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Highlights 

 Theta rhythm is crucial for cognitive functions: memory, spatial and time coding 

 Theta rhythm is crucial for anxiety-related behaviours  

 Theta oscillation properties (phase, frequency, amplitude) are linked with 

behaviors 

 Parallel emergence of hippocampal theta oscillations and behaviors during 

development 

 

Abstract  

The theta oscillation (5-10 Hz) is a prominent behavior-specific brain rhythm. This 

review summarizes studies showing the multifaceted role of theta rhythm in cognitive 

functions, including spatial coding, time coding and memory, exploratory locomotion 
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and anxiety-related behaviors. We describe how activity of hippocampal theta rhythm 

generators - medial septum, nucleus incertus and entorhinal cortex, links theta with 

specific behaviors. We review evidence for functions of the theta-rhythmic signaling to 

subcortical targets, including lateral septum. Further, we describe functional 

associations of theta oscillation properties - phase, frequency and amplitude - with 

memory, locomotion and anxiety, and outline how manipulations of these features, 

using optogenetics or pharmacology, affect associative and innate behaviors. We 

discuss work linking cognition to the slope of the theta frequency to running speed 

regression, and emotion-sensitivity (anxiolysis) to its y-intercept.  Finally, we describe 

parallel emergence of theta oscillations, theta-mediated neuronal activity and behaviors 

during development. This review highlights a complex interplay of neuronal circuits 

and synchronization features, which enables an adaptive regulation of multiple 

behaviors by theta-rhythmic signaling. 

 

Keywords: hippocampus, entorhinal cortex, memory, resonance, grid cells, place cells, 

behaving mice, anxiety, speed, optogenetics  

 

1.1 Behavioral correlates of theta rhythm: Introduction 

This review attempts to integrate cognitive, emotional and innate behaviour 

control-related aspects of hippocampal function, highlighting the crucial role of 

hippocampal theta rhythm in all of these functions. Research activities on the 

hippocampus, and hippocampal theta, tend to cluster into related fields. One cluster 

consists of spatial cognition, intensely studied in rodents, with the work on spatial 

memory representing a large overlap with a more general memory-oriented field.  The 

field of locomotion and sensorimotor integration overlaps with the spatial cognition 

field of this first cluster: this is because spatial researchers increasingly recognize that 

an important contribution to spatial localization emerges from locomotion-derived 

computations of distance and direction travelled. For the spatial cognition field, then, 

locomotion-related inputs into the hippocampus are required to update location, and 

outputs to locomotor regions are required to direct the animal where to go. However, the 

idea that the hippocampus may control locomotion in a more fundamental way has 

persisted, largely inspired by Vanderwolf (1969) arguing that the key correlate of theta 
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was voluntary locomotion. In this review, we consider evidence for both the spatial 

cognition, and the locomotor control, fields of research.  

 

A rather distant research cluster consists of emotion-related fields investigating 

anxiety, stress and depression. It is worth remembering that the ‘Papez circuit’ approach 

to limbic anatomy posited the hippocampus as an emotional centre. Broadly speaking, 

there has been minimal conversation between the cognition-locomotion and emotion-

related ‘faces’ of theta. In this review, we not only attempt to highlight interesting work 

in both clusters, we set out the beginnings of an approach that may begin to bridge these 

seemingly-separate research areas. We start from the perspective that the hippocampal 

theta oscillation, while crucially subserving both cognition-locomotion and emotion-

related functionality, is an essentially unitary phenomenon. Taking the theta frequency 

to running speed regression as a starting point, we describe theoretical and empirical 

work linking a cognition-locomotion component to the slope of this regression, and an 

emotion-sensitivity component (here, in particular, anxiolysis) to its y-intercept. Our 

discussion of the development of theta up to adulthood considers both the slope and y-

intercept components. 

Theta rhythm shows intriguing correlations with a range of different behaviors 

that include both aspects of movement and of memory function. Extensive data shows 

theta frequency oscillations in the local field potentials in the hippocampus across 

species (Green and Arduini, 1954), with similar mechanisms implicated in a range of 

frequencies labelled as theta (Buzsaki, 2002). Theta rhythm also appears in rat 

entorhinal cortex (Alonso and Garcia-Austt, 1987; Brandon et al., 2011; Mitchell and 

Ranck, 1980) and medial prefrontal cortex (Jones and Wilson, 2005; Lee et al., 2005). 

Intracranial electrodes implanted to detect seizure activity in humans show cortical theta 

rhythm oscillations associated with performance of memory tasks in humans (Kahana et 

al., 1999; Lega et al., 2011; Raghavachari et al., 2001; Rizzuto et al., 2006).   

 Theta rhythm correlates with a range of movement behaviors (Bland and Oddie, 

2001; Vanderwolf, 1969; Whishaw and Vanderwolf, 1973) including running on a track 

(O'Keefe and Nadel, 1978; Skaggs et al., 1996), running wheel (Buzsaki et al., 1983; 

Hyman et al., 2003),  treadmill (Brankack et al., 1993; Fox et al., 1986), and anticipates 

changes in movement (Morris and Hagan, 1983). Frequency and amplitude of rat theta 
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increases with running speed (Jeewajee et al., 2008a; Maurer et al., 2005; Rivas et al., 

1996; Whishaw and Vanderwolf, 1973), suggesting a role in coding of velocity and 

location (O’Keefe and Nadel, 1978). We consider theta’s links to locomotion, running 

speed, and location in sections 2 and 4. 

Theta rhythm in the hippocampus also correlates with learning and memory 

function (Berry and Thompson, 1978; Givens and Olton, 1990; Griffin et al., 2004; 

Seager et al., 2002; Vertes and Kocsis, 1997; Winson, 1978). Lesions of the medial 

septum and fornix cause memory impairments in tasks including delayed spatial 

alternation (Aggleton et al., 1995; Givens and Olton, 1990), spatial reversal (M'Harzi et 

al., 1987), and the 8-arm radial maze (Mitchell et al., 1982). The reduction of theta 

rhythm correlates with the amount of memory impairment (Givens and Olton, 1994; 

Winson, 1978). Temporary inactivation of the medial septum causes impairments of 

spatial memory and also reduces theta rhythm in both the hippocampus (Brioni et al., 

1990; Chrobak et al., 1989; Mizumori et al., 1990) and entorhinal cortex (Jeffery et al., 

1995). We consider theta’s links to learning and memory in section 5. 

Less studied than movement and memory correlates, theta rhythm has also been 

linked to arousal (e.g. Green and Arduini, 1954), and to behavioural inhibition and 

anxiety (Gray, 1982; Sainsbury, 1998). Benzodiazepines, anxiolytic drugs, reduce both 

theta frequency and hippocampal-sensitive behavioural inhibition in fixed-interval 

responding (Woodnorth and McNaughton N, 2002). These links are further explored in 

sections 3 and 6 below. 

 

2.1 Theta rhythm and the coding of spatial location.  

The role of theta rhythm in memory function may be related to a potential role of 

theta rhythm in the coding of the dimensions of space and time that are essential to 

episodic memory function (Tulving, 1983). Evidence for this role includes recordings 

showing a potential role of theta in the coding of a range of spatial dimensions. 

Numerous studies have explored the phenomenon of place cells in the hippocampus, 

which respond selectively when a rat visits specific locations in an environment 

(O'Keefe, 1976; O'Keefe and Dostrovsky, 1971b; Skaggs et al., 1996). Hippocampal 

place cells show a strong rhythmicity of firing at theta rhythm frequencies, as shown by 

the autocorrelation of spike times (Climer et al., 2015; O'Keefe and Burgess, 2005; 
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O'Keefe and Recce, 1993).  Place cells also show more fine-grained temporal coding of 

spike timing relative to the phase of theta rhythm in the form of theta phase precession 

(O'Keefe and Recce, 1993; Skaggs et al., 1996). When a rat runs through its firing field, 

a place cell initially spikes at late phases of the theta cycle, and then shifts to 

progressively earlier phases as the rat continues through the place field (Huxter et al., 

2003; O'Keefe and Recce, 1993; Skaggs et al., 1996).  

A relationship between spatial coding and theta rhythm also appears in recordings 

of grid cells in the entorhinal cortex in rats (Hafting et al., 2008; Moser and Moser, 

2008). Grid cells respond as a rat visits a regular array of locations in the environment 

described as falling on the vertices of tightly packed equilateral triangles (Fyhn et al., 

2004; Hafting et al., 2008; Hafting et al., 2005). Grid cells also show strong theta 

rhythm firing, and grid cells in specific layers will show theta phase precession (Hafting 

et al., 2008). Each time a rat passes through the firing field of a grid cell, the spiking 

starts at late phases of the LFP theta cycle, and shifts to earlier phases of the theta cycle 

(Climer et al., 2013; Eggink et al., 2014; Hafting et al., 2008; Jeewajee et al., 2014).  

Evidence that the spatial coding of grid cells might depend upon theta rhythm 

oscillations comes from studies that blocked entorhinal theta rhythm oscillations using 

infusion of pharmacological agents into the medial septum (Brandon et al., 2011; 

Koenig et al., 2011).  The blockade of theta rhythm oscillations was accompanied by 

loss of spatial periodicity of grid cells, without loss of head direction cell selectivity by 

neurons (Brandon et al., 2011). This loss of grid cell spatial coding during the loss of 

theta rhythm oscillations suggests an important role for theta rhythm in spatial coding, 

and could explain the spatial memory impairments seen during inactivation of the 

medial septum (Chrobak et al., 1989). Surprisingly, inactivation of the medial septum 

does not appear to block the firing of place cells in novel or familiar environments 

(Brandon et al., 2014). 

 

2.2 Theta rhythm and the coding of running speed.   

 In addition to the coding of location by place cells and grid cells, extensive 

experimental data also indicates a relationship between theta frequency and the spatial 

dimension of running speed. Multiple studies have shown that the frequency and 

amplitude of theta rhythm in the field potential increases with running speed (Jeewajee 
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et al., 2008a; Maurer et al., 2005; Rivas et al., 1996; Whishaw and Vanderwolf, 1973), 

suggesting a role in coding of speed.  The difference in field potential frequency is a 

change of about one hertz over a full range of running speeds from 5 cm/sec to 30 cm/ 

sec, but these effects show robust statistical significance. Interestingly,  coherence of 

theta oscillations (Royer et al., 2010; Sabolek et al., 2009) and the relationship between 

theta power and locomotion speed (Hinman et al., 2011) decreases along the septo-

temporal (aka dorsoventral) axis (Patel et al., 2012). Theta power is significantly lower 

in the ventral (temporal) hippocampus, where the proportion of theta-rhythmic neurons 

is lower, compared to the dorsal (septal) hippocampus (Royer et al., 2010).  

Neurons in the hippocampal formation and entorhinal cortex also directly code 

running speed with changes in firing rate (Hinman et al., 2016; Kropff et al., 2015; 

Lever et al., 2003; O'Keefe et al., 1998; Wills et al., 2012). Neurons that code running 

speed include grid cells and head direction cells (Hinman et al., 2016; Kropff et al., 

2015), whereas neurons sensitive to running speed that do not code other spatial 

dimensions are referred to as speed cells (Kropff et al., 2015). In addition to these 

changes in firing rate, many entorhinal neurons also show changes in firing rhythmicity, 

commonly increasing their frequency with an increase in running speed (Hinman et al., 

2016; Jeewajee et al., 2008a; Stensola et al., 2012).  This change in rhythmicity with 

running speed is lost during pharmacological inactivation of the medial septum, even 

though the change in firing rate is not lost (Hinman et al., 2016). Given that this same 

inactivation disrupts grid cells, this could imply that speed-rate modulation is 

dispensable, while theta frequency-speed modulation is critical for normal grid cell 

function. 

The relationship between running speed and theta rhythmicity has been explored 

in other pharmacological studies of the medial septum. These studies were motivated by 

studies showing that circuits in the medial septum that regulate theta rhythm are 

implicated in both memory function (Chrobak et al., 1989), as described above, as well 

as in the regulation of anxiety (McNaughton N. and Coop, 1991). An intriguing 

connection between these potential roles concerns impairments in memory encoding 

and spatial navigation, produced, respectively, by  the benzodiazepines (Ghoneim and 

Mewaldt, 1990) and serotonin 5-HT1A receptor agonist buspirone (McNaughton N. and 

Morris, 1992), drugs used to treat anxiety. 
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Systemic injections of anxiolytic drugs cause a consistent reduction in the 

frequency of theta rhythm oscillations across a range of running speeds (Wells et al., 

2013). Because the effect is consistent across running speeds, this results in a shift of 

the y-intercept of a regression line fitting frequency to running speed, without changing 

the slope of the regression line. Consistent with this result in the hippocampus, 

recordings of local field potentials and spiking rhythmicity in the entorhinal cortex show 

a systematic decrease in theta frequency across a range of running speeds, as presented 

in conference abstracts (Monaghan et al., 2015; Monaghan et al., 2014). In contrast, the 

novelty of the environment has been shown to change the slope of the relationship 

between frequency and running speed (Wells et al., 2013). This effect on slope is 

consistent with the fact that novelty will increase the spacing and size of grid cell firing 

fields in entorhinal cortex (Barry et al., 2012b).  

A sophisticated computational model has linked many aspects of the 

experimental data on theta rhythm and the coding of spatial location and running speed, 

using the phenomenon of oscillatory interference (Burgess, 2008; Burgess et al., 2007). 

This model arose from the initial model of theta phase precession that predicted 

multiple spatial firing fields (O'Keefe and Recce, 1993). In this model, velocity shifts 

the theta frequency of oscillators, such that the relative phase of oscillations codes the 

spatial position of the animal, and summation of oscillations generates grid cell firing 

fields. This model directly demonstrates the potential link between coding of space and 

the phenomenon of theta phase precession (Hafting et al., 2008). The model also 

effectively predicted a relationship between rat running speed and the spacing of grid 

cell firing fields (Jeewajee et al., 2008a; Stensola et al., 2012), as well as the difference 

in slope of theta phase precession at different dorsal to ventral positions in entorhinal 

cortex (Hafting et al., 2008) and hippocampus (Kjelstrup et al., 2008). Consistent with 

the model, modulation of spiking frequency by the cosine of head direction has been 

shown in theta rhythmic neurons of the hippocampus and medial septum (Blair et al., 

2008; Welday et al., 2011). This model links the circuit dynamics of theta rhythm to the 

coding of space for behavior (Blair et al., 2008; Blair et al., 2007; Hasselmo, 2008; 

Hasselmo and Brandon, 2012; Hasselmo et al., 2007; Welday et al., 2011). The 

specificity of firing could be enhanced by reset by sensory input about environmental 

barriers (Bush and Burgess, 2014; Hardcastle et al., 2015). 
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This model is also supported by some aspects of intracellular physiological data, 

including the difference in the frequency of resonance and subthreshold membrane 

potential oscillations for entorhinal neurons at different anatomical positions (Giocomo 

et al., 2007) that has been extensively replicated (Boehlen et al., 2010; Dodson et al., 

2011; Giocomo and Hasselmo, 2008a; Giocomo and Hasselmo, 2008b; Giocomo and 

Hasselmo, 2009; Heys et al., 2010; Pastoll et al., 2012; Shay et al., 2012).  Resonance 

correlates with the time course of rebound from hyperpolarization, and rebound spiking 

might contribute to grid cell firing (Ferrante et al., 2016; Shay et al., 2016). 

 

3.1 Subcortical circuits underlying the behavioral correlates of theta rhythm 

The subcortical circuits involved in generating and regulating theta oscillations are 

multiple, complex, and have still not yet been fully delineated. Theta rhythm is 

controlled by several subcortical nuclei. Medial septum, the supramammillary nucleus, 

nucleus incertus and posterior hypothalamus are involved in theta generation whereas 

serotonin-containing neurons of the median raphe nucleus promote non-theta state in the 

hippocampus (reviewed in Kirk, 1998; Oddie and Bland, 1998; Pan and McNaughton 

N, 2004; Vertes and Kocsis, 1997; Vinogradova 1995). The medial supramammillary 

nucleus (SuM) sends projections to the medial septum (Vertes, 1992),  SuM cells 

exhibit theta-rhythmic activity and are phase-locked to hippocampal theta (Kirk and 

McNaughton N, 1991; Kocsis and Vertes 1997). Median raphe nucleus (MR) promotes 

hippocampal non-theta (desynchronized) state (Graeff et al., 1980). MR lesions induced 

hippocampal theta activity during immobility (Maru et al., 1979), suggesting an 

inhibitory influence of MR on the hippocampal theta generation. MR projects strongly 

to the medial septum and hippocampus (McKenna and Vertes 2001). Majority of 

neurons in median raphe nucleus (MR) exhibit theta-associated theta activity (Viana Di 

Prisco et al., 2002). Pharmacologically induced blockade of the MR elicited theta-bursts 

in the medial septum and  hippocampal theta (Kitchigina et al., 1999; Kinney et al., 

1995). Hippocampal theta was also produced by pharmacological suppression of the 

median raphe nucleus with serotonin1A agonists (Vertes et al., 1994), whereas non-

serotonergic (possibly glutamatergic) median raphe projections to the MS can facilitate 

the generation of hippocampal theta in the absence of medial septal cholinergic tone 

(Crooks et al., 2012). Key regions regulating theta oscillations are also connected with 



9 
 

other nuclei, including interpeduncular nucleus (IP), which is reciprocallly connected 

with the supramammilary nucleus (Shibata et al., 1986),  the nucleus incertus (Ma, 

Gundlach, 2015) and median raphe (reciprocal inhibitory connections, Lima et al., 

2017), suggesting that IP might also be involved in regulation of theta oscillations. 

A comprehensive discussion of these circuits is beyond the scope of this review, 

and consistent with our functional focus on spatial cognition and memory, locomotion, 

and emotion-sensitivity, we focus upon three subcortical regions:  1) the medial septum 

and diagonal band of Broca (hereafter ‘medial septum); 2) the lateral septum; and 3) the 

nucleus incertus. We review the medial septum (section 3.2), because it is the most 

important integrator of multiple ascending influences upon theta, and is crucial for 

hippocampal theta, and thus all theta’s functional associations. We discuss the lateral 

septum (section 4.2), mainly for its role in the links between theta and locomotion, after 

first reviewing more generally the links between hippocampal activity, theta and 

locomotion (section 4.1). The lateral septum’s importance arises in part from its position 

in receiving massive projections from the hippocampus, and sending projections to the 

ventral tegmentum area and lateral hypothalamus. We discuss the nucleus incertus 

(section 3.3), which has dense projections to the medial septum and ventral 

hippocampus, not just to draw attention to recent work on this hitherto little-studied 

region, but in particular to highlight its relevance to probing mechanisms underlying 

links between hippocampal theta on the one hand, and arousal, stress and anxiety on the 

other.  

 

3.2 Subcortical circuits underlying the behavioral correlates of theta rhythm: 

medial septum 

 As noted above, theta oscillations in dorsal hippocampus have long been 

associated with exploratory activity. The frequency and amplitude of hippocampal theta 

oscillations is proportional to running speed (McFarland et al., 1975), see section 2.2. 

Circuits involved in theta rhythm generation receive multiple inputs from brain regions 

coding sensory- and motor-related information (Bland and Vanderwolf, 1972a; Oddie 

and Bland, 1998; Vertes et al., 2004), that can underlie adjustment of theta oscillations 

to behavioral states. The activity of many neurons in theta-generating regions, including 

hippocampus (Geisler et al., 2010; Huxter et al., 2003; McNaughton B.L. et al., 1983), 
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medial septum (MS) (Justus et al., 2017) and medial entorhinal cortex (MEC) (Hinman 

et al., 2016; Kropff et al., 2015), correlates with running speed. Lesions of MS greatly 

impair hippocampal theta oscillations (Buzsaki et al., 1983; Rawlins et al., 1979). 

Locomotion–dependent activity of MS cells, interconnected with subcortical regions, 

including several hypothalamic nuclei, is thought to underlie matching of theta 

frequency to changing running speed (Bland et al., 2006).  Optogenetic stimulation of 

MS cells at theta frequency (without specificity for cell type) in freely moving rats 

affected hippocampal theta oscillations in a speed-depended dependent manner, being 

stronger at slower speeds (Blumberg et al., 2016).  

 Several studies have focused on dissecting out the roles of different cell types in 

MS. The MS comprises several cell types, projecting in other brain regions, including 

hippocampus: GABAergic (Freund and Antal, 1988; Kiss et al., 1990), cholinergic 

(Mesulam et al., 1983), and glutamatergic (Colom et al., 2005; Manns et al., 2001; 

Manseau et al., 2005). Silencing of PV cells in medial septum during REM sleep led to 

decrease of theta oscillations and to impairment of spatial as well as fear-conditioned 

contextual memory (Boyce et al., 2016). Optogenetic activation of cholinergic MS cells 

affected hippocampal theta oscillations during quiet waking, but not during active 

waking in rats (Mamad et al., 2015). Likewise, optostimulation of cholinergic MS cells 

increased theta power in anesthetized mice but it decreased or had no effect on either 

theta power or locomotion in behaving mice (Vandecasteele et al., 2014). Stimulation of 

cholinergic fibers also increased firing of hippocampal inhibitory interneurons and 

made more precise coupling of pyramidal cell firing to theta phase (Dannenberg et al., 

2015). Optogenetic activation of glutamatergic MS cells led to initiation of locomotion, 

preceded by theta oscillations, in head-fixed mice (Fuhrmann et al., 2015). In freely 

behaving mice, activation of glutamatergic neurons in the MS strongly synchronized 

hippocampal theta rhythms, whereas selective activation of MS glutamatergic 

projections to the hippocampus did not affect theta rhythms (Robinson et al., 2016), 

suggesting that MS glutamatergic neurons affect hippocampal theta oscillations through 

modulation of other septal neurons, e.g. parvalbumin (PV) cells, or hypothalamic 

generators of theta oscillations. Thus, behavioral effects of somatic MS optostimulation 

can partly be mediated by a direct activation of non-hippocampal targets in addition to 



11 
 

the entrainment of hippocampal theta oscillations. This complex interplay between MS, 

hippocampus and hypothalamic theta generators remains to be elucidated. 

 GABAergic cells in MS express PV (Freund, 1989) and play a key role in the 

generation and maintenance of hippocampal theta rhythm (Bender et al., 2015; Bland et 

al., 1999; Borhegyi et al., 2004; Hangya et al., 2009; Kocsis and Vertes, 1997; Wulff et 

al., 2009). PV cells in the MS provide extensive collateral innervation within the MS 

(Borhegyi et al., 2004), and their projections to hippocampus selectively target PV 

interneurons (Freund and Antal, 1988). Genetic ablation of inhibitory inputs to 

hippocampal PV interneurons (Wulff et al., 2009) or optogenetic silencing of these cells 

(Amilhon et al., 2015) disrupts theta oscillations. Theta-rhythmic inhibition of 

hippocampal PV interneurons by MS PV cells (Borhegyi et al., 2004) determines theta-

rhythmic firing of pyramidal cells (Toth et al., 1997). In turn, pyramidal cells via MS-

projecting interneurons (Blasco-Ibanez and Freund, 1995; Jinno et al., 2007; Manseau et 

al., 2008; Mattis et al., 2014; Toth et al., 1993) provide rhythmic feedback to MS, thus 

supporting maintenance of the theta rhythm (Hangya et al., 2009).  

 

3.3 Subcortical circuits underlying the behavioral correlates of theta rhythm: 

nucleus incertus 

 As discussed in section 6 below, the hippocampus has long been associated with 

the potentially linked functions of arousal, stress-regulation and anxiety. How septo-

hippocampal theta in particular might be linked to these functions remains unclear. 

Briefly, one approach has been to explore the ‘stress-reactive’ nucleus incertus in the 

pontine brainstem (reviewed in Ryan et al, 2011; Ma and Gundlach, 2015), which 

consists of largely GABAergic projection neurons, many of which express relaxin-3. 

The nucleus incertus has very dense projections not only to neurons in the medial 

septum and diagonal band which project to the hippocampal formation, but also to 

ventral regions of the hippocampal formation (i.e. temporal pole in rodents), notably to 

the ventral dentate gyrus and ventral subiculum (Goto et al, 2001; Ma and Gundlach, 

2015). As discussed in section 6.1 below, it is the ventral, rather than the dorsal, 

hippocampus that has been associated with anxiety, especially unconditioned anxiety 

(Bannerman et al, 2004), thus exploring the nucleus incertus’ projections may be 

particularly relevant to understanding the hippocampal role in anxiety and stress. In the 
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anaesthetized rat, stimulation of the nucleus incertus elicits hippocampal theta, and 

disruption of the nucleus incertus attenuates theta elicited by stimulation of the 

reticularis pontis oralis (Nunez et al, 2006). A Granger causality analysis revealed 

causal interdependence between the neuronal activity in nucleus incertus and the 

hippocampus in the theta-state (Martivez-Bellver et al., 2017).Taken together, these 

findings suggest that the nucleus incertus has a rather significant role in controlling 

septo-hippocampal theta, including the reticular-elicited theta which has been used to 

assay anxiolytic drug efficacy (discussed in sections 6.1 and 6.2). One provocative 

mechanistic finding is that relaxin-3-positive neurons in the nucleus incertus are excited 

by ICV infusion of CRF and fire at a particular phase of hippocampal theta, while 

relaxin-3-negative neurons are unaltered/inhibited by CRF, and show no link to 

hippocampal theta (Ma et al, 2013). This direct link between stress signals and 

hippocampal theta may help to further explore emotional contributions to hippocampal 

theta in a way that integrates cellular variables, oscillations and function in the behaving 

animal. Relatedly, in section 6 below, we consider an approach to dissociating emotion-

sensitive from cognitive components of theta frequency.  

 

4.1 Hippocampal population activity during theta oscillations and rapid regulation 

of locomotion  

 While the correlation between hippocampal theta and locomotion has been 

known for a long time, it has remained elusive whether hippocampal theta follows 

locomotion (e.g. for spatial computations, see section 2 above), or can actually control 

locomotion. Vanderwolf (Vanderwolf, 1969) implicated changes in theta rhythmic 

activity in behavioral control of complex voluntary movements, whereas Grastyan and 

colleagues (Grastyan et al., 1965) suggested a role for theta oscillations in motivated 

behaviors. A study where theta oscillatons in the hippocampus were induced (using 

electrical stimulation of MS) independent of behavior, showed a dissociation of 

hippocampal theta oscillations from its behavioral correlates (Kramis and Routtenberg, 

1977), suggesting that theta oscillations do not directly induce locomotion. Lesions of 

hippocampus or septum are known to increase locomotor activity (Jarrard, 1968) and 

running speed (Kim and Frank, 2009), orienting reactions (reviewed in (Vinogradova, 

1995) and the frequency of self-stimulation (Buno and Velluti, 1977), while electrical 
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stimulation of hippocampus led to the inhibition of voluntary movement (Bland and 

Vanderwolf, 1972b). Gaining control over regularity of theta oscillations using 

optogenetic theta-rhythmic stimulation of MS GABAergic projections in hippocampus, 

Bender et al., 2015 showed that hippocampal theta oscillations causally influence 

locomotion. Spontaneous theta oscillations episodes, comprising cycles of a more 

regular amplitude, occur during running at a slower and less variable speed (Fig. 1). 

Accordingly, optogenetic stimulation of MS GABA inputs, which rendered theta 

oscillations more regular, led to a more stable and slower running speed, while non-

theta rhythmic stimulation of MS GABA inputs onto hippocampus did not affect 

locomotion (Bender et al., 2015). These findings suggest that hippocampus not only 

receives a movement-dependent bottom-up modulation from subcortical regions but 

also provides the top-down feedback to directly regulate locomotion.   

 LFP theta oscillations involve a manifold of neuronal activity dynamics 

(Buzsaki et al., 1983), ranging from rhythmic modulation of discharge probability to 

theta phase precession (O'Keefe and Recce, 1993) and cross-frequency coupling with 

gamma oscillations (Bragin et al., 1995; Buhl et al., 2003; Colgin et al., 2009; Wulff et 

al., 2009; Korotkova et al., 2010). This signaling involves pyramidal cells and various 

types of interneurons (Klausberger and Somogyi, 2008), i.e. the cells which participate 

in the generation of the theta rhythm, leading to a functional cross-talk between 

experience-dependent information processing and synchronization. Indeed, mutual 

relationships between properties of pyramidal cells’ output and features of theta 

oscillations have been demonstrated. On the one hand, information about an animal’s 

position can be extracted both from firing of pyramidal cells (section 2 above) and from 

spatiotemporal variations of theta oscillations amplitude (Agarwal et al., 2014); the 

firing of fast spiking interneurons, key generators of theta currents, is modulated by 

place cells according to animal’s position (Maurer et al., 2006); and the routing of the 

spatial signal from MEC and CA3 to CA1 is tightly related to generation of theta-

coupled gamma oscillations in distinct frequency bands (Colgin et al., 2009). On the 

other hand, theta-mediated rhythmic inhibition modifies firing probability during 

experience-dependent activation of a place cell, as firing probability computed for a 

particular theta phase is more consistent across theta cycles of more similar amplitudes 

(Bender et al., 2015). At a population level, the dynamics of the hippocampal output 
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involves at least three factors. The first determinant is the temporal consistency of the 

theta rhythmic inhibition related to fluctuations of population synchrony and LFP theta 

amplitude. The second dynamic factor is the nesting of slow and fast gamma 

oscillations to specific phases of the theta rhythm, (Colgin et al., 2009; Schomburg et 

al., 2014).  The third factor is a population firing rate coding, which depends on global 

remapping of representations upon changes of spatial environment (Wills et al, 2005), 

on rate remapping due to variability of sensory input (Leutgeb et al., 2005; O'Keefe and 

Conway, 1978), reward representations (Dupret et al., 2010; McKenzie et al., 2014), or 

different types and sequences of memory episodes occurring in the same location 

(Ferbinteanu and Shapiro, 2003; Wood et al., 2000). Further, subcortical inputs adjust 

theta synchrony depending on ongoing behavior (Bland et al., 2006, Fuhrmann et al., 

2015), and direct cholinergic and aminergic neuromodulatory inputs regulate 

hippocampal processing (Dannenberg et al., 2015; Takeuchi et al., 2016; Vandecasteele 

et al., 2014).   

While it is clear that the processes described above shape temporal changes of the 

hippocampal population activity, specific readouts and functions of these changes 

remain elusive. Experiments performed in the 1960s to 1980s suggested that 

hippocampal efferents signal novelty (Meeter et al., 2004), assist orienting responses 

and planning of  voluntary movements (Vanderwolf, 1969) and at the circuit level serve 

a function of behavioural inhibition (Gray 1982). These and other diverse behavioral 

phenomena could not be, however, clearly connected to selective cellular responses at 

any specific timescale, until the discovery of place cells (O'Keefe and Dostrovsky, 

1971) and subsequent demonstration of a striking example of a temporal coding in the 

brain - hippocampal theta phase precession (O'Keefe and Recce, 1993). Recently, 

ensembles of hippocampal neurons have been demonstrated to directly trigger behaviors 

associated with their formation (Liu et al., 2012). Intricate dependence of place and grid 

cells’ firing on experience, encoding of which involves firing sequences, organized with 

millisecond precision, makes experimental replay of their temporal activity particularly 

challenging. An essential temporal aspect of it, gamma oscillations (Colgin et al., 2009; 

Csicsvari et al., 2003; Schomburg et al., 2014), have been shown to support spatial 

working memory, when optogenetically facilitated in the CA1 to MEC pathway 

(Yamamoto et al., 2014).  
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 Episodes of hippocampal theta oscillations, which have cycles of a similar 

amplitude, for hundreds of milliseconds or even seconds, are accompanied by a more 

constant hippocampal output and by running with a more regular and slower running 

speeds. Optogenetically increasing regularity of theta oscillations' amplitude led to the 

same effect on locomotion (Bender et al., 2015). This indicates a causal influence of the 

temporal variability of the hippocampal population output on the movement pattern 

regulation. Experience-dependent flexibility of hippocampal representations, different 

density of place fields depending on salient features of environment (Dupret et al., 

2010; McKenzie et al., 2014) as well as variations in sensorimotor and cognitive 

processing (Ferbinteanu and Shapiro, 2003; Long et al, 2014; Leutgeb et al., 2005; 

O'Keefe and Conway, 1978; Wood et al., 2000) are the factors likely contributing to the 

variability of theta amplitude and of the hippocampal population output over time. 

These results suggest that dynamic collective aspects of hippocampal representations 

are essential for rapid control of behavior. 

 

4.2 Subcortical read-out of theta rhythmic hippocampal signaling via lateral 

septum 

 The major subcortical output of the hippocampus is the lateral septum (LS), a 

GABAergic nucleus which receives non-reciprocal inputs from hippocampal pyramidal 

cells (Risold and Swanson, 1996) as well as from medial prefrontal cortex (Carus-

Cadavieco et al., 2017) and is connected with several subcortical regions including 

lateral hypothalamus (Risold and Swanson, 1996), the ventral tegmental area (Luo et al., 

2011) and amygdala (Sheehan et al., 2004).  Chemogenetic inhibition of hippocampus 

to LS projections leads to an increase in running speed (Bender et al., 2015), pointing to 

a circuitry, the disruption of which underlies behavioral hyperactivity after lesions of 

hippocampus or LS (Sheehan et al., 2004). Further, theta oscillations are coordinated 

between hippocampus and lateral septum (Bender et al., 2015). This prominent 

coordination is specific for the theta band: coordination at gamma frequencies is much 

lower between hippocampus and LS than between medial prefrontal cortex and LS 

(Carus-Cadavieco et al., 2017). Optogenetic inhibition of the hippocampus to LS 

pathway precludes the regularizing effect of hippocampal theta oscillations on 

locomotion, suggesting that changes in hippocampal theta synchronization are translated 
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into rapid adjustment of running speed during spontaneous exploration via the LS. 

Further, theta oscillations are also suggested to be involved in regulation of motivated 

behavior. Ongoing hippocampal theta oscillations increased in amplitude and frequency 

before and after reward-associated lever pressing; the rats tended to lever press during 

particular phases of theta (Buno and Velluti, 1977); the phase of the theta wave at which 

lever pressing occurred was opposite to that at which lever releasing occurred (Semba 

and Komisaruk, 1978). Theta-frequency stimulation of hippocampus via LS-induced 

disinhibition activates dopaminergic VTA neurons, and this pathway supports 

reinstatement of reward memories (cocaine-seeking) by contextual stimuli, thus linking 

context with reward (Luo et al., 2011). LS neurons show place- and reward-related 

activity, suggesting possible coding of contextual information associated with reward 

(Takamura et al., 2006).  

 Another prominent efferent region of LS is the lateral hypothalamus (LH), 

which is crucial for control of locomotion (Gladfelter and Brobeck, 1962; Grastyan et 

al., 1965; Grillner et al., 2008; Sinnamon, 1993) and arousal (Herrera et al., 2016; 

Mileykovskiy et al., 2005). Many LH cells progressively increase their firing upon 

locomotion onset (Bender et al., 2015). Approach behaviors elicited by stimulation of 

LH, but not withdrawal behaviors, correlate with hippocampal theta oscillations 

(Grastyan et al., 1965). Theta-rhythmic activation of LS projections to the LH replicates 

the reduction of running speed, induced by more regular hippocampal theta oscillations 

(Bender et al., 2015) during spontaneous locomotion. LS afferents to the LH are also 

activated during cocaine preference (Sartor and Aston-Jones, 2012), suggesting 

involvement of this pathway in motivated behaviors. 

 

5.1 Theta rhythm and coding of time for episodic memory. 

In addition to its role in coding the “where” of memory, theta rhythm may also 

contribute to encoding the “when” of episodic memory. In addition to coding spatial 

location, neurons in the hippocampus and entorhinal cortex respond selectively at 

consistent time points within each trial of a behavioral task (Kraus et al., 2015; Kraus et 

al., 2013; MacDonald et al., 2013; MacDonald et al., 2011; Pastalkova et al., 2008). 

These responses have been referred to as “time cells” (McDonald et al., 2011).  The 

firing of time cells could allow events or items to be associated with a specific time 
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point coded by neural activity as well as a specific location coded by place cells. In an 

explicit timing task (DRL) hippocampal cells tend to code time features of the task that 

are not linked to narrow “time points” (Young and McNaughton N., 2000).  

Neurons in the hippocampus and entorhinal cortex that code spatial location 

often code time intervals as well. This was initially shown in neurons of the 

hippocampus as a rat ran in a running wheel during the delay interval between different 

responses in a spatial alternation task (Pastalkova et al., 2008). Further studies explored 

these responses on a treadmill that allowed studies of systematic changes in the 

treadmill speed. On the treadmill, it was shown that neurons can code either the time of 

running or the distance of running, and many neurons that code these dimensions also 

fire as place cells in different locations in the task (Kraus et al., 2013).  Modeling shows 

that the same framework used for modeling grid cells with theta rhythm oscillations 

(Burgess, 2008) could contribute to coding of time intervals by time cells (Hasselmo, 

2008; Hasselmo, 2012; Hasselmo and Stern, 2014).  This use of oscillations to code 

time intervals resembles previous models of time intervals (Brown et al., 2000; Miall, 

1989). Consistent with predictions of this model, neurons in the entorhinal cortex that 

fire as grid cells during foraging in an open field will also fire as time cells during 

running on a treadmill (Kraus et al., 2015). Models of episodic memory show how the 

coding of time and space by theta rhythm oscillations could account for episodic 

retrieval (Hasselmo, 2009; Hasselmo, 2012) that could underlie the hippocampal 

activity found in functional magnetic resonance imaging (Brown et al., 2010; Brown 

and Stern, 2014).  

 

5.2 Theta rhythm separation of encoding and retrieval.  

The behavioral data above indicates a role of theta rhythm in memory function, 

but the mechanisms for this role are not known. One possible model shows how specific 

physiological processes at different phases of theta rhythm oscillations could enhance 

encoding by separating the dynamics of encoding and retrieval on different phases of 

the theta rhythm (Hasselmo et al., 2002). In this model, during the encoding phase of 

each theta cycle, input from entorhinal cortex is strong, as shown by current source 

density analysis (Brankack et al., 1993; Buzsaki et al., 1986). Synaptic input from 

region CA3 is weaker at this phase, but synaptic modification at the CA3 synapses is 
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strong, storing associations between the presynaptic activity in CA3 and the 

postsynaptic activity from entorhinal cortex. Physiological data shows that long-term 

potentiation is strongest at this phase of the EEG (Hölscher et al., 1997; Huerta and 

Lisman, 1995; Hyman et al., 2003). 

 During a separate retrieval phase of each theta cycle, input from entorhinal cortex is 

weaker, but the excitatory input from region CA3 is stronger (Brankack et al., 1993; 

Buzsaki et al., 1986). The strong input from CA3 means postsynaptic activity is driven 

by previously modified synapses, retrieving previously stored associations. At this time, 

the cell body receives the least inhibition, allowing retrieval to drive the spiking output 

of the neurons. Long-term potentiation is reduced during this time, so that the retrieval 

activity is not stored as a new event.  Simulations show that separate phases of encoding 

and retrieval allow effective separation of new external input from prior retrieval 

(Hasselmo et al., 2002). 

Physiological data on theta rhythm are consistent with the encoding/retrieval model. 

At one phase of theta, the dendrites are depolarized (Kamondi et al., 1998), allowing 

encoding of entorhinal input, while the cell body is hyperpolarized, preventing spiking due 

to interference from retrieval of previous associations, (Hasselmo et al., 2002). Membrane 

potential changes could arise due to different morphological classes of inhibitory 

interneurons that spike at different phases of theta rhythm (Klausberger et al., 2003; 

Klausberger and Somogyi, 2008). Inhibitory axo-axonic and basket cells could inhibit the 

cell bodies and axons of excitatory cells to reduce spiking output during encoding 

(Cutsuridis and Hasselmo, 2010). At the opposite phase, oriens lacunosum-moleculare cell 

spiking inhibits the layer where entorhinal input contacts the distal dendrites, reducing 

external input during retrieval of associations at previously modified synapses in stratum 

radiatum (Hasselmo et al., 2002; Kunec et al., 2005).  

The model helps the understanding of impairments of memory encoding during loss 

of theta rhythm (Chrobak et al., 1989; Givens and Olton, 1994; M’Harzi et al., 1987; 

Winson, 1978). The model is consistent with physiological data showing that the phase of 

theta rhythm resets during stimulus encoding (Givens, 1996), and in rats performing a 

delayed non-match to sample task, spiking occurs at different phases of theta for match 

(retrieval) versus non-match (encoding) stimuli (Manns et al., 2007). One study tested 

predictions made by combining the cholinergic model (Hasselmo et al, 1996) and theta 
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phase model (Hasselmo et al, 2002) of encoding vs retrieval separation (Douchamps et al, 

2013). In the cholinergic model, high levels of acetylcholine promote the encoding mode. 

As predicted, replicating an earlier study (Lever et al, 2010), environmental novelty shifted 

CA1 place cell firing to a later phase of theta (towards the pyramidal-layer theta peak), 

consistent with a bias towards novelty-elicited coding; scopolamine (a cholinergic 

antagonist) shifted cell firing in a familiar environment to an earlier phase of theta (towards 

the pyramidal-layer theta trough), consistent with an anti-encoding bias favouring retrieval. 

Moreover, in a novel environment, scopolamine blocked the later-phase-in-novelty effect, 

and blunted place cell remapping, consistent with both models (Hasselmo et al, 1996; 

Hasselmo et al, 2002). The behavioural relevance of these kinds of observations was tested 

by an optogenetic study that used closed-loop stimulation to show a pattern of memory 

enhancement consistent with the idea that stimulation at one phase of theta promoted 

encoding while stimulation at another phase promoted retrieval (Siegle and Wilson, 2014). 

Consistent with the encoding phase of the model, high frequency gamma oscillations are 

coherent between entorhinal cortex and region CA1 at one phase of theta (Colgin et al., 

2009), and coherent between CA3 and CA1 at a different phase (Belluscio et al, 2012; 

Colgin et al, 2009; Schomburg et al, 2014).  

 

6.1  Dual functionality of the hippocampal formation?: links to theta rhythm  

 There is no theoretical consensus as to how best to uniquely characterise 

hippocampal function. Broadly speaking, two sets of functional associations persist, one 

cognitive, the other emotional. In the first set, the hippocampus supports spatial 

cognition, episodic and other memory, with these functions typically linked to coding 

for, and detecting initially novel contexts (to which individual contents can be 

associated), (e.g. Burgess et al., 2002; Hasselmo et al., 1996; O'Keefe and Nadel, 1978; 

Schiller et al., 2015). Briefly, paradigmatic findings in this set include the discovery of 

hippocampal spatial cells (reviewed in: Hartley et al., 2014), online and offline 

(re)activation of experience-specific cell firing sequences (reviewed in O’Neill et al., 

2010; Redish, 2016; Schiller et al., 2015) and evidence for hippocampal support of 

context-dependent memory (e.g. O'Keefe and Nadel, 1978; Phillips and LeDoux, 1992; 

Redondo et al., 2014). In the second set, rather differently, the hippocampus plays a 

crucial role in anxiety, likely linked to roles in stress and depression. Paradigmatic 
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findings in this set include demonstrations of anxiety-modulating effects following 

hippocampal disruption (reviewed in Engin and Treit, 2007; Gray and McNaughton N., 

2000), the importance of hippocampal neurogenesis in controlling anxiety (e.g. Revest 

et al., 2009) and depression (e.g. Santarelli et al., 2003), and hippocampal control over 

the HPA axis (Herman and Cullinan, 1997; Sapolsky and Meaney, 1986). 

 Remarkably few theoretical studies try to bridge the gap between these two sets 

of functional associations. While the anxiety-based approach accounts for the 

considerable context-conditioned fear literature in terms of ‘anticipatory anxiety’ (Gray 

and McNaughton N., 2000), its attempt to incorporate the growing spatial literature has 

not been influential. While a context-based memory approach naturally explains 

context-conditioned fear literature, it fails to account for hippocampal contributions to 

unlearned anxiety. The problem of bridging these literatures seems more acute when we 

consider that proponents of different theories of hippocampal function place theta at the 

heart of their theory. For instance, O'Keefe and Nadel (1978) reinterpreted observations 

from Vanderwolf (1969) linking theta to voluntary movement to suggest that theta acted 

as an index of spatial translation, and it is now clear that there are robust links between 

theta phase and spatial variables in linear tracks and open fields (Climer et al., 2013; 

Huxter et al., 2008; Jeewajee et al., 2014; O'Keefe and Recce, 1993; Skaggs et al., 

1996). Similarly Gray (1982) argued that hippocampal theta was crucial for behavioural 

inhibition, emphasising how all drugs which were clinically effective anxiolytic drugs 

impaired rodent septo-hippocampal theta. 

 By far the most influential approach to duality of hippocampal function has been 

to posit that the dorsal and ventral hippocampus are distinct structures, with 

space/memory assigned to dorsal hippocampus (posterior in primates), and anxiety to 

ventral hippocampus (anterior in primates) (Bannerman et al., 2004; Fanselow and 

Dong, 2010; Strange et al., 2014) This view receives clear support from lesion studies in 

animals (Bannerman et al., 2004; Kjelstrup et al., 2002; Pentkowski et al., 2006), and 

neuroimaging studies in primates including humans (Bach et al., 2014; Loh et al., 2016; 

O'Neil et al., 2015; Oler et al., 2010). This anatomy-based approach clearly captures an 

important truth about the parcellation of hippocampal function. However, an extreme 

version of this approach is incompatible with hippocampal physiology, not least because 

hippocampal theta is found throughout the dorso-ventral axis and resembles a single 
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travelling wave (Lubenov and Siapas, 2009; Patel et al., 2012). In other words, while 

amplitude can vary, and phase does vary systematically, along the dorso-ventral axis 

(Hinman et al., 2011; Patel et al., 2012), as far as frequency is concerned the dorsal and 

ventral hippocampus both share the same theta in the intact behaving rat. Indeed, the 

vast majority of studies inspiring and supporting the Gray and N. McNaughton theory 

of anxiety (Gray, 1982; Gray and McNaughton N., 2000), including where anxiolytic 

drugs reduce the frequency of reticular-elicited theta, have sampled dorsal hippocampal 

theta (e.g. dorsal sampling: Engin et al., 2008; Gray and McNaughton N., 2000; 

McNaughton N. et al., 2007; Seidenbecher et al., 2003; Shin et al., 2009; Siok et al., 

2009; Yeung et al., 2012) (dorsal & ventral sampling: Adhikari et al., 2010; Cornwell et 

al., 2008; Engin et al., 2016).   

 

6.2  Dual functionality of the hippocampal formation: two components of theta 

frequency  

 In summary, it remains unclear how the hippocampal processing subserving 

such different functions, space/memory on the one hand, and anxiety on the other, might 

be mechanistically related to each other, when both share an important physiological 

substrate: septo-hippocampal theta. One reasonable theoretical starting assumption is 

that the processing of one set of functions should not interfere with the processing of the 

other. If theta frequency is linked to both spatial translation and anxiety, it would be 

maladaptive for anxiety to be reduced if running speed were to be reduced, or path 

integration mechanisms impaired. One would expect to show some independence of 

theta mechanisms relating to spatial cognition and anxiety. Here, we highlight one such 

approach, begun by Wells et al. (2013). 

 The oscillatory-interference model of grid cell mechanisms (discussed above in 

section 2.2) suggested that theta frequency overall might result from the additive 

contribution of two components, one corresponding to the slope of the theta frequency 

to running speed relationship, and one corresponding to the variable offset of this 

relationship, defined by its intercept on the speed (Y) axis at 0cm/s (Burgess, 2008). 

Importantly, in this model, the two contributions to frequency are independent. The 

scale of spatial coding is determined by the rate of change of frequency with running 

speed, while the absolute value of the baseline frequency itself (the intercept) is 
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irrelevant to spatial coding.  

 The idea that spatial scale increases in environmental novelty (Barry et al., 

2012b) is a strong prediction of the oscillatory interference models (Burgess, 2008; 

Burgess et al., 2007), given that theta frequency is reduced in environmental novelty 

(Jeewajee et al., 2008b). More specifically, the Burgess (2008) model predicts that the 

increase in spatial scale in novelty results from a decrease in the slope of the theta 

frequency to running speed relationship. Thus the Wells et al. (2013) study made 

specific predictions regarding the spatial cognition functional association of 

hippocampal theta: a novel spatial context would reduce the slope of the theta frequency 

to running speed relationship, without any obligatory effect on intercept, and this would 

increase spatial scale, with the level of slope change predicting the level of scale change 

(place field size). 

 Combining the Burgess (2008) model with insights from the Gray and 

McNaughton N. (2000) theoretical approach, the Wells et al. (2013) study derived a 

new prediction regarding the ‘anxiety’ functional association of hippocampal theta. 

Intriguingly, all clinically-effective anxiolytic drugs (i.e. prescribed for Generalised 

Anxiety Disorder) reduce the average frequency of hippocampal theta elicited by 

stimulation of the reticular formation (‘reticular-elicited theta’). This frequency-

reduction effect of reticular-elicited theta is seen across a wide range of anxiolytic 

drugs, despite their substantial neurochemical dissimilarities (McNaughton et al 1986; 

McNaughton and Coop, 1991; Engin et al., 2008; McNaughton N. et al., 2007; Siok et 

al., 2009; Yeung et al., 2012), but is not seen with antipsychotic drugs (Gray and 

McNaughton N., 2000). In addition, ‘immobility-related’ type II theta occurs during 

predator-elicited arousal/anxiety (Sainsbury et al., 1987), and during ‘anticipatory 

anxiety’ (Gray and McNaughton N., 2000) following standard-footshock conditioning 

(Seidenbecher et al., 2003). Accordingly, since: a) anxiety may be linked to type-II 

theta; b) anxiolytics reduce reticular-elicited theta frequency; and c) the Burgess (2008) 

model links type II theta mechanisms to intercept, the prediction was that anxiolytics 

should reduce the intercept of the theta frequency to running speed relationship, without 

any obligatory effect on slope. In summary, a double dissociation was predicted 

whereby anxiolytics would specifically reduce y-intercept, and environmental novelty 

would specifically reduce slope. 
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6.3  Different types of anxiolytic drug reduce the y-intercept of the theta-

frequency-to-running speed relationship. 

 This prediction was fulfilled in the experimental results (Wells et al., 2013). 

Figure 2 shows schematic illustrations of the data. Figure 2F shows the effect of 

systemic injection of two well-established clinically effective anxiolytic drugs 

(Chlordiazepoxide, a benzodiazepine agonist; Buspirone, a 5HT-1A agonist) and one 

putative anxiolytic drug (O-2545, a CB1 agonist) which reduced thigmotaxis, as 

expected from a classic anxiolytic drug. At the doses tested, all the anxiolytic drugs 

elicited a reduction in the y-intercept without affecting slope. Further support for the 

generality of these findings comes from unpublished work (presented in Lever et al., 

2016) showing that systemic injection of pregabalin also reduces the y-intercept (Figure 

2F). Pregabalin is a presynaptically-acting anti-epileptic drug which binds to the 2-

subunit of voltage-gated calcium-channels on presynaptic sites, effectively blocking 

these channels. Significantly, it is now clear that Pregabalin is also an effective 

anxiolytic drug (in the European Union, where it is licensed for anxiolysis).  

 It is interesting that the specific effect of y-intercept reduction in hippocampal 

theta from the freely moving rat is shared by all these anxiolytic drugs tested, despite 

the considerable variance in primary targets (benzodiazepine site of GABA-A receptor, 

5HT-1A receptor, CB1 receptor, 2-subunit of calcium-channel) and the presynaptic 

and postsynaptic locations of these targets (e.g. presynaptic 2-subunit containing 

calcium-channel, postsynaptic benzodiazepine site of GABA-A receptor). Furthermore, 

this specific y-intercept reduction effect during freely moving theta is consistent across 

different drug classes, unlike that obtained from the reticular-stimulation model, where 

anxiolytic drugs reduce the slope and/or intercept of the frequency-to-intensity function 

(Gray and McNaughton N., 2000; McNaughton N. et al., 2007). For instance, at the 

doses tested, Chlordiazepoxide reduced only the slope, while Buspirone reduced only 

the intercept, of this function (summarised in (John et al., 2014)) in the reticular-

stimulated theta.  

 How widely across septo-hippocampal theta sites does this specific effect on 

frequency extend? Interestingly, the observations from hippocampal theta have been 

replicated and extended by demonstrations that systemic injections of a benzodiazepine 
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(Diazepam) and a 5HT-1A agonist anxiolytic (8-OH-DPAT) all reduce the y-intercept 

of theta recorded from the entorhinal cortex of freely moving rats (Fig 2G depicting 

schematic illustrations; Monaghan et al., 2015; Monaghan et al., 2014). 

 Taken together, this shared and specific effect of different classes of 

systemically-administered anxiolytic drugs on septo-hippocampal theta in behaving rats 

strongly hints at an underlying common mechanism of anxiolysis, an understanding of 

which is absent from reviews of anxiolytic drugs (e.g. Sandford et al., 2000). Even if the 

y-intercept reduction is a proxy to a more fundamental mechanism of systemic 

anxiolysis, these findings should help to stimulate rational approaches to drug design, 

e.g. (John et al., 2014; McNaughton N. et al., 2007).  

 

6.4  The slope of the theta-frequency-to-running speed relationship: modulation by 

environmental novelty  

 Figure 2 shows a schematic figure of the effect of introducing the rat into a 

novel spatial context, i.e. a novel configuration of cues (which elicited remapping) in 

the same geocentric location as a familiar baseline environment. In line with a central 

prediction of the oscillatory interference model (Burgess, 2008), the contextual novelty 

elicited a reduction in the slope without significantly affecting intercept (Wells et al., 

2013) (Figure 2D). Moreover, as predicted by the Burgess (2008) model, place fields of 

CA1 place cells expanded in the novel environments (Figure Figure 2D), and a robust 

correlation was observed between the change in slope across the baseline and novel 

environments, and the change in the spatial scale (i.e. average field size) of the place 

cells. Partial correlation analysis showed that slope change predicted spatial scale 

change controlling for the effect of novelty status, but not vice versa. These results were 

consistent with the (Barry et al, 2012b) study, where environmental novelty elicited an 

expansion in the spatial scale of entorhinal grid cells (Figure 2E).  In the oscillatory 

interference model (Burgess, 2008), this is due to flattening of slope, which the (Barry 

et al, 2012) study did not examine. Specifically, what controls spatial scale in the model 

is the gain of the intrinsic (i.e. interburst) theta frequency of cell firing due to speed, 

which is harder to analyse than the LFP (but see Hinman et al, 2016). 

 Furthermore, the hippocampal theta study (Wells et al, 2013) also found that, 

rearing on the hind legs, a hippocampus-dependent behaviour highly sensitive to 



25 
 

environmental novelty (Lever et al., 2006), increased when slope was flatter (Figure 

2D), and that rearing frequency was robustly predicted by changes in slope, but not 

intercept.  This further supported the theoretical link between slope and environmental 

novelty. 

 The Wells et al. (2013) study also observed a dissociation between slope and 

intercept that was not theoretically predicted. Only a few studies have investigated the 

positive relationship between temperature and theta frequency (e.g. Whishaw and 

Vanderwolf, 1971). The Wells et al. (2013) study showed that, in the locomoting rat at 

least, temperature is positively correlated with the slope, but not the intercept, of the 

frequency-speed relationship. The dissociation may also prove useful in understanding 

mechanisms driving underlying type I theta frequency modulation.  

 

6.5  Dual functionality and theta frequency: overview 

 Taken together, this set of findings dissociating intercept reduction and slope 

reduction provide good support for the additive two component model of hippocampal 

theta in Burgess (2008), and offer a new physiological perspective upon dual 

hippocampal functionality. Whether oscillatory interference is a crucial mechanism for 

grid cell generation remains controversial (Barry et al., 2012a; Brandon et al., 2011; 

Koenig et al., 2011; Yartsev et al., 2011), but it seems intuitive that the slope component 

of theta frequency is linked to distance estimation (see also McNaughton B.L. et al., 

2006). Recent hints of this are the demonstrations that: 1) darkness in mice flattens the 

slope component of theta frequency, and also disrupts grid fields (Chen et al., 2016) 

(Figure 2E); 2) medial septum inactivation flattens the slope of the intrinsic spiking 

rhythmicity of individual neurons (Hinman et al, 2016) and also disrupts grid fields 

(Brandon et al, 2011). Whether space is physical or semantic (Constantinescu et al., 

2016), whether physically traversed or imagined (Horner et al., 2016), a crucial process 

for mapping is estimating the distance (and direction) from one place to another, and 

theta may contribute to this process. Accordingly, the demonstration that the y-intercept 

and slope components can be modulated independently in the freely behaving rat is 

potentially significant. In summary, the preliminary and published work described here 

(e.g. Lever et al., 2016; Monaghan et al., 2015; Monaghan et al., 2014; Wells et al., 

2013) may help to lay the empirical groundwork for a quantitative approach to 
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hippocampal theta that bridges parallel streams of research on hippocampal cognitive 

and emotional processing.  

 

 

7.1 The post-natal development of theta and the cognitive map 

Rats and mice, like humans, are altricial animals, born possessing only very 

limited sensory and motor capabilities (Alberts, 1984). By the age of three weeks, 

however, rats are capable of independent feeding, movement, and display hippocampus-

dependent spatial learning and memory (for a review see (Wills et al., 2014)). In the 

following sections, we will discuss the post-natal emergence of the hippocampal theta 

rhythm in the rat, relating this to the development of wider hippocampal neural 

networks underlying spatial cognition, as well as the emergence of spatial behaviour. 

We aim to show that the development of the theta oscillation during this three-week 

window can provide insights how it supports hippocampal function. 

 

7.2 Early emergence of network oscillations in the hippocampal formation 

 For approximately the first week of life, rats are not capable of sustained 

independent locomotion, and instead spend their time amongst a small group (or 

‘huddle’) of littermates (Alberts and Brunjes, 1978). During this period, theta is not 

present in the hippocampal local field potential (LFP). Instead, the earliest co-ordinated 

network activity in vivo takes the form of large, slow deflections which reverse polarity 

across the CA1 pyramidal cell layer, which are seen from post-natal day 2 (P2) onwards 

(Leinekugel et al., 2002; Mohns et al., 2007). These are consistent with the Large 

Irregular Activity (LIA) state of the adult hippocampus, seen during rest and immobility 

in adults (Vanderwolf, 1969), and may also correspond to the giant depolarising 

potentials (Ben-Ari et al., 1989) seen in immature hippocampal slices in vitro 

(Leinekugel et al., 2002). The early emergence of such large, synchronous activity 

bursts has led to the proposal that they are required to develop basic network 

connectivity in the hippocampal formation (Ben-Ari, 2001; Buzsáki, 2015). 

Interestingly, the 140-200Hz fast oscillations (or ‘ripples’), which accompany LIA 

spikes in the CA1 layer (Buzsaki et al., 1992; O’Keefe and Nadel, 1978), emerge later, 

from one week of age onwards (Buhl et al., 2005; Mohns et al., 2007). 
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Rats are capable of crawling from approximately P9 (though spontaneous 

movement away from the nest occurs much later, at around two weeks) (Altman and 

Sudarshan, 1975; Gerrish and Alberts, 1996; T. J. Wills et al., 2014). At approximately 

this age, hippocampal theta is seen in vivo in awake animals for the first time (Mohns 

and Blumberg, 2008). (Though theta can be observed earlier in animals under urethane 

anaesthesia (Brockmann et al., 2011; Hartung et al., 2016)). Immature rats spend a large 

proportion of their time in a behavioural state known as ‘active sleep’ characterised by 

twitches of the limbs, head and eyes (Gramsbergen et al., 1970), and the earliest bouts 

of hippocampal theta co-occur with such myoclonic twitches during active sleep. These 

earliest instances of theta are also associated with bouts of gamma oscillations and 

bursts of hippocampal neural firing (Mohns et al., 2007; Mohns and Blumberg, 2008), 

raising the possibility that theta, early in development, may facilitate the fine-scale 

synchronisation of neural firing across hippocampal networks (Mohns and Blumberg, 

2010). 

 Theta in adult rats (and other rodents) has been described as consisting of two 

different components, dissociable by their pharmacology and behavioural correlates: 

type I theta is related to movement, and is insensitive to blockade of the cholinergic 

projections to the hippocampus, type II theta occurs during alert immobility and is 

disrupted by application of cholinergic antagonists (Kramis et al., 1975). At P10, both 

types of theta appear to be present: atropine-sensitive theta emerges concurrently with 

theta associated with voluntary movement (Leblanc and Bland, 1979). This is consistent 

with the development of the cholinergic neurons in the medial septum, which develop 

gradually between P1 and P16, but display molecular markers of acetylcholine 

production by P10 (Bender et al., 1996). However, it has also been suggested that the 

early association of theta with myoclonic twitches (at P8) indicates that type I theta is 

the earliest to emerge (Mohns and Blumberg, 2008). As type I theta is thought to be 

supported by GABA-ergic projections from the medial septum to hippocampal 

interneurons (Buzsaki, 2002), early development of type I theta would be consistent 

with the very early development of GABA-ergic neurons in the medial septum (Bender 

et al., 1996), and the early development of inhibitory synapses onto CA1 pyramidal 

cells (Danglot et al., 2006). The finding that early hippocampal theta bursts can entrain 

the firing of neurons in other brain regions, for example the pre-frontal and para-
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hippocampal cortices, indicates that the role of theta in synchronising developing 

networks may also extend beyond the hippocampal formation (Brockmann et al., 2011; 

Hartung et al., 2016). 

The earliest bouts of theta display a markedly lower frequency than that 

observed in adults, displaying a frequency of around 5Hz (Leblanc and Bland, 1979; 

Mohns and Blumberg, 2008). Similar theta frequency increases are observed in other 

species (Marley and Key, 1963; Creery and Bland, 1980), suggesting that this might be 

a general pattern of mammalian brain development. In vivo recordings of hippocampal 

neural activity during exploration between P16 and P30 (Langston et al., 2010; Wills et 

al., 2010) show that the frequency of theta continues to increase gradually throughout 

this period, but remains lower than that of adult rats even after three weeks of age (Wills 

et al., 2010). As discussed in previous sections, the instantaneous frequency of theta is 

modulated by running speed in adult rats, and the intercept and the slope of the speed-

frequency curve may reflect different aspects of hippocampal function (see sections 6.2, 

6.3 and 6.4). During development, the frequency of theta is also postively modulated by 

running speed, from the earliest ages at which exploration occurs (Wills et al., 2010). 

Both the slope and the intercept of the speed-frequency curve increase during 

development, though the time course of their respective increases appears dissociable, 

with large changes in intercept occuring between P18 and P24, despite much slower, 

gradual changes in slope (Wills et al., 2010). Interestingly, other speed-related signals in 

the hippocampal formation, such as the speed-modulation of grid cells in the entorhinal 

cortex (Hinman et al., 2016), are also present early in development (Wills et al., 2012). 

 

7.3 Modulation of neural firing by theta during development 

 The hippocampus contains several different classes of neurons whose firing is 

modulated by the position and orientation of the animal in space. A series of recent 

studies have shown that different types of spatially modulated neurons follow different 

developmental trajectories: head direction cells emerge first, abruptly, becoming adult-

like as soon as animals open their eyes (Tan et al., 2015). Place cells are present as soon 

as animals begin to explore their environment (around P15, but with considerably 

reduced spatial tuning than in adulthood, and continue to mature gradually over the 

following  2-4 weeks (Scott et al., 2010; Wills et al., 2010). Finally, grid cells emerge 
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abruptly at around three weeks of age (Wills et al., 2010). For a review, see (Tan et al., 

2016). In the adult, the probability of spiking of both place cells and grid cells is 

modulated by the phase of the ongoing theta oscillation (Fox et al., 1986; Hafting et al., 

2008): in this section we will discuss how this temporal modulation of spiking by theta 

emerges during development. 

 Place cell spiking occurs preferentially on the negative phase of the locally 

recorded (CA1) theta oscillation (Fox et al., 1986), and the resulting theta frequency 

bursting is most clearly measured as a set of repeating peaks, at theta frequency, in the 

temporal auto-correlogram of the spike train. This theta-modulation of place cell spiking 

is present at the earliest ages tested (P16), but at lower levels than observed in adults 

(Langston et al., 2010; Wills et al., 2010). Interestingly, the degree of theta-modulation 

of place cells appears to reach adult-like levels at P22 (Wills et al., 2010), 

approximately coincident with the emergence of hippocampal spatial behaviours. An 

open question is whether the preferred phase of place cell firing also changes during 

development: different phases of the theta cycle have been proposed to coordinate the 

CA1 place cell firing with firing in different input areas, for example CA3 or entorhinal 

cortex (Hasselmo et al., 2002): changes in the preferred phase during development 

could reflect changes in the relative weights of input from these different regions. 

 The modulation frequency of adult place cell spiking (or ‘intrinsic frequency’) 

has a marginally greater frequency than the ongoing LFP theta, with the result that the 

phase of LFP theta at which spiking occurs precesses slightly as rats move through a 

place field (O’Keefe and Recce, 1993). Spike phase correlates better with distance 

travelled through the place field than with other variables (Huxter et al., 2003), leading 

to the idea that phase precession may represent a temporal code for space. Phase 

precession is a feature of grid cell, as well as place cell, firing, and these observations 

inspired ‘oscillatory interference’ models of spatial firing (Blair et al., 2008; Burgess et 

al., 2007; Zilli and Hasselmo, 2010). The common mechanism shared by such models is 

that a frequency difference between two oscillations, (where one of oscillation is 

frequency-modulated by velocity), can track the distance an animal has travelled and 

thereby produce spatially stable firing.  

During development, the intrinsic frequency of both grid and place cells is 

higher than that of LFP theta, from the earliest ages at which spatial responses are 
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present (P16) (Langston et al., 2010; Wills et al., 2010). Phase precession through a 

place field is present at least as early as P17 in place cells (Langston et al., 2010; Wills 

et al., 2010), demonstrating that this temporal organisation of place cell spiking is 

potentially adult-like during earliest exploration. One avenue for further investigation is 

to use recently developed analysis methods (Climer et al., 2015) to test whether, during 

development, intrinsic frequency is modulated by running speed as it is in adult rats 

(Jewajee et al., 2008; Stensola et al., 2012; Hinman et al., 2016). 

 

 

 

Outlook  

 The findings reviewed here show that hippocampal theta oscillations are crucial 

for diverse brain functions, ranging from anxiety and locomotion to cognitive processes. 

They also highlight the mechanisms through which hippocampal theta oscillations are 

involved in such a wide range of behaviors. First, the precision of hippocampal 

signalling and the temporal regularity of hippocampal output is related to several 

components of theta oscillations - frequency, amplitude and different phases of theta 

cycles. While frequency of hippocampal theta likely depends on bottom-up movement-

dependent signals from cortical and subcortical theta generators, regularity of theta 

amplitude adjusts top-down output to subcortical targets, which then directly regulates 

locomotion. Influence of hippocampal theta rhythmic output regularity on locomotion 

may further reflect differential involvement of hippocampus in circuitries controlling 

spatial navigation depending on the familiarity of environment and other salient stimuli. 

Dissociation of theta signaling components, such as intercept reduction and slope 

reduction offers a new physiological perspective upon dual hippocampal functionality, 

helping to bridge the rather different views of hippocampal function in cognitive 

processes and anxiety. This quantitative approach to hippocampal theta may help to lay 

the empirical groundwork that bridges parallel streams of research on hippocampal 

cognitive and emotional processing. The complex interplay between multiple theta 

generators can also ensure precision of hippocampal signaling, crucial for separation of 

encoding and retrieval as well for theta phase precession. Impairments of this precision 

may underlie impairments of memory encoding upon loss of theta rhythm. Second, 
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different functions of theta oscillations can be mediated through signalling to various 

projections of hippocampus. Projection-specific inhibition or excitation of these 

pathways will enable investigation of particular pathways' contributions in different 

behaviors. Closed-loop, optogenetically induced, modifications or disruptions of theta 

oscillations during specific phases of behavioral tasks can probe for the necessity of 

theta oscillations for particular functions. 

 Maturation of theta oscillations in parallel with development of more complex 

behaviors in early postnatal days and weeks also points out the importance of theta-

rhythm. During development, the intrinsic frequency of both grid and place cells is 

higher than that of LFP theta, from the earliest ages at which spatial responses are 

present (P16). Phase precession through a place field is present at least as early as P17 

in place cells, demonstrating that this temporal organisation of place cell spiking is 

potentially adult-like during earliest exploration. One avenue for further investigation is 

to use recently developed analysis methods to test at what age intrinsic frequency is 

modulated by running speed in developing pups, as it is in adults, and as as oscillatory 

interference models would predict. 

These and future findings help to understand how oscillations participate in 

generation and regulation of complex behaviors, what role they play in healthy brain 

and how impairments of oscillations are linked to brain disorders. 
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Figure legends 

 

Figure 1 A schematic illustration of locomotion speed-regulating downstream theta-

rhythmic signaling, which regulates locomotion speed (Bender et al., 2015). HC-

hippocampus, LS-lateral septum, LH-lateral hypothalamus. The figure is a courtesy of 

Franziska Bender. 

 

 

Figure 2  Functional dissociation of two components of hippocampal formation 

theta frequency (schematic illustrations) 

Extracellular electrophysiological recordings in the hippocampal formation (A) show 

theta-band oscillations as the rat forages (B). One second trace of the local field 

potential showing ~10 cycles of theta (filtered 0.25 to 200Hz) is shown below rat (B). 

Whole-trial LFP data can be used to construct plot of instantaneous theta frequency vs 

running speed, showing correlation that is positive and broadly linear (Ci). Right-hand 

plots show potential modulation of slope (Cii) and y-intercept (Cii) values. Note Y-

Intercept value (i.e. theta frequency at zero running speed), depicted as small red circle 

in each plot, is calculated from extrapolating frequency-speed regression line, not 

stationary behaviour. D-G show schematic illustrations of modulation of slope 

component (D-E), and y-intercept component (F-G). Environmental novelty (new 

spatial context) elicits reduction of slope in hippocampal and entorhinal theta. Slope 

reduction in hippocampus is accompanied by larger spatial scale of CA1 place fields (D, 

left) and increase in rearing on hindlegs, a hippocampal dependent novelty-responsive 

behaviour (D, right) (Wells et al, 2013). Environmental novelty elicits larger spatial 

scale of grid cells (E, left: Barry et al, 2012b), which (Burgess, 2008) model predicts is 

due to slope reduction (prediction, not data). Darkness elicits slope reduction in mice, 

accompanied by strong disruption to grid cell spatial signal (E, right: Chen et al, 2016). 

Different classes of systemically-administered anxiolytic drugs have the common effect 

of reducing y-intercept in theta from the hippocampus (F) and entorhinal cortex (G). 

Hippocampal theta: Chlordiazepoxide, Buspirone and O-2545 from (Wells et al, 2013); 

Pregabalin from (Lever et al, 2016); Entorhinal theta: Diazepam and 8-OH-DPAT 

(schematic illustration based on unpublished work in (Monaghan et al, 2014; Monaghan 

et al, 2015).  
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