1	Stable isotope and geochronological study of the Mawchi Sn-W deposit,
2	Myanmar: implications for timing of mineralization and ore genesis
3	Aung Zaw Myint ^{1, 2, *} , Kotaro Yonezu ² , Adrian J. Boyce ³ , David Selby ⁴ , Anders Scherstén ⁵ ,
4	Thomas Tindell ² , Koichiro Watanabe ² , Ye Myint Swe ⁶
5	¹ Department of Geology, University of Yangon, Yangon, Kamayut 11041, Myanmar
6	² Economic Geology Lab, Department of Earth Resources Engineering, Kyushu University,
7	Fukuoka 819-0395, Japan
8	³ Scottish Universities Environmental Research Centre (SUERC), Glasgow, G75 0QF, Scotland,
9	United Kingdom
10	⁴ Department of Earth Sciences, University of Durham, Durham, DH1 3LE United Kingdom
11	⁵ Department of Geology, Lund University, 117 221 00 Lund, Sweden
12	⁶ Department of Geological Survey and Mineral Exploration, Naypyitaw 100604, Myanmar
13	
14	*corresponding author
15	E-mail: aungzawmyint.myanmar@gmail.com
16	
17	
18	

Abstract

20 Myanmar is endowed with abundant Sn-W mineralization, pre-eminent amongst which is the world-class 21 Mawchi deposit. In the Mawchi area, N-S trending vertical or steeply dipping quartz veins are hosted by both Eocene 22 granite and Carboniferous to Early Permian metasediments. Three stages of ore formation are recognized; (i) 23 tourmaline-cassiterite stage (ii) main ore stage and (iii) sulfide stage. Tourmaline, cassiterite and pyrite-I are early-24 formed minerals and are representative of the first stage. Their deposition continued together with wolframite, 25 scheelite, molybdenite, arsenopyrite, pyrite-II, fluorite and danalite, which form the second stage. This was followed by the successive deposition of sulfides such as chalcopyrite, sphalerite, galena and Pb-Bi sulfides. A 40 Ar/ 39 Ar 26 27 magmatic biotite plateau age of 41.50 ± 0.16 Ma (MSWD = 2.5) is determined for the Mawchi biotite granite which 28 we interpret as the time the granite cooled through the biotite blocking temperature, and is consistent with a previously 29 reported LA-ICP-MS U-Pb zircon concordia age of 42.72 ± 0.94 Ma (MSWD = 2). A molybdenite Re-Os model age 30 of 42.4 ± 1.2 Ma indicates that Sn-W mineralization was synchronous with late Eocene granitic magmatism. Our 40 Ar/ 39 Ar hydrothermal muscovite plateau ages from the tourmaline granite (40.14 ± 0.14 Ma; MSWD = 1.48) and 31 32 quartz vein selvages (40.80 ± 0.12 Ma; MSWD = 0.47) define the timing of hydrothermal alteration and simultaneous 33 veining that accompanied the late stage of ore forming at Mawchi.

34 Fluid inclusion microthermometry from cassiterite, scheelite, quartz, and fluorite reveals that ore fluids in 35 the cassiterite-tourmaline stage and main ore stage are characterized by moderate homogenization temperatures (Th = 260° - 345° C) and salinities (4.5 – 15.7 wt. % NaCl equiv), while the sulfide stage is characterized by lower 36 temperatures (Th = 175°- 260°C) and moderate to low salinity (2.5 – 13 wt. % NaCl equiv). The mean δ^{34} S of all 37 38 sulfides is 2.9 ± 2.9 ‰, which is suggestive that the overall system is dominated by magmatic sulfur. The similarity 39 of δ^{34} S values in galena and Pb-Bi sulfides (-1.3 – 2.7 ‰) suggest that sulfur, and inference the Pb and Bi were transported by a common fluid, probably of magmatic origin. The calculated $\delta^{18}O_{H_{20}}$ of the hydrothermal fluid 40 41 associated with cassiterite and tourmaline is 7.3 to 8.4 %. Scheelite and quartz deposition is characterized by lighter 42 $\delta^{18}O_{H_{2}O}$ values (2.1 to 4.9 ‰) indicating that the ore fluid might be mixed with another source of water, perhaps,

43	meteoric. Hydrogen isotopic compositions ($\delta D = -51$ to -121 ‰) again indicate that origin of the ore fluid is magmatic,
44	but δD (~ -120 ‰) is low enough to support the $\delta^{18}O_{H_{2O}}$ data that suggests, in part, a meteoric water component to the
45	hydrothermal fluids at Mawchi.
46	
47	Keywords: Mawchi, Sn-W, stable isotope, geochronology, timing, ore genesis
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
	3

1. Introduction

69	Myanmar is richly endowed with mineral resources and has a long history of mining for
70	lead-zinc-silver, tin-tungsten, gold-copper and gemstones (Thein, 1991; United Nations, 1996;
71	Gardiner et al., 2015). Tin-tungsten (Sn-W) mineralization is one of the principal mineral resources
72	in the country with 11,000 tonnes of tin concentrate produced in 2014, accounting for 3.72% of
73	total world production (USGS, 2015).
74	The Southeast Asia tin belt, extending for 2800 km in length and up to 400 km wide extends
75	from Billiton Island, Indonesia, in the south, through Peninsula Malaysia via southern peninsula
76	Thailand to central and northern Thailand, eastern Myanmar and Yunnan Province (China).
77	Collectively, the four granite belts of southeast Asia (Fig. 1a) represent one of the great
78	metallotects of the World – their metallogenic endowment is dominated by Sn-W (Eastern Granite
79	Province, Central Granite Province and Western Granite Province), with significant Cu-Au-Mo
80	porphyry-epithermal mineralization being a feature of the Central Valley Province.
81	The major tin and tungsten deposits are associated with the granites of Central Granite
82	Province (CGP) and Western Granite Province (WGP). CGP contains the S-type granites of
83	Triassic to Early Jurassic (Ng et al., 2015b) whereas WGP is made up of Cretaceous to Eocene I-
84	and S-type granites (Charusiri et al., 1993; Cobbing et al., 1992; Barley et al., 2003; Mitchell et
85	al., 2012). Mawchi deposit is located in the middle of WGP. The CGP is Indosinian in age and for

86	more than 40 years has been explained by a late Triassic continent- continent or continent- island
87	arc collision consequent on the closure of Palaeo-Tethys (Mitchell, 1977; Ng et al., 2015a&b).
88	Granites and tin mineralization in the WGP overlap in time the India- Asia collision at ca 60 Ma
89	and ca 45 Ma but the southern end of the WGP is far from the nearest exposures of continental
90	Indian crust in northernmost Myanmar. S-type granites in the WGP might be explicable by slab
91	detachment beneath Myanmar- Thailand in response to the Indian collision, but a more local
92	tectonic control related to subduction of the oceanic Indian plate seems more probable (Gardiner
93	et al., 2015; Jiang et al., 2017).
94	The WGP is dominated by ilmenite-series rocks (Charusiri et al., 1993; Myint et al., 2017
95	a & b) of granodioritic to syenogranitic composition (Cobbing et al., 1992; Cobbing, 2011). In
96	Thailand, the Cretaceous to Eocene (88-50Ma) granitoids of both the Sn-W bearing S-type and
97	barren I-type granites intrude Carboniferous to Permian clastic sedimentary rocks at Phuket,
98	Ranong and Pilok (Charusiri et al., 1993). In Myanmar, magnetite-series I-type granitic to dioritic
99	rocks are exposed in some localities (eg. Yebokson, Yinmabin, Nattaung, Mokpalin etc.) (Cobbing
100	et al., 1992; Barley et al., 2003; Mitchell et al., 2012) whereas highly fractionated ilmenite-seires
101	biotite and muscovite granites are spatially associated with Sn-W mineralization in the vicinity of
102	Padatchaung, Mawchi, Dawei, Myeik and Yadanabon areas. Available geochronological data
103	indicates that these tin granites crystallized during Cretaceous to Eocene (107 - 42 Ma) (Brook
104	and Snelling, 1976; Myint et al., 2013; Paik and Zaw, 2014; Gardiner et al., 2016; Myint et al., 5

105	2017a&b Li et al., under submission). In the northern segment of the Sibumasu terrane, the
106	Tengchong-Baoshan granitoid province (TBGP) hosts large- and medium-sized Sn deposits (Wang
107	et al., 2014; Chen et al., 2015). These tin granites of the Yunnan Province link to the granitoids of
108	northeastern Myanmar and emerge as the likely northern continuation of WGP. They are mostly
109	biotite granites with high silica content (73.3 - 76.2 wt.%) and, have metaluminous to weakly
110	peraluminous and high-K calcalkaline compositions. These characters resemble those of the WGP
111	tin granites. Recently LA-MC-ICP-MS U-Pb zircon ages of 53 and 73 Ma have been reported for
112	the Xiaolonghe and Lailishan tin granites, respectively (Chen et al., 2015).
113	The WGP in Myanmar has over 400 Sn-W occurrences and most of them are associated
114	with granites, granite pegmatites and aplite dykes of the WGP. Sn-W mineralization in the Tin
115	Province is found as cassiterite and/or wolframite-bearing pegmatites and greisen-bordered quartz
116	veins. These are hosted both by the granites, and also by the Slate Belt country rock. Among the
117	Sn-W occurrences, the Mawchi mine is a world class Sn-W deposit with estimated ore reserves of
118	350,000 tons (Htay et al., 1997). Mawchi is situated 219 km southeast of Naypyitaw and was the
119	world's largest granite-hosted tin-tungsten vein system before World War II. During the period of
120	1930-1940 the company produced 2000 to 6000 tonnes of ore annually, amounting to 60% of the
121	total production of Myanmar. Approximately 25,000 tonnes of Sn-W ore were produced from
122	1980-2010 (unpublished Mawchi mine data). Although there is some literature describing the
123	geology of Mawchi mine and surrounding area (Dunn, 1938; Hobson, 1941; Zaw and Thet, 1983;

124	Myint et al., 2017a), no new data have been published relevant to the ore deposit geology of
125	Mawchi mine in recent years. Here we present and discuss new data associated with the
126	mineralogy, fluid inclusion microthermometry, stable isotope and, ⁴⁰ Ar/ ³⁹ Ar and Re-Os
127	geochronology of the Mawchi deposit to constrain the ore genesis and timing of the Sn-W
128	mineralization and implications for Sn-W deposit exploration in the WGP.

129

130 2. Geological background

2.1 Regional geologic setting 131

As shown in (Fig. 1a) the MMB lies immediately west of the mineralized WGP granites. 132 The MMB also hosts S- type granites but these lack tin mineralization, perhaps because of either 133 a deeper erosion level or source rock different to that which produced the partial melts which 134 resulted in the mineralized granites. The WGP contains Cretaceous to Tertiary granitoid rocks of 135 metaluminous to peraluminous, high K calc-alkaline composition (Cobbing et al., 1992; Mitchell 136 et al., 2012; Myint et al., 2017a&b). Miocene granitic dyke rocks cut the older granitic rocks in 137 some places. The Sn-W mineralization is predominantly associated with granites, granite 138 pegmatites and aplite dykes from the WGP which intruded Carboniferous to Early Permian 139 metasedimentary and sedimentary sequences of the Slate Belt (SB; Bender 1983; Mitchell et al., 140 2004; Myint et al., 2013; Myint et al., 2017a). The SB comprises the sediments and low grade 141 142 metasediments of Lebyin, Mawchi and Mergui Groups in Myanmar and Kaeng Krachan Group in 143 Thailand.

The MMB is a high-grade metamorphic sequence of gneiss, schists and marbles. In the 144 northern part of the belt around Mogok, ruby-bearing phlogopite-diopside-graphite-spinel-145 bearing marble or calc-silicate and sapphire-bearing post-deformation pegmatitic nepheline 146 syenites are found (Iyer, 1953; Mitchell et al., 2007). The marbles are probably metamorphosed 147 from either the Precambrian (Chhibber, 1934) or Precambrian to Jurassic rocks of the Shan Plateau 148 (Searle and Haq, 1964). Some units of meta-igneous rocks and marbles at and west of Mogok have 149 150 been correlated with the Silurian and Ordovician units of the Shan Plateau (Thein et al., 1988). Around the Mandalay-Kyaukse-Tharzi areas, the MMB is mostly composed of marbles and calc-151 silicate rocks with minor schists and gneiss. Some outcrops of low-grade marble contain relict 152 Ordovician to Permian fossils. The fossiliferous rocks and probably the marble and calc-silicates 153 154 in this segment of the MMB are part of the Paleozoic to Triassic Plateau sequence. Garnet and 155 sillimanite schists with augen gneisses and minor marble continue southwards to the Andaman Sea coast occupying a parallel belt to the WGP and SB. 156

The Mawchi Sn-W deposit is located in the eastern part of Myanmar. The regional geology is comprised by the NNW-SSE trending juxtaposition of the Mogok Metamorphic Belt (MMB; Searle and Haq, 1964; Mitchell et al., 2007) and metasedimentary and sedimentary rocks of the Mawchi Group (a part of SB) amalgamated with a succession comprising Paleozoic to Triassic shallow marine carbonates and sediments with Jurassic and Cretaceous continental 162 sediments (Fig. 1b).

Permian Plateau Limestone occurs as NNW-SSE trending intermittent limestone caps on the metasediments and granite striking parallel to shear splays. The prominent rocks of the Mawchi Group are hornfels, mudstones, fine-grained sandstone and metagreywacke. Grayish and reddish colored fine-grained sandstones, argillite and phyllite are common, and grayish and reddish mudstones and claystones occur interbedded between sandstone and argillite in some localities.

168

169 2.2 Geology of Mawchi Sn-W district

170

171 The geology of the area is characterized by the metamorphic rocks of MMB, metasedimentary rocks of Carboniferous to Early Permian Mawchi Group (Myint et al. 2017a), Permian Plateau 172 Limestone and intrusive bodies of biotite granite and tournaline granite of WGP (Hobson, 1941; 173 Myint et al., 2017a) (Fig. 2a). Metamorphic rocks of the MMB, containing gneisses, granite 174 gneisses and schists, are found in the western part of Mawchi area and their contact with the 175 176 Mawchi Group appears to be defined by a fault. The Mawchi Group shows extreme lithological variations, including; mudstone, shale, fine-grained siltstone and sandstone, slate, quartzite and 177 metagreywacke. Elongate and small granite bodies of the WGP are dispersed and intrude the 178 metasedimentary rocks and Permian Plateau Limestone along NNW-SSE fracture systems. Most 179

of these granite bodies are coarse-grained porphyritic biotite granites with accessory epidote and
apatite (Hobson, 1941).

182 In the Mawchi Mine area, a granite pluton is composed of medium- to coarse-grained biotite granite, grading into fine- to coarse-grained tourmaline granite towards the mineralized 183 zone. Pervasive tourmalinization is superimposed on the biotite granite. The biotite granite is 184 mainly composed of quartz, feldspar, biotite with trace amount of tourmaline and contains high 185 silica content (74 - 86 wt. %) with A/CNK [molecular Al₂O₃ / CaO + Na₂O + K₂O)] >1. It 186 possesses minor hydrothermal alteration characterized by a trace presence of hydrothermal 187 tourmaline. The tourmaline granite consists of quartz, feldspar, muscovite and tourmaline (Myint 188 et al., 2017a). Biotite is rare in the tournaline granite. Hydrothermal muscovite-sericite clusters or 189 aggregates are commonly associated with and occasionally replace tourmaline. Spider diagrams 190 191 for the Mawchi granites show with pronounced negative Ba, Sr, Nb and Ti anomalies with positive 192 Rb, Pb, U anomalies and the granites have low Nb/Ta and Zr/Hf values. These granites were derived from a magma generated by the melting of crustal rocks and extensive magmatic 193 differentiation. Trace element geochemistry and the low ε Nd (T) values reveal that distinct crustal 194 sources have been involved in emplacement of the peraluminous granitic rocks and their Sn-W 195 enrichment (Myint et al., 2017a). The LA-ICP-MS U-Pb zircon ages of the biotite and tournaline 196 granites are 42.72 ± 0.94 Ma (n = 12; MSWD = 2) and 43.71 ± 0.39 Ma (n = 12; MSWD = 1.02), 197 198 respectively (Myint et al., 2017a). Petrographic, geochemical and geochronological studies

indicate that the tourmaline granite of Mawchi mine area is a hydrothermally altered biotite granite(Myint et al., 2017a).

201 Several satellite Sn-W prospects surround the Mawchi deposit, comprising: Htawmawkhee, Ketaunggalay, Hteelakhee and Mosakhee. The Htawmawkhee prospect is 202 composed of parallel and inclined small quartz veins that strike NW-SE. These 2 to 14 cm thick 203 veins are hosted by argillite and contain cassiterite, wolframite and tourmaline. Nearly N-S 204 trending sheeted veins are also observed. In the Ketaunggalay prospect, wolframite-bearing quartz 205 and pegmatite veins are hosted by metasandstone of the Mergui Group and strike in a nearly N-S 206 direction. Hteelakhee is 12 km south of the Mawchi mine and is characterized by cassiterite and 207 wolframite bearing quartz veins and sheeted veins hosted by the argillite and sandstone. The 208 Mosakhee prospect is situated near the village of Mosakhee where wolframite and stannite are 209 210 associated with some sulfides such as galena and sphalerite (Myint, 2015). The quartz veins trend 211 N-S and are hosted by the metasediments.

212

213 **3. Mawchi Sn-W mineralization**

The Mawchi ore body is classified into three types according to vein geometry and mineral assemblage. The principal mineralization is represented by cassiterite-wolframite bearing quartz veins that are hosted by the tourmaline granite and metasedimentary rocks (Fig. 2b&c). These

217	veins are generally confined to a N-S trending fracture system (Fig. 3a), which upwardly taper
218	forming a minor stockwork style vein network (Fig. 3b). In the vein system close to the limestone,
219	scheelite-danalite assemblage form a skarn assemblage. Danalite occurs as bands parallel to the
220	vein wall (Fig. 3c) or as irregular patches in the vein. Post-mineralized veins are horizontal and
221	gently inclined, cutting through mostly metasedimentary rocks. These veins are, generally, quartz-
222	tourmaline veins and are barren of ore minerals and are common in the uppermost part of the ore
223	body (Fig. 3d).

Cassiterite and wolframite occur in the marginal zone (Fig. 3e) as well as in the central zone of the veins, whereas sulfide minerals occur only in the central zone, suggesting that oxide ore minerals crystallized early and sulfide minerals late in the paragenetic sequence. Fractures are occasionally observed to host an early formed mineral assemblage of tourmaline – cassiterite \pm pyrite (Fig. 3f). Massive bands and pockets of cassiterite \pm tourmaline \pm muscovite \pm pyrite are also common at the vein margins (Fig. 3g).

The common gangue minerals in the Mawchi vein system are tourmaline, micas (muscovite, sericite, gilbertite, and lepidolite), danalite, fluorite, chlorite, clay minerals (kaolinite, illite), calcite and beryl. Tourmaline, the most common gangue mineral, is dispersed widely, not only in the veins, but also in the host rocks. Tourmaline also represents the dominant alteration associated with Sn-W mineralization, with its deposition preceding that of wolframite and other sulfides in some cases. Other common alteration assemblages are albitization, sericitization,

236	silicification and kaolinization. Albitization occurs in the highly tourmalinized granite (Myint et
237	al., 2017) whereas sericitization is characterized by the mica selvages along the contact of host
238	rock and quartz veins. The sericitization postdates the tourmalinization as can be seen clearly in
239	the tourmaline granite (Fig. 3h).
240	Assay data corresponding to the veins from various levels are tabulated in Table 1 and
241	indicate a downward decrease of Sn and WO ₃ content. The Sn:WO ₃ varies among different veins
242	ranging mostly between 1: 0.7 and 1: 0.5.
243	
244	4. Methodology
245	4.1 Mineralogical and fluid inclusion study
246	
247	The mineralogical study utilized transmitted and reflected light microscopy, and x-ray
248	diffractometry (XRD), Scanning Electron Microscopy (SEM), and Electro Probe Micro Analysis
249	(EPMA). The mineral identification by the XRD method was performed using a Rigaku Ultima
250	IV X-ray Diffractometer at the Economic Geology Laboratory, Kyushu University. Elemental
251	analyses were performed using a Shimadzu Superscan SSX-550, equipped with an energy-
252	dispersive x-ray analyzer (SEM-EDX) at the Advanced Research Center and a JEOL JXA8530F
253	field emission EPMA at the Department of Environmental Changes, Kyushu University. The fluid

254	inclusion analysis were performed by measuring the final ice melting point (salinity calculations)
255	and heating the fluid inclusion samples (homogenization temperature) using a calibrated Linkam-
256	THMS600 heating-freezing stage.
257	
258	4.2 Ar-Ar methods
259	
260	Magmatic biotites from the biotite granite of the Mawchi area were separated with the
261	objective of determining the magmatic cooling age. Hydrothermal muscovites from the tourmaline
262	granite exposed near the mine site and a quartz vein from an underground working in the deposit
263	were selected to determine the timing of alteration that is later than thr tourmalinization which is
264	spatially and genetically associated with the Sn-W ore deposition.
265	Mica samples were irradiated together with the TCR sanidine standard (batch 2; 28.34Ma
266	recalculated by Renne et al., 1998) at the NRG-Pattern HFR Rodeo facility in the Netherlands, and
267	later analyzed at Lund University, Sweden using a Micromass 5400 Mass Spectrometer with a
268	Faraday and an electron multiplier. The mass spectrometer is equipped with a metal extraction
269	line, containing two SAES C50-ST101 Zr-Al getters and a cold finger cooled to app155°C by a
270	Polycold P100 cryogenic refrigeration unit. One or two grains of mica were loaded into a copper
271	planchette consisting of a number of 3 mm holes. Samples were step-heated using a defocused
272	50W CO ₂ laser rastered over the samples to provide even heating of all grains. Sample clean up 14

times were 5 min (using two hot Zr-Al getters and a cold finger). The laser was rastered over the 273 samples to provide even heating of all grains. The analytical process is automated and runs on a 274 Macintosh OS 10.2 platform with software modified specifically for the laboratory at the 275 276 University of Lund. Time zero regressions were fitted to data collected from 10 scans over the mass range of 36 to 40. Peak heights and backgrounds were corrected for the mass discrimination, 277 isotopic decay and interfering nucleogenic Ca-, K-, and Cl-derived isotopes. Isotopic production 278 values for the cadmium lined position in the Petten reactor are ${}^{36}Ar/{}^{37}Ar(Ca) = 0.000270$, 279 ${}^{39}\text{Ar}/{}^{37}\text{Ar}(\text{Ca}) = 0.000699$, and ${}^{40}\text{Ar}/{}^{39}\text{Ar}(\text{K}) = 0.00183$. 280

Blanks were measured before each sample and after every three-sample step. Blank values 281 were subtracted from the sample signal for all incremental steps. Age plateaus were determined 282 following the criteria of Dalrymple and Lanphere (1971), specifying the presence of at least three 283 contiguous incremental heating steps with statistically indistinguishable ages and constituting 284 more than 50 % of the total ³⁹Ar released during the experiment. Plateau ages are quoted with 285 uncertainties at the 2σ level (Hermansson et al., 2008). The Taylor Creek Rhyolite (TCR) sanidine 286 standard (28.34 ± 0.16 Ma; Renne et al., 1998) was used as flux monitor. J-values were calibrated 287 with a precision of 0.25 %. The uncertainties in the J-values have been propagated into the 288 uncertainties in the plateau ages. However, the uncertainties in the decay constant and in the 289 290 standards are not propagated.

291

The molybdenite in the Mawchi deposit is fine-grained (0.2 - 1 mm) and rare. The 294 molybdenite is associated with cassiterite-wolframite-sulfides bearing quartz-tourmaline vein, and 295 possesses mica and tournaline selvages. Molybdenite from one sample was physically (crushed, 296 magnetic and heavy liquid separation, and hand-picked) isolated from a quartz vein to yield a 297 mineral separate of several tens of milligrams. 298 299 Rhenium-osmium (Re-Os) analysis was conducted using isotope-dilution negative ionization mass spectrometry at Durham University (Selby and Creaser, 2001). The molybdenite 300 sample, together with a known amount of tracer solution (185 Re + normal Os) was digested in a 301 carius tube with 3 mL HCl (11 N) and 6 mL (15 N HNO₃) at 220°C for 24 hours. Osmium from 302 303 the acid solution was isolated via solvent extraction (CHCl₃), and purified by using micro-304 distillation. The Re from the Os extracted solution was extracted via NaOH-Acetone extraction and purified by anion chromatography (Cumming et al., 2012). The isolated Re and Os fractions 305 were loaded onto Ni and Pt wire filaments, respectively, with the isotope compositions determined 306 via Faraday cups of a Thermo Scientific TRITON mass spectrometer. The Re-Os data are blank 307 corrected using values of 2 ± 0.03 ppt for Re, 0.11 ± 0.04 ppt for Os, with an ¹⁸⁷Os/¹⁸⁸Os of 0.25 308 \pm 0.02. The Model Re-Os age is calculated using the equation ln (¹⁸⁷Os/¹⁸⁷Re + 1)/ λ , using the 309 decay constant (λ) of 1.666e⁻¹¹a⁻¹ (Smoliar et al., 1996). Uncertainties include all sources of 310

311	analytical uncertainty (Re and Os mass spectrometer measurements, blank abundances and
312	isotopic compositions, spike calibrations and reproducibility of standard Re and Os isotopic
313	values), both with and without the uncertainty in the decay constant (0.35%; Smoliar et al., 1996;
314	Selby et al., 2007). All uncertainties are presented at the 2σ absolute level.
315	

316 4.4 Stable isotopic analysis

Stable isotope compositions were analyzed at the Scottish Universities Environmental 317 Research Centre (SUERC), UK. For O-isotopic analyses, mineral separates (cassiterite, 318 wolframite, tourmaline, quartz and scheelite) were analyzed by the laser fluorination procedure, 319 involving total sample reaction with excess ClF_3 using a CO_2 laser as a heat source (in excess of 320 1500°C). All combustions resulted in 100% release of O_2 from the mineral lattice. Liberated O_2 321 was then converted to CO₂ by reaction with hot graphite, then analyzed on-line using a VG SIRA 322 10 spectrometer. Reproducibility is ~ \pm 0.3 %. Results are reported in standard notation (δ^{18} O) as 323 per mil (‰) deviations from the Standard Mean Ocean Water (V-SMOW) standard. 324

Pyrite, arsenopyrite, chalcopyrite, sphalerite, galena and Pb-Bi sulfides were selected for sulfur isotope analyses. Pyrite-I and Pb-Bi sulfides were prepared for conventional isotopic analysis by standard heavy liquid (sodium polytungstate) and hand picking techniques. One gram of sample was collected from each although around 5 to 10 mg were utilized for isotopic analysis. Minor contamination by non S-bearing phases was tolerated, and has no isotopic effect on the final

data. Sulfides were analyzed by standard techniques (Robinson and Kusakabe, 1975) in which

SO₂ gas was liberated by combusting the sulfides with excess Cu₂O at 1075°C, *in-vacuo*.

Other sulfides such as pyrite-II, arsenopyrite, chalcopyrite, galena and sphalerite were 332 examined by *in-situ* laser combustion from standard polished blocks. The blocks were inserted 333 into a sample chamber, which was evacuated and subsequently filled with an excess of oxygen gas 334 (Fallick et al., 1992). The spatial resolution is determined by the minimum volume of SO₂ gas 335 required for analysis (0.05–0.10 μ mol), with minimum spot sizes of approximately <100 μ m. 336 337 Samples were rastered under the laser beam to combust individual zones extending around 500 by 100 µm. The laser beam was a SPECTRON LASERS 902Q CW Nd:YAG laser (1 W power), 338 operating in TEM_{00} mode. The SO₂ gas produced by each laser combustion was purified in a 339 miniaturized glass extraction line, using a CO₂/acetone slush trap to remove water and a standard 340 *n*-pentane trap to separate SO_2 and trace CO_2 (Kelley and Fallick, 1990). Determination of the 341 342 sulfur isotope composition of the purified SO₂ gas was carried out on-line by a VG SIRA II gas 343 mass spectrometer.

The international standards employed to calibrate the reference gas were NBS-123 and IAEA-S-3, and SUERC standard CP-1 which gave δ^{34} S values of +17.1‰, -31.5‰ and -4.6‰ respectively, with 1 σ reproducibility around ±0.2‰ in this study. Data are reported in δ^{34} S notation as per mil (‰) variations from the Vienna Canyon Diablo Troilite (V-CDT) standard. The laser extraction method results in a sulfur isotope fractionation between the host mineral and the SO₂

349	gas produced via combustion, which is mineral-specific (Kelley and Fallick, 1990).
350	Experimentally determined fractionation factors are currently available in the SUERC system to
351	apply correction to several sulfide/sulfosalt minerals, for example, pyrite (+0.8 ‰) and galena
352	(+2.4 ‰). Further discussion of the laser-induced fractionation is given in Wagner et al. (2002).
353	For H isotope analysis of fluid inclusion water, pure mineral samples of cassiterite,
354	wolframite and quartz (around 1 g) with one dominant fluid inclusion population, were heated to
355	100°C overnight under high vacuum to release labile volatiles and loaded into outgassed Pt
356	crucibles. Samples were gradually heated by radiofrequency induction in an evacuated quartz tube
357	to temperatures in excess of 700°C. For H isotope analysis of tourmaline, pure samples of ~ 800
358	mg were heated to 150°C overnight under high vacuum to release labile volatiles after loading into
359	outgassed Pt crucibles. Samples were then gradually heated by radiofrequency induction in an
360	evacuated quartz tube to temperatures in excess of 1200°C. The released water was reduced to H_2
361	in a chromium furnace at 800°C (Donnelly et al., 2001), with the evolved gas measured
362	quantitatively in an Hg manometer, then collected using a Toepler pump. The gas was subsequently
363	analyzed on a VG 602D mass spectrometer with a manual Hg, high gas compression inlet system.
364	Replicate analyses of international water standards (V-SMOW and GISP), and an internal standard
365	(Lt Std) gave a reproducibility of ± 2 ‰. Replicate analyses of the international mineral standard
366	NBS-30 (biotite) also gave reproducibility around \pm 2 ‰. A more conservative error for fluid
367	inclusion samples would be around \pm 5 ‰.

369 **5. Mineralogy and vein paragenesis**

370 The paragenetic sequence of ore deposition in the Mawchi vein system is presented in Fig.
371 4 and has been divided into three stages.

372 5.1 Tourmaline-cassiterite stage

The onset of ore deposition was initiated by pervasive tourmalinization with tin 373 mineralization. Early-formed tourmaline in the tourmaline granite is likely the precursor of quartz 374 375 vein deposition and successive deposition of late tourmaline and cassiterite took place not only along the small fractures and vein boundary as masses and patches, but also in the highly altered 376 tourmalinized granitic rocks. In such case, wolframite is rarely found with tourmaline and 377 cassiterite, and, these early-formed minerals coexist with first generation of pyrite (pyrite-I) in 378 379 some places. Cassiterite is the major ore mineral in this stage and has been identified as 380 idiomorphic crystals as well as a massive band with tourmaline, muscovite and pyrite-I at the vein margin. Sometimes, fine tourmaline segregations with the cassiterite can be found as dark-colored 381 patches in the vein. Pyrite-I crystals are, generally idiomorphic or sub-idiomorphic, up to 0.3 mm 382 long and usually dispersed in both the granite body and veins showing it formed before wolframite. 383 The late phase of this stage overlapped with the main ore stage and continued until the end of oxide 384 ore deposition. 385

386 5.2 Main ore stage

387	The second stage of ore deposition (main ore stage) in the Mawchi vein system appears to
388	have begun with the precipitation of major oxide ore minerals such as cassiterite, wolframite and
389	scheelite with subordinate amount of such sulfide minerals as molybdenite, arsenopyrite and
390	second generation pyrite (pyrite-II) (Fig. 5a). Minute molybdenite flakes commonly occur in the
391	deep level vein system and are affected by kink banding adjacent to the undeformed mineral grains
392	such as pyrite-II and chalcopyrite, and pyrite-II penetrates the cleavage plane of molybdenite (Fig.
393	5b). Molybdenite occurs as isolated flakes in quartz or in tourmaline or at the border of wolfram
394	and quartz (Dunn, 1938). Cassiterite has been identified as idiomorphic crystals as well as forming
395	a mixed matrix with wolframite, arsenopyrite and pyrite in the vein. Color zoning is common (Fig.
396	5c). Wolframite is the principal tungsten mineral of the Mawchi mine and it can be found either as
397	large dispersed crystals or intergrown with cassiterite and/or with sulfide minerals. Marginal
398	replacement by early-formed sulfide minerals (Fig. 5d) and scheelite replacement are common
399	(Fig. 5e) in wolframite. Although ferberitic in some veins, wolframites from Mawchi veins are
400	compositionally mostly hubneritic to wolframitic in composition. The first generation wolframite
401	is generally wolframitic and intergrown with cassiterite, with the second generation wolframite,
402	which contemporaneously appears with pyrite-II, is mostly of hubneritic composition.
403	Two distinct generations of pyrite with several modes of formation are identified. Pyrite-I,
404	occurring in considerable amounts and as tiny cubes, is the earliest sulfide mineral followed by
405	pyrite-II and arsenopyrite. Pyrite-II occurs very widely and shows a cataclastic texture in some 21

406	places. Pyrite-II formed simultaneously with or somewhat later than arsenopyrite. In the vein
407	system, pyrite-I cubes are surrounded by the fractured pyrite-II and other later-formed sulfides,
408	such as arsenopyrite (Fig. 5f). Clusters of minute acicular pyrite are also observed in the lower part
409	of veins as void-filling minerals among the other ore and gangue minerals. Scheelite forms mainly
410	as a secondary mineral replacing wolframite and partly as milky white to yellowish white crystals
411	in veins (Fig. 5g) close to the contact of limestone and granite. Scheelite is associated with danalite,
412	wolframite, cassiterite and tourmaline, suggesting a skarn forming event. Some scheelite crystals
413	contain tourmaline (Fig. 5h) and cassiterite as inclusions. Interstitial filling of pyrite-II between
414	the grains of cassiterite and wolframite is common (Fig. 6a). Arsenopyrite, one of the most
415	common and abundant of vein sulfides, frequently occurs as anhedral aggregates and is sometimes
416	intergrown with pyrite-II. Most arsenopyrite formed early in the vein sequence, evidently
417	overlapping wolframite and some early generation pyrite-II.
418	Tourmaline and muscovite-sericite are still common in the main ore stage and danalite,
419	chlorite, early fluorite are other common gangue minerals. After the main ore and sulfide stages,
420	tourmaline continued to deposit together with quartz. Fluorite, another common gangue mineral,
421	is of two distinct types, which differ in color and mode of occurrence. The first fluorite species is
422	generally bluish to purplish or greenish in color spatially associated with wolframite, cassiterite
423	(Fig. 6b), tourmaline, chlorite and muscovite-sericite. Another species of fluorite is mostly
424	greenish color enriched in yttrium and forms yttrofluorite in some places. It is the product of 22

425 hydrothermal activity, which was either early or contemporaneous with the deposition of Nb-Ta426 REE minerals of the sulfide stage.

427 5.3 Sulfide stage

The third stage (Sulfide stage) is defined by the successive deposition of sulfide minerals 428 such as chalcopyrite, sphalerite, galena and Pb-Bi sulfides with minor formation of fergusonite, 429 wolframo-ixiolite and other Nb-Ta minerals. Tiny and dispersed fergusonite, wolframoixiolite 430 (Fig. 6c), Nb-bearing rutile and other Nb oxide minerals are common in the lower levels of the 431 432 Mawchi vein system where the mineralization is hosted by granite. The Nb-Ta minerals are probably the result of exsolution and replacement of scheelite and hubneritic wolframite (Myint et 433 al. in review). Sphalerite occurs not only as a replacement mineral in the interstices and grain 434 boundaries of arsenopyrite and pyrite crystals, but also as inclusions in galena. It usually contains 435 436 2.4 - 11.6 wt. % Fe, and encloses blebs and tolls of chalcopyrite and stannite, forming as an exsolution pattern (Fig. 6d). Therefore, sphalerite is contemporaneous with chalcopyrite, but 437 younger than arsenopyrite and pyrite, and older than galena. Chalcopyrite occurs not only as tiny 438 veinlets and replacements (type-I) in arsenopyrite, pyrite and other early vein minerals (Fig. 6e), 439 but also as anhedral grains (type-II) (Fig. 6f). Galena is a late sulfide mineral following sphalerite, 440 replacing the former sulfides and enclosing them as inclusions. Galena can be found as marginal 441 replacement along the borders of chalcopyrite and sphalerite (Fig. 6g), along the fractures of pyrite 442 443 grains, and as scattered mineral grains in the quartz. The galena and sphalerite are sometimes

444 veined by cerussite.

The later phase of the sulfide stage is marked by the deposition of bismuth-bearing galena and other bismuth-lead sulfides. These are widespread in the veins and replace early-formed sulfides of pyrite, chalcopyrite and sphalerite (Fig. 6h). The bismuth-bearing galena contains 0.23 - 1.37 wt. % Bi, whereas Bi-Pb sulfides (including cosalite) contain 0.2 - 1.76 wt. % Ag. Pyrrhotite is found as very rare accessory and, hematite, covellite, chalcocite and cerussite occur as supergene minerals.

451

452 **6. Results**

453 6.1 Ar-Ar and Re-Os dating

Mica Ar-Ar data is presented in Table 4 and, plateau age and isochron diagrams are shown 454 455 in Fig. 7. Magmatic biotite from the biotite granite at Mawchi yields a well-defined plateau age of 456 41.50 ± 0.16 Ma (MSWD = 2.5), with an inverse isochron date of 42.4 ± 0.3 Ma (MSWD = 1.7). The hydrothermal muscovites dated from the tourmaline granite and a quartz vein give plateau 457 ages of 40.14 ± 0.14 Ma (MSWD = 1.48) and 40.80 ± 0.12 Ma (MSWD = 0.47) respectively. The 458 plateau ages are consistent with the inverse isochron dates of 40.20 ± 0.3 Ma (MSWD = 1.7) and 459 40.73 ± 0.17 Ma (MSWD = 1.5), respectively. The Re-Os abundances and model age of quartz 460 vein-hosted molybdenite are given in Table 5. The concentrations of Re and ¹⁸⁷Os of the Mawchi 461 molybdenite are 1.36 ppm and 0.61 ppb, respectively. The Re-Os data yield a Re-Os model age of 462

463 42.43 \pm 1.21 [42.43 \pm 1.22 including the uncertainty in the decay constant] Ma.

464

465 6.2 Fluid inclusions microthermometry

466	Liquid-rich two-phase (liquid and vapor) primary fluid inclusions are dominant in massive
467	cassiterite and in cassiterite, scheelite and quartz from the main ore stage and, quartz and fluorite
468	from sulfide stage. Fluid inclusions vary from being circular through tubular to irregular in shape,
469	and are between 7 and 25 μ m in size. The homogenization temperatures (Th) in primary fluid
470	inclusions of massive cassiterite from cassiterite-tourmaline stage range from 311° to 343°C (Fig.
471	8), with final ice melting temperatures of -2.7° to -7.9°C suggesting moderate salinity (4.5 to 11
472	wt. % NaCl equiv) (Fig. 9). Primary inclusions in vein cassiterite, formed during the main ore
473	stage with tourmaline, homogenized between 312° and 340°C and exhibit ice melting temperatures
474	of -2.5° to -5.6°C, corresponding to salinities of 4.7- 11.9 wt. % NaCl equiv. Fluid inclusions in
475	scheelite from the quartz veins record moderate homogenization temperatures (261° -313°C) and
476	final ice melting temperatures that indicates moderate salinity (6.8 – 15.7 wt % NaCl equiv).
477	Based on salinity, fluid inclusions of fluorite from sulfide stage can be divided into two
478	groups: low salinity (2.5 – 5 wt. % NaCl equiv) inclusions with low Th (174° - 185°C) and,
479	moderate salinity (10-13 wt. % NaCl equiv) inclusions with low Th (175° - 220°C). Quartz
480	samples from were also studied, yielding Th of 180° to 290°C, similar to temperatures reported by

481 Zaw and Thet (1983), and low salinity (3.5 - 7.7 wt. % NaCl equiv).

483 6.3 Stable isotopic systematics

- 484 6.3.1 *Sulfur isotopes*
- 485 A total of 45 samples of sulfide minerals from all stages of mineral paragenesis were
 486 analyzed to ascertain the source of sulfur in the mineralization of the Mawchi deposit.
- 487 The δ^{34} S data are listed in Table 2 and plotted in Fig. 10.
- 488 Pyrite-I from the tourmaline granite and vein samples, which are the representatives of the
- 489 tourmaline-cassiterite stage, yield δ^{34} S values of +5 ‰ and +5.6 ‰. Pyrite-II and arsenopyrite

from the main ore stage gave δ^{34} S values of 3.8 to 6.2 ‰ and 2.5 to 3.6 ‰, respectively.

- 491 Chalcopyrite, sphalerite and galena from the sulfide stage reveal a broader range in δ^{34} S
- 492 values, with type-II chalcopyrite possessing δ^{34} S values from 0.9 1.1 ‰, whereas type-I yields
- 493 two populations of δ^{34} S values, 4.5 6.2 ‰ and 9.4 10.6 ‰. The δ^{34} S values of sphalerite range
- 494 between -3.2 and 3.2 ‰. Galena defines a narrow range in δ^{34} S values of -1.3 to 1.8 ‰.
- The final stage of mineralization, bismuth-bearing galena and Pb-Bi sulfides yield δ^{34} S values of 0.7 - 2.7 ‰, which are quite similar to those of galena. Overall, the entire sulfide set from Mawchi defines a narrow δ^{34} S range around a mean of 2.9 ± 2.9‰ (1 σ ; N=45).

498

- 499 6.3.2 Oxygen and hydrogen isotopes
- 500 Oxygen and hydrogen isotopes were analyzed to identify the source of ore fluid. The 26

501 $\delta^{18}O_{\text{mineral}}$, calculated $\delta^{18}O_{\text{H2O}}$ and hydrogen isotope data of vein minerals are listed in Table 3. The 502 calculated $\delta^{18}O_{\text{H2O}}$ data of vein minerals are presented in Fig. 11.

The mean homogenization temperature of fluid inclusions in vein hosted main ore stage 503 cassiterite, 325°C, is used to calculate the $\delta^{18}O_{H_{2}O}$ values of cassiterite with coexisting tourmaline. 504 The $\delta^{18}O_{H_{2}O}$ values calculated for scheelite and quartz from main ore stage are based on their 505 respective mean fluid inclusion homogenization temperatures of 290° and 280°C. From the 506 paragenetic sequence, the temperature of formation of wolframite ranges between 325° and 290°C. 507 Thus 310 °C was fixed to calculate the best estimate of $\delta^{18}O_{H_{2}O}$ values of wolframite. The $\delta^{18}O_{H_{2}O}$ 508 values for quartz from main ore stage and sulfide stage are based on their respective mean fluid 509 inclusion homogenization temperatures of 280° and 260°C, respectively. 510 The δ^{18} O values of cassiterite from the Mawchi veins show a narrow range between 4.6 511

and 5.7 ‰, with the exception of samples from the stockwork zone (nekhee-1 &-2) that possesses heavier $\delta^{18}O_{H2O}$ values of 8.3 and 8.4 ‰. The calculated $\delta^{18}O_{H2O}$ at 325°C is 7.3 to 11.1 ‰. The $\delta^{18}O$ values of tourmalines are distinctly homogeneous (10.4 - 10.8 ‰) and the $\delta^{18}O_{H2O}$ values range from 7.8 to 8.2 ‰ at an estimated temperature of 325°C. Wolframite has relatively lighter $\delta^{18}O$ values compared to cassiterite and tourmaline ranging from 2 to 4.3 ‰, with calculated $\delta^{18}O_{H2O}$ values of 3.9 to 6.2 ‰. Scheelite has $\delta^{18}O$ of 0.6 to 2.7 ‰, with calculated $\delta^{18}O_{H2O}$ values of 2.1 to 4.2 ‰. The $\delta^{18}O$ values of quartz samples from various veins range from 11.5 to 13.4 ‰

and their calculated $\delta^{18}O_{H2O}$ values range from 3 to 4.9 ‰.

520	Inclusion fluids were extracted to determine the δD value of fluids associated with the
521	formation of cassiterite, wolframite and quartz in the Mawchi veins. The hydrogen isotope
522	compositions of tourmaline were also analyzed, yielding $\delta D_{tourmaline}$ values of -112 to -99 ‰. Four
523	cassiterite samples from the main ore stage and one from the tourmaline-cassiterite stage were
524	analyzed and their fluid inclusions gave $\delta D_{\rm H2O}$ values from -86 to -51 ‰. Three wolframite
525	samples from granite-hosted veins and two samples from metasediment-hosted veins gave $\delta D_{\rm H2O}$
526	values of -87 to -61 ‰ and -121 to -118 ‰, respectively. Most of the quartz samples have dominant
527	secondary fluid inclusions and, hence, two granite-hosted veins representing the main ore stage
528	that have mostly primary fluid inclusions were selected for a hydrogen isotope study. They yield
529	δD_{H2O} values of -85.3 and -78.4 ‰.

7. Discussion

532 7.1 *Timing of magmatic-hydrothermal activity*

The zircon LA-ICP-MS U-Pb ages of 42.72 ± 0.94 Ma and 43.71 ± 0.39 Ma have been interpreted as the crystallization age of zircons and the emplacement age of the Mawchi pluton (Myint et al., 2017). The magmatic biotite Ar-Ar plateau age of 41.50 ± 0.16 Ma is in agreement with the zircon U-Pb ages, however the nominally younger age of the Ar-Ar biotite age suggest that this date represents the timing of igneous cooling below the blocking temperature (~350°C) for Ar in biotite. The hydrothermal muscovite in the tourmaline granite (40.14 ± 0.14 Ma) and in

539	the vein selvage (40.80 \pm 0.12 Ma) yield similar Ar-Ar dates, indicating a broadly
540	contemporaneous formation. The Ar-Ar ages agree with the paragenetic relationships. The biotite
541	⁴⁰ Ar/ ³⁹ Ar plateau age represents cooling during the magmatic event, with the muscovite Ar-Ar
542	plateau ages corresponding to the late stage hydrothermal alteration that formed after
543	tourmalinization (i.e. tourmaline-cassiterite and main ore stages).
544	The molybdenite Re-Os age of 42.43 ± 1.21 Ma also reveals the timing of mineralization
545	and, it agrees with the U-Pb zircon age and biotite Ar-Ar date suggesting that ore deposition was
546	essentially coeval with magmatic crystallization and fluid exsolution. The Re-Os age represents
547	the main ore stage mineralization and muscovite Ar-Ar age expresses the late stage hydrothermal
548	alteration.

550 7.2 Source of sulfur

The δ^{34} S values of pyrite and arsenopyrite range from 2.9 to 6.2 ‰ and from 2.5 to 5.2 % respectively, indicating a relatively homogeneous source, likely dominated by magmatic sulfur in tourmaline-cassiterite and main ore stages. In the later, sulfide stage, type-II chalcopyrite possesses δ^{34} S values between 4.5 and 10.6 ‰ - suggesting a more reduced state than the main ore stage – compared to type-I chalcopyrite grains that exhibit δ^{34} S values of 0.9 to 1.1‰. Sulfur isotope data for sphalerite shows evidence for a lighter source of S (-3.2 to 3.2 ‰), with galena and Pb-Bi sulfides yielding a narrower range in δ^{34} S values (-1.3 to 2.7‰). The similarity of δ^{34} S

558	values, close to 0 ‰ in galena and Pb-Bi sulfides, may indicate that Pb and Bi were transported
559	by a common fluid of purely magmatic origin. Apart from the heavier sulfur in type- I chalcopyrite,
560	the principal feature of the sulfur isotope data is the systematic decrease from around 5-5.4 ‰ to
561	0-2 ‰ in δ^{34} S with paragenetic sequence (Fig. 10). The δ^{34} S of pyrite-I (5 - 5.4 ‰) in tourmaline-
562	cassiterite stage also coincides with that for crustal-derived granite (Kohut and Recio, 2002; Cao
563	et al., 2016) suggesting that the sulfur in the tourmaline-cassiterite and main ore stages is mainly
564	crustally-derived. The crustal or heavier sulfur isotopic components appear to become
565	progressively lighter during the progressive deposition of the sulfides in the sulfide mineral
566	paragenesis.

Assuming ranges of depositional temperature of 340° to 260°C for main ore stage, possible 567 δ^{34} S_{H2S} values of pyrite-II are 2.3 to 5.0 % (using the data of Omoto and Rye, 1979), and with the 568 mean of all sulfide δ^{34} S being 2.9 ± 2.9 ‰, suggesting that the overall system is dominated by 569 magmatic sulfur (Omoto and Rye, 1979; Wagner et al., 2005; Wagner et al., 2009). Since sulfide 570 stage chalcopyrite occurs after the main ore stage deposition, a temperature range of 260° to 230° 571 C is assumed for type-I and –II chalcopyrite. According to Li and Liu (2006), the $\delta^{34}S_{H:S}$ 572 calculation factor for chalcopyrite is constant for these temperatures. Type-I and –II chalcopyrite 573 have the δ^{34} S_{Hs} values of 0.7 - 0.9 ‰ and 4.3 - 10.4 ‰, respectively. Estimating the precipitation 574 temperature of galena and sphalerite as 200°C, the $\delta^{34}S_{HS}$ values of galena will be 1.6 to 4.7‰ at 575 200°C, whereas those of sphalerite range from -3.6 to 2.8‰ (using the data of Li and Liu, 2006). 576

577	Thus, the source of sulfur for the whole mineralization was uniform and sulfur in the fluid was
578	dominantly H ₂ S (Shelton et al., 1986; Shelton et al., 1987). The heavier sulfur in the type-I
579	chalcopyrite implies an extraneous sulfur source, probably derived from the country rocks
580	(Kontak, 1990).
581	The $\delta^{34}S_{H\!:\!S}$ values of Panasqueira in Portugal and Pasto Bueno in Peru (-4 to 3 ‰ and -2
582	to 0 ‰, respectively) indicate a magmatic source (Landis and Rye, 1974; Kelly and Rye, 1979;
583	Campbell, 1987). Except for type-I chalcopyrite, the $\delta^{34}S_{HS}$ values of Mawchi (-3.6 to 5 ‰) are
584	the same as those of Panasqueira and Pasto Bueno. The heavier sulfur at Mawchi ($\delta^{34}S_{HS}$ 4.3 to
585	10.4 ‰) is nearly the same value as San Cristobal ($\delta^{34}S_{H:S}$ 2 to 9 ‰) of Peru, which also has a
586	major sulfide stage, and magmatic sulfur contaminated with sulfur of sedimentary origin
587	(Campbell, 1987). The source of sulfur for Mawchi is interpreted to be predominantly of magmatic
588	origin, with heavier sulfur in type-I chalcopyrite being probably derived from the country rocks
589	which surround the granite body.
590	
591	7.3 Source of ore fluid

The Sn-W mineralization of Mawchi formed by magmatic-hydrothermal fluids of moderate temperature and low to moderate salinity, very similar to those of Wagone (Myint et al., 2017), Lailishan (Shi et al., 1989 in Cao et al., 2017), Pilok (Linnen and Williams-Jones, 1988), Panasqueira Sn-W deposit, Portugal (Kelly and Rye, 1979), and of the ore forming stage of San

596	Rafael Sn-Cu deposit (Wagner et al., 2009) and Pasto Bueno W base-metal deposit (Landis and
597	Rye, 1974), both in Peru. The ore fluids of the Lailishan, Pilok, Panasqueira, San Rafael and Pasto
598	Bueno were interpreted as a mixture of magmatic and meteoric waters. The early barren stages at
599	San Rafael and Pasto Bueno are characterized by hot (>380°C) and hypersaline (>34 wt. % NaCl
600	equiv) fluid that can be interpreted as purely magmatic. However, fluids of magmatic origin
601	responsible for the Cleveland tin deposit of Australia (7-14 wt. % NaCl equiv; Collins, 1981) and
602	the Baiganhu District of China (10 - 14 wt. % NaCl equiv; Gao et al., 2014) are not hypersaline.
603	Thus, the early stage, moderate salinity, fluids at Mawchi can be considered as essentially
604	magmatic in origin. By contrast, the later low salinity fluid may have evolved by mixing with
605	either a meteoric or a metamorphic fluid, which is also supported by $\delta^{18}O$ and δD data.
605 606	either a meteoric or a metamorphic fluid, which is also supported by δ^{18} O and δ D data. The calculated $\delta^{18}O_{H_{2}O}$ data of cassiterite (7.3 to 8.4 ‰) and tourmaline (7.8 to 8.2 ‰) are
606	The calculated $\delta^{18}O_{H_{2}O}$ data of cassiterite (7.3 to 8.4 ‰) and tourmaline (7.8 to 8.2 ‰) are
606 607	The calculated $\delta^{18}O_{H_{2}O}$ data of cassiterite (7.3 to 8.4 ‰) and tourmaline (7.8 to 8.2 ‰) are consistent with a magmatic source of ore fluid (Taylor, 1974, 1979). At the lower temperature
606 607 608	The calculated $\delta^{18}O_{H_{2}O}$ data of cassiterite (7.3 to 8.4 ‰) and tourmaline (7.8 to 8.2 ‰) are consistent with a magmatic source of ore fluid (Taylor, 1974, 1979). At the lower temperature stages, $\delta^{18}O_{H_{2}O}$ data of wolframite, scheelite and quartz (3.9 to 6.2 ‰, 2.1 to 4.2 ‰ and 3 to 4.9
606 607 608 609	The calculated $\delta^{18}O_{H2O}$ data of cassiterite (7.3 to 8.4 ‰) and tourmaline (7.8 to 8.2 ‰) are consistent with a magmatic source of ore fluid (Taylor, 1974, 1979). At the lower temperature stages, $\delta^{18}O_{H2O}$ data of wolframite, scheelite and quartz (3.9 to 6.2 ‰, 2.1 to 4.2 ‰ and 3 to 4.9 ‰, respectively) are close to being 5 ‰, lower than cassiterite and tourmaline. These lower $\delta^{18}O_{H2O}$
606 607 608 609 610	The calculated $\delta^{18}O_{H_{2O}}$ data of cassiterite (7.3 to 8.4 ‰) and tourmaline (7.8 to 8.2 ‰) are consistent with a magmatic source of ore fluid (Taylor, 1974, 1979). At the lower temperature stages, $\delta^{18}O_{H_{2O}}$ data of wolframite, scheelite and quartz (3.9 to 6.2 ‰, 2.1 to 4.2 ‰ and 3 to 4.9 ‰, respectively) are close to being 5 ‰, lower than cassiterite and tourmaline. These lower $\delta^{18}O_{H_{2O}}$ values are again consistent with the view that the ore fluid may have mixed with another source of

614 vertical pattern can have resulted from contamination by a highly evolved meteoric water

615	(Campbell et al., 1984). The fluid inclusions from main ore stage vein minerals (cassiterite,
616	wolframite, quartz) yield δD_{H2O} values from -87 to -51 ‰ implying that the origin of ore fluid is
617	magmatic, as suggested by sulfur. However, the calculated $\delta D_{\rm H2O}$ value (~ -120‰) of some mineral
618	species (wolframite, tourmaline) is low enough to suggest meteoric contamination in the
619	hydrothermal fluids responsible for the late stage of vein deposition. Although some samples are
620	located in the region of metamorphic water (-65‰ to -20‰ of $\delta D_{\rm H2O}$ and +5‰ to +25‰ of
621	$\delta^{18}O_{\rm H_{2}O}),$ the uniform $\delta^{18}O_{\rm H_{2}O}$ values in same mineral species suggest minor involvement of
622	metamorphic water in the origin of Mawchi ore fluids.
623	The ore forming fluids at Mawchi are a mixture of magmatic and meteoric waters, which
623 624	The ore forming fluids at Mawchi are a mixture of magmatic and meteoric waters, which implies a water-rock exchange model. The pattern of the fluid compositions, nearly constant
624	implies a water-rock exchange model. The pattern of the fluid compositions, nearly constant
624 625	implies a water-rock exchange model. The pattern of the fluid compositions, nearly constant $\delta^{18}O_{\text{H}=0}$ with a wide range of $\delta D_{\text{H}=0}$, is very similar to the pattern at Pasto Bueno (Landis and Rye,
624 625 626	implies a water-rock exchange model. The pattern of the fluid compositions, nearly constant $\delta^{18}O_{\text{HeO}}$ with a wide range of δD_{HeO} , is very similar to the pattern at Pasto Bueno (Landis and Rye, 1974) and San Cristobal, Peru (Campbell et al., 1984; Beuchat et al., 2004) and Panasqueira,
624 625 626 627	implies a water-rock exchange model. The pattern of the fluid compositions, nearly constant $\delta^{18}O_{\text{H}\cdot\text{O}}$ with a wide range of $\delta D_{\text{H}\cdot\text{O}}$, is very similar to the pattern at Pasto Bueno (Landis and Rye, 1974) and San Cristobal, Peru (Campbell et al., 1984; Beuchat et al., 2004) and Panasqueira, Portugal (Kelly and Rye, 1979). This pattern represents an exchange of meteoric waters with the

7.4 Ore genesis of Sn-W mineralization in WGP (and TBGP): metallogenic epochs and tectonic settings

Geochronological data constrain Sn-W mineralization of the granites in the WGP to the

634	period between the Cretaceous and Eocene. Early Cretaceous (128-121 Ma) granitic rocks in the
635	WGP are represented by I-type magmatism which likely originated from subducted oceanic crust
636	(Barley et al., 2003; Searle et al., 2007) and lack associated with Sn-W mineralization. The oldest
637	tin bearing pegmatite of the WGP has been dated from Mawpalaw Taung at 106.8±1.6Ma (Paik
638	and Zaw, 2014) Younger Cretaceous tin granites from the WGP have been identified at Xiaolonghe
639	(73 Ma; Chen et al., 2015) and also at Pilok (72 Ma Ar-Ar biotite date; Charusiri et al., 1993). U-
640	Pb zircon data yielded 61.44 \pm 0.62 Ma and 61.38 \pm 0.54 Ma for the Hermyingyi granite and
641	Wagone granirespectively (Li et al., under review), collectively suggesting that wide-spread
642	emplacement of tin granites in the WGP occurred in the late Cretaceous and Paleocene. Biotite K-
643	Ar dating yielded an Earliest Eocene age of 55 ± 1 Ma for the Padatchaung granite (Brook and
644	Snelling, 1976) and, U-Pb zircon dating yielded for Lailishan, $52.7 \pm 0.3 - 53.0 \pm 0.4$ Ma (Chen
645	et al., 2015) and for Yadanabon, 50.3 ± 0.6 Ma (Gardiner et al., 2016), respectively. The 42 Ma
646	LA-ICP-MS zircon U-Pb ages coupled with 41.5 ± 0.2 Ma biotite Ar-Ar age of Mawchi granites
647	affirms Late Eocene tin granite emplacement in WGP and is the youngest age for tin mineralization
648	in the province. In the MMB west of the SB, S-type granites range from 72 Ma to 44 Ma and lack
649	significant tin mineralization.
650	The tin granites of WGP were derived from the partial melting of the crust (Gardiner et al.,

651 2016; Myint et al., 2017a&b) and the emplacement of these granites has been variously related to

the Cretaceous–Paleogene subduction- and Himalayan orogeny-related collision (Gardiner et al.,

653	2015), back-arc extension, or post-collisional or syncollisional extension related granitic
654	magmatism (Chen et al., 2015; Jiang et al., 2017; Myint et al. 2017a; Chen et al., 2018).
655	Interpretation of some WGP granites as A-2 type and derived from partial melts of Proterozoic
656	intrusions is also proposed (Jiang et al., 2017). Triassic to Jurassic CGP tin granites related to the
657	Sibumasu - Sukhothai arc collision form the older Asian tin belt while collisional and post-
658	collisional Cretaceous to Eocene WGP tin bearing granites formed a younger belt before, during
659	and after the India – Asia collision. Assimilation of the crust (eg. SB in WGP; Kontum massif in
660	CGP) led to the production of highly siliceous and highly fractionated tin granites (Chen et al.,
661	2018; Ng et al., 2015a; Myint et al. 2017a&b).

663 8. Conclusions

The Mawchi Sn-W polymetallic deposit consists of a suite of Sn-W sulfide veins with 664 minor skarn and stockworks. Three stages of ore deposition were recognized, namely (1) the 665 tourmaline-cassiterite stage, (2) the main ore stage and (3) the sulfide stage. Tourmaline, 666 cassiterite, muscovite and pyrite-I are minerals that formed early in the hydrothermal activity and 667 their deposition occurred in the granite body. Wolframite, scheelite, arsenopyrite, pyrite-II, 668 molybdenite, fluorite, chlorite, danalite and calcite formed during the main ore stage together with 669 670 the products formed earlier. Sulfide minerals such as chalcopyrite, sphalerite, galena and Pb-Bi sulfides were deposited during the termination of the mineralization with hydrothermal activity 671

672 continuing substantially after deposition of the metals.

Our study provides the first isotopic age determination of Sn-W mineralization in 673 Myanmar. Combining new Ar-Ar geochronological data with previous U-Pb zircon data constrains 674 the magmatic-hydrothermal activity at Mawchi to a short time span that implies successive ore 675 deposition and magmatism. The biotite granite at Mawchi was emplaced and crystallized at 43-42 676 Ma with coeval magmatic-hydrothermal activity resulting in precipitation of the mineralization 677 paragenesis over a period of around 1-2 million years. Successive hydrothermal activity 678 679 transformed part of the biotite granite to tourmaline granite by adding tourmaline and muscovite of hydrothermal origin. At the same time, cassiterite deposition together with tourmalinization 680 took place in veins emplaced along the fractures in the granite. Muscovite-sericite Ar-Ar data of 681 vein quartz constrains the late stage of mineralization at Mawchi to around 41 Ma. 682 683 The proposed deposit model is based on the stable isotope and fluid inclusion data. Homogenization temperatures range from 175° to 340°C for the Mawchi vein system. This 684 relatively moderate temperature, moderate salinity brine (≤ 15 equiv. wt. % NaCl) ore fluid was 685 originally produced by magmatic water and probably mixed with meteoric water later during 686 circulation through adjacent metasediments. However, the sulfur was relatively uniform 687 throughout the hydrothermal activity, and likely purely magmatic derived except for the sulfur in 688 type-I chalcopyrite which was contaminated with sulfur from country rocks. In conclusion, the 689 690 hydrothermal fluids of Mawchi were derived from the mixing of magmatic and meteoric waters.

692 Acknowledgements

693	Sincere thanks are due to the Japan International Cooperation Agency (JICA) for the PhD
694	scholarship for AZM and Global COE Program of Kyushu University for support for the field
695	work. The Society of Economic Geologists Foundation is thanked for their student research grant
696	to AZM. We would like to thank Alison McDonald and Julie Dougan from SUERC, UK for their
697	valuable assistance during stable isotopic experiments. EPMA analysis was supported by Professor
698	Yasuhito Osanai and Dr. Tatsuro Adachi from Kyushu University. We are deeply appreciated to
699	two reviewers for their critical reading of manuscript and providing valuable comments. Special
700	thanks are also due to Kayah Metal Production Co. Ltd and Ye Htut Kyaw Mining Co. Ltd for
701	generously providing the first author an office space to work in and for providing logistical
702	support. DS acknowledges the Total Endowment Fund.
703	

⁷⁰⁴ **REFERENCES**

- 708 Bender, F. 1983. Geology of Burma, Gebruder Borntraeger, Berlin, Stuttgart.
- 709 Beuchat, S., Moritz, R., Pettke, T., 2004. Fluid evolution in the W–Cu–Zn–Pb San Cristobal vein, Peru: fluid inclusion
- and stable isotope evidence. Chem. Geol. 210, 201–224.

<sup>Barley, M. E., Pickard, A. L., Zaw, K., Rak, P., Doyle, M. G., 2003. Jurassic to Miocene magmatism and
metamorphism in the Mogok metamorphic belt and the India-Eurasia collision in Myanmar. Tectonics, 22, 3,
10-19.</sup>

711	Blamart, D., 1991. Les concentrations tungstifères et stannifères: caractérisation isotopique(O-H) des fluides
712	minéralisateurs, sur l'exemple du gisement Sn-W de Walmès(Maroc Central)". Détermination de quelques
713	fractionnements isotopiques(H-O) entre minéraux et eau. unpublished Doctoral dissertation, Institut National
714	Polytechnique de Lorraine, France.
715	Brook, M., Snelling, N.J., 1976. K/Ar and Rb/Sr age determinations on rocks and minerals from Burma. London, Inst.
716	Geol. Sci. Isotope Geol. Unit Rep. 76/12
717	Campbell, A.R., 1987. A sulfur isotopic study of the San Cristobal tungsten-base metal mine, Peru Miner.
718	Deposita. 22, 42–46.
719	Campbell, A.R., Rye, D., Petersen, U., 1984. A hydrogen and oxygen isotope study of the San Cristobal Mine, Peru;
720	implications of the role of water to rock ratio for the genesis of wolframite deposits. Econ. Geol. 79, 1818-
721	1832.
722	Cao, H. W., Pei, Q. M., Zhang, S. T., Zhang, L. K., Tang, L., Lin, J. Z., Zheng, L., 2017. Geology, geochemistry and
723	genesis of the Eocene Lailishan Sn deposit in the Sanjiang region, SW China. J. Asian Earth Sci., 137, 220-
724	240.
725	Cao, H.W., Zou, H., Zhang, Y.H., Zhang, S.T., Zheng, L., Zhang, L.K., Tang, L., Pei, Q.M., 2016. Late Cretaceous
726	magmatism and related metallogeny in the Tengchong area: Evidence from geochronological, isotopic and
727	geochemical data from the Xiaolonghe Sn deposit, western Yunnan, China. Ore Geol Rev, 78, 196-212.
728	Charusiri, P., Clark, A.H., Farrar, E., Archibald, D., Charusiri, B., 1993. Granite belts in Thailand: evidence from the
729	40 Ar/39 Ar geochronological and geological syntheses. J. Southeast Asian Earth Sci., 8, 127-136.

- 730 Chen, X.C., Hu, R.z., Bi, X.W., Zhong, H., Lan, J.B., Zhao, C.H., Zhu, J.J., 2015. Petrogenesis of metaluminous A-
- 731 type granitoids in the Tengchong–Lianghe tin belt of southwestern China: evidence from zircon U–Pb ages and
- Hf–O isotopes, and whole-rock Sr–Nd isotopes. Lithos, 212–215, 93–110.
- 733 Chen, X.C., Zhao, C.H., Zhu, J.J., Wang, X.S. and Cui, T., 2018. He, Ar, and S isotopic constraints on the relationship
- between A-type granites and tin mineralization: A case study of tin deposits in the Tengchong–Lianghe tin belt,
- southwest China. Ore Geol. Rev., 92, 416-429.
- 736 Chhibber, D.H.L., 1934. The geology of Burma. Macmillan, London.
- 737 Clegg, E.L.G., 1944. Notes on tin and wolfram in Burma and India. Rec. Geol. Surv. India 76, 168p.
- Cobbing, E.J., Pitfield, P.E.J., Darbyshire, D.P.F., Mallick, D.I.J., 1992. The granites of the South-East Asian tin belt.
 Overseas Memoir British Geol. Surv. 10, 369 p.
- 740 Collins, P.L.F., 1981. The geology and genesis of the Cleveland tin deposit, western Tasmania; fluid inclusion and
- stable isotope studies. Econ. Geol. 76, 365–392.
- 742 Dalrymple, G.B., Lanphere, M.A., 1971. A test of the ⁴⁰Ar/³⁹Ar age spectrum technique on some terrestrial
- 743 materials. Earth Planet. Sci. Lett. 12, 359–372.
- 744 DGSE (Department of Geological Survey and Mineral Exploration), 2008. Geological Map of the Union of Myanmar.
- 745 Dunn, J.A., 1938. Tin-tungsten mineralization at Mawchi, Karenni States, Burma. Rec. Geol. Surv. India 73, 238-
- 746 246.
- Eby, G.N., 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20,
- 748 641–644.

- Fallick, A.E., McConville, P., Boyce, A.J., Burgess, R., Kelley, S.P., 1992. Laser microprobe stable isotope
 measurements on geological materials: some experimental considerations (with special reference to δ³⁴S in
 sulfides). Chem. Geol. 101, 53–61.
- 752 Gao, Y., Li, W., Li, Z., Wang, J., Hattori, K., Zhang, Z., Geng, J., 2014. Geology, geochemistry, and genesis of
- tungsten-tin deposits in the Baiganhu district, northern Kunlun belt, northwestern China. Econ. Geol. 109,
 1787–1799.
- 755 Gardiner, N.J., Robb, L.J., Morley, C.K., Searle, M.P., Cawood, P.A., Whitehouse, M.J., Kirkland, C.L., Roberts,
- 756 N.M.W., Myint, T.A., 2016. The tectonic and metallogenic framework of Myanmar: A Tethyan mineral system.
- 757 Ore. Geol. Rev., 79, 26-45.
- 758 Gardiner, N.J., Searle, M.P., Robb, L.J., Morley, C.K., 2015. Neo-Tethyan magmatism and metallogeny in Myanmar-
- An Andean analogue? J. Asian Earth Sci. 106, 197–215.
- 760 Grootenboer, J., Schwarcz, H.P., 1969. Experimentally determined sulfur isotope fractionations between sulfide
- 761 minerals. Earth Planet. Sci. Lett. 7, 162–166.
- Hermansson, T., Stephens, M.B., Corfu, F., Page, L.M., Andersson, J., 2008. Migratory tectonic switching, western
 Svecofennian orogen, central Sweden: constraints from U/Pb zircon and titanite geochronology. Precamb.
 Res. 161, 250–278.
- Hobson, G.V., 1940. The development of the mineral deposit at Mawchi as determined by its geology and genesis.
 Transactions of the Mines, Geol. Metal. Inst. India 36, 35–78.
- 767 Hobson, G.V., 1941. Report on a geological survey in part of Karenni and Southern Shan States. Mem. Geol. Surv.
- 768 India 74, 103–155.
- 769 Htay, H., Lwin, M., Tun, H., Win, A.N., Win, K.M., 1997. Preliminary report on re-assessment of ore reserves at the

- 770 Mawchi mines, Phasawng Township, Kayah State. unpublished Report, Ministry of Mines, Myanmar
- 771 Iyer, L.A.N., 1953. The geology and gem-stones of the Mogok Stone Tract, Burma. Geol. Surv. India Mem. 82, 100p.
- Jiang, H., Li, W.Q., Jiang, S.Y., Wang, H. and Wei, X.P., 2017. Geochronological, geochemical and Sr-Nd-Hf isotopic
- constraints on the petrogenesis of Late Cretaceous A-type granites from the Sibumasu Block, Southern
- 774 Myanmar, SE Asia. Lithos, 268, 32-47.
- 775Kelley, S.P., Fallick, A.E., 1990. High precision spatially resolved analysis of δ^{34} S in sulfides using a laser extraction776technique. Geochim. Cosmochim. Acta 54, 883–888.
- Kelly, W.C., Rye, R.O., 1979. Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of
 Panasqueira, Portugal. Econ. Geol. 74, 1721–1822.
- Kohút, M., Recio, C., 2002. Sulphur isotopes of selected Hercynian granitic and surrounding rocks from the Western
 Carpathians (Slovakia). Geol. Carpathica 53, 3–13.
- Kontak, D.J., 1990. A sulfur isotope study of main-stage tin and base metal mineralization at the East Kemptville tin
 deposit, Yarmouth County, Nova Scotia, Canada; evidence for magmatic orgin of metals and sulfur. Econ.
 Geol. 85, 399–407.
- Landis, G.P., Rye, R.O., 1974. Geologic, fluid inclusion, and stable isotope studies of the Pasto Buena tungsten-base
 metal ore deposit, Northern Peru. Econ. Geol. 69, 1025–1059.
- Li, H., Myint, A.Z., Yonezu, K., Watanabe, K., Algeo, T.J., Wu, J-H, (under review) Geochemistry and U–Pb
 geochronology of the Wagone and Hermyingyi granites, Dawei region, southern Myanmar: Implications for
 tectonic setting, magma evolution and Sn–W mineralization
- Li, Y., Liu, J., 2006. Calculation of sulfur isotope fractionation in sulfides.Geochim. Cosmochim. Acta 70, 1789–
 1795.
- Mitchell, A.H.G., 1977. Tectonic settings for emplacement of Southeast Asian tin granites. Geological Society of
 Malaysia Bulletin 9, 123–140.

- Mitchell, A.H.G., Ausa, C., Deiparine, L., Hlaing, T., Htay, N., Khine, A., 2004. The Modi Taung-Nankwe gold
 district, Slate Belt, Central Myanmar: mesothermal veins in a Mesozoic orogen. J. Asian Earth Sci. 23, 321–
 341.
- Mitchell, A.G.H., Htay, M.T., Htun, K.M., Win, M.N., Oo, T., 2007. Rock relationships in the Mogok metamorphic
 belt, Tatkon to Mandalay, Central Myanmar. J. Asian Earth Sci. 29, 891–910.
- Mitchell, A.H.G., Chung, S-L., Oo, T., Lin, T-H., Hung, C-H., 2012. Zircon U–Pb ages in Myanmar: Magmatic–
 metamorphic events and the closure of a neo-Tethys ocean? J. Asian Earth Sci. 56, 1–23.
- Myint, A.Z., 2015. Granite-related Sn-W-REE mineralization in Mawchi and Dawei areas, Myanmar. unpublished
 PhD Dissertation, Kyushu University.
- Myint, A.Z., Watanabe, K., Yonezu, K., 2013. Relationship between granitoid types and tin mineralization: A review
 of Tertiary granitoids in central granitoid belt, Myanmar. Proceedings of International Conference on
 Georesources and Geological Engineering, Yogyakarta, Indonesia. pp 13–21.
- Myint, A.Z., Zaw, K., Swe, Y.M., Yonezu, K., Cai, Y., Manaka, T., Watanabe, K., 2017a. Geochemistry and
 geochronology of granites hosting the Mawchi Sn-W deposit, Myanmar: Implication for tectonic setting and
 granite emplacement. In: Barber AJ, Khin Zaw & Crow MJ (ed) Myanmar: Geology, Resources and
 Tectonics. Geol. Soc. Lond. Memoir 48, pp 387–402.
- Myint, A.Z., Yonezu, K., Watanabe, K., 2017b. The tin and tungsten deposits of the Dawei region, with an emphasis
 on the Wagone and Bawapin deposits. In: Mineral deposits of Myanmar (Burma). SEG guide book 54. pp
 22–27.
- 812 Ng, S. W-P., Chung, S-L., Robb, L.J., Searle, M.P., Ghani, A.A., Whitehouse, M.J., Oliver, G.J.H., Sone, M.,
- 813 Gardiner, N.J., Roselee, M.H., 2015a. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt:
- 814 Part 1. Geochemical and Sr-Nd isotopic characteristics. GSA Bull. 127, 1209–1237.

815	Ng, S. W-P., Whitehouse, M.J., Searle, M.P., Robb, L.J., Ghani, A.A., Chung, S-L., Oliver, G.J.H., Sone, M.,
816	Gardiner, N.J., Roselee, M.H., 2015b. Petrogenesis of Malaysian granitoids in the Southeast Asian tin belt:
817	Part 2. U-Pb zircon geochronology and tectonic model. GSA Bull. 127, 1238–1258.
818	Ohmoto, H., Rye, R.O., 1979. Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemisty of hydrothermal ore

- 819 deposits. New York, Wiley, pp 509–567.
- 820 Paik, M., Zaw, K., 2014. Age, petrology and geochemistry of granitoid rocks in Mawpalaw Taung Area, Thanbyuzayat
- 821 Township: Constraints on their magmagenesis and tectonic Setting. Abstract Volume, Thirteenth Regional
- 822 Congress on Geology, Mineral and Energy Resources of Southeast Asia, Yangon, Myanmar.
- Renne, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T., Depaolo, D.J., 1998. Intercalibration of Standards,
 absolute ages and uncertainties in 40Ar/39Ar dating. Chem. Geol. 145, 117–152.
- 825 Robinson, B.W., Kusakabe, M., 1975. Quantitative preparation of sulfur dioxide, for sulfur-34/sulfur-32 analyses,

from sulfides by combustion with cuprous oxide. Analyt. Chem. 47, 1179–1181.

- 827 Schwartz, M. O., Rajah, S. S., Askury, A. K., Putthapiban, P., Djaswadi, S., 1995. The southeast Asian tin belt. Earth-
- 828 Science Reviews, 38, 95-293.
- Searle, D.L., Haq, B.T., 1964. The Mogok belt of Burma and its relationship to the Himalayan orogeny. In:
 Proceedings of the 22nd International Geological Conference, Delhi, 11, pp 132–161.
- 831 Searle, M. P., Noble, S. R., Cottle, J. M., Waters, D. J., Mitchell, A. H. G., Hlaing, T., Horstwood, M. S. A., 2007.
- 832 Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U Th Pb dating of
 833 metamorphic and magmatic rocks. Tectonics, 26
- 834 Selby, D., Creaser, R.A., 2001. Late and mid-Cretaceous mineralization in the northern Canadian Cordillera:
- 835 Constraints from Re-Os molybdenite dates. Econ. Geol. 96, 1461–1467.

- 836 Selby, D., Creaser, R.A., Stein, H.J., Markey, R.J., Hannah, J.L., 2007. Assessment of the 187 Re decay constant by
- 837 cross calibration of Re–Os molybdenite and U–Pb zircon chronometers in magmatic ore systems. Geochim.
- 838 Cosmochim. Acta 71, 1999–2013.
- 839 Shelton, K.L., So, C.S., Rye, D.M., Park, M.E., 1986. Geologic, sulfur isotope, and fluid inclusion studies of the
- 840 Sannae W-Mo Mine, Republic of Korea; comparison of sulfur isotope systematics in Korean W deposits. Econ.
 841 Geol. 81, 430–446.
- 842 Shelton, K.L., Taylor, R.P., So, C.S., 1987. Stable isotope studies of the Dae Hwa tungsten-molybdenum mine,
- Republic of Korea; evidence of progressive meteoric water interaction in a tungsten-bearing hydrothermal
 system. Econ. Geol. 82, 471–481.
- 845 Smoliar, M.I., Walker, R.J., Morgan, J.W., 1996. Re-Os ages of group IIA, IIIA, IVA, and IVB iron
 846 meteorites. Science 271, 1099–1102.
- Taylor, H.P., 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration
 and ore deposition. Econ. Geol. 69, 843–883.
- Taylor, H.P., 1979. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed)
 Geochemisty of hydrothermal ore deposits. New York, Wiley, pp 236–277
- Taylor, R.P., Ikingura, J.R., Fallick, A.E., Huang, Y., Watkinson, D.H., 1992. Stable isotope compositions of
 tourmalines from granites and related hydrothermal rocks of the Karagwe-Ankolean belt, northwest
 Tanzania. Chem. Geol. 94,215–227
- Thein, M., 1991. Mineral belts and epoches of Myanmar: A new synthesis. Georeport 1, 1–10.
- Thein, M.L., Myint, O., Kyi, S., 1988. Geology and stratigraphy of the metamorphosed early Palaeozoic rocks of the
- Thabeikkyin- Mogok areas. unpublished report, Applied Geology Department, University of Rangoon, 57 p.
- 857 United Nations, 1996. Geology and Mineral Resources of Myanmar. Atlas of mineral resources of the ESCAP region
- 858 12.

- Wagner, T., Boyce, A.J., Fallick, A.E., 2002. Laser combustion analysis of δ³⁴S of sulfosalt minerals: determination
 of the fractionation systematics and some crystal-chemical considerations. Geochim. Cosmochim. Acta 66,
 2855–2863.
- Wagner, T., Mlynarczyk, M.S., Williams-Jones, A.E., Boyce, A.J., 2009. Stable isotope constraints on ore formation
 at the San Rafael tin-copper deposit, Southeast Peru. Econ. Geol. 104, 223–248.
- 864 Wagner, T., Williams-Jones, A.E., Boyce, A.J., 2005. Stable isotope-based modeling of the origin and genesis of an
- 865 unusual Au–Ag–Sn–W epithermal system at Cirotan, Indonesia. Chem. Geol. 219, 237–260.
- 866 Wang, C., Deng, J., Carranza, E.J.M., Santosh, M., 2014. Tin metallogenesis associated with granitoids in the
- 867 southwestern Sanjiang Tethyan Domain: Nature, deposit types, and tectonic setting. Gondwana Res., 26, 576-
- 868 593.
- Wesolowski, D., Ohmoto, H., 1986. Calculated oxygen isotope fractionation factors between water and the minerals
 scheelite and powellite. Econ. Geol. 81, 471–477.
- 871 Whalen, J.B., Currie, K.L., Chappell, B.W., 1987. A-type granites: geochemical characteristics, discrimination and
- 872 petrogenesis. Cont. Min. Pet. 95, 407–419.
- Zaw K, Thet KM (1983) A note on a fluid inclusion study of tin-tungsten mineralization at Mawchi Mine, Kayah
 State, Burma. Econ Geol 78:530–534
- Zhang, L-G., Liu, J., Chen, Z., Zhou, H., 1994. Experimental investigations of oxygen isotope fractionation in
 cassiterite and wolframite. Econ. Geol. 89, 150–157.
- Zheng, Y.F., 1993. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett.
 120, 247–263.
- 879
- 880

881 Figure captions

Fig. 1 a Granitoid belts of Myanmar and its adjacent area showing the occurrences of granites and
tectonic framework (modified after Cobbing et al., 1992; Mitchell et al., 2007; Sone and Metcalfe,
2008). b Regional geologic setting of the Mawchi area (modified after Bender, 1983; DGSE, 2008)
Fig. 2 a Geological map of Mawchi Sn-W district showing the localities of Sn-W mineral systems.
b Deposit geological map and vertical profile of Mawchi mine (modified after Mawchi mine
project map)

Fig. 3 a quartz vein cutting the granite body: intensive tourmalinization along the contact between vein and host rock. b small sheeted veins intruding the metasediments. c danalite(da) boundary vein hosted by the granite(gr). d later formed quartz-tourmaline barren vein. e vein boundary segregates of wolframite (bladed) and cassiterite. f fracture filling of quartz and cassiterite. g hand specimen collected from massive band of cassiterite with minor amount of tourmaline and clay minerals. h hydrothermal muscovite (mu) in fractures of tourmaline (tu)

Fig. 4 Paragenetic sequence of Mawchi Sn-W polymetallic mineralization

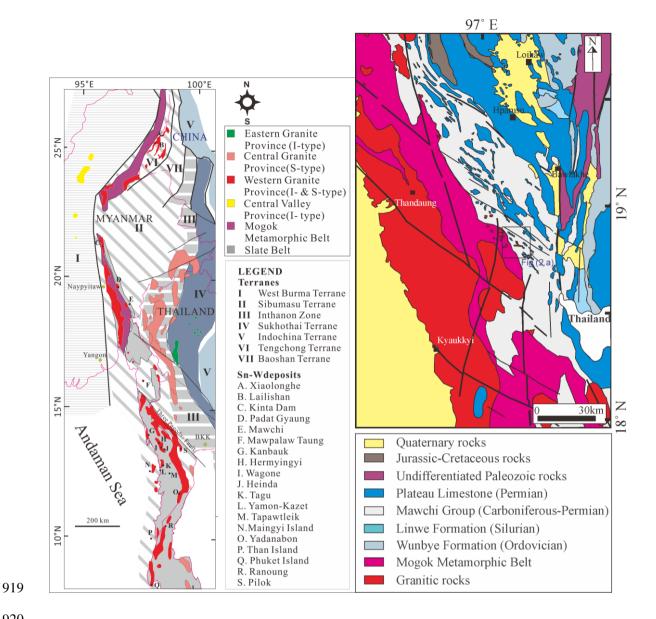
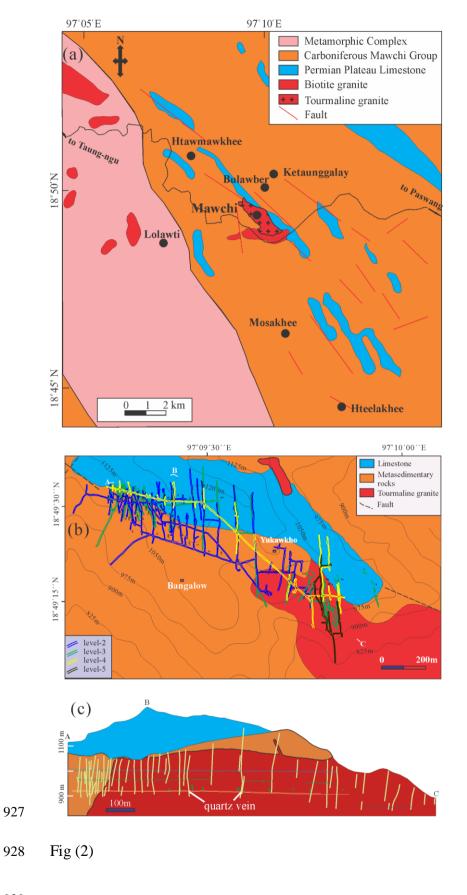
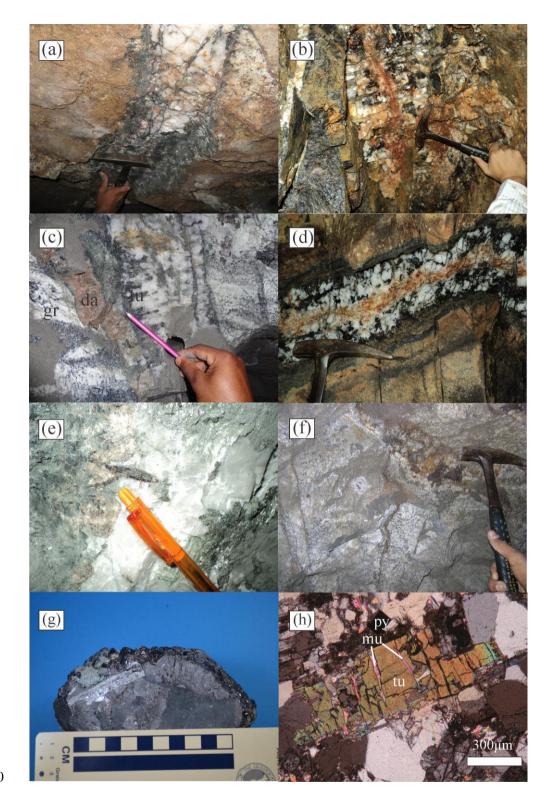
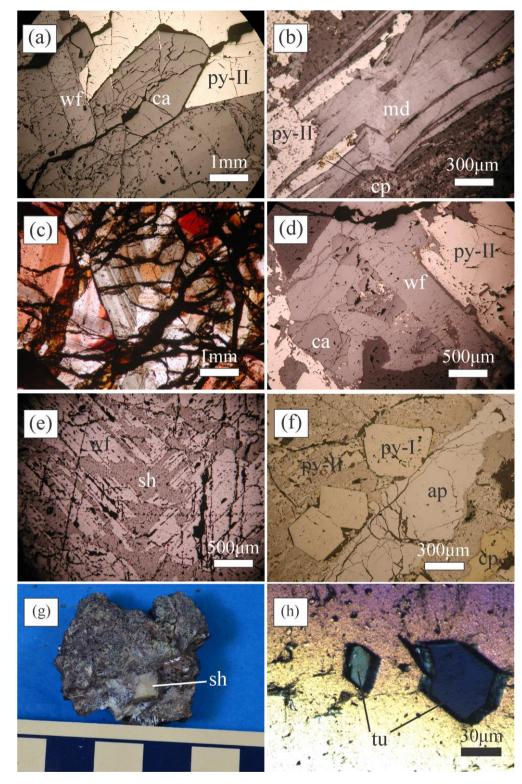

895 Fig. 5 Photomicrographs (a-f, h) and hand specimen (g) showing the mineral distribution of Mawchi veins. a cassiterite (ca) cross cut by wolframite (wf) and, replaced and veined by pyrite-896 897 II (py-II). **b** kinked molybdenite (mo) replaced by pyrite-II (py-II): small chalcopyrite blebs (cp) 898 replaced in pyrite. c zoned cassiterite crystal. d cassiterite veined and replaced by wolframite: wolframite replaced by pyrite-II. e cleavage planes of wolframite replaced by scheelite (sh). f 899 pyrite-I cubes replaced by arsenopyrite (ap) and pyrite-II which is veined by chalcopyrite (cp). g 900 901 scheelite crystal (milky white) associated with cassiterite and wolframite. h tournaline inclusions 902 in scheelite crystal

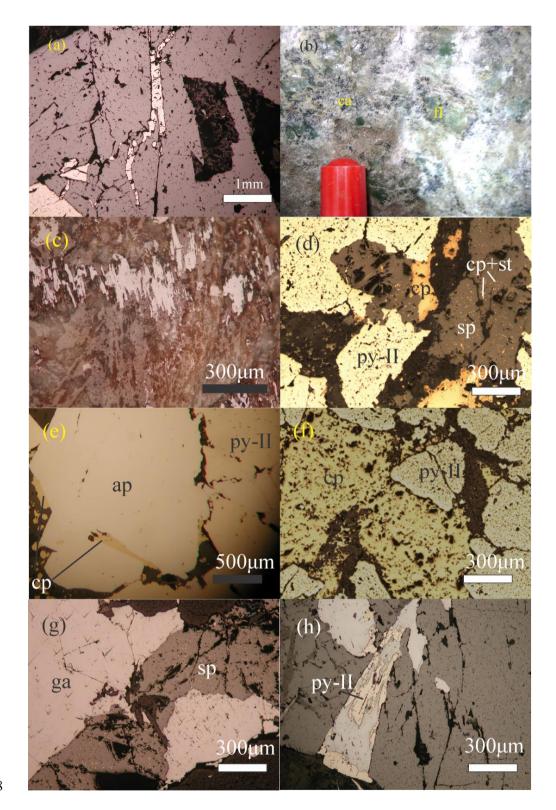
Fig. 6 a interstitial filling of pyrite-II into wolframite grains. b greenish fluorite and cassiterite in
the vein. c parallel flow of wolframoixiolites. d pyrite-II replaced by sphalerite (sp) and


- 905 chalcopyrite (cp); sphalerite hosts the blebs of chalcopyrite and stannite (st) forming as exsolution
- 906 pattern. **e** type-II chalcopyrite (cp) and pyrite-II, as infill veinlets along fractures of arsenopyrite

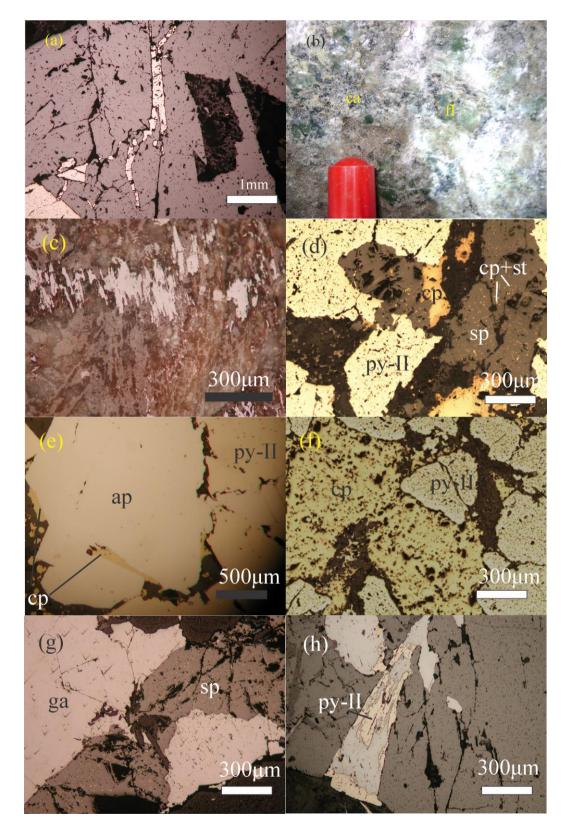

907 (ap). **f** pyrite-II (py-II) replaced by type-I chalcopyrite (cp). **g** sphalerite (sp) replaced and veined

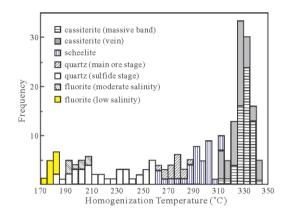
- 908 by galena. **h** pyrite-II (py-II) and chalcopyrite (cp) replaced by the Pb-Bi sulfide
- 909 **Fig. 7** 40 Ar/ 39 Ar plateau and inverse isochron ages (2 σ) for micas from Mawchi
- 910 Fig. 8 Histograms of homogenization temperatures of fluid inclusions in vein minerals of the
- 911 Mawchi mine
- 912 Fig. 9 Salinity variation of fluid inclusions in vein minerals from the Mawchi mine
- 913 Fig. 10 The δ^{34} S values of sulfides from the Mawchi mine. Numbers of analyses in parentheses
- 914 **Fig. 11** The calculated $\delta^{18}O_{H_{2}O}$ values of ore fluid from the Mawchi mine
- 915 **Fig. 12** Plot of δ^{18} O- δ D of vein minerals from the Mawchi Sn-W polymetallic deposit (modified
- 916 from Taylor, 1974)
- 917


921	Fig (1)
-----	---------

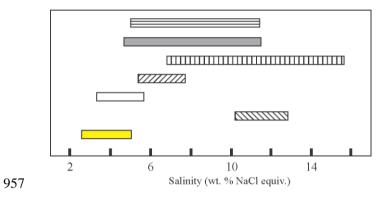

- 931 Fig (3)

	Mineral	Tur-Cas stage	Main ore stage	Sulfide stage
	Cassiterite			
	Wolframite			
	Scheelite			
	Tourmaline			
	Quartz			
	Muscovite			
	Pyrite			
	Molybdenite	?		
	Arsenopyrite			
	Sphalerite			
	Chalcopyirte		5	
	Galena			
	Pb-Bi sulfides			
	Nb-Ta minerals			
	Danalite			
	Fluorite		 ?	
	Chlorite			
934				
935	Fig (4)			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
936				
937				
938				
939				
940				
941				
942				
943			51	

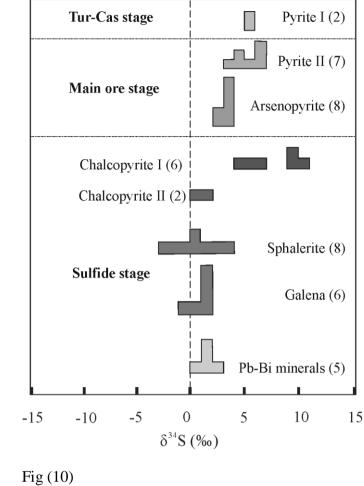


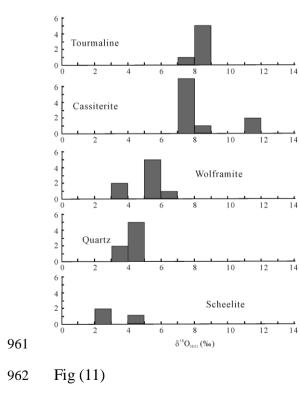

945 Fig (5)

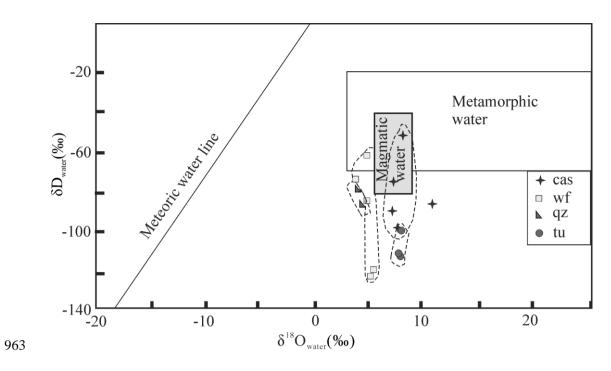
949 Fig (6)



953 Fig (7)




956 Fig (8)


-

