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1 Introduction

It has been said that 4d N = 4 super-Yang-Mills (SYM) is the hydrogen atom of quantum

field theories. This may be motivated by the fact that it is a finite, integrable theory (in

the planar limit) about which so much is known thanks to the SU(2, 2|4) superconformal

symmetry. If there is any truth in this appelation, then it is of primary interest to develop

the theories with less than the maximal amount of supersymmetry (SUSY), as these would

correspond to, say, helium or lithium atoms, which are in many ways more interesting.

In particular, N = 2 SYM is rich with nonpertubative phenomena such as confinement,

spontaneous chiral symmetry breaking and monopole condensation, as exhibited in the

famous Seiberg-Witten solution [1].

For the study of such non-perturbative questions, supersymmetric lattice gauge theory

is potentially a very powerful approach. There are two known lattice formulations of 4d

N = 4 SYM which preserve a subset of the supersymmetries: orbifolding matrix models [2],

and applying geometric discretization to a topologically twisted theory [3]. Note that lattice

models derived from twisting approach are free from the fermion doubling problem [4]. Of

course the same will be true of the orbifold models due to their equivalence to twisted

models [5]. For further details on these two approaches, see the review [6].
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In this paper, we will consider analogous constructions for supersymmetric gauge the-

ories in three dimensions, notably 3d N = 4 SYM. Since the gauge coupling has positive

mass dimension in three dimensions, 3d gauge theories are asymptotically free and super-

renormalizable. Hence, they can be thought of as toy models for 4d QCD. For example,

many properties of high temperature QCD are captured by Euclidean 3d Yang-Mills theory

coupled to scalar adjoint matter fields [7].

Gaiotto and Witten classified 3d N = 4 SYM theories as good, bad, and ugly [8]. For

U(N) gauge group and Nf flavours, a good theory corresponds to Nf ≥ 2N and flows

to an IR theory whose superconformal R-symmetry is manifest in the UV. Ugly theories

correspond to Nf = 2N − 1 and flow to an IR theory whose superconformal R-symmetry

is manifest in the UV, plus a decoupled free sector. Finally, bad theories correspond to

Nf ≤ 2N−2 and do not flow to an IR theory whose superconformal R-symmetry is manifest

in the UV, so the IR limit of bad theories is not as well understood. For recent progress in

this direction, see [9].

Like 4d N = 4 SYM, the lattice formulation of 3d N = 4 SYM can be obtained by

orbifolding [10] or topologically twisting followed by geometric discretization. As we will

explain in the next section, there are two ways to topologically twist, one corresponding to

the dimensional reduction of the Donaldson-Witten twist in 4d [11], and the other known

as the Blau-Thompson twist [12]. A lattice formulation based on geometric discretization

of the Blau-Thompson twist was previously proposed in [13], so in this paper we develop a

lattice formulation based on dimensionally reducing the Donaldson-Witten twist. Alterna-

tive approaches to formulating lattice 3d N = 4 SYM based on a lattice Leibnitz rule were

considered in [14, 15], although these approaches have some unresolved aspects [16, 17].

Note that there are several advantages to the latter approach. First of all, whereas

the Blau-Thompson twist utilizes an internal SU(2) symmetry that generically becomes

spontaneously broken in the IR, the twist we consider involves SU(2) R-symmetry which is

preserved.1 Secondly, since our lattice model will arise from dimensional reduction, it will

have a larger point-symmetry group than the lattice model arising from the Blau-Thompson

twist, which is intrinsically three dimensional. Indeed, we proceed by applying geometric

discretization of the Donaldson-Witten twist of 4d N = 2 SYM, and then show that

lattice gauge invariance only holds if the basis vectors of the lattice are linearly dependent,

forcing the theory to live in lower dimensions.2 One disadvantage of the twisting approach

compared to the orbifolding approach in 3d however is that in the twisted approach we must

complexify the fields in order to implement the geometric discretization, and subsequently

must introduce mass terms in order to decouple unwanted fields in the continuum limit.

The structure of this paper is as follows. In section 2, we review the two approaches

to twisting 3d N = 4 SYM, focusing on the one we make use of this in this paperwhich is

equivalent to dimensional reduction of the Donaldson-Witten twist of 4d N = 2 SYM), and

we describe a complexification of 3d N = 4 SYM that will allow us to formulate the theory

on a lattice. In section 3, we apply geometric descretization to the complexified theory

1We thank Stefano Cremonesi for pointing this out.
2Note that this is very similar to the lattice formulation of 4d N = 4 SYM, which is initially formulated

in 5d but is then forced to live in 4d by lattice gauge invariance.
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and show that lattice gauge invariance forces the resulting lattice gauge theory to live in

at most three dimensions. In section 4, we discuss the renormalization of the lattice theory

and propose mass terms to reach the desired continuum limit, and in section 5 we present

our conclusions and future directions. We also have several appendices. In appendix A, we

derive the discrete R-symmetries of the Donaldson-Witten twist, and in appendix B, we

compare the two twists of 3d N = 4 SYM in greater detail.

2 Continuum theory

Consider Euclidean 3d N = 4 SYM. The global symmetries of this theory are SU(2)E ×
SU(2)N × SU(2)I , where the first SU(2) corresponds to the rotation group in three spatial

dimensions, the second one corresponds to an internal rotation group which arises from the

dimensional reduction from 6d, i.e. SO(6) → SU(2)E × SU(2)N , and the third one is the

R-symmetry group of the 6d theory [18]. The two known twists of this theory correspond

to identifying SU(2)E with SU(2)N and SU(2)R, respectively. Whereas the first twist

(constructed by Blau and Thompson [12]) is intrinsically three-dimensional, the second

one can be obtained by dimensionally reducing the Donaldson-Witten twist of 4d N = 2

SYM [11]. A lattice theory based on the Blau-Thompson twist was previously constructed

in [13]. In this paper, we will consider the approach based on dimensional reduction. We

relate the two approaches in appendix B.

Since we will use dimensional reduction in this paper, let us describe the Donaldson-

Witten twist in more detail. The global symmetries of 4d N = 2 SYM are SU(2)l×SU(2)r×
SU(2)R ×U(1) where SU(2)l × SU(2)r is locally the 4d rotation group and SU(2)R ×U(1)

is the R-symmetry group (the U(1) factor arises from dimensional reduction from 6d and

is the analogue of SU(2)N in 3d). The twist by SU(2)R is accomplished by identifying the

twisted rotation group, SU(2)′ ≡ diag[SU(2)r × SU(2)R]. Then the fields transform in the

following representations of SU(2)l × SU(2)′ ×U(1):

bosons : (1/2, 1/2)0 + (0, 0)2 + (0, 0)−2

fermions : (1/2, 1/2)1 + (0, 1)−1 + (0, 0)−1 (2.1)

Since SU(2)l × SU(2)′ ' SO(4)′, the (1/2, 1/2) correspond to four-dimensional vector rep-

resentations of SO(4)′. It will turn out that the (0, 1) corresponds to an antisymmetric

self-dual tensor. Thus as usual in the twisted formulations, fermions no longer carry spinor

indices, but appear as scalars, vectors and antisymmetric tensors. The twisted bosonic

and fermionic fields enumerated in (2.1) shall subsequently be denoted as
{
Aµ, φ, φ̄

}
, and

{ψµ, χµν , η}, respectively, where χµν = ?χµν ≡ 1
2εµνρλχ

ρλ, and φ̄ = φ†. Although twisted

theories are usually considered in a curved background, we will be working in Euclidean

flat space, so there will be no distinction between upper and lower Lorentz indices.

The Lagrangian for twisted 4d N = 2 SYM can be written as follows:

g2LN=2
4d = tr

(
1

4
FµνFµν +

1

2
Dµφ̄Dµφ− α

[
φ, φ̄

]2
− i

2
ηDµψµ + iαφ {η, η} − i

2
φ̄ {ψµ, ψµ}+ Lχ

)
, (2.2)

– 3 –
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where DµX = ∂µX +AµX, Fµν = [Dµ,Dν ], and

Lχ = tr

(
i

8
φ {χµν , χµν} − iχµνDµψν

)
. (2.3)

Note that discrete R-symmetries fix α = 1
8 , as we show in appendix A. (It is amusing

that [19] also uses discrete R-symmetries to fix the form of the N = 2 SYM Lagrangian,

albeit in the usual untwisted form; see p. 161.) The equations of motion for χ are given by:

[χµν , φ] = 2
(
D[µψν] + ∗D[µψν]

)
. (2.4)

Plugging these equations of motion into (2.3) then gives

g2LN=2
4d = tr

(
1

4
FµνFµν +

1

2
Dµφ̄Dµφ− α

[
φ, φ̄

]2 − i

2
ηDµψµ

− i
2
χµνDµψν + iαφ {η, η} − i

2
φ̄ {ψµ, ψµ}

)
. (2.5)

This form of the Lagrangian is useful because it can be written in a way that makes a

BRST symmetry manifest:

g2LN=2
4d = Q tr

[
1

4
χµνFµν +

1

2
Dµφ̄ψµ + αη

[
φ, φ̄

]]
− 1

4
tr [?FµνFµν ] , (2.6)

where Q generates the following transformations:3

Qφ= 0, Qφ̄= iη, QAµ = iψµ, Qη=
[
φ̄,φ
]
, Qψµ =Dµφ, Qχµν =Fµν+∗Fµν . (2.7)

Let us verify the BRST symmetry. First note that the equations of motion in (2.4) are

invariant under the transformations in (2.7). Furthermore, using equations (2.7) and (2.4)

one finds that Q2 generates a gauge transformation:

Q2φ = 0, Q2φ̄ = i
[
φ̄, φ

]
, Q2Aµ = iDµφ,

Q2η = i [η, φ] , Q2ψµ = i [ψµ, φ] , Q2χµν = i [χµν , φ] .

Since Q2 annihilates gauge-invariant operators, it follows that the first term in (2.6) is

Q-exact. Moreover the second term is Q-closed since

Qtr [?FµνFµν ] = 4εµνρλDµψνFρλ,

which vanishes after applying integration by parts and the Bianchi identity, so the twisted

theory in (2.5) is indeed BRST invariant. A lattice formulation of this model was proposed

in [20], although it was not based on geometric discretization. In this paper, we will employ

geoemtric discretization and subsequently find that the lattice theory can live in at most

three dimensions.
3At first sight the BRST transformations may not appear to be compatible with the constraint that

φ̄ is the complex conjugate of φ, but as explained in [11] this is not a problem because conservation of

the corresponding supercurrent is compatible with this constraint. In the next section, we will consider a

complexification where φ and φ̄ are independent, so the BRST transformations will appear more natural.
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2.1 Complexification

In order to make the theory amenable to geometric discretization, we must complexify

the fields. Furthermore, when we apply geometric discretization to formulate the model

on a lattice, we will find that consistency of the self-duality constraint of χ with lattice

gauge invariance implies that the model can live in at most three dimensions. Taking the

lattice to be three-dimensional, the continuum limit will then correspond to complexified

3d N = 4 SYM. As we will show in section 4.1, the uncomplexified theory can be reached

in the continuum limit by adding appropriate mass terms to the lattice action.

Consider the following complexification of twisted 4d N = 2 SYM:

g2L∗ = tr

(
1

4
FµνF̄µν +

1

2
D̄µφ̄Dµφ− α

[
φ, φ̄

]2
− i

2
ηD̄µψµ + iαφ {η, η} − i

2
φ̄
{
ψµ, ψ̄

µ
}

+ Lχ
)
, (2.8)

where

Lχ = tr

[
i

8
φ {χµν , χ̄µν} −

i

2

(
χµνDµψν + χ̄µνD̄µψ̄ν

)]
. (2.9)

Note that all the fields are complex. In particular, Ā = A†, η̄ = η†, ψ̄ = ψ†, and χ̄ = χ†, but

φ̄ 6= φ† so φ̄ and φ are independent. We define DµX = ∂µ+[Aµ, X], D̄µX = ∂µX+
[
Āµ, X

]
,

Fµν = [Dµ,Dν ], and F̄µν =
[
D̄µ, D̄ν

]
. We also impose the Hodge-duality constraint χµν =

∗χ̄µν . A similar complexification of twisted 4d N = 2 SYM was considered in [21], where it

was argued to be equivalent to twisted 4d N = 4 SYM. As mentioned above, consistency

of this constraint with lattice gauge invariance implies that the lattice theory must be at

most three-dimensional; details will be given the following section.

As before, we can integrate out χ to obtain the following equations of motion:

[χµν , φ] = 2
(
D̄[µψ̄ν] + ?D[µψν]

)
. (2.10)

Plugging the equations of motion back into (2.9) then gives

g2L∗ = tr

(
1

4
FµνF̄µν +

1

2
D̄µφ̄Dµφ− α

[
φ, φ̄

]2 − i

2
ηD̄µψµ

+iαφ {η, η} − i

2
φ̄
{
ψµ, ψ̄

µ
}
− i

2
χµνDµψν

)
, (2.11)

which can be written in a manifestly BRST-invariant form as follows:

g2L∗ = Q tr

[
1

4
χµνFµν +

1

2
D̄µφ̄ψµ + αη

[
φ, φ̄

]]
− 1

4
tr (?FµνFµν) , (2.12)

where Q generates the following transformations:

Qφ = 0, Q φ̄ = iη, QAµ = iψµ, Q Āµ = iψ̄µ,

Q η =
[
φ̄, φ

]
, Qψµ = Dµφ, Q ψ̄µ = D̄µφ, Qχµν = F̄µν + ∗Fµν . (2.13)

– 5 –
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Note that the equations of motion in (2.10) are invariant under the transformations

in (2.13). Using (2.13) and (2.10) it is not difficult to show that Q squares into a gauge

transformation implying that the first term in (2.12) is BRST exact. Moreover the second

term is BRST closed since acting with Q gives a term that vanishes by the Bianchi iden-

tity, as shown in the previous subsection. Hence the complexified theory in (2.8) is BRST

invariant. Our next task will be to formulate this model on a lattice in such a way that

the BRST symmetry is preserved and becomes enhanced to N = 2 supersymmetry in the

continuum limit.

3 Lattice theory

In this section, we will generalize the complexified Lagrangian in (2.8) to a lattice. The

fields φ(n), φ̄(n), η(n) will reside on the lattice site n =
∑d

µ=1 nµeµ, nµ ∈ Z, while the gauge

field Aµ(n) will be generalized to a Wilson line Uµ(n) residing on the link (n, n+ eµ) as will

ψµ(n), and the field χµν(n) will reside on the link (n+ eµ + eν , n). In these expressions,

eµ are principle vectors of the lattice, which will turn out to be linearly dependent, and

are proportional to the lattice spacing. Under a lattice gauge transformation, the fields

transform as follows:{
φ(n), φ̄(n), η(n)

}
→ G(n)

{
φ(n), φ̄(n), η(n)

}
G†(n)

{Uµ(n), ψµ(n)} → G(n) {Uµ(n), ψµ(n)}G† (n+ eµ)

χµν(n)→ G (n+ eµ + eν)χµν(n)G†(n). (3.1)

Here, G(n) are elements of the gauge group of the target (continuum) theory. As is usual

with the twisted (or orbifold) formulations, the gauge group must be U(N), in order to be

consistent with the scalar supersymmetry algebra, (3.9) below. In particular, the relation

QUµ(n) = iψµ(n) must contain GL(N,C) valued fields on both sides, because Uµ(n) =

1 + aAµ(n) + · · · in the continuum limit, so ψµ(n) must also have an expansion that

includes the unit matrix. The lattice covariant derivatives are defined to be

D+
µ f(n) = Uµ(n)f (n+ eµ)− f(n)Uµ(n)

D+
µ fν(n) = Uµ(n)fν (n+ eµ)− fν(n)Uµ (n+ eν)

D̄−µ fµ(n) = fµ(n)Ūµ(n)− Ūµ (n− eµ) fµ (n− eµ)

D̄−µ fνλ(n) = fνλ(n)Ūµ (n− eµ)− Ūµ (n+ eν + eλ − eµ) fνλ (n− eµ) .

In terms of these lattice derivatives, the gauge field strength is then given by

Fµν(n) = D+
µ Uν(n).

Similarly, we define the complex conjugate lattice derivatives as follows:

D̄+
µ f(n) = f (n+ eµ) Ūµ(n)− Ūµ(n)f(n)

D̄+
µ fν(n) = fν (n+ eµ) Ūµ(n)− Ūµ (n+ eν) fν(n)

D−µ fµ(n) = Uµ(n)fµ(n)− fµ (n− eµ)Uµ (n− eµ)

D−µ fνλ(n) = Uµ (n− eµ) fνλ(n)− fνλ (n− eµ)Uµ (n+ eν + eλ − eµ) ,

– 6 –
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in terms of which the complex conjugate field strength is given by

F̄µν(n) = −D̄+
µ Ūν(n).

For the complexified theory in (2.8), supersymmetry requires that χµν = ∗χ̄µν in order

to have an equal number of bosons and fermions. Let us therefore impose the following

analogous constraint on the lattice fields χ and χ̄:

χµν(n) =
1

2
εµνρλχ̄ρλ (n+ eµ + eν) . (3.2)

If we apply the lattice gauge transformations in (3.1), we find that the above equation is

left invariant if and only if the basis vectors of the lattice are linearly dependent:

4∑
µ=1

eµ = 0. (3.3)

Note that the constraint in (3.2) is the unique choice which reduces to χµν = ∗χ̄µν in the

continuum limit and respects lattice gauge and Q-invariance. To see this, consider a more

general ansatz:

χµν(n) =
1

2
εµνρλχ̄ρλ (n+ ∆) .

Applying the gauge transformations in (3.1) then implies the constraints ∆ = eµ + eν
and ∆ + eρ + eλ = 0, from which (3.2) and (3.3) follow. One could consider generalizing

this ansatz by dressing it with link variables
(
Uµ, Ūµ

)
, but this will spoil Q-inavariance

of the lattice theory since the link variables must transform non-trivially under BRST

transformations, as we will see shortly. One could also consider replacing χ̄ with χ on

the right-hand-side of the above ansatz since this would imply the same reduction in the

number of femrions, but in that case one finds that there is no choice of ∆ consistent with

the lattice gauge transformations in (3.1).

Hence, the lattice can be at most three-dimensional. In this case, the complexifed

Lagrangian in (2.8) has the following lattice generalization:

L= tr

(
1

4
F̄µν(n)Fµν(n)+

1

2
D̄+
µ φ̄(n)D+

µ φ(n)−α
[
φ(n), φ̄(n)

]2
+
i

2
D̄+
µ η(n)ψµ(n)+iαφ(n){η(n),η(n)}

− i
2
φ̄(n)

(
ψµ(n)ψ̄µ(n)+ψ̄µ (n−eµ)ψµ (n−eµ)

))
+Lχ, (3.4)

where

Lχ = tr

[
i

8
(φ(n)χ̄µν(n)χµν(n) + φ (n+ eµ + eν)χµν(n)χ̄µν(n))

− i
2

(
χ̄µν(n)D̄+

µ ψ̄ν(n) + χµν(n)D+
µ ψν(n)

)]
. (3.5)
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Using the constraints in (3.2) and (3.3), one obtains the following equations of motion

for χ̄:

2

(
D̄+

[µψ̄ν](n) +
1

2
εµνρλD+

ρ ψλ (n+ eµ + eν)

)
= χµν(n)φ(n)−φ (n+ eµ + eν)χµν(n). (3.6)

Plugging the equations of motion back into (3.5) then gives

Lχ = − i
4

tr
(
χ̄µν(n)D̄+

µ ψ̄ν(n) + χµν(n)D+
µ ψν(n)

)
. (3.7)

The Lagrangian can subsequently be expressed in a manifestly BRST invariant form as fol-

lows:

L = Q tr

(
1

4
χµν(n)Fµν(n) +

1

2
D̄+
µ φ̄(n)ψµ(n) + αη(n)

[
φ(n), φ̄(n)

])
− 1

8
εµνρλtr (Fµν(n)Fρλ (n+ eµ + eν)) , (3.8)

where the BRST operator Q acts according to

Qφ(n) = 0, Q φ̄(n) = iη(n),

Q η(n) =
[
φ̄(n), φ(n)

]
,

QUµ(n) = iψµ(n), Q Ūµ(n) = −iψ̄µ(n)

Qψµ(n) = D+
µ φ(n), Q ψ̄µ(n) = D̄+

µ φ(n)

Qχµν(n) = F̄µν(n) +
1

2
εµνρλFρλ (n+ eµ + eν) . (3.9)

To verify that the lattice theory is BRST-invariant, first note that the constraint

in (3.2) and the equations of motion in (3.6) are invariant under the tranformations in (3.9),

and the second term in (3.8) is Q-closed since

Q
∑
n

εµνρλtr [Fµν(n)Fρλ (n+ eµ + eν)] = −4i
∑
n

εµνρλψν (n− eν)D−µFρλ (n+ eµ) = 0,

where we used (3.3) and the lattice Bianchi identity εµνρλD−µFρλ (n+ eµ) = 0. Further-

more, using (3.9) and (3.6), one finds that Q2 generates a lattice gauge transformation:

Q2φ(n) = 0, Q2φ̄(n) = i
[
φ̄(n), φ(n)

]
,

Q2η(n) = i [η(n), φ(n)] ,

Q2Uµ(n) = iD+
µ φ(n), Q2Ūµ(n) = −iD̄+

µ φ(n).

Q2ψµ(n) = i (ψµ(n)φ (n+ eµ)− φ(n)ψµ(n))

Q2ψ̄µ(n) = i
(
ψ̄µ(n)φ (n)− φ (n+ eµ) ψ̄µ(n)

)
.

Q2χµν(n) = 2i

(
D̄+

[µψ̄ν](n) +
1

2
εµνρλD+

ρ ψλ (n+ eµ + eν)

)
.

Hence the first term in (3.8) is Q-exact and the lattice theory in (3.4) is indeed

BRST-invariant.
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3.1 Base space

To avoid unwanted renormalizations, it is advantageous to have maximal point group sym-

metry. Thus we would like to have principal vectors e1, e2, e3 and e4, arranged such that

the symmetry is just S4, the permutation group of four numbers, (1234) → (2134), etc.

This is achieved with the A∗3 lattice [2, 22], which has the hyper-triangular constraints

eµ · eν = δµν −
1

4
, e1 + e2 + e3 + e4 = 0,

4∑
µ=1

e i
µ e

j
ν = δij , (3.10)

where i, j = 1, 2, 3 label the components of the four vectors. An explicit choice of the

principal vectors is

e1 =

(√
3

4
, 0, 0

)
, e2 =

(
− 1√

12
,

√
2

3
, 0

)

e3 =

(
− 1√

12
,− 1√

6
,

1√
2

)
, e4 =

(
− 1√

12
,− 1√

6
,− 1√

2

)
(3.11)

It can be checked that these satisfy (3.10).

The lattice Λ can be specified by

Λ = { n1e1 + n2e2 + n3e3 | ni ∈ Z ∀ i = 1, 2, 3 } (3.12)

The vector n = (n1, n2, n3) is then associated with a site on an abstract cubic lattice,

which is how a computer code would “see” the lattice. In particular, periodic boundary

conditions would be imposed via ni ' ni + Li with Li the size of the abstract torus in the

direction i. Note that the integer-valued vectors labelling the sites of abstract are related

to the R-charges defined in the orbifold formulation [2, 10].

The four basic directions eµ are to be associated with the link fields Aµ and ψµ. Note

that the S4 point-symmetry group is a subgroup of the twisted rotation group SU(2)′ and

the lattice fields transform in reducible representations of the point symmetry group. For

example, the four-vector Aµ decomposes into a three-vector and a scalar, which corresponds

to the S4 symmetric linear combination σ =
∑4

µ=1Aµ. The parts of Aµ that are orthogonal

to this symmetric combination are the bona fide gauge fields of the 3d theory. Morover if

we add mass terms for the imaginary parts of the fields (as we describe in section 4.1), in

continuum limit we will be left with one real scalar and one gauge field along with two real

scalars coming from (φ, φ̄), which is precisely the bosonic field content of 3d N = 4 SYM.

For more details of the dimensional reduction, see appendix B.

4 Renormalization

To understand the renormalization of the lattice theory, first we have to outline the dimen-

sions of fields and parameters. Note that, in terms of mass dimensions,[
1

g2

]
= −1 ⇒ [g] = 1/2 (4.1)
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This can be understood in terms of dimensional reduction, which yields

1

g2
=
L4

g2
4d

(4.2)

where L4 is the size of the fourth dimension that is reduced out, and of course the 4d gauge

coupling is dimensionless. It follows that, as written, all fields have the same dimensions

as in 4d. However, this is not convenient for an analysis of relevant/marginal/irrelevant

operator classification, so we scale out the coupling to get canonical kinetic terms before

proceeding. For instance,

Aµ → gAµ, Fµν → gFµν , φ→ gφ, φ̄→ gφ̄, ψµ → gψµ, η → gη . . . (4.3)

Hence after the rescaling,

[Aµ] = 1/2, [Fµν ] = 3/2, [φ] = [φ̄] = 1/2, [ψµ] = [η] = 1 . . . . (4.4)

Notice that the scalar potential term becomes g2[φ, φ̄]2, so that the operator has mass di-

mension 2 and is relevant. This is very important for understanding the unwanted radiative

corrections that occur when we flow to the long distance effective theory (given that the

lattice regulator breaks SUSY explicitly and allows for non-SUSY renormalizations).

To further understand these matters with canonical normalization, notice the SUSY

relation QAµ = iψµ implies that the supercharge carries mass dimension, [Q] = 1/2. This

will allow us to analyze the renormalizations from the point of view of Q-exact terms.

Notice also that the SUSY variation of η becomes Qη = g[φ̄, φ]. Thus we see also from this

perspective that Q(η[φ, φ̄]) is a relevant operator, with mass dimension 5/2, though the

[φ̄, φ]2 part of it should really be counted as mass dimension 2, because of the appearance

of g, for the purposes of RG analysis. In detail, taking into account the rescalings (4.3),

1

g2
Qtrη[φ, φ̄]→ gQtrη[φ, φ̄] = g2tr[φ, φ̄]2 + igtrη[φ, η] (4.5)

so we see that we have both dimension 2 and 5/2 operators, with the additional dimensions

(to get to 3) soaked up by powers of g, which has dimension 1/2.

Because in 3d the coupling carries mass dimension, renormalizations are highly con-

strained. If in the long distance effective theory a marginal operator is generated, it must

enter at one loop as O(g2a), and with higher powers of g2a at higher orders. Here, it is

important that we keep track of the dimensionless quantity g2a, because the coefficient of

a marginal operator must be dimensionless, yet loop corrections (with canonical normal-

ization of kinetic terms) will be powers of g2. Thus in the continuum limit a → 0, all of

these radiative corrections vanish. For this reason we do not have to worry about marginal

operators in terms of recovering SUSY. Irrelevant operators simply come with additional

powers of the lattice spacing a, so these are also not troublesome. Thus the operators

that we must focus our attention on are the relevant operators, which in 3d with canonical

kinetic terms are operators with dO < 3. In the remainder of this subsection we enumerate

such operators allowed by the lattice symmetries, which will give us a count on the number
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of fine-tunings required to achieve the SUSY continuum limit. Thus we set aside a rather

long list of marginal operators that are consistent with Q and S4 invariance, such as:

QtrDµφ̄ψµ, Qtr

(∑
µ

Dµφ

)
η, Qtr

(
η
∑
µ<ν

Fµν

)
, . . . (4.6)

Firstly, as noted above, Qtr(η[φ, φ̄]) is a relevant operator. In particular, the part of

it that gives [φ, φ̄]2 could appear at one loop with g2 and radiative effects will allow this

to have a dimensionless coefficient that is different from the SUSY theory. So from this

we get one fine-tuning, but it is not a new operator that we have to add to the lattice

theory to achieve the SUSY long distance limit. In particular, for relatively coarse lattice

spacings and weak g
√
a, we do not anticipate large deviations from SUSY occuring from

this operator, based on experience in the 4d N = 4 lattice theory. With these sorts of

considerations we finally find the following list of relevant operators that are allowed by

lattice gauge invariance, Q symmetry, and the S4 point group symmetry:

Qtr(η[φ, φ̄]), Qtr(η{φ, φ̄}), Qtr(ηφ), Qtr(ηφ̄),

Q(trηtr{φ, φ̄}), Q(trηtrφ), Q(trηtrφ̄) (4.7)

The double trace operators, that involve the trace of a single field, are possible because the

group is U(N). Note however that, in analogy to the 4d N = 4 theory, there is a fermionic

shift symmetry in the bare theory,

η → η + bI (4.8)

where b is a constant Grassmann number and I is an N ×N unit matrix. This forbids all

of the terms in (4.7) individually, except for Qtr(η[φ, φ̄]), which already appears in the tree

action. On the other hand, again in analogy to the 4d N = 4 theory, there are three linear

combinations of the other terms that are allowed by the shift symmetry:

Qtr(η{φ, φ̄})− 1

N
Q(trηtr{φ, φ̄})

Qtr(ηφ)− 1

N
Q(trηtrφ)

Qtr(ηφ̄)− 1

N
Q(trηtrφ̄) (4.9)

These three new operators are allowed by all the lattice symmetries. They generate terms

that are cubic and quartic in scalar fields, as well as a mass term for the SU(N) part of η.

E.g.,

Qtr(ηφ̄)− 1

N
Q(trηtrφ̄) =

g

N
tr
[
φ, φ̄

]
trφ̄ (4.10)

In each of the cases above, we end up with a contribution from dimension 2 operators

after applying Q. Loop corrections beyond g2 would necessarily come with positive powers

of the lattice spacing a, and therefore do not appear in the continuum limit. The result

of this is that all of the quantum corrections that have to be cancelled by counterterms

appear at 1-loop. This renders the fine-tuning of the lattice theory quite manageable.
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4.1 Mass terms

A first, basic requirement of the lattice formulation is that it reproduce the desired con-

tinuum limit, notably N = 4 SYM in 3d. As for lattice 4d N = 4 SYM, we must add

the following mass terms to ensure that the gauge link fields have the form Uµ(n) =

1 + aAµ(n) + · · · in the continuum limit:

LU = m2
U

(
1

N

∑
µ

tr
(
Uµ(n)Uµ(n)

)
− 1

)2

. (4.11)

Let us denote the Hermitian part of Aµ as Bµ. In appendix C, we show that (4.11) provides

a mass term for the abelian part of B, which protects the dynamical lattice spacing a from

uncontrolled fluctuations.

Because of the complexification that was introduced above, the continuum theory

has double the desired spectrum, so we must add additional mass terms to decouple the

unwanted fields. Note that abelian part of the B field is already decoupled by the mass

terms in (4.11). To decouple the non-abelian part of B, we add the following additional

mass terms:

LB = m2
B

∑
µ

tr
[(
Uµ(n)Uµ(n)− 1/Ntr

(
Uµ(n)Uµ(n)

))2]
. (4.12)

For the scalar fields φ and φ̄, we take the mass terms to be

Lφ = m2
φtr
∣∣∣φ(n)† − φ̄(n)

∣∣∣2 . (4.13)

If we break up the scalar fields into real components

φ = φR + iφI , φ̄ = φ̄R + iφ̄I , (4.14)

the mass term then takes the form

(φR, φI , φ̄R, φ̄I)


1 0 −1 0

0 1 0 1

−1 0 1 0

0 1 0 1



φR
φI
φ̄R
φ̄I

 . (4.15)

This matrix has two eigenvectors with eigenvalue 2:

φ+
I = φI + φ̄I , φ−R = φR − φ̄R (4.16)

and two eigenvectors with eigenvalue 0 (i.e., states that will survive in the low energy

spectrum):

φ−I = φI − φ̄I , φ+
R = φR + φ̄R. (4.17)

Unlike the scalars, the real and imaginary parts of the fermionic fields ψ and χ do

not transform covariantly under lattice gauge transformations. On the other hand, the
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following fermionic fields do transform covariantly and reduce to their real and imaginary

parts in the continuum limit:

ψ±µ (n) = ψµ(n)± Uµ(n)ψ̄µ(n)Uµ(n)

χ±µν(n) = χµν(n)± Ūµ(n+ eν)Ūν(n)χ̄µν(n)Ūµ(n+ eν)Ūν(n), (4.18)

where repeated indices aren’t summed. We also define

η±(n) = η(n)± η̄(n).

Note that η̄±(n) = ±η(n). Also note that the Hodge-duality constraint on χ translates

into the following constraint relating light fields to heavy fields:

χ+
µν(n)− 1

2
εµνρλχ̄

+
ρλ(n+ eµ + eν ) =

1

2
εµνρλχ̄

−
ρλ(n+ eµ + eν )− χ−µν(n).

We then define the following fermionic mass terms:

LΨ = mΨ

[
ψ̄−µ (n)ψ−µ (n) + χ̄−µν(n)χ−µν(n)

+η−(n)
(
ψ−µ (n)Ūµ(n) + Uµ(n)Uν(n+ eν)χ−µν(n) + c.c.

)]
,

(4.19)

where repeated indices are now summed over.

After writing the Lagrnagian in terms of the light and heavy matter fields defined

above, one can integrate out the heavy fields at nonzero lattice spacing to obtain a gauge-

invariant Lagrangian in terms of light matter fields. Although it is not necessary to obtain

the correct continuum limit, we may also take the real part of the Lagrangian in (3.4)

as this will ensure that the action is real at non-zero lattice spacing, which is more con-

venient for numerical calculations. It may also be interesting to simulate the complex

action using recently developed Lefschetz thimble and complex Langevin techniques (see

for example [23]).

All of the mass parameters in (4.12), (4.13), and (4.19) are of the same order, large

compared to the dynamical scale Λdyn of 3d N = 4 SYM. Since the mass terms cannot

be obtained from Q-exact terms, they will violate this symmetry. Note that taking the

real part of the Lagrangian in (3.4) also breaks lattice susy.4 On the other hand, since the

model is super-renormalizable this will just introduce a finite number of additional counter-

terms up to two loops so renormalizing the theory will still be a managable task. Since the

unwanted fields are only coupled to the N = 4 SYM sector through gauge interactions and

scalar interactions, they decouple according to the Appelquist and Carazzone theorem [24]

and we are therefore left with the 3d N = 4 field content at low energies. Because we take

mi � Λdyn, where Λdyn ∼ g2 is the scale of the target 3d gauge theory, the effective gauge

coupling g2/mi is weak at the scale where they decouple, and this perturbative analysis

of decoupling is reliable. We leave a detailed analysis of perturbative renormalization for

future work.

4We thank Loganayagam R and Masanori Hanada for discussions on this point.
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5 Conclusion

In this paper, we explore a new approach to formulating 3d N = 4 SYM on a lattice.

Starting with a complexifcation of the Donaldson-Witten twist of 4d N = 2 SYM, we

apply geometric discretization and find that lattice gauge invariance is only consistent

with a certain Hodge-duality constraint on the lattice fermions if the basis vectors of the

lattice are linearly dependent, implying that the model can live in at most three dimensions.

Choosing the basis vectors to form a tetrahedron (or equivalently to span an A∗3 lattice),

the resulting lattice gauge theory has an S4 point symmetry, in contrast to the lattice

formulation based on the Blau-Thompson twist which has an S3 point symmetry group.

We then analyze the renormalization of the lattice theory, enumerating marginal operators

consistent with the lattice symmetries. Thanks to the super-renormalizability of the theory,

the counter-terms that need to be fine-tuned in order to restore full supersymmetry in the

continuum limit can be fixed perturbatively at one loop. Since our lattice model was based

on a complexification of 3d N = 4 SYM, we also propose to add mass terms in order to

decouple the unwanted fields in the continuum limit.

The study of 3d N = 4 lattice gauge theories is still in its infancy, so there are many

important directions to explore:

• Perhaps the most immediate task is to analyze perturbative renormalization of the

lattice theory along the lines of [25]. With these fine-tunings in hand, we will then be

in a position to simulate the model on a computer and check the predictions of [18].

• It would be interesting to generalize our lattice model to incorporate matter multiplets

along the lines of [13, 26] in order to investigate 3d mirror symmetry, whereby two

different 3d N = 4 gauge theories flow to the same superconformal fixed point in

the IR [27]. Note that under mirror symmetry, Wilson loops are exchanged with

vortex loops [28]. Since lattice gauge theory is well-suited for the computation of

loop operators, it should provide a powerful tool for testing such 3d dualities.

• Note that our construction can be generalized to d = 2 by taking only two basis

vectors of the lattice to be independent. It would therefore be interesting to study

relation to the lattice formulations proposed in [10, 20] and invetigate 2d mirror

symmetry [29].

• Using the gauge-invariant Hamiltonian formulation of Yang-Mills-Chern-Simons the-

ories with 0 ≤ N ≤ 4 supersymmetry, it has been argued that a mass gap is present

for N ≤ 1 and absent for extended supersymmetry [30, 31]. It would therefore be

interesting to explore how to formulate non-abelian Chern-Simons theory on a lattice

and couple it to our model in order to test these arguments and explore the existence

of a mass gap. Note that a lattice formulation of abelian Chern-Simons theory was

proposed in [32].

• Holographic duals of 3d N = 4 superconformal field theories were proposed in [33].

Given that such theories arise as the IR fixed points of 3d N = 4 gauge theory, it
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would be very interseting to use lattice techniques to test these proposals. Morover, it

would be interesting to use lattice techniques to simulate certain 3d Euclidean Yang-

Mills theories coupled to scalars and fermions which provide a holographic description

of inflationary cosmology [34].

Ultimately, we hope that this work will provide a useful starting point for studying

the non-pertubative dynamics of 3d N = 4 gauge theories using lattice techniques, as well

as many other important questions in quantum field theory and holography.
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A R-symmetry

In this appendix, we analyze the discrete R-symmetries of the Donaldson-Witten twist

of 4d N = 2 SYM. There are seven discrete R-charges. Four of them can be combined

into a 1-form Rµ and the remaining three into a self-dual 2-form Rµν = −Rνµ = ?Rµν .

We will determine the discrete R-symmetries and deduce the parameter α in the twisted

Lagrangian in (2.2) following the approach in [35]. The other seven supersymmetries can

then be obtained by conjugating the nilpotent supersymmetry by the seven discrete R-

symmetries. For convenience, we reproduce the Lagrangian in (2.2) below:

g2LN=2
4d =

1

4
FµνFµν +

1

2
Dµφ̄Dµφ− α

[
φ, φ̄

]2
− iχµνDµψν −

i

2
ηDµψµ −

i

2
φ̄ {ψµ, ψµ}+ iαφ {η, η}+

i

8
φ {χµν , χµν} . (A.1)

A.1 Rµ

Let us make the following ansatz for the transformations generated by Rµ:

η → β1ψµ

ψµ → β−1
1 η

ψν → β2χµν

χµν → β−1
2 ψν

χνρ → β−1
2 εµνρλψλ
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φ→ φ̄

φ̄→ φ

A → A

where ν, ρ 6= µ. Demanding that the Lagrangian in (A.1) is invariant under these transfor-

mations fixes the coefficients to be

α =
1

8
, β1 = ±2i, β2 = ±i.

A.2 Rµν

Let us make the following ansatz for the transformations generated by Rµν :

η → γ1χµν

χµν → −γ−1
1 η

ψµ → γ2ψν

ψν → −γ−1
2 ψµ

ψρ → εµνρλψ
λ

χµρ → γ3χνρ

χνρ → −γ−1
3 χµρ

χρλ → −γ−1
1 ερλµνη{

A, φ, φ̄
}
→
{
A, φ, φ̄

}
where ρ, λ 6= µ, ν. Demanding that (A.1) is invariant under the above transformations fixes

the coefficients to be

α =
1

8
, γ1 = 2, γ2 = γ3 = 1.

B Comparison of twists

In this appendix, we will compare the two twists of 3d N = 4 SYM. Recall that prior

to twisting, the fermions and scalars transform in the
(

1
2 ,

1
2 ,

1
2

)
and (0, 1, 0) representation

of the global symmetry group SU(2)E × SU(2)N × SU(2)R, respectively, where SU(2)E is

the group of Euclidean rotations, SU(2)N is an internal symmetry group that has a 6d

origin, and SU(2)R is the R-symmetry group. Twisting by the R-symmetry group amounts

to breaking SU(2)E × SU(2)R → SU(2)′ = diag (SU(2)E × SU(2)R), after which the fields

transform in the following representations of SU(2)′ × SU(2)N :

fermions :

(
0,

1

2

)
⊕
(

1,
1

2

)
, bosons : (1, 0)⊕ (0, 1).

Note that this can be obtained from dimensionally reducing the Donaldson-Witten twist

of 4d N = 2 SYM, which is our starting point for defining the lattice theory. On the other

hand, it is also possible to twist by SU(2)N as shown by Blau-Thompson in [12]. Moreover,

a lattice theory based on this twist was developed in [13]. Twisting by SU(2)N breaks
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SU(2)E × SU(2)N → SU(2)′ = diag (SU(2)E × SU(2)N ) after which the fields transform in

the following representations of SU(2)′ × SU(2)R:

fermions :

(
0,

1

2

)
⊕
(

1,
1

2

)
, bosons : (1, 0)⊕ (1, 0).

Note that in the Blau-Thompson twist, there are no bosonic scalars.

In the remainder of this appendix, we will derive the Lagrangians for the two twists of

3d N = 4 SYM by dimensionally reducing 6d N = 1 SYM, demonstrating that they indeed

describe the same underlying theory even though their Lagrangians take different forms

and realize BRST symmetry in different ways (whereas the BRST charge is nilpotent in the

Blau-Thompson twist, it squares to a gauge transformation in the Donaldson-Witten twist).

We will also show that the 3d Donaldson-Witten twist can be obtained by dimensionally

reducing the Lagrangian in equation (2.2).

The Lagrangian for 6d N = 1 SYM is given by

L6d = tr

(
1

4
FMNF

MN − iΨ†RΓMDMΨL

)
(B.1)

where M = 1, . . . , 6, DMX = ∂MX + [AM , X], and FMN = [DM , DN ]. Since we are

working in Euclidean signature, the Dirac matrices obey

{ΓM ,ΓN} = δMN .

MoroverΨL/R are chiral spinors satisfying

Γ7ΨL/R = ±ΨL/R

where Γ7 = Γ1 . . .Γ6. In the following we will present explicit formulas for the Dirac

matrices as tensor products of the Pauli matrices:

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

Blau-Thompson twist. Our derivation of the Blau-Thompson twist of 3d N = 4 SYM

will closely follow the original derivation in [12]. Consider the following representation

of the Dirac matrices which naturally split 6d into 3 + 3, making the SU(2)E × SU(2)N
symmetry manifest:

Γk=1,2,3 = σ1 ⊗ σ0 ⊗ σk, Γa=4,5,6 = σ2 ⊗ σa−3 ⊗ σ0, Γ7 = σ3 ⊗ σ0 ⊗ σ0.

In particular, SU(2)E is generated by 1
2 [Γk,Γl] with k, l ∈ {1, 2, 3}, and SU(2)N is generated

by 1
2 [Γa,Γb] with a, b ∈ {3, 4, 5}. With this choice of Dirac matrices, the fermions can be

written as follows:

ΨL =

(
ψαα̇

0

)
, Ψ†R =

(
0 χαα̇

)
,
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where α, α̇ are spinor indices for SU(2)E × SU(2)N . To dimensionally reduce to three

dimensions, we take the fields to be independent of x4, x5, x6, after which the covariant

derivatives along the internal directions reduce to

DaX → [Aa, X] .

If we then twist by SU(2)N , this breaks SU(2)E × SU(2)N → diag (SU(2)E × SU(2)N )

which amounts to identifying the α and α̇ indices. It is then convenient to decompose the

fermions into spin-1 and spin-0 parts as follows:

ψαβ = ψk (σk)
αβ + εαβη, χαβ = χµ (σk)

αβ + εαβ η̄.

After doing so, the fermionic terms in (B.1) reduce to

Lf3d = tr
(
−2χklDkψl − 2iχkD̄kη + 2iη̄D̄kψk

)
(B.2)

where we have defined χkl = εklmχ
m. Morover, after dimenional reduction and twisting by

SU(2)N , the internal components of AM become a vector in three dimensions:

AM = (Ak, Aa)→ (Ak, Vk) .

The bosonic terms in (B.1) then reduce to

Lb3d = tr

(
1

4
F 2
kl +

1

4
[Vk, Vl]

2 +
1

2
(DkVl)

2

)
= tr

(
1

4
(Fkl − [Vk, Vl])

2 +
1

4

(
D[kVl]

)2
+

1

2

(
DkV

k
)2
)
,

where we used integration by parts to obtain the second equality. It it then convenient to

define the following covariant derivatives:

DkX = ∂kX + [(A+ iV )k , X] , D̄kX = ∂kX + [(A− iV )k , X] ,

in terms of which the bosonic terms in the Lagrangian can be written compactly as follows:

Lb3d = tr

(
1

4
F̄klFkl +

1

2

(
DkV

k
)2
)
, (B.3)

where Fkl = [Dk,Dl] and F̄kl =
[
D̄k, D̄l

]
.

Donaldson-Witten twist. Our strategy for deriving the Donaldson-Witten twist of 3d

N = 4 SYM will be to first dimensionally reduce the 6d Lagrangian in (B.1) to 4d to make

SU(2)R manifest, and then dimensionally reduce to three dimensions and twist by SU(2)R.

We therefore choose the following representation for the Dirac matrices which make the

4 + 2 split manifest:

Γµ = σ0 ⊗ σ1 ⊗ σµ−1, Γ5 = σ1 ⊗ σ3 ⊗ σ0, Γ6 = σ2 ⊗ σ3 ⊗ σ0, Γ7 = −σ3 ⊗ σ3 ⊗ σ0

– 18 –
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where µ = 1, 2, 3, 4. Note that 1
2 [Γµ,Γν ] generate the 4d Euclidean rotation group which is

locally SU(2)l × SU(2)r. For this choice of Dirac matrices, the fermions can be written as

ΨL =


0

λα

ω̄α̇

0

 , Ψ†R =
(
λ̄α̇ 0 0 ωα

)
,

where α, α̇ are spinor indices for SU(2)l × SU(2)r. If we take the fields to be independent

of the x5, x6 directions, (B.1) reduces to the following 4d Lagrangian:

L4d = tr
(

1

4
FµνF

µν+
1

2
DµφD

µφ̄− 1

8

[
φ, φ̄
]2−iψ̄Iα̇Dαα̇ψ

α
I −

i

2

{
ψIα,ψIα

}
φ̄+

i

2

{
ψ̄Iα̇, ψ̄Iα̇

}
φ
)
,

(B.4)

where φ = A5 − iA6, φ̄ = φ†, Dαα̇ = 1
2σ

µ
αα̇Dµ, and I is an SU(2) R-symmetry index; in

particular the fermionic fields are given by

ψIα =
√

2 (λα, ωα) , ψ̄Iα̇ =
√

2
(
λ̄α̇, ω̄α̇

)
.

Next, we dimensionally reduce to three dimensions by taking the fields to be independent

of x4. Relabelling the fields as
(
φ, φ̄

)
= (B1 + iB2, B1 − iB2) and A4 = B3, the bosonic

terms in the Lagrangian reduce to

Lb3d = tr

1

4
F 2
kl +

1

2

3∑
i=1

(DkBi)
2 +

1

2

∑
i<j

[Bi, Bj ]
2

 . (B.5)

Note that dimensional reduction to 3d breaks SU(2)l × SU(2)r → SU(2)E =

diag (SU(2)l × SU(2)r), which amounts to identifying the α and α̇ indices. If we then twist

the 3d rotation group by SU(2)R, this breaks SU(2)E×SU(2)R → diag (SU(2)E × SU(2)R)

so the R-symmetry index I can be identified with the SU(2)E index α. It is then convenient

to decompose the fermions into spin-1 and spin-0 parts as follows:

ψαβ = ψk (σk)
αβ + εαβψ4, ψ̄αβ = χk (σk)

αβ +
1

2
ηεαβ .

After doing so, the fermionic terms in (B.4) become

Lf3d = tr

(
−iχklDkψl − iχkDkψ

4 + iχk [B3, ψk]−
i

2
ψkDkη −

i

2
ψ4 [B3, η]

+
i

8
φ {η, η} − i

2
φ̄
{
ψk, ψk

}
− i

2
φ̄
{
ψ4, ψ4

}
+
i

2
φ
{
χk, χk

})
, (B.6)

where we defined χkl = εklmχ
m. The Lagrangian in equations (B.5) and (B.6) is precisely

what we obtain after dimensionally reducing the twisted 4d Lagrangian in (2.2).

C Link field potential

Here we delve into details of the link field potential (4.11), which is of the same form as is

used in 4d N = 4 SYM, and thus well understood from those previous studies. To further
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understand this functional, we use the lattice spacing a to rescale the link fields to have

canonical dimension 1, so that the potential then takes the form

V = m2
U

∑
µ,x

(
1

N
trUµUµ −

1

a2

)2

(C.1)

For this we explore the continuum limit in the linear formulation

Uµ(x) =
1

a
+Aµ(x) + iBµ(x), Uµ(x) =

1

a
−Aµ(x) + iBµ(x) (C.2)

Here, Bµ are scalar fields that must be lifted to very large masses in order to obtain the

target continuum theory, whereas Aµ contain the physical gauge fields. In addition, one

linear combination of these also contains a third scalar field (in addition to φ, φ̄) that should

be retained in the low energy spectrum,

φ3 =
1

2

4∑
µ=1

Aµ =

4∑
µ=1

P4µAµ (C.3)

The latter notation indicates a projection. The actual gauge fields Vi are obtained from

orthogonal projections:

Vi =

4∑
µ=1

PiµAµ, i = 1, 2, 3 (C.4)

where
∑

µ PαµPβµ = δαβ ; α, β = 1, . . . , 4.

Multiplying everything out and tracing, throwing out the gauge fields Vµ, we obtain

the quantity

trUµUµ =
N

a2
− 2
√
N

a
B0
a +

1

4
φA3 φ

A
3 +BA

µB
A
µ (C.5)

where A = 0, 1, . . . , N2 − 1 correspond to the U(N) generators tA which satisfy trtAtB =

−δAB. Note in particular that the U(1) generator is

t0 =
i√
N

(C.6)

Thus the scalar potential is

V =m2
U

∑
µ,x

[
4

a2N
(B0

µ)2−
4B0

µ

aN
√
N

(
1

4
φA3 φ

A
3 +BA

µB
A
µ

)
+

1

N2

(
1

4
φA3 φ

A
3 +BA

µB
A
µ

)2
]

(C.7)

What we see is the following: the 4 U(1) scalars in B0
µ get a positive mass-squared term,

driving them to zero at small field values. This is good because they would shift the lattice

spacing if they had a nonzero vacuum expectation value. We see that at large field values

where the quartic term dominates, there are no flat directions. This is highly desireable,

because we do not want scalars wandering along flat directions during a simulation, but

rather stuck near a point in moduli space. All six U(N) scalars are lifted and there is no

runaway. At intermediate fields the cubic term plays an important role and there will be
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saddle points. At first the potential decreases as
∑

µB
0
µ is increased, but then finally the

quartic term takes over to prevent runaway.

Next notice what happens in the limit of very small lattice spacing. The B0
µ mass term

is dominant and lifts these modes from the low-energy spectrum. Also, these fields are

driven to zero in the semi-classical approximation. The subdominant (in lattice spacing)

cubic term is therefore driven to zero, and is negligible. If we scale m2
U (dimensionless)

to smaller values as we decrease a, such that m2
U/a

2 is nevertheless very large, then the

quartic term is also negligible. In this way the non-mass potential terms do not disturb

the scalar potential of the desired low energy theory.
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