which have considered how to derive the MOND relation, again inspired by the holographic
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screen arguments [2], but the authors have made use of the Tsallis entropy to derive a

modified gravity relation. Again, this differs significantly from the present approach, where

Tsallis statistic have not been used; the key results presented here derive from a breakdown

of holography which is not assumed in the previous papers [28, 29].

5 Discussion & outlook

In this work, a clear connection has been established between the earlier work [2] and the

recent proposals [1], by implementing a breakdown of holography which is controlled by

a critical length-scale via a straightforward modification to the earlier framework. Fur-

thermore, when the value for the critical scale (2.9), identified in the recent proposals, is

adopted, the exact form of the dark gravity force, in addition to (up to a numerical factor)

the baryonic Tully-Fisher relation, which are observed to produce flattening galactic rota-

tion curves above precisely this scale, are obtained. This work then essentially clarifies the

key role played by the breakdown of holography for sufficiently large length-scales (given

an emergent mass M) in E. Verlinde’s new hypothesis, whilst providing a mathematically

simple framework with which one could explore this, and related ideas.

In figure 1, a tensor network has been depicted which provides an analogy for the en-

tanglement structure of an emergent de Sitter geometry as described in [1]. The particular

network represented here does not accurately depict the tensor network one might use to

describe an emergent de Sitter geometry, however one could in principle obtain this via a

discretisation of a constant time slice [30, 31], sewn with tensors that, as well as bulk and

internal indices, each carry a small additional index which is contracted with the tensor

that thereby endows the state with a constant density of long-range entanglement, whose

role can therefore mimic the dark energy as per [1]. Furthermore, this work offers the

interpretation that the addition of a mass M can be framed, in these terms, as a deletion

of a portion of the long-range legs attached to a closed subregion of the network. This

would be consistent with the idea that mass is associated with relative entropy in emergent

gravity [1]. This question is left open for future work.

A particularly interesting open question for this work relates to the possibility of a

finding covariant formulation, which could make contact with the recent work [22, 32].

Most of the components needed for this have been identified in the present work, but the

formulation of a covariant model is left for future work. Another interesting and partially-

related question concerns a possible relation between the framework presented here and

the effective elastic description offered in [1] to describe the dark gravity regime.

Despite the many successes of the dark matter paradigm, we have presently yet to

observe the dark matter particle, and Verlinde’s new theory offers the exciting possibility

that understanding this regime may require a radical revision of our widely-held belief

in the efficacy of GR and EFT on cosmological scales. In this work we hope to have

provided a framework that will help to further our understanding of this new proposal and

its underlying microscopic description.
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